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THE DIAMETER OF WEIGHTED RANDOM GRAPHS

BY HAMED AMINI AND MARC LELARGE1

EPFL and INRIA

In this paper we study the impact of random exponential edge weights on
the distances in a random graph and, in particular, on its diameter. Our main
result consists of a precise asymptotic expression for the maximal weight
of the shortest weight paths between all vertices (the weighted diameter) of
sparse random graphs, when the edge weights are i.i.d. exponential random
variables.

1. Introduction and main results. Real-world networks are described not
only by their graph structure, which give us information about valid links between
vertices in the network, but also by their associated edge weights, representing
cost or time required to traverse the edge. The analysis of the asymptotics of typ-
ical distances in edge weighted graphs has received much interest by the statisti-
cal physics community in the context of first-passage percolation problems. First-
passage percolation (F.P.P.) describes the dynamics of a fluid spreading within a
random medium. In this paper we study the impact of random exponential edge
weights on the distances in a random graph and, in particular, on its diameter.

The typical distance and diameter of nonweighted graphs have been studied by
many people, for various models of random graphs. A few examples are the results
of Bollobás and Fernandez de la Vega [13], van der Hofstad, Hooghiemstra and
Van Mieghem [31], Fernholz and Ramachandran [17], Chung and Lu [15], Bol-
lobás, Janson and Riordan [14] and Riordan and Wormald [30]. The first-passage
percolation model has been mainly studied on lattices motivated by its subadditive
property and its link to a number of other stochastic processes; see, for example,
[18, 19, 26] for a more detailed discussion. First-passage percolation with expo-
nential weights has received substantial attention (see, e.g., [4, 6–9, 20, 31]), in
particular on the complete graph and more recently, also on random graphs.

A weighted graph (G,w) is the data of a graph G = (V ,E) and a collection
of weights w = {we}e∈E associated to each edge e ∈ E. We suppose that all the
edge weights are nonnegative. For two vertices a and b ∈ V , a path between a

and b is a sequence π = (e1, e2, . . . , ek) where ei = {vi−1, vi} ∈ E and vi ∈ V for
i ∈ {1, . . . , k} = [1, k], with v0 = a and vk = b. We write e ∈ π if the edge e ∈ E
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belongs to the path π , that is, if e = ei for an i ∈ [1, k]. For a, b ∈ V , the weighted
distance between a and b is given by

distw(a, b) = distw(a, b;G) = min
π∈�(a,b)

∑
e∈π

we,

where the minimum is taken over all the paths between a and b in the graph G.
The weighted diameter is then given by

diamw(G) = max
{
distw(a, b), a, b ∈ V,distw(a, b) < ∞}

,

and the weighted flooding time for a ∈ V is defined by

floodw(a,G) = max
{
distw(a, b), b ∈ V,distw(a, b) < ∞}

.

1.1. Random graphs with given degree sequence. For n ∈ N, let (di)
n
1 be a

sequence of nonnegative integers such that
∑n

i=1 di is even. By means of the con-
figuration model (Bender and Canfield [5], Bollobás [11]), we define a random
multigraph with given degree sequence (di)

n
1, denoted by G∗(n, (di)

n
1) as follows:

to each node i ∈ [1, n] we associate di labeled half-edges. All half-edges need to
be paired to construct the graph; this is done by uniformly matching them. When
a half-edge of i is paired with a half-edge of j , we interpret this as an edge be-
tween i and j . The graph G∗(n, (di)

n
1) obtained following this procedure may not

be simple, that is, may contain self-loops due to the pairing of two half-edges
of i, and multi-edges due to the existence of more than one pairing between two
given nodes. Conditional on the multigraph G∗(n, (di)

n
1) being a simple graph,

we obtain a uniformly distributed random graph with the given degree sequence,
which we denote by G(n, (di)

n
1), [23]. We consider asymptotics as the numbers

of vertices tend to infinity, and thus we assume throughout the paper that we are
given, for each n, a sequence d(n) = (d

(n)
i )n1 = (di)

n
1 of nonnegative integers such

that
∑n

i=1 d
(n)
i is even. For notational simplicity we will sometimes not show the

dependency on n explicitly.
For k ∈ N, let u

(n)
k = |{i, di = k}| be the number of vertices of degree k. From

now on, we assume that the sequence (di)
n
1 satisfies the following regularity con-

ditions analogous to the ones introduced in [29]:

CONDITION 1.1. For each n, d(n) = (d
(n)
i )n1 = (di)

n
1 is a sequence of positive

integers such that
∑n

i=1 di is even, and for some probability distribution (pr)
∞
r=1

over integers independent of n and with finite mean μ := ∑
k≥1 kpk ∈ [1,∞), the

following holds:

(i) u
(n)
k /n → pk for every k ≥ 1 as n → ∞;

(ii) for some ε > 0,
∑n

i=1 d2+ε
i = O(n).

Note that the condition di ≥ 1 for all i is not restrictive since removing all
isolated vertices from a graph will not affect the (weighted) distances.
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1.2. Main results. We define q = {qk}∞k=0 the size-biased probability mass
function corresponding to p by

∀k ≥ 0 qk := (k + 1)pk+1

μ
,(1.1)

and let ν denote its mean

ν :=
∞∑

k=0

kqk ∈ (0,∞)
[
by Condition 1.1(ii)

]
.(1.2)

Let φp(z) be the probability generating function of {pk}∞k=0 :φp(z) =∑∞
k=0 pkz

k , and let φq(z) be the probability generating function of {qk}∞k=0 :
φq(z) = ∑∞

k=0 qkz
k = φ′

p(z)/μ. In this paper, we will consider only the case where
ν > 1. In particular, there exists a unique λ in (0,1) such that λ = φq(λ), and if
C is the size (in number of vertices) of the largest component of G(n, (di)

n
1),

then we have by Molloy and Reed [29] and Janson and Luczak [23], C/n
p→

1 − φp(λ) > 0. In addition, we introduce

λ∗ = φ′
q(λ) =

∞∑
k=1

kqkλ
k−1 ∈ [0,1).(1.3)

We can now state our main theorem.

THEOREM 1.2. Let (G(n, (di)
n
1),w) be a sequence of random weighted

graphs where w = {we}e∈E are i.i.d. rate one exponential random variables.
Assume Condition 1.1 and that ν defined in (1.2) is such that ν > 1.
Assume that all the graphs have the same minimum degree denoted by dmin =

mini∈[1,n] di and moreover that pdmin > 0. Let � :N∗ →R be defined by

�(d) := d1[d ≥ 3] + 2(1 − q1)1[d = 2] + (1 − λ∗)1[d = 1].(1.4)

Let a, b be two uniformly chosen vertices in this graph. If we condition the vertices
a and b to be connected, we have

distw(a, b;G(n, (di)
n
1))

logn

p→ 1

ν − 1
.(1.5)

If we condition the vertex a to be in the largest component, we have

floodw(a,G(n, (di)
n
1))

logn

p→ 1

ν − 1
+ 1

�(dmin)
.(1.6)

Finally, we have

diamw(G(n, (di)
n
1))

logn

p→ 1

ν − 1
+ 2

�(dmin)
.(1.7)
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REMARK 1.3. Note that ν > 1 implies that
∑∞

k=0 k(k −2)pk > 0 so that there
is a positive fraction of nodes in G(n, (di)

n
1) with degree 3 or larger. In particular,

we have q1 = 2p2/μ < 1 and λ∗ < 1 so that we have �(d) > 0 for all d ∈ N
∗ =

{1,2, . . .}.

We now comment our result with respect to related literature. Our main con-
tribution is (1.7) while results (1.5) and (1.6) follow from the analysis required to
prove (1.7). Indeed, a much stronger version of (1.5) has been proved for a slightly
different model of random graphs by Bhamidi, van der Hofstad and Hooghiemstra
in [8]. Theorem 3.1 in [8] shows that if the sequence (di)

n
1 is a sequence of i.i.d.

(nondegenerate) random variables with dmin ≥ 2 and finite variance, then there
exists a random variable V such that (conditioning on a and b being connected)

distw
(
a, b;G∗(

n, (di)
n
1
)) − logn

ν − 1
d→ V.

We expect this result to be valid for our model of random graphs G(n, (di)
n
1) where

the degrees di satisfy Condition 1.1 (but we did not try to prove it). Bhamidi, van
der Hofstad and Hooghiemstra [7, 8] also give results when the degree sequence
has no finite second moment and no finite first moment.

Motivated by the analysis of the diameter of the largest component of a critical
Erdős–Rényi random graph (without edge weights), Ding et al. [16] show that if
di = r ≥ 3 for all i, then we have with high probability

diamw

(
G∗(n, r)

) =
(

1

r − 2
+ 2

r

)
logn + O(log logn).

The intuition behind this formula is simple: consider a vertex in G∗(n, r); its
closest neighbor is at distance given by an exponential random variable with rate
r (i.e., the minimun of r exponential rate one random variables). Hence the prob-
ability for this distance to be larger than logn/r is n−1. Since there are n vertices
with degree r , a simple argument shows that we will find two nodes with closest
neighbors at distance logn/r . The diameter will be obtained by taking a shortest
path between these two nodes. Each such node will first give a contribution of
logn/r to reach its closest neighbor and then the path between these neighbors
will be typical, of the order logn/(r − 2). This simple heuristic argument shows
that our result on the diameter depends crucially on the weights being exponen-
tially distributed or at least have an exponential tail. We refer to [10] for recent
results on distances with i.i.d. weights. As we will see, the presence of nodes with
degree one and two makes the analysis much more involved than in [16]. As soon
as a fraction of nodes have degree two, there will be long paths constitued by a
chain of such nodes, and we will see that these paths contribute to the diameter.

In [2], this result is used to analyze an asynchronous randomized broadcast al-
gorithm for random regular graphs. In continuous-time, each node is endowed with
a Poisson point process with rate 1 and contacts one of its neighbors uniformly at
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random at each point of his process. In a push model, if a node holds the message,
it passes the message to its randomly chosen neighbor regardless of its state. The
results in [2] show that the asynchronous version of the algorithm performs better
than its synchronized version: in the large size limit of the graph, it will reach the
whole network faster even if the local dynamics are similar on average.

We end this section by a simple remark. Our results can be applied to some other
random graphs models too by conditioning on the degree sequence. In particular,
our results will apply whenever the random graph conditioned on the degree se-
quence has a uniform distribution over all possibilities. Notable examples of such
graphs are G(n,p), the Bernoulli random graph with n vertices and edge probabil-
ity p and G(n,m), the uniformly random graph with n vertices and m edges. For
example, for G(n,p) with np → μ ∈ (0,∞) or G(n,m) with 2m/n → μ, Condi-
tion 1.1(i) holds in probability with (pk), a Poisson distribution with parameter μ,

pk = e−μ μk

k! . In Appendix B, we show that thanks to Skorohod’s coupling theo-
rem [25], Theorem 3.30, our results still apply in this setting. By taking care of
removing isolated nodes, our result gives in this case [note that φq(z) = e−μ(1−z)].

THEOREM 1.4. Let μ > 1 be fixed, and let λ∗ < 1 satisfy λ∗e−λ∗ = μe−μ.
Assume Gn = G(n,p) where np → μ ∈ (0,∞) [or Gn = G(n,m) with 2m/n →
μ ∈ (0,∞)] with i.i.d. rate 1 exponential weights on its edges. Then we have

diamw(Gn)

logn

p→ 1

μ − 1
+ 2

1 − λ∗
.(1.8)

This result improves on a lower bound of the weighted diameter given by
Bhamidi, van der Hofstad and Hooghiemstra in [9], Theorem 2.6. Note that [9]
also deals with the case np → ∞ which is out of the scope of the present paper.

1.3. Overview of the proof and organization of the paper. Our work is a direct
generalization of [16] with significantly more involved calculations. The first key
idea of the proof from [16] is to grow balls centered at all vertices of the graph
simultaneously. The time when two balls centered at a and b, respectively, inter-
sect is exactly the half of the weighted distance between a and b. (In what follows,
we will sometimes deliberately use the term time instead of the term weighted dis-
tance.) Hence the weighted diameter becomes twice the time when the last two
balls intersect. A simple argument shows that any two balls containing slightly
more than

√
n vertices (2

√
rn logn vertices for r-regular case) will intersect with

high probability; see Proposition 3.1. Hence it will be enough to control the time at
which all balls have reached this critical size of order

√
n in order to prove an upper

bound for the weighted diameter. For a proof of the upper bound on the diameter,
we apply an union bound argument as in [16]. Hence, we need to find the right
time such that the probability for a (typical) ball to reach size

√
n is of order n−1.
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In order to do so, we use the second main idea of the proof: we couple the explo-
ration process on the weighted graph with a continuous time Markov branching
process. This coupling argument is quite standard, and we will deal here with the
same branching process approximation for the exploration process on the graph as
in [8]. However, we are facing here new difficulties as we need to consider events
here of small probability for this exploration process (of order n−1). In particular,
we need to show that the coupling is still valid for such large deviations. When
dmin ≥ 3, the argument of Ding et al. [16] can be extended easily [2]. But as soon
as dmin ≤ 2, several complications happen. First as shown in [3], the asymptotics
for the large deviations of the branching process depend on the minimal possible
offspring. Second, as soon as dmin = 1, the small components of the graph contain
now a positive fraction of the nodes. We need to bound the diameter of these small
components and to study the diameter on the largest component, we need to condi-
tion our exploration process on “nonextinction.” Similarly, the presence of degree
one nodes significantly complicates the proof of the lower bound. In order to apply
the second moment method as in [16], we need to first remove vertices with degree
one iteratively to work with the 2-core of the graph (indeed an augmented version
of this 2-core; see Section 4.2 for details).

We consider in Section 2 the exploration process for configuration model which
consists in growing balls simultaneously from each vertex. A precise treatment of
the exploration process, resulting in information about the growth rates of the balls,
is given in this section. In addition, the section provides some necessary notation
and definitions that will be used throughout the last three sections. Sections 3 and 4
form the heart of the proof. We first prove that the above bound is an upper bound
for the weighted diameter. This will consist of defining the two parameters αn

and βn with the following significance: (i) Two balls of size at least βn intersect
almost surely; (ii) considering the growing balls centered at a vertex in the graph,
the time it takes for the balls to go from size αn to size βn have all the same
asymptotic for all the vertices of the graph, and the asymptotic is half of the typical
weighted distance in the graph; (iii) the time it takes for the growing balls centered
at a given vertex to reach size at least αn is upper bounded by 1+ε

�(dmin)
logn for

all ε > 0 with high probability (w.h.p.). This will show that the diameter is w.h.p.
bounded above by (1 + ε)( 1

ν−1 + 2
�(dmin)

) logn, for all ε > 0. The last section
provides the corresponding lower bound. To obtain the lower bound, we show that
w.h.p. (iv) there are at least two nodes with degree dmin such that the time it takes
for the balls centered at these vertices to achieve size at least αn is worse than
the other vertices, and is lower bounded by 1−ε

�(dmin)
logn, for all ε > 0. And using

this, we conclude that the diameter is w.h.p. bounded below by (1 − ε)( 1
ν−1 +

2
�(dmin)

) logn, for all fixed ε > 0, finishing the proof of our main theorem.
The actual values of αn and βn will be

αn := ⌊
log3 n

⌋
and βn :=

⌊
3
√

μ

ν − 1
n logn

⌋
.(1.9)
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When dmin = 1, the longest shortest path in a random graph will be between a
pair of vertices a and b of degree one. Furthermore, this path consists of a path
from a to the 2-core, a path through the 2-core and a path from the 2-core to b. For
this, we need to provide some preliminary results on the structure of the 2-core;
this is done in Appendix A. In Appendix B, we show that our results still apply for
random graphs G(n,p) and G(n,m) by conditioning on the degree sequence.

Basic notation. We usually do not make explicit reference to the probability
space since it is usually clear to which one we are referring. We say that an event
A holds almost surely, and we write a.s., if P(A) = 1. The indicator function of an
event A is of particular interest, and it is denoted by 1[A]. We consider the asymp-
totic case when n → ∞, and say that an event holds w.h.p. (with high probability)

if it holds with probability tending to 1 as n → ∞. We denote by
d→ and

p→ con-
vergence in distribution, and in probability, respectively. Similarly, we use op and
Op in a standard way. For example, if (Xn) is a sequence of random variables, then
Xn = Op(1) means that “Xn is bounded in probability,” and Xn = op(n) means

that Xn/n
p→ 0.

2. First passage percolation in G∗(n, (di)
n
1). We start this section by intro-

ducing some new notation and definitions. Before this, one remark is in order. In
what follows, we will sometimes deliberately use the term time instead of the term
weighted distance. It will be clear from the context what we actually mean by this.

Let (G = (V ,E),w) be a weighted graph. For a vertex a ∈ V and a real number
t > 0, the t-radius neighborhood of a in the (weighted) graph, or the ball of radius t

centered at a, is defined as

Bw(a, t) := {
b,distw(a, b) ≤ t

}
.

The first time t where the ball Bw(a, t) reaches size k +1 will be denoted by Ta(k)

for k ≥ 0, that is,

Ta(k) = min
{
t :

∣∣Bw(a, t)
∣∣ ≥ k + 1

}
, Ta(0) = 0.

If there is no such t , that is, if the component containing a has size at most k, we
define Ta(k) = ∞. More precisely, we use Ia to denote the size of the component
containing a in the graph minus one. In other words,

Ia := max
{∣∣Bw(a, t)

∣∣, t ≥ 0
} − 1,

so that for all k > Ia , we set Ta(k) = ∞. Note that there is a vertex in Bw(a,Ta(k))

which is not in any ball of smaller radius around a. When the weights are i.i.d.
according to a random variable with continuous density, this vertex is, in addition,
unique with probability one. We will assume this in what follows. For an integer
i ≤ Ia , we use d̂a(i) to denote the forward-degree of the (unique) node added at
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time Ta(i) in Bw(a,Ta(i)). Recall that the forward-degree is the degree minus one.
Define Ŝa(i) as follows:

Ŝa(i) := da + d̂a(1) + · · · + d̂a(i) − i, Ŝa(0) = da.(2.1)

For a connected graph H , the tree excess of H is denoted by tx(H), which is the
maximum number of edges that can be deleted from H while still keeping it con-
nected. By an abuse of notation, for a subset W ⊆ V , we denote by tx(W) the tree
excess of the induced subgraph G[W ] of G on W . (If G[W ] is not connected, then
tx(W) := ∞.) Consider the growing balls Bw(a,Ta(i)) for 0 ≤ i ≤ Ia centered
at a, and let Xa(i) be the tree excess of Bw(a,Ta(i)),

Xa(i) := tx
(
Bw

(
a,Ta(i)

))
.

We extend the definition of Xa to all the integer values by setting Xa(i) = Xa(Ia)

for all i > Ia .
The number of edges crossing the boundary of the ball Bw(a,Ta(i)) is denoted

by Sa(i). A simple calculation shows that

Sa(i) = Ŝa(i) − 2Xa(i).(2.2)

We now consider a random graph G(n, (di)
n
1) with i.i.d. rate one exponential

weights on its edges, such that the degree sequence (di)
n
1 satisfies Condition 1.1.

We let m(n) be the total degree defined by m(n) = ∑n
i=1 di = ∑

k≥0 ku
(n)
k .

One particularly useful property of the configuration model is that it allows
one to construct the graph gradually, exposing the edges of the perfect matching,
one at a time. This way, each additional edge is uniformly distributed among all
possible edges on the remaining (unmatched) half-edges. We have the following
useful lemma.

LEMMA 2.1. For any k ≤ m(n)−n
2 , we have

P
(
2Xa(k) ≥ x|Ŝa(k), Ia ≥ k

) ≤ P
(
Bin

(
Ŝa(k),

√
Ŝa(k)/n

) ≥ x|Ŝa(k)
)
.

PROOF. To prove this, we need the following intermediate result proved
in [17], Lemma 3.2.

LEMMA 2.2. Let A be a set of m points, that is, |A| = m, and let F be a
uniform random matching of elements of A. For e ∈ A, we denote by F(e) the
point matched to e, and similarly for X ⊂ A, we write F(X) for the set of points
matched to X. Now let X ⊂ A, k = |X|, and assume k ≤ m/2. We have∣∣X ∩ F(X)

∣∣ ≤st Bin(k,
√

k/m).
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Conditioning on all the possible degree sequences d̂a(1), d̂a(2), . . . , d̂a(k), with
the property that da + ∑

1≤i≤k d̂a(i) = Ŝa(k), the configuration model becomes
equivalent to the following process: start from a, and at each step 1 ≤ i ≤ k, choose
a vertex ai of degree d̂a(i) + 1 uniformly at random from all the possible vertices
of this degree outside the set {a, a1, . . . , ai−1}, choose a half-edge adjacent to ai

uniformly at random and match it with a uniformly chosen half-edge from the yet-
unmatched half-edges adjacent to one of the nodes a, a1, . . . , ai−1. And at the end,
after ak has been chosen, take a uniform matching for all the remaining (m(n) −2k)

half-edges. Now the proof follows from Lemma 2.2 by the simple observation that,
since m(n) − 2k ≥ n,

P
(
Bin

(
Ŝa(k),

√
Ŝa(k)/m(n) − 2k

) ≥ x|Ŝa(k)
)

≤ P
(
Bin

(
Ŝa(k),

√
Ŝa(k)/n

) ≥ x|Ŝa(k)
)
. �

In the sequel, we will also need to consider the number of vertices of forward-
degree at least two in the (growing) balls centered at a vertex a ∈ V . Thus, for
i ≤ Ia , define

γa(i) :=
i∑

�=1

1
[
d̂a(�) ≥ 2

] = ∣∣{b ∈ Bw

(
a,Ta(i)

)
:b �= a and db ≥ 3

}∣∣,(2.3)

and extend the definition to all integers by setting γa(i) = γa(Ia) for all i > Ia .
Note that γa(0) = 0 and γa(i) = i if dmin ≥ 3.

Now define T a(k) to be the first time where the ball centered at a has at least k

nodes of forward-degree at least two. More precisely,

T a(i) := min
{
Ta(�), for � such that γa(�) ≥ k

}
.(2.4)

The main idea of the proof of Theorem 1.2 consists of growing the balls around
each vertex of the graph simultaneously so that the diameter becomes equal to
twice the time when the last two balls intersect. In what follows, instead of taking a
graph at random and then analyzing the balls, we use a standard coupling argument
in random graph theory which allows us to build the balls and the graph at the same
time. We present this coupling in the next coming section.

2.1. The exploration process. Fix a vertex a in G∗(n, (di)
n
1), and consider the

following continuous-time exploration process. At time t = 0, we have a neighbor-
hood consisting only of a, and for t > 0, the neighborhood is precisely Bw(a, t).
We now give an equivalent description of this process. This provides a more con-
venient way for analyzing the random variables which are crucial in our argument,
for example, Sa(k). The idea is that instead of taking a graph at random and then
analyzing the balls, the graph and the balls are built at the same time. We will
consider a growing set of vertices denoted by B and a list L of yet unmatched
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half-edges in B . Recall that in the usual way of constructing a random graph with
given degree sequence, we match half-edges amongst themselves uniformly at ran-
dom. In the following, by a matching, we mean a pair of matched half-edges.

• Start with B = {a}, where a has da half-edges. For each half edge, decide (at
random depending on the previous choices) if the half-edge is matched to a
half-edge adjacent to a or not. Reveal the matchings consisting of those half-
edges adjacent to a which are connected amongst themselves (creating self-
loops at a) and assign weights independently at random to these edges. The
remaining unmatched half-edges adjacent to a are stored in a list L. (See the
next step including a more precise description of this first step.)

• Repeat the following exploration step as long as the list L is not empty.
• Given there are � ≥ 1 half-edges in the current list, say L = (h1, . . . , h�), let


 ∼ Exp(�) be an exponential variable with mean �−1. After time 
 select a
half-edge from L uniformly at random, say hi . Remove hi from L and match it
to a uniformly chosen half-edge in the entire graph excluding L, say h. Add the
new vertex (connected to h) to B and reveal the matchings (and weights) of any
of its half-edges whose matched half-edge is also in B . More precisely, let d be
the degree of this new vertex and 2x the number of already matched half-edges
in B (including the matched half-edges hi and h). There is a total of m − 2x

unmatched half-edges, m being the total number of half-edges of the random
graph G. Consider one of the d − 1 half-edges of the new vertex (excluding h

which is connected to hi ); with probability (� − 1)/(m − 2x − 1) it is matched
with a half-edge in L, and with the complementary probability it is matched
with an unmatched half-edge outside L. In the first case, match it to a uniformly
chosen half-edge of L, and remove the corresponding half-edge from L. In the
second case, add it to L. We proceed in the similar manner for all the d − 1
half-edges of the new vertex.

Let B(a, t) and L(a, t) be, respectively, the set of vertices and the list generated
by the above procedure at time t , where a is the initial vertex. Considering the
usual configuration model, and using the memoryless property of the exponential
distribution, we have Bw(a, t) = B(a, t) for all t . To see this, we can continuously
grow the weights of the half-edges h1, . . . , h� in L until one of their rate 1 expo-
nential clocks fire. Since the minimum of � i.i.d. exponential variables with rate 1
is exponential with rate �, this is the same as choosing uniformly a half-edge hi

after time 
 (recall that by our conditioning, these � half-edges do not pair within
themselves). Note that the final weight of an edge is accumulated between the time
of arrival of its first half-edge and the time of its pairing (except edges going back
into B whose weights are revealed immediately). Then the equivalence follows
from the memoryless property of the exponential distribution.

Note that Ta(i) is the time of the ith exploration step in the above continuous-
time exploration process. Assuming L(a,Ta(i)) is not empty, at time Ta(i +1), we
match a uniformly chosen half-edge from the set L(a,Ta(i)) to a uniformly chosen
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half-edge among all other half-edges, excluding those in L(a,Ta(i)). Let Ft be the
σ -field generated by the above process until time t . Given FTa(i), Ta(i +1)−Ta(i)

is an exponential random variable with rate Sa(i), given by equation (2.2), which
is equal to |L(a,Ta(i))|, the size of the list consisting of unmatched half-edges in
B(a,Ta(i)). In other words,(

Ta(i + 1) − Ta(i)|FTa(i)

) d= Exp
(
Sa(i)

)
,

this is true since the minimum of k i.i.d. rate one exponential random variables is
an exponential of rate k.

Recall that Ia = min{i, Sa(i) = 0} ≤ n − 1, and set Sa(i) = 0 for all Ia ≤ i ≤
n − 1. We now extend the definition of the sequence d̂(i) to all the values of
i ≤ n − 1, constructing a sequence (d̂a(i))

n−1
i=1 which will coincide in the range

i ≤ Ia with the sequence d̂a(i) defined in the previous subsection. We first note
that in the terminology of the exploration process, the sequence (d̂a(i))i≤Ia can
be constructed as follows. At time Ta(i + 1), the half-edge adjacent to the i + 1th
vertex is chosen uniformly at random from the set of all the half-edges adjacent to
a vertex out-side B , and d̂(i + 1) is the forward-degree of the vertex adjacent to
this half-edge. Thus the sequence (d̂(i))i≤Ia has the following description.

Initially, associate to all vertices j a set of dj half-edges (corresponding the set
of half-edges outside B and L). At step 0, remove the half-edges corresponding
to vertex a. Subsequently, at step k ≤ Ia , choose a half-edge uniformly at random
among all the remaining half-edges; if the half-edge is drawn from the node j ’s
half-edges, then set d̂a(k) = dj − 1, and remove the node j and all of its half-
edges. Obviously, this description allows us to extend the definition of d̂a(i) to
all the values of Ia < i ≤ n − 1. Indeed, if Ia < n − 1, there are still half-edges
at step Ia + 1, and we can complete the sequence d̂a(i) for i ∈ [Ia + 1, n − 1]
by continuing the sampling described above. In this way, we obtain a sequence
(d̂a(i))

n−1
i=1 which coincides with the sequence defined in the previous section for

i ≤ Ia .
We also extend the sequence Ŝa(i) for i > Ia thanks to (2.1). Recall that we

set Xa(i) = Xa(Ia) for all i > Ia . It is simple to see that with these conventions,
relation (2.2) is not anymore valid for i > Ia , but we still have Sa(i) ≤ Ŝa(i) −
2Xa(i) for all i.

The process i �→ Xa(i) is nondecreasing in i ∈ [1, n − 1]. Moreover, given
FTa(i), the increment Xa(i + 1) − Xa(i) is stochastically dominated by the fol-
lowing binomial random variable:

Xa(i + 1) − Xa(i) ≤st Bin
(
d̂a(i + 1),

(Sa(i) − 1)+

m(n) − 2(Xa(i) + i)

)
,(2.5)

where m(n) = ∑n
i=1 di . We recall here that for two real-valued random variables

A and B , we say A is stochastically dominated by B and write A ≤st B if for
all x, we have P(A ≥ x) ≤ P(B ≥ x). If C is another random variable, we write
A ≤st (B|C) if for all x, P(A ≥ x) ≤ P(B ≥ x|C).
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Note that if i > Ia , then Sa(i) = 0 and Xa(i + 1) − Xa(i) = 0, so that (2.5) is
still valid.

For i < n
2 , we have

(Sa(i) − 1)+

m(n) − 2(Xa(i) + i)
≤ Ŝa(i) − 2Xa(i)

m(n) − 2(Xa(i) + i)

≤ Ŝa(i)

m(n) − 2i
≤ max�≤i Ŝa(�)

n − 2i
.

We conclude:

LEMMA 2.3. For i < n
2 , we have

Xa(i) ≤st Bin
(

max
�≤i

Ŝa(�) + i,
max�≤i Ŝa(�)

n − 2i

)
.(2.6)

An important ingredient in the proof will be the coupling of the forward-degree
sequence {d̂(i)} to an i.i.d. sequence in the range i ≤ βn, that we provide in the
next subsection.

Recall that we defined αn and βn as follows [cf. equation (1.9)]:

αn = ⌊
log3 n

⌋
and βn =

⌊
3
√

μ

ν − 1
n logn

⌋
.

2.2. Coupling the forward-degrees sequence d̂a(i). We now present a cou-
pling of the variables {d̂a(1), . . . , d̂a(k)} valid for k ≤ βn, where βn is defined in
equation (1.9), with an i.i.d. sequence of random variables, that we now define. Let
�n := maxi∈[1,n] di . Note that by Condition 1.1(ii), we have �n = O(n1/2−ε).

Denote the order statistics of the sequence of degrees (d
(n)
i ) by

d
(n)
(1) ≤ d

(n)
(2) ≤ · · · ≤ d

(n)
(n) .(2.7)

Define m(n) := ∑n−βn

i=1 d
(n)
(i) , and let π(n) be the size-biased empirical distribution

with the βn highest degrees in (2.7) removed, that is,

π
(n)
k :=

∑n−βn

i=1 (k + 1)1[d(n)
(i) = k + 1]

m(n)
.

Similarly, define m(n) := ∑n
i=(βn+1)�n

d
(n)
(i) , and let π(n) be the size-biased empiri-

cal distribution with the (βn + 1)�n lowest degrees in (2.7) removed, that is,

π
(n)
k :=

∑n
i=(βn+1)�n

(k + 1)1[d(n)
(i) = k + 1]

m(n)
.
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Note that by Condition 1.1, we have βn�n = o(n) which implies that both the
distributions π(n) and π(n) converge to the size-biased distribution q defined in
equation (1.1) as n tends to infinity.

The following basic lemma, proved in [2], Lemma 4.1, shows that the forward-
degree of the ith vertex given the forward-degrees of all the previous vertices is
stochastically between two random variables with lower and upper distributions
π(n) and π(n) defined above, provided that i ≤ βn. More precisely:

LEMMA 2.4. For a uniformly chosen vertex a, we have for all i ≤ βn,

D
(n)
i ≤st

(
d̂a(i)|d̂a(1), . . . , d̂a(i − 1)

) ≤st D
(n)

i ,(2.8)

where D
(n)
i (resp., D

(n)

i ) are i.i.d. with distribution π(n) (resp., π(n)).
In particular, we have for all i ≤ βn,

i∑
k=1

D
(n)
k ≤st

i∑
k=1

d̂a(k) ≤st

i∑
k=1

D
(n)

k .

3. Proof of the upper bound. In this section we present the proof of the
upper bound for Theorem 1.2. Namely we prove that for any ε > 0, with high
probability for all vertices u and v which are in the same component [i.e., such
that distw(u, v) < ∞], we have

distw(u, v) ≤
(

1

ν − 1
+ 2

�(dmin)

)
(1 + ε) logn,

where �(dmin) is defined in (1.4).
The proof will be based on the following two technical propositions. For the

sake of readability, we postpone the proof of these two propositions to the end of
this section.

The first one roughly says that for all u and v, the growing balls centered at
u and v intersect w.h.p. provided that they contain each at least βn nodes. More
precisely:

PROPOSITION 3.1. We have w.h.p.

distw(u, v) ≤ Tu(βn) + Tv(βn) for all u and v.

The above proposition shows that in proving the upper bound, it will be enough
to control the random variable Tu(βn) for each node u in V . It turns out that in the
range between αn and βn, in the cases dmin ≥ 3, dmin = 2 and dmin = 1, Tu(k) have
more or less the same behavior; namely, it takes time at most roughly half of the
typical (weighted) distance to go from size αn to βn. More precisely:
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PROPOSITION 3.2. For a uniformly chosen vertex u and any ε > 0, we have

P

(
Tu(βn) − Tu(αn) ≥ (1 + ε) logn

2(ν − 1)

∣∣∣Iu ≥ αn

)
= o

(
n−1)

.

The conditioning Iu ≥ αn is here to ensure that the connected component which
contains u has size at least αn. In particular, note that one immediate corollary of
the two above propositions is that two nodes whose connected components have
size at least αn are in the same component (necessarily the giant component), and
that the two balls of size βn centered at these two vertices intersect w.h.p.

Using the above two propositions, we are only left to understand Tu(αn), and for
this we will need to consider the cases dmin ≥ 2 and dmin = 1 separately. Before
going through the proof of the upper bound in these cases, we need one more
result. Consider the exploration process started at a vertex a. We will need to find
lower bounds for Sa(k) in the range 1 ≤ k ≤ αn. Recall that we defined γa(k) as the
number of nodes of forward-degree at least two in the growing balls centered at a;
cf. equation (2.3) for the precise definition. These nodes are roughly all the ones
which could contribute to the growth of the random variable Sa(k). Now define the
two following events:

Ra := {
Sa(k) ≥ dmin + γa(k), for all 0 ≤ k ≤ αn − 1

}
,

R′
a := {

Sa(k) ≥ γa(k), for all 0 ≤ k ≤ αn − 1
}
.

LEMMA 3.3. Assume da ≥ 2 and d̂a(i) ≥ 1 for all 1 ≤ i ≤ αn. Then we have

P
(
Ra|d̂a(1), . . . , d̂a(n − 1)

) ≥ 1 − o
(
log10 n/n

)
,(3.1)

P
(
R′

a|d̂a(1), . . . , d̂a(n − 1)
) ≥ 1 − o

(
n−3/2)

.(3.2)

In particular, P(Ra) ≥ 1 − o(log10 n/n) and P(R′
a) ≥ 1 − o(n−3/2).

PROOF. Since d̂a(i) ≥ 1, Ŝa(k) is nondecreasing in k. We have for all k ≤ αn,

dmin + γa(k) ≤ da + γa(k) ≤ Ŝa(k) ≤ αn�n = o(n),(3.3)

and moreover, maxk≤αn Ŝa(k) = Ŝa(αn). Since da ≥ 2 and Sa(k) = Ŝa(k) −
2Xa(k), we have {

Xa(αn) = 0
} ⊂ Ra,

{
Xa(αn) ≤ 1

} ⊂ R′
a.

Note that the inequalities in (3.3) are true for any sequence such that 1 ≤ d̂a(i) ≤
�n. In particular, in the rest of the proof we condition on a realization of the
sequence d = (da, d̂a(1), . . . , d̂a(n − 1)).

We distinguish two cases depending on whether or not Ŝa(αn) is smaller
than 3αn. Denote this event by Q (and its complementary by Qc), that is,

Q := {
Ŝa(αn) < 3αn

}
.
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• Case (1). Ŝa(αn) < 3αn. Conditioning on Q, by Lemma 2.3 we have

Xa(αn) ≤st Bin
(

4αn,
3αn

n − 2αn

)
.

Thus we have

P
(
Xa(αn) ≥ 1|Q,d

) ≤ P

(
Bin

(
4αn,

3αn

n − 2αn

)
≥ 1

)
≤ O

(
α2

n/n
)
,

P
(
Xa(αn) ≥ 2|Q,d

) ≤ P

(
Bin

(
4αn,

3αn

n − 2αn

)
≥ 2

)
≤ O

(
α4

n/n2)
.

We infer that

P
(
(Ra)

c|Q,d
) ≤ O

(
α2

n/n
)
,

P
((

R′
a

)c|Q,d
) ≤ O

(
α4

n/n2)
.

• Case (2). Ŝa(αn) ≥ 3αn. Note that in this case, we still have

max
k≤αn

Ŝa(k) = Ŝa(αn) ≤ αn�n = o(n).

Moreover, there exists k ≤ αn such that for all � ≤ k, Ŝa(�) < 3αn and Ŝa(k +
1) ≥ 3αn. Note that since we have conditioned on the degree sequence d, the
value of k is deterministic (k is not a random variable). Conditioning on the
event Qc, we obtain by Lemma 2.3,

Xa(k) ≤st Bin
(

4αn,
3αn

n − 2αn

)
and

(3.4)

Xa(αn) ≤st Bin
(
αn(�n + 1),

αn�n

n − 2αn

)
.

By Condition 1.1(ii), there exists a ε > 0 such that �n := O(n1/2−ε). Let m =
�2ε−1�. Combining the last (stochastic) inequality together with the Chernoff’s
inequality applied to the right-hand side binomial random variable, we obtain

P
(
Xa(αn) ≥ m|Qc,d

) ≤ P

(
Bin

(
αn(�n + 1),

αn�n

n − 2αn

)
≥ m

)
= O

((
�2

nα
2
n/n

)m) = o
(
n−3)

.

We notice that for all � > k, we have Sa(�) ≥ 2αn − 2Xa(αn). Also for n large
enough, we have 2αn − 2m ≥ dmin + γa(�). Therefore,{

Xa(k) = 0,Xa(αn) ≤ m,Qc} ⊂ Ra ∩Qc and{
Xa(k) ≤ 1,Xa(αn) ≤ m,Qc

1
} ⊂ R′

a ∩Qc.
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This in turn implies that

P
(
(Ra)

c|Qc,d
) ≤ P

(
Xa(k) ≥ 1|Qc) + P

(
Xa(αn) ≥ m|Qc)

≤ O
(
α2

n/n
)

and

P
((

R′
a

)c|Qc,d
) ≤ P

(
Xa(k) ≥ 2|Qc) + P

(
Xa(αn) ≥ m|Qc)

≤ O
(
α4

n/n2)
.

In the above inequalities, we used (stochastic) inequality (3.4) and case (1) to
bound the terms P(Xa(k) ≥ 1|Qc) and P(Xa(k) ≥ 2|Qc).

The lemma follows by the definition of αn. �

We are now in position to provide the proof of the upper bound in the different
cases depending on whether dmin ≥ 2 or dmin = 1.

In what follows, we will use the following property of the exponential random
variables, without sometimes mentioning: If Y is an exponential random variable
of rate μ, then for any θ < μ, we have E[eθY ] = μ

μ−θ
.

3.1. Proof of the upper bound in the case dmin ≥ 2. Consider the exploration
process defined in Section 2.1 starting from a. Recall definitions (2.3) and (2.4):
γa(i) is the number of nodes with forward-degree (strictly) larger than one until
the ith exploration step, and T a(k) is the first time that the kth node with the
forward-degree (strictly) larger than one appears in the exploration process started
at node a. We also define the sets

La(k) := {
�,T a(k) ≤ Ta(�) < T a(k + 1)

}
,

for k ≥ 0, and let na(k) be the smallest � in La(k). Clearly, we have na(k) ≥ k and

γ −1
a (k) = La(k) = [

na(k), na(k + 1) − 1
]
.

Note that in the case dmin ≥ 3, we have q1 = π
(n)
1 = π

(n)
1 = 0, γa(k) = k,

T a(k) = Ta(k) and La(k) = {k}. This case is also treated in [2]. However, our
arguments bellow are still valid in this case.

For x, y ∈ R, we denote x ∧ y = min(x, y). We will need the following lemma.

LEMMA 3.4. For a uniformly chosen vertex a, any x > 0 and any � =
O(logn), we have

P
(
Ta(αn ∧ Ia) ≥ x logn + �

) ≤ o
(
n−1) + o

(
e−dmin(1−q1)�

)
.

PROOF. Recall that given the sequence Sa(k), for k < Ia , the random variables
Ta(k +1)−Ta(k) are i.i.d. exponential random variables with mean Sa(k)−1. First
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write

Ta(αn) = ∑
0≤j<αn

Ta(j + 1) − Ta(j)

≤ ∑
k≤Kn

T a(k + 1) − T a(k),

where Kn is the largest integer such that na(Kn) ≤ αn.
We now show that for any x > 0 and � = O(logn),

P
(
Ta(αn) ≥ x logn + �,Ra

) = o
(
e−dmin(1−q1)�

)
.(3.5)

Note that a sum of a geometric (with parameter π ) number of independent expo-
nential random variables with parameter μ is distributed as an exponential random
variable with parameter (1 − π)μ. For any k ≤ Kn, we have

T a(k + 1) − T a(k) = ∑
j∈La(k)

Ta(j + 1) − Ta(j).

Assume Ra holds. Then we have Sa(j) ≥ dmin + k for all j ∈ [na(k), na(k + 1) −
1] = La(k). Thus

Ta(j + 1) − Ta(j) ≤st Yk,i ∼ Exp(dmin + k),

where i = j −na(k)+1, and all the Yk,i’s are independent. [For i = 1, . . . , |La(k)|,
Yk,i are exponential random variables with rate dmin + k.]

For any positive t and θ , we obtain [for da := (da, d̂a(1), . . . , d̂a(n − 1))]

P
(
Ta(αn) − T a(1) ≥ t,Ra

) ≤ E

[
E

[
1(Ra)

∏
1≤k≤Kn

eθ(T a(k+1)−T a(k))
∣∣∣da

]]
e−θt

= E

[ ∏
1≤k≤Kn

eθ
∑|La(k)|

i=1 Yk,iP(Ra|da)

]
e−θt

≤ ∏
1≤k≤αn

(
1 + θ

(dmin + k)(1 − π
(n)
1 ) − θ

)
e−θt ,

where in the last inequality, we used the fact that the probability for a new node to
have forward-degree one is at most π

(n)
1 , and so the length |La(k)| is dominated

by a geometric random variable with parameter π
(n)
1 . Taking θ = dmin(1 − π

(n)
1 )

in the above inequality, we get

P
(
Ta(αn) − T a(1) ≥ t,Ra

) ≤ ∏
1≤k≤αn

(
1 + dmin(1 − π

(n)
1 )

(1 − π
(n)
1 )k

)
e−dmin(1−π

(n)
1 )t

= ∏
1≤k≤αn

(k + dmin)/ke−dmin(1−π
(n)
1 )t

< α3
ne

−dmin(1−π
(n)
1 )t .
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In the same way, we can easily deduce that(
T a(1)|Ra

) ≤st Exp
(
dmin

(
1 − π

(n)
1

))
.

Let t = x logn + �, and note that � ≤ C logn for some large constant C > 0
[by assumption � = O(logn)]. Take any 0 < ε < x(1 − q1)(C + x)−1; since for n

sufficiently large, we have π
(n)
1 ≤ q1 + ε, we obtain

P
(
Ta(αn) ≥ x logn + �,Ra

) ≤ α3
n

ndmin(x(1−q1−ε)−εC)
e−dmin(1−q1)�,

and (3.5) follows. Note that x(1 − q1 − ε) − εC > 0 by the choice of ε.
Assume now that the event R′

a ∩Rc
a holds. Two cases can happen: either Ia < αn

or Ia ≥ αn.
[Note that in the case dmin ≥ 3, by Lemma 3.3 we have P(Ia ≥ αn) ≥ 1 −

o(n−3/2). Indeed, for dmin ≥ 3, we have γa(k) = k so that R′
a ⊆ {Ia ≥ αn} =

{Sa(k) ≥ 1, for all 0 ≤ k ≤ αn − 1}.]
If Ia < αn, then by the definition of R′

a , 0 = Sa(Ia) ≥ γa(Ia), that is, γa(Ia) = 0.
In other words, the component of a is a union of cycles (or loops) having node a as
a common node, and with total number of edges less than αn. Hence, in this case,
we have

P
(
R′

a,R
c
a, Ia < αn,Ta(Ia) ≥ x logn + �

)
≤ P

(
Rc

a|da

)( ∑
0≤k≤αn

(
π

(n)
1

)k ∫ ∞
x logn+�

tk
e−t

k! dt

)

≤ log10 n/n
(
1 − π

(n)
1

)−1 exp
(−(

1 − π
(n)
1

)
(x logn + �)

) = o
(
n−1)

,

where the last inequality follows from inequality (3.1) in Lemma 3.3.
In the second case, when Ia ≥ αn, let

Q = R′
a ∩ Rc

a ∩ {Ia ≥ αn}.
If Q holds, by the definition of R′

a , we have Sa(j) ≥ k for all j ∈ La(k). Thus

Ta(j + 1) − Ta(j) ≤st Yk,i ∼ Exp(k),

where i = j −na(k)+1, and all the Yk,i’s are independent. [For i = 1, . . . , |La(k)|,
Yk,i are exponential random variables with rate k.] Hence, by the same argument
as above, we have

P
(
Ta(αn) − T a(2) ≥ t,Q

) ≤ E

[
E

[
1(Q)

∏
2≤k≤Kn

eθ(T a(k+1)−T a(k))
∣∣∣da

]]
e−θt

≤ E

[ ∏
2≤k≤Kn

eθ
∑|La(k)|

i=1 Yk,iP
(
Rc

a|da

)]
e−θt

≤ ∏
2≤k≤αn

(
1 + θ

k(1 − π
(n)
1 ) − θ

)
e−θto

(
log10 n

n

)
,
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where the last inequality follows from inequality (3.1) in Lemma 3.3. Thus taking
θ = 1 − π

(n)
1 gives

P
(
Ta(αn) − T a(2) ≥ t,Q

) ≤ ∏
2≤k≤αn

(
1 + 1

k − 1

)
e−(1−π

(n)
1 )t o

(
log10 n

n

)

≤ αne
−(1−π

(n)
1 )t o

(
log10 n

n

)
= e−(1−π

(n)
1 )t o

(
log13 n

n

)
.

Since da ≥ dmin, we can easily deduce that(
T a(2)|Q) ≤st Exp

(
dmin

(
1 − π

(n)
1

)) + Exp
(
1 − π

(n)
1

)
,

with these two exponentials being independent and independent of Q. Hence we
have

P
(
T a(2) ≥ t |Q) ≤

∫ ∞
t

dmin
(
1 − π

(n)
1

)(
e−(1−π

(n)
1 )x − e−dmin(1−π

(n)
1 )x)

≤ dmine
−(1−π

(n)
1 )t .

Thus

P
(
Ta(αn) ≥ t,Q

) ≤ e−(1−π
(n)
1 )t o

(
log13 n

n

)
.

Similar to the case where Ra holds (by fixing a constant ε small enough and using
that for n sufficiently large π

(n)
1 ≤ q1 + ε for n large enough), we get

P
(
Ta(αn) ≥ x logn + �,Q

) ≤ o

(
log13 n

n1+(1−q1−ε)C

)
= o

(
n−1)

.

Putting all the above arguments together, and considering the three disjoint
cases (R′

a)
c hold, Ra holds and R′

a ∩ Rc
a holds (in which case either Ia < αn or

Ia ≥ αn), we conclude that

P
(
Ta(αn ∧ Ia) ≥ x logn + �

) ≤ o
(
e−dmin(1−q1)�

) + o
(
n−1) + 1 − P

(
R′

a

)
.

To complete the proof it suffices to use Lemma 3.3. �

We can now finish the proof of the upper bound in the case dmin ≥ 2. By Propo-
sition 3.2, and Lemma 3.4 applied to � = logn

dmin(1−q1)
, we obtain that for a uniformly

chosen vertex a and any ε > 0, we have

P

(
∞ > Ta(βn ∧ Ia) ≥

(
1

2(ν − 1)
+ 1

dmin(1 − q1)

)
(1 + ε) logn

)
(3.6)

= o
(
n−1)

.
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Indeed, the above probability can be bounded above by

P

(
Ta(αn ∧ Ia) ≥ 1 + ε

dmin(1 − q1)
logn

)

+ P

(
Ta(βn) − Ta(αn) ≥ 1 + ε

2(ν − 1)
logn

∣∣∣Ia ≥ αn

)
,

and this is o(n−1) by the above cited results.
Applying equation (3.6) (and Lemma 3.4) and a union bound over a, we obtain

P

(
∀a,Ta(βn ∧ Ia) ≤

(
1

2(ν − 1)
+ 1

dmin(1 − q1)

)
(1 + ε) logn

)
(3.7)

= 1 − o(1).

Hence by Proposition 3.1, we have w.h.p. (for dmin ≥ 2)

diamw(G(n, (di)
n
1))

logn
≤ (1 + ε)

(
1

ν − 1
+ 1

1 − q1
1[dmin = 2] + 2

dmin
1[dmin ≥ 3]

)
.

This proves the bound on the diameter. To obtain the upper bound for the flood-
ing time, we use equation (3.7) and proceed as above by applying Proposition 3.2
and Lemma 3.4 applied to � = ε logn, to obtain that for a uniformly chosen ver-
tex b, we have

P

(
Tb(βn ∧ Ib) ≤

(
1 + ε

2(ν − 1)
+ ε

)
logn

)
= 1 − o(1).(3.8)

Clearly, equations (3.7) and (3.8) imply that w.h.p.

floodw(a,G(n, (di)
n
1))

logn

≤ (1 + ε)

(
1

ν − 1
+ 1

2(1 − q1)
1[dmin = 2] + 1

dmin
1[dmin ≥ 3]

)
.

Similarly, (3.8) and Proposition 3.2 give an upper bound for (1.5).
The proof of the upper bound in this case is now complete.

3.2. Proof of the upper bound in the case dmin = 1. In this section, we will
need some results on the 2-core of the graph. Basic definitions and needed results
are given in Appendix A.

We denote by Ca the event that a is connected to the 2-core of Gn ∼ G(n, (di)
n
1).

It is well known (cf. Appendix A) that the condition ν > 1 ensures that the 2-core
of Gn has size �(n), w.h.p. We consider the graph G̃n(a) obtained from Gn by
removing all vertices of degree one except a until no such vertices exist. If the
event Ca holds, G̃n(a) consists of the 2-core of Gn and the unique path (empty if a

belongs to the 2-core) from a to the 2-core. While, if the event Cc
a holds, then the

graph G̃n(a) is the union of the 2-core of Gn and the isolated vertex a.
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In order to bound the weighted distance between two vertices a and b, in what
follows, we will consider two cases depending on whether both the vertices a and
b are connected to the 2-core (i.e., the events Ca and Cb both hold), or both vertices
a and b belong to the same tree component of the graph. In the former case, we
will show how to adapt the analysis we made in the case dmin ≥ 2 to this case. And
in the latter case, we directly bound the diameter of all the tree components of the
graph.

First note that G̃n(a) can be constructed by means of the configuration model
with a new degree sequence d̃ (cf. Appendix A) with d̃i ≥ 2 for all i �= a. Consider
the exploration process on the graph G̃n(a), and denote by T̃a(i) the first time the
ball B̃w(a, t) in G̃n(a) reaches size i + 1. Also, Ĩa is defined similar to Ia for the
graph G̃n(a). We need the following lemma.

LEMMA 3.5. For a uniformly chosen vertex a, any x > 0 and any � =
O(logn), we have

P
(
T̃a(αn ∧ Ĩa) ≥ x logn + �

) ≤ o
(
n−1) + o

(
e−(1−λ∗)�).

PROOF. First note that if Ca does not hold, that is, if a is not connected to
the 2-core, we will have Ĩa = 0 (since d̃a = 0), and there is nothing to prove.
Now the proof follows the same lines as in the proof of Lemma 3.4. Note that
conditional on Ca , we have d̃a ≥ 1, hence by Lemma 3.3, we have P(Ra|Ca, d̃) ≥
1 − o(log10 n/n), and similarly for R′

a . The only difference we have to highlight
here, compared to the proof of Lemma 3.4, is that conditional on Ra ∩ Ca , we
have S̃a(j) ≥ 1 + k for all j ∈ L̃a(k), where S̃a(j) and L̃a(k) are defined in the
same way as Sa(j) and La(k) for the graph G̃(a). Take now θ = 1 − π̃

(n)
1 in the

Chernoff bound, used in the proof of Lemma 3.4, where π̃ (n) is defined as π(n)

for the degree sequence (d̃
(n)
1 , . . . , d̃

(n)
ñ

). The rest of the proof of Lemma 3.4 can
then be easily adapted to obtain the same result, provided we replace 2(1 − q1) by
(1−λ∗), which is precisely the statement of the current lemma. (Note that λ∗ = q̃1;
cf. Appendix A.) �

By Proposition 3.2 applied to the graph G̃n(a) (note that ν̃ = ν; cf. see Ap-
pendix A) and Lemma 3.5 applied to � = logn

1−λ∗ , we obtain that for a uniformly
chosen vertex a and any ε > 0, we have

P

(
∞ > T̃a(βn ∧ Ĩa) ≥

(
1

2(ν − 1)
+ 1

1 − λ∗

)
(1 + ε) logn

)
= o

(
n−1)

.(3.9)

Indeed the above probability can be bounded above by

P

(
T̃a(αn ∧ Ĩa) ≥ 1 + ε

1 − λ∗
logn

)
+ P

(
T̃a(βn) − T̃a(αn) ≥ 1 + ε

2(ν − 1)
logn

∣∣∣Ĩa ≥ αn

)
,
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and this is o(n−1) by the above cited results.
Applying equation (3.9) (and Lemma 3.5) and a union bound over a, we obtain

P

(
∀a, T̃a(βn ∧ Ĩa) ≤

(
1

2(ν − 1)
+ 1

1 − λ∗

)
(1 + ε) logn

)
= 1 − o(1).(3.10)

To obtain the upper bound for the flooding time and the typical distance, we use
equation (3.10) and proceed as above by using Lemma 3.5 applied to � = ε logn,
to obtain that for a uniformly chosen vertex b, we have

P

(
T̃b(βn ∧ Ĩb) ≤

(
1 + ε

2(ν − 1)
+ ε

)
logn

)
= 1 − o(1).(3.11)

Clearly, equation (3.10) together with Proposition 3.1 [since T̃a(k) ≥ Ta(k) for
all k], imply the desired upper bound on the giant component of Gn and also on
every component containing a cycle, that is, connected to 2-core.

At this point, we are only left to bound the (weighted) diameter of the tree
components. In particular, the following lemma completes the proof.

LEMMA 3.6. For two uniformly chosen vertices a, b and any ε > 0, we have

P

(
1 + ε

1 − λ∗
logn < distw(a, b) < ∞,Cc

a,Cc
b

)
= o

(
n−2)

.

PROOF. We consider the graph G̃n(a, b) obtained from Gn by removing ver-
tices of degree less than two, except a and b, until no such vertices exist. As shown
in Appendix A, the random graph G̃n(a, b) can be still obtained by a configura-
tion model, and has the same asymptotic parameters as the random graph G̃n(a)

in the proof of the previous lemma. We denote again by d̃ , the degree sequence
of the random graph G̃n(a, b). Also, T̃a and Ĩa are defined similarly for the graph
G̃n(a, b).

Trivially, we can assume d̃a = 1 and d̃b = 1. Otherwise, either they are not in
the same component, and so distw(a, b) = ∞, or one of them is in the 2-core; that
is, one of the two events Ca or Cb holds. Consider now the exploration process
started at a until time k∗ which is the first time either a node with forward-degree
(strictly) larger than one appears or the time that the unique half-edge adjacent to
b is chosen by the process. Let v∗ be the node chosen at k∗. Note that d̃v∗ = 1 if
and only if the half-edge incident to b is chosen at k∗. We have

P

(
1 + ε

1 − λ∗
logn < distw(a, b) < ∞,Cc

a,Cc
b

)
= P

(
T̃a

(
k∗)

>
1 + ε

1 − λ∗
logn, v∗ = b, d̃a = d̃b = 1

)
≤ P

(
T̃a

(
k∗)

>
1 + ε

1 − λ∗
logn, v∗ = b

∣∣∣d̃a = d̃b = 1
)
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= P

(
T̃a

(
k∗)

>
1 + ε

1 − λ∗
logn

∣∣∣d̃a = d̃b = 1
)

× P(d̃v∗ = 1|d̃v∗ �= 2, d̃a = d̃b = 1) = o
(
n−2)

.

To prove the last equality above, first note P(d̃v∗ = 1|d̃v∗ �= 2, d̃a = d̃b = 1) =
O( 1

n
), this holds since ν = ν̃ > 1 and v∗ will be chosen before o(n) steps, that

is, k∗ = o(n) [we will indeed prove something much stronger, that k∗ = O(logn);
cf. Lemma 4.1 in the next section]. Second, note that P(T̃a(k

∗) > 1+ε
1−λ∗ logn|d̃a =

d̃b = 1) = o(1/n). This follows by the same argument as in the proof of Lemma 3.5
applied to G̃n(a, b), and by setting � = (1+ε) logn

1−λ∗ . �

The proof of the upper bound in this case is now complete by taking a union
bound over all a and b. We end this section by presenting the proof of Proposi-
tions 3.1 and 3.2 in the next subsection.

3.3. Proof of Propositions 3.1 and 3.2. We start this section by giving some
preliminary results that we will need in the proof of Propositions 3.1 and 3.2.

LEMMA 3.7. Let D
(n)
i be i.i.d. with distribution π(n). For any η < ν, there is

a constant γ > 0 such that for n large enough, we have

P
(
D

(n)
1 + · · · + D

(n)
k ≤ kη

) ≤ e−γ k.(3.12)

PROOF. Let D∗ be a random variable with distribution P(D∗ = k) = qk given
in equation (1.1) so that E[D∗] = ν. Let φ(θ) = E[e−θD∗]. For any ε > 0, there
exists θ0 > 0 such that for any θ ∈ (0, θ0), we have logφ(θ) < (−ν + ε)θ . By
Condition 1.1 and the fact that βn�n = o(n), that is,

∑n
i=n−βn+1 d

(n)
(i) = o(n), we

have for any θ > 0, limn→∞ φ(n)(θ) = φ(θ), where φ(n)(θ) = E[e−θD
(n)
1 ]. Also,

for θ > 0,

P
(
D

(n)
1 + · · · + D

(n)
k ≤ ηk

) ≤ exp
(
k
(
θη + logφ(n)(θ)

))
.

Fix θ < θ0, and let n be sufficiently large so that logφ(n)(θ) ≤ logφ(θ) + ε. This
yields

P
(
D

(n)
1 + · · · + D

(n)
k ≤ ηk

) ≤ exp
(
k
(
θη + logφ(θ) + εθ

))
≤ exp

(
kθ(η − ν + 2ε)

)
,

which completes the proof. �

The following lemma is the main step in the proof of both the propositions.
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LEMMA 3.8. For any ε > 0, define the event

R′′
a :=

{
Sa(k) ≥ ν − 1

1 + ε
k, for all αn ≤ k ≤ βn

}
.

For a uniformly chosen vertex a, we have P(R′′
a |Ia ≥ αn) ≥ 1 − o(n−5).

Before giving the proof of this lemma, we recall the following basic result and
one immediate corollary (for the proof see, e.g., [27], Theorem 1):

LEMMA 3.9. Let n1, n2 ∈ N and p1,p2 ∈ (0,1). We have Bin(n1,p1) ≤st
Bin(n2,p2) if and only if the following conditions hold:

(i) n1 ≤ n2;
(ii) (1 − p1)

n1 ≥ (1 − p2)
n2 .

In particular, we have:

COROLLARY 3.10. If x ≤ y = o(n), we have (for n large enough)

x − Bin(x,
√

x/n) ≤st y − Bin(y,
√

y/n).

PROOF. By the above lemma, it is sufficient to show (x/n)x/2 ≥ (y/n)y/2,
and this is true because ss is decreasing near zero (for s < e−1). �

Now we go back to the proof of Lemma 3.8.

PROOF OF LEMMA 3.8. By Lemmas 2.4 and 3.7, for any ε > 0, k ≥ αn and n

large enough, we have

P

(
d̂a(1) + · · · + d̂a(k) ≤ ν

1 + ε/2
k

)
≤ e−γ k = o

(
n−6)

.

We infer that with probability at least 1 − o(n−6), for any k ≤ βn,

ν − 1

1 + ε/2
k < da + d̂a(1) + · · · + d̂a(k) − k < (k + 1)�n = o(n).

By the union bound over k, we have with probability at least 1−o(n−5) that for
all αn ≤ k ≤ βn,

ν − 1

1 + ε/2
k < Ŝa(k) < (k + 1)�n = o(n).(3.13)

Hence in the remainder of the proof we can assume that the above condition is
satisfied.
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By Lemma 2.1, Corollary 3.10 and inequalities (3.13), conditioning on Ŝa(k)

and {Ia ≥ k}, we have

(
Sa(k)|{Ia ≥ k}) ≥st

ν − 1

1 + ε/2
k − Bin

(
ν − 1

1 + ε/2
k,

√(
ν − 1

1 + ε/2
k

)/
n

)

≥st
ν − 1

1 + ε/2
k − Bin(νk,

√
νk/n).

By Chernoff’s inequality, since k
√

k/n = o(k/
√

αn), we have

P
(
Bin(νk,

√
νk/n) ≥ k/

√
αn

) ≤ exp
(−1

3k/
√

αn

) = o
(
n−6)

.

Moreover, conditioned on {Ia ≥ k}, we have with probability at least 1 − o(n−6),

Sa(k) ≥ ν − 1

1 + ε/2
k − k√

αn

≥ ν − 1

1 + ε
k,

for n large enough. Defining

R′′
a (k) :=

{
Sa(k) ≥ ν − 1

1 + ε
k

}
for αn ≤ k ≤ βn,

so that R′′
a = ⋂βn

k=αn
R′′

a (k), we have

P
(
R′′

a (k)|Ia ≥ k
) ≥ 1 − o

(
n−6)

.(3.14)

Thus, by using the fact that R′′
a (k − 1) ⊂ {Ia ≥ k}, we get

P
(
R′′

a |Ia ≥ αn

) = 1 − P

( βn⋃
k=αn

R′′
a (k)c

∣∣∣Ia ≥ αn

)

= 1 − P

(
R′′

a (αn)
c ∪

βn⋃
k=αn+1

(
R′′

a (k)c ∩ R′′
a (k − 1)

)∣∣∣Ia ≥ αn

)

≥ 1 − P

(
R′′

a (αn)
c ∪

βn⋃
k=αn+1

(
R′′

a (k)c ∩ {Ia ≥ k})∣∣∣Ia ≥ αn

)

≥ 1 −
βn∑

k=αn

P
(
R′′

a (k)c|Ia ≥ k
) ≥ 1 − o

(
n−5)

,

which completes the proof. �

We are now in position to provide the proof of both the propositions.
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PROOF OF PROPOSITION 3.1. Fix two vertices u and v. We can assume that
Tu(βn), Tv(βn) < ∞, that is, Iu, Iv ≥ βn. Otherwise the statement of the proposi-
tion holds trivially for u and v. Note that distw(u, v) ≤ Tu(βn) + Tv(βn) is equiv-
alent to

Bw

(
u,Tu(βn)

) ∩ Bw

(
v,Tv(βn)

) �= ∅.

Hence, to prove the proposition we need to bound the probability that
Bw(v,Tv(βn)) does not intersect Bw(u,Tu(βn)).

First consider the exploration process for Bw(u, t) until reaching t = Tu(βn).
We know by Lemma 3.8 that with probability at least 1 − o(n−5),

Su(βn) ≥ (
ν − 1 − o(1)

)
βn.

[In other words, there are at least (ν − 1 − o(1))βn half-edges in Bw(u,Tu(βn)).]
Next, begin exposing Bw(v, t). Each matching adds a uniform half-edge to the

neighborhood of v. Therefore, the probability that Bw(v,Tv(βn)) does not intersect
Bw(u,Tu(βn)) is at most(

1 − (ν − 1 − o(1))βn

m(n)

)βn

≤ exp
[−(

9 − o(1)
)

logn
]
< n−4

for large n (recall that β2
n = 9λn logn

ν−1 ). The union bound over u and v completes the
proof. �

PROOF OF PROPOSITION 3.2. Conditioning on the event R′′
a defined in

Lemma 3.8, we have for any αn ≤ k ≤ βn,

Ta(k + 1) − Ta(k) ≤st Yk ∼ Exp
(
Sa(k)

) ≤st Exp
(

ν − 1

1 + ε
k

)
,

and all the Yk’s are independent.
Letting s = √

αn, for n large enough we obtain that

E
[
es(Ta(βn)−Ta(αn))|R′′

a

] ≤
βn−1∏
k=αn

(
1 + s

((ν − 1)k/(1 + ε)) − s

)

≤
βn−1∏
k=αn

(
1 + s(1 + 2ε)

(ν − 1)k

)

≤ exp

[
s(1 + 2ε)

ν − 1

βn−1∑
k=αn

1

k

]

≤ exp
[
s(1 + 3ε) logn

2(ν − 1)

]
.
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By Markov’s inequality,

P

(
Ta(βn) − Ta(αn) ≥ (1 + 4ε) logn

2(ν − 1)

∣∣∣Ia ≥ αn

)

≤ 1 − P
(
R′′

a

) +E
[
es(Ta(βn)−Ta(αn))|R′′

a

]
exp

(
−s(1 + 4ε) logn

2(ν − 1)

)

≤ exp
(
− sε logn

2(ν − 1)

)
+ o

(
n−5) = o

(
n−1)

,

which concludes the proof. �

4. Proof of the lower bound. In this section we present the proof of the lower
bound for Theorem 1.2. To prove the lower bound, it suffices to show that for any
ε > 0, there exists w.h.p. two vertices u and v such that

distw(u, v) > (1 − ε)

(
1

ν − 1
+ 2

�(dmin)

)
logn.

As in the proof of the upper bound, the proof will be different depending
whether dmin = 1 or ≥ 2. So we start this section by proving some preliminary
results, including some new notation and definitions, that we will need in the proof
for these cases, and then divide the end of the proof into two cases.

Fix a vertex a in Gn ∼ G(n, (di)
n
1), and consider the exploration process, de-

fined in Section 2.1. Recall that T a(1) is the first time when the ball centered
at a contains a vertex of forward-degree at least two (i.e., degree at least 3); cf.
equation (2.4). To simplify the notation, we denote by Ca the ball centered at a

containing exactly one node (possibly in addition to a) of degree at least 3:

Ca := Bw

(
a,T a(1)

)
.(4.1)

Note that there is a vertex u (of degree du ≥ 3) in Ca which is not in any ball
Bw(a, t) for t < T a(1) and we have maxv∈Ca distw(a, v) = distw(a,u). We define
the degree of Ca as

deg(Ca) = da + du − 2.(4.2)

Remark that at time T a(1) of the exploration process defined in Section 2.1 starting
from a, we have at most deg(Ca) free half-edges, that is, the list L contains at most
deg(Ca) half-edges. [We have the equality if the tree excess until time T a(1) is
zero.] The following lemma shows that the size of Ca is relatively small.

LEMMA 4.1. Consider a random graph G(n, (di)
n
1) where the degrees di sat-

isfy Condition 1.1. There exists a constant M > 0, independent of n, such that
w.h.p. for all the nodes a of the graph, we have |Ca| ≤ M logn.
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PROOF. We consider the exploration process, defined in Section 2.1, starting
from a uniformly chosen vertex a, and use the coupling of the forward-degrees
we described in Section 2.2. Recall in particular that each forward-degree d̂(i)

conditioned on the previous forward-degrees is stochastically larger than a random
variable with distribution π(n). This shows that, at each step of the exploration
process, the probability of choosing a node of degree at most two (forward-degree
one or zero) will be at most π

(n)
0 + π

(n)
1 < 1 − ε, for some ε > 0 (note that the

asymptotic mean of π(n) is ν, and by assumption ν > 1). We conclude that there
exists a constant M > 0 such that for all large n, P(|Ca| > M logn) = o(n−1). The
union bound over a completes the proof. �

For two subsets of vertices U,W ⊂ V , the (weighted) distance between U and
W is defined as usual,

distw(U,W) := min
{
distw(u,w)|u ∈ U,w ∈ W

}
.

For two nodes a, b, define the event Ha,b as

Ha,b :=
{

1 − ε

ν − 1
logn < distw(Ca,Cb) < ∞

}
.(4.3)

Note that logn
ν−1 is the typical distance, so the left inequality in the definition of

the above event means that Ca and Cb have the right typical distance in the graph
[modulo a factor (1 − ε)]. The right inequality simply means that a and b belong
to the same connected component. The following proposition is the crucial step in
the proof of the lower bound, the proof of which is postponed to the end of this
section.

PROPOSITION 4.2. Consider a random graph G(n, (di)
n
1) with i.i.d. rate one

exponential weights on its edges. Suppose that the degree sequence (di)
n
1 sat-

isfies Condition 1.1. Assume that the number of nodes with degree one satisfy
u

(n)
1 = o(n), and let a and b be two distinct vertices such that deg(Ca) = O(1),

and deg(Cb) = O(1). Then for all ε > 0,

P(Ha,b) = 1 − o(1).

Furthermore, the same result holds without the condition deg(Ca) = O(1) [resp.,
deg(Cb) = O(1)] if the node a (resp., b) is chosen uniformly at random.

Note that in particular, Proposition 4.2 is still valid when a and b are chosen
uniformly at random and hence provides a lower bound for (1.5).

Assuming the above proposition, we now show that:

(i) If the minimum degree dmin ≥ 2, then there are pairs of nodes a and b

of degree dmin such that Ha,b holds, and in addition, the closest nodes to each
with forward-degree at least two is at distance at least (1 − ε) logn/(dmin(1 − q1))

w.h.p., for all ε > 0.
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(ii) If the minimum degree dmin = 1, then there are pairs of nodes of degree one
such that Ha,b holds, and in addition, the closest node to each which belongs to
the 2-core is at least (1 − ε) logn/(1 − λ∗) away w.h.p., for all ε > 0.

This will finish the proof of the claimed lower bound.

4.1. Proof of the lower bound in the case dmin ≥ 2. Let V ∗ be the set of
all vertices of degree dmin. We call a vertex u in V ∗ good if T u(1) is at least

1−ε
dmin(1−q1)

logn, that is,

T u(1) ≥ 1 − ε

dmin(1 − q1)
logn,

and if in addition, deg(Cu) ≤ K for a constant K chosen as follows. Let D̂ be
a random variable with the size-biased distribution, that is, P(D̂ = k) = qk . The
constant K is chosen in order to have with positive probability D̂ ≤ K − dmin + 1
conditioned on the event that D̂ ≥ 2, that is,

y = yK := P(D̂ ≤ dmin − 1 + K|D̂ ≥ 2) > 0.(4.4)

It is easy to verify that such K exists since ν > 1.
It will be convenient to consider the two events in the definition of good vertices

separately, namely, for a vertex u ∈ V ∗, define

Eu :=
{
T u(1) ≥ 1 − ε

dmin(1 − q1)
logn

}
and(4.5)

E ′
u := {

deg(Cu) ≤ K
}
.(4.6)

We note that in the case dmin ≥ 3, the event Eu for u ∈ V ∗ is equivalent to having
a weight greater than 1−ε

dmin
logn on all the dmin edges connected to u, and clearly,

the two above events E ′
u and Eu are independent (conditionally on u ∈ V ∗, i.e.,

du = dmin).
For u ∈ V ∗, let Au be the event that u is good, Au := Eu ∩ E ′

u, and let Y be
the total number of good vertices, Y := ∑

u 1Au . In the following, we first obtain a
bound for the expected value of Y , and then use the second moment inequality to
show that w.h.p. Y = �(nε).

Consider the exploration process defined in Section 2.1, starting from a node
u ∈ V ∗. At the beginning, each step of the exploration process is an exponential
with parameter dmin (since there are dmin yet-unmatched half-edges adjacent to the
explored vertices). In each step, the probability that the new half-edge of the list
L does not match to the other half-edge of L is at least 1 − 1/n. This follows by
observing that there are at least n yet-unmatched half-edges (by ν > 1), and by
using Lemma 4.1 (which says that before M logn steps the exploration process
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meets a vertex of forward-degree at least two). By the forward-degree coupling
arguments of Section 2.2, the probability that a new matched node be of forward-
degree one is at least π

(n)
1 . This shows that, with probability at least (1 − 1/n)π

(n)
1

the exploration process adds a new node of forward-degree one. This shows that
the first step in the exploration process a vertex of forward-degree at least two
is added will be stochastically bounded below by a geometric random variable
of parameter (1 − 1/n)π

(n)
1 . Each step takes rate dmin exponential time. There-

fore,

P(Eu) = P

(
T u(1) ≥ 1 − ε

dmin(1 − q1)
logn

)

≥ P

(
Exp

(
dmin

(
1 − (1 − 1/n)π

(n)
1

)) ≥ 1 − ε

dmin(1 − q1)
logn

)
.

In the last inequality we used the fact that a sum of a geometric (with parameter π )
number of independent exponential random variables of rate μ is distributed as an
exponential random variable of rate (1 − π)μ. Note that this in particular shows
that

P(Eu) ≥ (
1 − o(1)

)
exp

(−(1 − ε) logn
) = (

1 − o(1)
)
n−1+ε.

By using the coupling arguments of Section 2.2 (and by using Lemma 4.1),
to bound the forward-degrees from above (and below) by i.i.d. random variables
having distributions π(n) (and π(n)) and then using the fact that the asymptotic
distributions of both π(n) and π(n) coincides with the size biased distribution {qk},
we have P(E ′

u|Eu) = (1 ± o(1))y. We conclude that P(Au) = P(E ′
u|Eu)P(Eu) ≥

(1 ± o(1))yn−1+ε .
This shows that

E[Y ] = ∑
u∈V ∗

P(Au) ≥ (
1 ± o(1)

)
ypdminn

ε.

Note that above, we used Condition 1.1 which implies that |V ∗| = (1 ±
o(1))pdminn.

We now show that Var(Y ) = o(E[Y ]2). Applying the Chebyshev inequality, this
will show that Y ≥ 2

3ypdminn
ε with high probability.

For any pair of vertices u, v ∈ V ∗ such that Cu ∩ Cv = ∅, conditioning on
Au does not have much effect on the asymptotic of the degree distribution (by
Lemma 4.1 the size of each component Cu is at most M logn), and hence,
we deduce by the coupling argument of Section 2.2 that for u and v such that
Cu ∩ Cv =∅,

P(Av ∩ Au) = (
1 ± o(1)

)
P(Au)P(Av).
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We infer

Var(Y ) = E
[
Y 2] −E[Y ]2 = E

[ ∑
u,v∈V ∗

1Au1Av

]
−E[Y ]2

= E

[ ∑
u,v∈V ∗ : Cu∩Cv �=∅

1Au1Av + ∑
u,v∈V ∗ : Cu∩Cv=∅

1Au1Av

]
−E[Y ]2

= E

[ ∑
u∈V ∗

1Au

∑
v∈V ∗ : Cu∩Cv �=∅

1Av + ∑
u,v∈V ∗ : Cu∩Cv=∅

1Au1Av

]
−E[Y ]2

≤ (K + 1)(M logn)E[Y ] +E

[ ∑
u,v∈V ∗ : Cu∩Cv=∅

1Au1Av

]
−E[Y ]2

= o
(
E[Y ]2)

.

In the inequality above, we used Lemma 4.1 to bound w.h.p. the size of all Cw by
M logn (for some large enough M) for any node w in the graph, and used the fact
that if the event Au holds, then there are at most K edges out-going from Cu. Each
of the vertices v with the property that Cu ∩Cv �= ∅ should be either already on Cu

or connected with a path consisting only of vertices of degree two to Cu (in which
case, this path should belong to Cv). A simple analysis then shows that the number
of nodes v with the property that Cu ∩Cv �= ∅ is bounded by (K + 1)M logn, and
the inequality follows.

This completes the proof of the fact that Y ≥ 2
3pdminynε with high probability.

We consider first the flooding time, and obtain the corresponding lower
bound. Let Y ′ denote the number of good vertices that are at distance at most

1−ε
dmin(1−q1)

logn + 1−ε
ν−1 logn from a vertex a (chosen uniformly at random). It is

clear that the lower bound follows by showing that Y ′ < Y with high probability,
that is, Y − Y ′ > 0 w.h.p. To show this, we will bound the expected value of Y ′
and use Markov’s inequality.

Since by Condition 1.1, V ∗ has size linear in n by applying Proposition 4.2,
we obtain that for a uniformly chosen vertex u ∈ V ∗, conditioning on Au, we have
P(Ha,u) = 1−o(1). Indeed, the two events Ha,u and Eu are independent, and con-
ditioning on E ′

u is the same as conditioning on deg(Cu) ≤ K = O(1). Therefore,
for a uniformly chosen vertex u in V ∗, we have

P
(
Au ∩Hc

a,u

) = o
(
P(Au)

)
,

where Hc
a,u denotes the complementary event of Ha,u, that is, the event that Ha,u

does not occur. Thus, a straightforward calculation shows that E[Y ′] = o(E[Y ]) =
o(nε). By Markov’s inequality, we conclude that Y ′ ≤ 1

3pdminynε w.h.p., and hence
Y − Y ′ is w.h.p. positive. This implies the existence of a vertex u whose distance
from a is at least ( 1

ν−1 + 1
dmin(1−q1)

)(1 − ε) logn. Hence for any ε > 0 we have
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w.h.p.

floodw(a,Gn)

≥ max
u∈V ∗ distw(a,u)

≥
(

1

ν − 1
+ 1

2(1 − q1)
1[dmin = 2] + 1

dmin
1[dmin ≥ 3]

)
(1 − ε) logn.

We now turn to the proof of the lower bound for the (weighted) diameter of the
graph. The proof will follow the same strategy as for the flooding time, but this
time we need to consider the pairs of good vertices.

Let R denote the number of pairs of distinct good vertices. Recall we proved
above that w.h.p. Y ≥ 2

3E[Y ]. Thus

R = Y(Y − 1) ≥ 2E[Y ]
3

(
2E[Y ]

3
− 1

)
>

1

4
E[Y ]2.

The probabilities that u and v are both good and Hu,v does not happen can be
bounded as follows:

P
(
Au ∩ Av ∩Hc

u,v

) = P(Au ∩ Av)P
(
Hc

u,v|Au,Av

)
= P(Au ∩ Av)P

(
Hc

u,v|deg(Cu) ≤ K,deg(Cv) ≤ K
)

(4.7)
(We used the independence of Hu,v and Eu and Ev)

= o
(
P(Au ∩ Av)

)
.

The last equality follows from Proposition 4.2, since Cu and Cv are of degree
O(1).

To conclude, consider R′ the number of pairs of good vertices that are at dis-
tance at most (1 − ε)(2 logn

dmin(1−q1)
+ logn

ν−1 ). By using equation (4.7), we have ER′ =
o(E[Y ]2). Applying Markov’s inequality, we obtain that w.h.p. R′ ≤ 1

6(E[Y ])2,
and thus R − R′ is w.h.p. positive. This implies that for any ε > 0, we have w.h.p.

diamw(Gn) ≥ max
u,v∈V ∗ distw(u, v)

≥
(

1

ν − 1
+ 1

1 − q1
1[dmin = 2] + 2

dmin
1[dmin ≥ 3]

)
(1 − ε) logn.

4.2. Proof of the lower bound in the case dmin = 1. Consider the 2-core algo-
rithm, and stop the process the first time the number of nodes of degree one drops
below n1−ε/2. Let V ∗ be the set of all nodes of degree one at this time. We denote
by G̃n(V

∗) the graph constructed by configuration model on the set of remaining
nodes (this is indeed the V ∗-augmented 2-core). Observe that proving the lower
bound on the graph G̃n(V

∗) gives us the lower bound on Gn.
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Since |V ∗| = o(n/ logn), and the 2-core has linear size in n, w.h.p. the degree
sequence of G̃n(V

∗) has the same asymptotic as the degree sequence in the 2-core
of Gn; see Appendix A, Lemma A.2 for more details. In particular, we showed
in Appendix A that for the size-biased degree sequence of the 2-core’s degree
distribution, we have q̃1 = λ∗, and for its mean, we have ν̃ = ν.

Repeating the coupling arguments of Section 2.2 and defining π̃
(n)

(similar to

the definition of π(n)) for the degree sequence of G̃n(V
∗), we infer that π̃

(n)

1 → λ∗.
As before, call a vertex u in V ∗ good if both the events Eu and E ′

u hold. Recall
the definition of the two events

Eu :=
{
T̃ u(1) ≥ 1 − ε

1 − λ∗
logn

}
and(4.8)

E ′
u := {

deg(Cu) ≤ K
}
.(4.9)

Here the constant K ≥ 2 is chosen with the property that q̃K > 0 (q̃ is the size-
biased probability mass function corresponding to the 2-core; cf. Appendix A),

and T̃ u is defined similar to T u for the graph G̃n(V
∗).

Consider the exploration process starting from a node u ∈ V ∗. At the beginning,
each step of the exploration process is an exponential of rate one, and the probabil-

ity that each new matched node be of forward-degree exactly one is at least π̃
(n)

1 .
Similar to the case of dmin = 2, we obtain

P(Au) ≥ (
1 ± o(1)

)
q̃KP

(
Exp

(
1 − π̃

(n)

1
) ≥ 1 − ε(1 − λ∗) logn

)
= (

1 ± o(1)
)
q̃K exp

(
−(1 − ε)

1 − λ∗
1 − π̃

(n)

1

logn

)
= (

1 ± o(1)
)
q̃Kn−1+ε.

This shows that

E[Y ] = ∑
u∈V ∗

P(Au) ≥ n1−ε/2(
1 ± o(1)

)
q̃Kn−1+ε = (

1 ± o(1)
)
q̃Knε/2.

Similarly, we obtain that Var(Y ) = o(E[Y ]2), and the rest of the proof follows
similar to the precedent case by using Proposition 4.2 for G̃n(V

∗). Note that in
G̃n(V

∗), the number of vertices of degree one is o(n) = o(|G̃n(V
∗)|), and thus

Proposition 4.2 can be applied.
At the present we are only left to prove Proposition 4.2.

4.3. Proof of Proposition 4.2. In this section we present the proof of Propo-
sition 4.2. It is shown in [23, 29] that the giant component of a random
graph G(n, (di)

n
1) for (di)

n
1 satisfying Condition 1.1 contains w.h.p. all but o(n)

vertices [since ν > 1 and u
(n)
0 + u

(n)
1 = o(n)]. This immediately shows that

P(distw(Ca,Cb) < ∞) = 1 − o(1). Define tn := 1−ε
2(ν−1)

logn. So to prove the
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proposition, we need to prove that distw(Ca,Cb) is lower bounded by tn w.h.p.
in the case where either deg(Ca) = O(1) [resp., deg(Cb) = O(1)] or a (resp., b)
is chosen uniformly at random.

In the case where a is chosen uniformly at random, it is easy to deduce, by us-
ing Markov’s inequality, that we have w.h.p. deg(Ca) ≤ logn. Indeed, this is true
since deg(Ca) is asymptotically distributed as (D + D̂ − 1|D̂ ≥ 2), where D̂ is a
random variable with the size-biased distribution, and D is independent of D̂ with
the degree distribution {pk}. [To show this, one can use the coupling argument of
Section 2.2 to bound deg(Ca) stochastically from above.] And, since this latter
random variable has finite moment (by Condition 1.1), by applying Markov’s in-
equality, we obtain w.h.p. deg(Ca) ≤ logn. This shows that in all cases stated in
the proposition, we can assume that deg(Ca) ≤ logn and deg(Cb) ≤ logn.

We now consider the exploration process defined in Section 2.1 starting
from Ca ; that is, we start the exploration process with B = Ca , and apply the
steps one and two of the process. In a similar way we defined Ta(i), we define
TCa(i) to be the time of the ith step in this continuous-time exploration process.
Similarly, let d̂Ca (i) be the forward-degree of the vertex added at ith exploration
step for all i ≥ 1, and define

ŜCa (i) := deg(Ca) + d̂Ca (1) + · · · + d̂Ca (i) − i,(4.10)

and define SCa (i) similarly, so that we have SCa (i) ≤ ŜCa (i). Note that TCa(i)

obviously satisfies

TCa(i + 1) − TCa (i) = Exp
(
SCa (i)

) ≥st Yi ∼ Exp
(
ŜCa (i)

)
,

where the random variables Yi are all independent.
Also, we infer (by Lemma 2.4) that

ŜCa (i) ≤st logn +
i∑

j=1

D
(n)

j − i,(4.11)

where D
(n)

j are i.i.d. with distribution π(n).

Let ν(n) be the expected value of D
(n)

1 which is

ν(n) := ∑
k

kπ
(n)
k ,

and define zn = √
n/ logn. We will show later that the two growing balls in the

exploration processes started from Ca and Cb, for a and b as in the proposition,
will not intersect w.h.p. provided that they are of size less than zn. We now prove
that TCa(zn) ≥ tn with high probability.

For this, let us define

T ′(k) ∼
k∑

i=1

Exp

(
logn +

i∑
j=1

D
(n)

j − i

)
,
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where all the exponential variables in the above sum are independent, such that by
the above arguments, we have

TCa (zn) ≥st T ′(zn).

We need the following lemma. [We define Exp(s) := +∞ for s ≤ 0.]

LEMMA 4.3. Let X1, . . . ,Xt be a random process adapted to a filtration F0 =
σ [∅],F1, . . . ,Ft , and let μi = EXi , �i = X1 +· · ·+Xi , �i = μ1 +· · ·+μi . Let
Yi ∼ Exp(�i), and Zi ∼ Exp(�i), where all exponential variables are indepen-
dent. Then we have

Y1 + · · · + Yt ≥st Z1 + · · · + Zt .

PROOF. By Jensen’s inequality, it is easy to see that for positive random vari-
able X, we have

Exp(X) ≥st Exp(EX).

Then by induction, it suffices to prove that for a pair of random variables X1, X2
we have Y1 + Y2 ≥st Z1 + Z2. We have

P(Y1 + Y2 > s) = EX1

[
P(Y1 + Y2 > s|X1)

]
≥ EX1

[
P

(
Exp(X1) + Exp(X1 + μ2) > s

)]
≥ P(Z1 + Z2 > s). �

We infer by Lemma 4.3,

T ′(zn) ≥st

zn∑
i=0

Exp
(
logn + (

ν(n) − 1
)
i
) =: T ∗(zn),

where all exponential variables are independent.
We now let bn := logn − (ν(n) − 1), so that we have

P
(
T ∗(zn) ≤ t

)
≤

∫
∑

xi≤t
e−∑zn

i=1((ν
(n)−1)i+bn)xi dx1 · · ·dxzn

zn∏
i=1

((
ν(n) − 1

)
i + bn

)

=
∫

0≤y1≤···≤yzn≤t
e−(ν(n)−1)

∑zn
i=1 yi e−bnyzn dy1 · · ·dyzn

zn∏
i=1

((
ν(n) − 1

)
i + bn

)
,

where yk = ∑k−1
i=0 xzn−i . Letting y play the role of yzn , and accounting for all

permutations over y1, . . . , yzn−1 (giving each such variable the range [0, y]), we
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obtain

P
(
T ∗(zn) ≤ t

)
≤ (

ν(n) − 1
)zn

∏zn

i=1(i + bn/(ν
(n) − 1))

(zn − 1)!
×

∫ t

0
e−(ν(n)−1+bn)y

(∫
[0,y]zn−1

e−(ν(n)−1)
∑zn−1

i=1 yi dy1 · · ·dyzn−1

)
dy

= zn

∏zn

i=1(i + bn/ν
(n) − 1)

zn!
(
ν(n) − 1

)
×

∫ t

0
e−(ν(n)−1+bn)y

(
zn−1∏
i=1

∫ y

0

(
ν(n) − 1

)
e−(ν(n)−1)yi dyi

)
dy

= zn

zn∏
i=1

(
1 + bn

(ν(n) − 1)i

)(
ν(n) − 1

)
×

∫ t

0
e−(ν(n)−1+bn)y(

1 − e−(ν(n)−1)y)zn−1
dy

≤ czbn/(ν(n)−1)+1
n

(
ν(n) − 1

) ∫ t

0
e−(ν(n)−1+bn)y(

1 − e−(ν(n)−1)y)zn−1
dy,

where c > 0 is an absolute constant. Recall that tn = 1−ε
2(ν−1)

logn, and zn =√
n/ logn. Now we use the fact that (1 − e−(ν(n)−1)y)zn−1 ≤ e−nα

, for some α > 0
and for all 0 ≤ y ≤ tn. We infer

P
(
T ∗(zn) ≤ tn

) ≤ c
(
ν(n) − 1

)
zbn/(ν(n)−1)+1
n

∫ tn

0
e−nα

dy = o
(
n−4)

,

since bn = O(logn). Hence, we have w.h.p.∣∣Bw(Ca, tn)
∣∣ ≤ zn.

[Here naturally, for W ⊆ V , we let Bw(W, t) = {b, such that distw(W,b) ≤ t}.]
Similarly for b, and exposing Bw(Cb, tn), again w.h.p. we obtain a set of size at

most zn. Now note that, because each matching is uniform among the remaining
half-edges, the probability of hitting Bw(Ca, tn) is at most ŜCa (zn)/n.

Let εn := log logn. By Markov’s inequality we have

P
(
ŜCa (zn) ≥ znεn

) ≤ EŜCa (zn)/znεn = K + (ν(n) − 1)(zn + λn)

znεn

= o(1).

We conclude

P
(
Bw(Ca, tn) ∩ Bw(Cb, tn) �= ∅

)
≤ P

(∣∣Bw(Ca, tn)
∣∣ > zn

) + P
(∣∣Bw(Cb, tn)

∣∣ > zn

)
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+ P
(
ŜCa (zn) ≥ znεn

) + εnz
2
n/n

= o(1).

This completes the proof of Proposition 4.2.

APPENDIX A: STRUCTURE OF THE 2-CORE

The k-core of a given graph G is the largest induced subgraph of G with mini-
mum vertex degree at least k. The k-core of an arbitrary finite graph can be found
by removing vertices of degree less than k, in an arbitrary order, until no such
vertices exist.

Consider now a random graph Gn ∼ G∗(n, (di)
n
1) where the degree sequence

(di)
n
1 satisfies Condition 1.1. In the process of constructing a random graph Gn

by matching the half-edges, the k-core can be found by successively removing
the half-edge of a node of degree less than k followed by removing a uniformly
random half-edge from the set of all the remaining half-edges until no such vertices
(of degree less than k) remain. What remains at this time is the k-core. Since these
half-edges are unexposed, the k-core edge set is uniformly random conditional on
the k-core half-edge set. Let k ≥ 2 be a fixed integer, and Core(n)

k be the k-core of
the graph Gn ∼ G∗(n, (di)

n
1). For integers l ≥ 0 and 0 ≤ r ≤ l, let πlr denote the

binomial probabilities

πlr(p) = P
(
Bin(l,p) = r

) =
(

l

r

)
pr(1 − p)l−r .

We further define the functions

h(p) :=
∞∑

r=k

∞∑
l=r

rplπlr (p) and h1(p) :=
∞∑

r=k

∞∑
l=r

plπlr (p).

THEOREM A.1 (Janson and Luczak [21]). Consider a random graph
G(n, (di)

n
1) where the degree sequence (di)

n
1 satisfies Condition 1.1. Let k ≥ 2

be fixed, and let Core(n)
k be the k-core of G(n, (di)

n
1). Let p̂ be the largest p ≤ 1

such that μp2 = h(p). Assume p̂ > 0, and further suppose that p̂ is not a local
maximum point of the function h(p) − μp2. Then

v
(
Core(n)

k

)
/n

p→ h1(p̂) > 0, vj

(
Core(n)

k

)
/n

p→
∞∑
l=j

plπlj (p̂)

for j ≥ k, and e(Core(n)
k )/n

p→ μp̂2/2.

From now on, we consider the case k = 2, and denote by G̃ the 2-core of a
graph G. In particular applying Theorem A.1 to the case k = 2, we have h(p̂) :=
μp̂ −∑

l lplp̂(1− p̂)l−1 = μp̂(1−Gq(1− p̂)). Recall from Theorem A.1 that we
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have to solve the equation μp̂2 = h(p̂). Thus we obtain 1 − p̂ = Gq(1 − p̂), and
so p̂ = 1 − λ.

By [28], Theorem 10, the graph G̃n obtained from Gn has the same distribution
as a random graph constructed by the configuration model on ñ nodes with a degree
sequence d̃

(n)
1 , . . . , d̃

(n)
ñ

satisfying the following properties:

ñ/n
p→ h1(1 − λ) = 1 − Gp(λ) − (1 − λ)G′

p(λ)

= 1 − Gp(λ) − μλ(1 − λ) > 0

and ∣∣{i, d̃(n)
i = j

}∣∣/n
p→

∞∑
�=j

p�

(
�

j

)
(1 − λ)jλ�−j , j ≥ 2,

∑
i

d̃
(n)
i /n

p→ μ(1 − λ)2.

It follows that the sequence {d̃(n)
1 , . . . , d̃

(n)
ñ

} satisfies also Condition 1.1 for some
probability distribution p̃k with mean μ̃ (which can be easily calculated from the
two above properties).

Let q̃ be the size-biased probability mass function corresponding to p̃. We now
show that q̃ and q have the same mean. Indeed, denoting by ν̃ the mean of q̃ , we
see that ν̃ is given by

ν̃ := ∑
k

kq̃k = 1

μ̃

∑
k

k(k − 1)p̃k

=
∑

k≥2 k(k − 1)
∑

�≥k p�

(�
k

)
(1 − λ)kλ�−k

μ(1 − λ)2

(A.1)

=
∑

� p�

∑
k≤� k(k − 1)

(�
k

)
(1 − λ)kλ�−k

μ(1 − λ)2

=
∑

� p��(� − 1)

μ
= ν.

To find the diameter in the case dmin = 1, we also need to show that q̃1 = λ∗:

q̃1 = 2p̃2

μ̃
= 2

∑
�≥2 p�

(�
2

)
(1 − λ)2λ�−2

μ(1 − λ)2

(A.2)

= 1

μ
G′′

p(λ) = G′
q(λ) = λ∗.

We will also need the following relaxation of the notion of 2-core. Let G =
(V ,E) be a graph. For a given subset W ⊆ V , define the W -augmented 2-core to
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be the maximal induced subgraph of G such that every vertex in V \W has degree
at least two; that is, the vertices in W are not required to verify the minimum degree
condition in the definition of the 2-core. The W -augmented 2-core of a graph G

will be denoted by G̃(W).
It is easy to see that the W -augmented 2-core of a random graph Gn ∼

G∗(n, (di)
n
1), denoted by G̃n(W), can be found in the same way as the 2-core,

except that now the termination condition is that every node outside of W must
have degree at least 2, since the half-edges adjacent to a vertex in W are exempt
from this restriction. The conditional uniformity property thus evidently holds in
this case as well; that is, for any subset W ⊂ V , the W -augmented 2-core is uni-
formly random, conditional on the W -augmented 2-core half-edge set. We will
need the following basic result, the proof of which is easy and can be found, for
example, in [17], Lemma A.7.

LEMMA A.2. Consider a random graph Gn ∼ G(n, (di)
n
1) where the degree

sequence (di)
n
1 satisfies Condition 1.1. For any subset W ⊂ V (Gn), and any

w ∈ W , there exists C > 0 (sufficiently large) so that we have

P
(
e
(
G̃n(W)

) − e
(
G̃n

(
W \ {w})) ≤ C logn

) = 1 − o
(
n−1)

.

Note that the above lemma implies (by removing one vertex from W at a time)
that if |W | = o(n/ logn), then w.h.p. the two graphs G̃n and G̃n(W) have the same
degree distribution asymptotic.

APPENDIX B: THE RANDOM GRAPHS G(n,p) AND G(n,m)

We derive the results for G(n,p) and G(n,m) from our results for G(n, (di)
n
1)

by conditioning on the degree sequence. Indeed, we can be more general and con-
sider a random graph Gn with n vertices labeled [1, n] and some random dis-
tribution of the edges such that any two graphs on [1, n] with the same degree
sequence have the same probability of being attained by Gn. Equivalently, condi-
tioned on the degree sequence, Gn is a random graph with that degree sequence of
the type G(n, (di)

n
1) introduced in the Introduction. We may thus construct Gn by

first picking a random sequence (di)
n
1 with the right distribution, and then choosing

a random graph G(n, (di)
n
1) for this (di)

n
1.

We assume that Condition 1.1 holds in probability:

CONDITION B.1. For each n, let d(n) = (d
(n)
i )n1 be the random sequence of

vertex degrees of Gn and u
(n)
k be the random number of vertices with degree k.

Then, for some probability distribution (pr)
∞
r=0 over integers independent of n

and with finite mean μ := ∑
k≥0 kpk ∈ (0,∞), the following holds:

(i) u
(n)
k /n

p→ pk for every k ≥ 1 as n → ∞;
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(ii) For some ε > 0,
∑∞

k=1 k2+εu
(n)
k = Op(n);

We first show that for G(n,p) and G(n,m), with np → μ ∈ (0,∞) and
2m/n → μ, Condition B.1 holds with (pk) a Poisson distribution with parame-

ter μ, that is, pk = e−μ μk

k! . Indeed the fact that Condition B.1(i) holds with such
(pk) follows by elementary estimates of mean and variance done in Example 6.35
of [24] or Theorem 3.1 in [12]. Showing that Condition B.1(ii) holds can be done
by similar arguments. Consider G(n,p) [a similar argument holds for G(n,m)],
we have for all k ≥ 0 and for n sufficiently large,

n−1
Eu

(n)
k =

(
n − 1

k

)
pk(1 − p)n−1−k < (μ + 1)k/k!.

Thus n−1 ∑∞
k=1 k2+ε

Eu
(n)
k = O(1), and Condition B.1(ii) holds.

The following lemma is similar to Lemma 8.2 in [22].

LEMMA B.2. If Condition B.1 holds, we may, by replacing the random graph
Gn by other random graphs G′

n with the same distribution, assume that the random
graphs are defined on a common probability space and that Condition 1.1 holds
a.s.

PROOF. If only Condition 1.1(i) was required, this lemma would be a direct
consequence of the Skorohod coupling theorem (Theorem 3.30, [25]) for the ran-
dom sequence (u

(n)
k )∞k=1 in the space R

∞+ . We now explain how to incorporate
Conditions 1.1(ii). Condition B.1 implies that it is possible to find an increasing
sequence Cj for j ≥ 1 diverging to infinity so that considering the sets

Aj =
{
(xk)

∞
k=1 ∈R

∞+ ,

∞∑
k=1

xk < ∞,

∞∑
k=1

k2+εxk ≤ Cj

∞∑
k=1

xk

}
,

we have for all n, P((u
(n)
k ) ∈ Aj) ≥ 1 − (2j)−1 (note that

∑∞
k=1 u

(n)
k = n). Let

q
(n)
j = P((u

(n)
k ) ∈ Aj) so that q

(n)
j+1 ≥ q

(n)
j ≥ 1 − (2j)−1 for all j ≥ 1. For each �,

we define an associated finite sequence j
(n)
i (�) for i = 1, . . . , k(n)(�) such that

j
(n)
1 (�) = 1 and for i ≥ 1, j

(n)
i+1(�) = min{j ≥ j

(n)
i (�), q

(n)
j − q

(n)

j
(n)
i (�)

≥ 1
2�

} if

q
(n)

j
(n)
i (�)

< 1−(2�)−1, and if q
(n)

j
(n)
i (�)

≥ 1−(2�)−1, we set k(n)(�) = i. Let J (n)(�) =
{j (n)

1 (�) = 1, j
(n)
2 (�), . . . , j

(n)

k(n)(�)
(�)}. Note that, since q

(n)
� ≥ 1 − (2�)−1, we have

k(n)(�) ≤ �.
We now explicitly construct a “Skorohod coupling.” Let θ be a uniform ran-

dom variable in [0,1], and define the random variable J (n)(�) by J (n)(�) =
min{j ∈ J (n)(�), θ ≤ q

(n)
j } if θ ≤ q

(n)

k(n)(�)
, and if θ > q

(n)

k(n)(�)
, we set J (n)(�) = ∞.
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We set j
(n)
0 (�) = 0, j

(n)
i (�) = ∞ for i > k(n)(�), A0 = ∅ and A∞ = R+. With

these definitions, we have for all n and i ≥ 1, P(J (n)(�) = j
(n)
i (�)) = P((u

(n)
k ) ∈

A
j

(n)
i (�)

\ A
j

(n)
i−1(�)

).

For a given � and for any i ≥ 1, we define the random variables ũ(n)(i) =
(ũ

(n)
k (i))k∈N ∈ R

∞+ having the law of (u
(n)
k ) conditioned on the event {(u(n)

k ) ∈
A

j
(n)
i (�)

\ A
j

(n)
i−1(�)

}. Note in particular that by construction, if i ≤ k(n)(�), we have

P((u
(n)
k ) ∈ A

j
(n)
i (�)

\ A
j

(n)
i−1(�)

) ≥ (2�)−1. Hence if there exist an infinite sequence

of n such that i ≤ k(n)(�), then we can apply the Skorohod coupling theorem and
assume that, along this subsequence, Condition 1.1(i) holds.

We can now combine this coupling with the following one: given θ taken uni-
formly at random in [0,1], take � = � 1

2(1−θ)
�, and consider ũ(n)(J (n)(�)) which

has the same law as the original u(n). By construction, Condition 1.1(i) holds.
Moreover, we have by construction J (n)(�) ≤ � since q

(n)
� ≥ 1 − (2�)−1 > θ , so

that ũ(n)(J (n)(�)) ∈ A� and Condition 1.1(ii) holds. �
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