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APPROXIMATION ALGORITHMS FOR THE NORMALIZING
CONSTANT OF GIBBS DISTRIBUTIONS

BY MARK HUBER

Claremont McKenna College

Consider a family of distributions {πβ } where X ∼ πβ means that P(X =
x) = exp(−βH(x))/Z(β). Here Z(β) is the proper normalizing constant,
equal to

∑
x exp(−βH(x)). Then {πβ } is known as a Gibbs distribution, and

Z(β) is the partition function. This work presents a new method for approx-
imating the partition function to a specified level of relative accuracy using
only a number of samples, that is, O(ln(Z(β)) ln(ln(Z(β)))) when Z(0) ≥ 1.
This is a sharp improvement over previous, similar approaches that used
a much more complicated algorithm, requiring O(ln(Z(β)) ln(ln(Z(β)))5)

samples.

1. Introduction. The central idea of Monte Carlo methods is that the ability
to sample from certain distributions gives a means for estimating the value of an
integral or sum. This paper presents a new method for using samples to approx-
imate a broad class of sums coming from Gibbs distributions that is faster than
previously-known methods.

DEFINITION 1.1. {πβ}β∈R is a Gibbs distribution with parameter β over fi-
nite state space � if there exists a Hamiltonian function H(x) :� → R such that
for X ∼ πβ ,

P(X = x) = exp
(−βH(x)

)
/Z(β),

where Z(β) = ∑
x∈� exp(−βH(x)) is called the partition function of the distribu-

tion.

The partition function can be difficult to compute, even when dealing with sim-
ple problems.

EXAMPLE 1.1 (The Ising model). Given a graph G = (V ,E), let � =
{−1,1}V , and H(x) = −∑

{i,j}∈E 1(x(i) = x(j)), where 1(·) is the indicator func-
tion that is 1 if the argument is true and 0 if it is false. Then the Gibbs distribution
with this Hamiltonian is called the Ising model. Finding Z(β) for arbitrary graphs
is a #P-complete problem [8].
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A vast literature has arisen devoted to finding ways to generate random variables
from Gibbs distributions; see, for instance, [4, 6, 9, 13] or [2] for an overview.
For the Ising model, Jerrum and Sinclair [8] give an algorithm for approximately
sampling from πβ in polynomial time for β > 0. Propp and Wilson [10] give an
algorithm for the Ising model that seems to run efficiently when β > 0 is at or
below a cutoff known as the critical value.

Once an effective method for obtaining approximate or perfect samples from
the target Gibbs distribution exists, the question becomes: what is the best way of
using those samples to approximate Z(β)?

DEFINITION 1.2. Say that A is an (ε,3/4)-randomized approximation algo-
rithm for Z(β) if it outputs value Ẑ(β) such that

P

(
1

1 + ε
≤ Ẑ(β)

Z(β)
≤ 1 + ε

)
≥ 3/4.

Here ε ≥ 0 controls the relative error between the approximation and the true
answer. The 3/4 on the right-hand side can be made arbitrarily close to 1 by re-
peating the algorithm and taking the median of the resulting output.

1.1. Previous work. The first step in building such an approximation algo-
rithm is importance sampling. For most Gibbs distributions, calculating Z(0) is
straightforward, and it is easy to generate samples from π0. For the Ising model,
π0 is just the uniform distribution over {−1,1}V , and Z(0) = 2#V . With a draw
X ∼ π0 in hand, let

W = exp
(−βH(X)

)
.(1.1)

Then

E[W ] =
∑

x∈� exp(−βH(x)) exp(0)

Z(0)
= Z(β)

Z(0)
,

making W · Z(0) an unbiased estimator of Z(β).
The relative performance of this Monte Carlo estimate is controlled by the rel-

ative variance, the square of the coefficient of variation. For a random variable X

with finite second moment, Vrel(X) = [E(X2)/E(X)2] − 1. Hence for the random
variable W as in (1.1),

Vrel(W) = −1 +
∑

x∈� exp(−βH(x))2

Z(0)
· Z(0)2

Z(β)2 = −1 + Z(2β)Z(0)

Z(β)2 .(1.2)

There are two main issues with this relative variance:

(1) For problems like the Ising model, this last ratio can be exponentially large
in the input, making the method untenable.
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(2) The relative variance involves the value of Z(2β), outside the interval of
interest [0, β]. Typically, larger values of β make sampling from πβ more difficult.
This presents a serious impediment to the method.

The first problem can be dealt with by using the multistage sampling method of
Valleau and Card [14]. In this approach, a sequence of β values 0 = β0 < β1 <

β2 < · · · < β� = β are introduced, called a cooling schedule. Then

Z(β)

Z(0)
= Z(β1)

Z(β0)
· Z(β2)

Z(β1)
· · · Z(β�)

Z(β�−1)
.

Each of the individual factors in the product on the right can then be estimated
separately and then multiplied to give a final estimate. Fishman calls an estimate
of this form a product estimator [5], page 437.

It is straightforward to calculate the mean and relative variance of a product
estimator in terms of the mean and relative variance of the individual factors. The
following result is a simplified form of a result that appears on page 136 of [3].

LEMMA 1.1 ([3]). For P = ∏
Pi where the Pi are independent,

E[P ] = ∏
E[Pi], Vrel(P ) = −1 + ∏(

1 +Vrel(Pi)
)
.

Let q = ln(Z(β)/Z(0)), and suppose H(x) ∈ {0, . . . , n}. Next, Bezáková et
al. [1] introduce a fixed cooling schedule with two pieces, the first where the pa-
rameter value grows linearly and the second where it grows exponentially,

0,
1

n
,

2

n
, . . . ,

k

n
,
kγ

n
,
kγ 2

n
, . . . ,

kγ t

n
,

where k = �q� and γ = 1 + 1/q . With this fixed cooling schedule, they give an
(ε,3/4)-approximation algorithm that uses O(q2(lnn)2) samples in the worse
case.

By using an adaptive cooling schedule, it is possible to do better. In [12],
S̆tefankovic̆, Vempala and Vigoda introduce an adaptive cooling schedule. Their
algorithm is highly complex, and they are interested primarily in the asymptotic
order of the running time rather than a practical implementation. Their (ε,3/4)-
approximation algorithm uses, at most,

108q
(
ln(n) + ln(q)

)5
ε−2)

(1.3)

samples on average from the target distribution.
In [7], the Huber and Schott introduce a general technique for finding normaliz-

ing constants of sums and integrals called TPA. When applied to the specific prob-
lem area of Gibbs distributions, the running time for an (ε,3/4)-approximation
algorithm becomes O(q2). While this algorithm is much simpler to implement
than the method of Stefankovic̆, Vempala and Vigoda [12], it has a worse running
time, asympototically.
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1.2. Main result. The multistage idea solves the issue of Z(2β)Z(0)/Z(β)2

being too large, but fails to solve the issue of the variance depending on Z(2β).
Dealing with this leads to several of the ln factors in [12]. In this work a new
method is introduced, the paired product estimator, which has a variance only
involving quantities within [0, β]. The result is an algorithm where the overal vari-
ance can be analyzed precisely. This allows for the construction of an approxima-
tion algorithm much simpler than that found in [12], and which requires far fewer
samples.

THEOREM 1.1. Suppose n ≥ 4 and ε ≤ 1/10. When H(x) ∈ {0,1, . . . , n} or
{0,−1,−2, . . . ,−n}, the new method is an (ε,3/4)-approximation algorithm that
uses only

(q + 1)
[
5 + (

2 + ln(2n)
)(

14.9 ln
(
100

(
2 + ln(2n)

)
(q + 1)

) + 48.2ε−2)]
(1.4)

and draws from the Gibbs distribution on average.

It is, of course, possible to derive an upper bound on the number of samples
used when n < 4 or ε > 1/10; however, adding these assumptions makes the pre-
sentation cleaner.

The requirement that H(x) ∈ {0, . . . , n} or {−n, . . . ,0} is so that H(x) does
not change sign, which is a necessary condition for the algorithm. Suppose that
H(x) ∈ {a, a + 1, . . . , a + n} where a is known. Then using H ′(x) = H(x) − a

gives the same Gibbs distribution as with H , so drawing samples from H ′ is no
more difficult than drawing from H and H ′(x) ∈ {0, . . . , n}. However, the partition
function is different. If Z(β) was the original partition function, and ZH ′(β) the
new, then ZH ′(β) = exp(βa)Z(β). Hence q ′ for H ′ satisfies q ′ = q + aβ . Theo-
rem 1.1 can then be applied.

Section 2 describes the overall structure of the algorithm and shows how to
obtain a good cooling schedule. Section 3 then analyzes the relative variance of
the pieces of the algorithm in order to prove Theorem 1.1.

2. The algorithm. Let q = ln(Z(0)/Z(β)). Then to obtain an approximation
within a factor of 1 + ε of Z(0)/Z(β), it is necessary to obtain an approximation
of q within an additive factor of ln(1 + ε). The main algorithm consists of the
following pieces:

(1) obtain an initial estimate of q;
(2) obtain a well-balanced cooling schedule;
(3) use the well-balanced schedule with the paired product estimator.

Let z(β) = ln(Z(β)). Then well-balanced means that there exists η ≥ 0 such
that |z(βi+1) − z(βi)| ≤ η for all i.

The first two pieces will be accomplished using TPA, introduced in [7]. To use
TPA for Gibbs distributions on parameter values [0, β], it is necessary that H(x)

be either always nonnegative or always nonpositive.
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In the Ising model example shown earlier, H(x) ≤ 0, and so Z(β) is an increas-
ing function of β . In this case, TPA is an algorithm that generates a random set of
parameter values in the interval from 0 to β by taking samples from πb for various
values of b ∈ [0, β]. Then the output of TPA is a Poisson point process (PPP) of
rate 1 in [z(0), z(β)]; see Section 2 of [7].

ALGORITHM 2.1. TPA for Gibbs distributions with H(x) ≤ 0 takes as in-
put a value β > 0 together with an oracle for generating random samples from
πb for b ∈ [0, β], and returns a set of values 0 < b1 < b2 < · · · < b� < b such
that {z(b1), . . . , z(b�)} forms a Poisson point process of rate 1 on the interval
[z(0), z(β)]. It operates as follows:

(1) start with b equal to β and B equal to the empty set;
(2) draw a random sample X from πb, and draw U uniformly from [0,1];
(3) let b = b − ln(U)/H(X), unless H(X) = 0, in which case set b = −∞;
(4) if b > 0, then add b to the set B , and go back to step 2.

The number of samples drawn by TPA will equal 1 plus a Poisson random vari-
able with mean q [7], pages 3–4. The output of Algorithm 2.1 can be used in
several different ways. When TPA is run k times and the output sets combined, and
the result is a Poisson point process on [z(0), z(β)] of rate k.

It is even possible to obtain rates that are fractional. To obtain rate k where
k is not an integer, first run TPA �k� times. Then for each point of the process,
keep it independently with probability k/�k�. Otherwise discard it entirely. This
procedure, known as thinning, enables creation of a PPP of any positive rate, which
will simplify the analysis later; see [11], page 320, for more on thinning.

After a PPP of rate k has been generated, the number of points in the process
has a Poisson distribution with mean k(z(β) − z(0)). This gives a way of initially
getting an estimate of z(β) − z(0) that (by choosing k high enough) has a 99%
chance of being within a factor of 2 of the correct value.

Once that is accomplished, TPA is run, this time with an even larger value of k

based on the estimate from the first step. Because the z(b) values form a Poisson
point process, the difference between successive z(b) values will be an exponential
random variable, so if b′ is the dth point following b, then z(b′) − z(b) will have
a gamma (Erlang) distribution with shape parameter d and rate parameter k. By
making k and d large enough, this will be tightly concentrated around its mean
value of d/k for all such differences. The result is a set of parameter values {βi}
that are well balanced.

Call [βi, βi+1] interval i. Now each z(βi+1) − z(βi) will be estimated indepen-
dently using the paired product estimator. This works as follows. For each inter-
val i, let mi = (βi + βi+1)/2 be the midpoint of the interval, and hi = mi − βi =
βi+1 − mi be the half length of an interval. Draw X ∼ πβi and Y ∼ πβi+1 . Then
set

Wi = exp
(−hiH(X)

)
, Vi = exp

(
hiH(Y )

)
.
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Then

E[Wi] =
∑

exp(−βiH(x)) exp(−hiH(x))

Z(βi)
=

∑
exp(−miH(x))

Z(βi)
= Z(mi)

Z(βi)
.

Similarly, E[Vi] = Z(mi)/Z(βi+1). Therefore, Wi can be used to estimate the drop
z(mi) − z(βi), and Vi can estimate the drop z(βi+1) − z(mi).

Now we have the relative variance calculation.

Vrel(Wi) = E[W 2
i ]

E[Wi]2 − 1 = −1 +
∑

exp(−βiH(x)) exp(−δiH(x))2

Z(βi)
· Z(βi)

2

Z(mi)2

= −1 + Z(βi+1)Z(βi)

Z(mi)2 since βi + 2δi = βi+1.

A similar calculation shows that Vrel(Vi) = Vrel(Wi), and now the variance of our
estimators for interval i only involves Z(b) values for b that fall in interval i.

Let W be the product of the Wi over all intervals i, and V be the product of
the Vi . Then the final estimate of Z(β)/Z(0) is W/V . This is not quite an unbiased
estimator, but it is true that E[W ]/E[V ] = Z(β)/Z(0). If both W and V are tightly
concentrated around their means, then W/V will be close to Z(β)/Z(0). To get
that tight concentration, in the next section it is shown that the relative variance
of W (and V ) is small as long at the β values form a well-balanced schedule.

With that small relative variance, it is possible to repeatedly draw independent,
indentical copies of W to get a sample average W̄ which is tightly concentrated
about its mean. (The same is true for V as well.) The following algorithm incor-
porates these ideas.

ALGORITHM 2.2 (Paired product approximation algorithm). The input is a
value β > 0 together with an oracle for generating samples from πb for b ∈ [0, β].
The output is an approximation for Z(β)/Z(0).

(1) Run TPA 5 times to get an estimate of q = ln(Z(β)/Z(0)) that is at least
q/2 with probability 99%.

(2) Run TPA k times to obtain a set of parameter values. Sort these values and
then keep every dth successive value. Add parameter values 0 and β , and label the
result 0 = β0 < β1 < · · · < β� = β .

(3) Repeat the following �2e
√

10((1 + ε)1/2 − 1)−2� times: for each i, draw
Xi ∼ πβi

, let Wi = exp(−δiH(Xi)) and Vi = exp(δiH(Xi+1)), W = ∏
Wi and

V = ∏
Vi . Take the sample average of the W values to get W̄ , and the sample

average of the V values to get V̄ .
(4) The estimate of Z(β)/Z(0) is W̄/V̄ .

Note that ((1+ε)1/2 −1)−2 ≈ 4ε−2. It is necessary to use this more complex ex-
pression because the final estimator is the ratio of W and V ; see the proof of Theo-
rem 3.2. Algorithm 2.2 can be run for any values of d and k. The next section shows
how to choose them properly to make Algorithm 2.2 an (ε,3/4)-approximation al-
gorithm.
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3. Analysis. In this section the following theorem is shown.

THEOREM 3.1. In Algorithm 2.2, let q̂1 be the size of the Poisson point pro-
cess created with 5 runs of TPA in step 1. Let

d = ⌈
22 ln

(
100

(
2 + ln(2n)

)
(q̂1 + 1/2)

)⌉
and k = (2/3)d

[
2 + ln(2n)

]
.

Then the algorithm output is within 1 + ε of Z(β)/Z(0) with probability at
least 3/4.

Let q = ln(Z(β)/Z(0)). The proof breaks into three parts. The first shows that
by running TPA 5 times, the probability that q̂1 + 1/2 < (1/2)q is at most 1%. The
second part shows that with the choice of k, the probability that the schedule is
not well balanced is at most 4%. Finally, the third part shows that the third step of
the algorithm produces W̄ and V̄ that are both within 1 + ε̃/2 of their respective
means with probability at most 20%. The union bound on the probability of failure
is then 1% + 4% + 20% = 25%, as desired.

3.1. The initial estimate q̂1. Recall that Algorithm 2.1 has output that is a
Poisson point process with rate 1. Let k1 denote the number of times that TPA is
run and the output combined. Then the new PPP has a rate of k1. Therefore the
number of points in the PPP is Poisson distributed with mean k1(z(β)− z(0)). The
following lemma concerning Poisson random variables then shows that q̂1 + 1/2
is at least 1/2 of its mean with probability at least 99%.

LEMMA 3.1. Let X have Poisson distribution with mean μ. Then P(X <

μ/2) ≤ 2(πμ)−1/2(2/e)μ/2.

PROOF. Suppose μ/2 = �μ/2�. Then

P(X < μ/2) = exp(−μ)
∑

i≤μ/2

μi

i! ≤ exp(−μ)2
μμ/2

(μ/2)! .

The last inequality comes from the fact that each term in the sum is at least
twice the previous term. The Stirling bound i! > √

2πi(i/e)i gives P(X ≤ μ/2) ≤
2(πμ)−1/2(2/e)μ/2. Now suppose μ/2 = �μ/2�. Let μ′ = 2�μ/2�.

P(X < μ/2) ≤ P
(
X ≤ μ′/2

) ≤ 2
(
πμ′)−1/2

(2/e)μ
′/2 ≤ 2(πμ)−1/2(2/e)μ. �

Suppose step 1 runs k1 repetitions of TPA. Then q̂1 has a Poisson distribution
with mean k1q . If q ≤ 1, then it is always true that q̂1 + 1/2 ≥ (1/2)q . If q > 1,
then setting k1 = 5 and using Lemma 3.1 makes the probability of failure be-
low 1%.
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3.2. The well-balanced schedule. Now consider the second step in Algo-
rithm 2.2. First, run TPA k times to get a set B that is a PPP of rate k on the
interval [z(0), z(β)]. Since B is a PPP of rate k, if b < b′ are values in B such that
there are exactly d −1 values in (b, b′), then z(b′)− z(b) has a gamma distribution
with parameters d and k. This is equivalent to saying z(b′) − z(b) has the distribu-
tion of the sum of d independent exponential random variables each with rate k.
Hence the moment generating function of z(b′) − z(b) is [k/(k − t)]d . Let t and η

be nonnegative real numbers, then

P
(
z
(
b′) − z(b) ≥ η

)
= P

(
exp

(
t
(
z
(
b′) − z(b)

)) ≥ exp(ηt)
)

= [
k/(k − t)

]d exp(−ηt) by Markov’s inequality

= (ηk/d)d exp(−ηk + d) by setting t = k − d/η.

On the other hand, for t > 0, multiplying by −t and exponentiating gives

P
(
z
(
b′) − z(b) ≤ η/2

)
= P

(
exp

(−t
(
z
(
b′) − z(b)

)) ≥ exp(−ηt/2)
)

= [
k/(k + t)

]d exp(ηt/2) by Markov’s inequality

= (
ηk/(2d)

)d exp(−ηk/2 + d) by setting t = 2d/η − k.

So if d = (3/4)ηk, then from the union bound

P
(
η/2 ≤ z

(
b′) − z(b) ≤ η

) ≥ 1 − [
exp(−1/3) · 4/3

]d − [
exp(1/3) · 2/3

]d
.

For the PPP, the chance that z(b) − z(b′) ∈ [η/2, η] for the first 2η−1(z(β) − z(0))

intervals to the left of β is (again by the union bound) at least 1 − 2η−1(z(β) −
z(0))2[exp(−1/3) · 4/3]d . Making

d ≥ ln(0.04(4η−1(z(β) − z(0)))−1)

−(1/3) + ln(4/3)
= ln(100η−1(z(β) − z(0)))

1/3 − ln(4/3)

would make this probability at least 96%. However, q = z(β) − z(0) is unknown.
What is known (from step 1 of Algorithm 2.2 is 2(q̂1 + 1/2) has a 96% chance of
being at least q . Since (1/3 − ln(4/3))−1 = 21.905, . . . , setting

d = ⌈
22 ln

(
200η−1(q̂ + 1/2)

)⌉

and k = (4/3)d/η makes the chance that step 2 fails to find a schedule where
z(b) − z(b′) > 1 for any interval at most 4%.
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3.3. Choosing η. The next question to consider is the size of η. The value of
η will be used to control the overall relative variance of the product estimators W

and V . For the ith interval [βi, βi+1], let mi
def= (βi + βi+1)/2 be the midpoint of

the interval. Let δi be the difference between the y-coordinate of the midpoint of
the interval secant line and the function value at the midpoint of the interval. That
is,

δi
def= z(βi+1) + z(βi)

2
− z(mi).

From (1.2), Vrel(Wi) = exp(2δi)−1. Since the relative variance is always nonneg-
ative, this implies that δi ≥ 0 and so the function z is convex.

From Lemma 1.1,

Vrel(W) = −1 + ∏(
1 + exp(2δi) − 1

) = −1 + exp
(∑

2δi

)
.(3.1)

So controlling the overall relative variance is a matter of bounding δi for each
interval i. The key idea in the bound comes from [12], although they use it in a
very different fashion. The idea is that when δi is large, the derivative of z sharply
increases.

LEMMA 3.2. For the ith interval [βi, βi+1] with z(βi+1) − z(βi) = ηi ,

z′(βi+1)

z′(βi)
≥ exp(4δi/ηi).

PROOF. Let mi = (βi + βi+1)/2 be the midpoint of interval i, and ηi =
z(βi+1)−z(βi) be the change in the z function over the interval. Since z is convex,
the slope at βi is at most [z(mi) − z(βi)]/[mi − βi]. On the other hand, the slope
at βi+1 is at least [z(βi+1) − z(mi)]/[βi+1 − mi]. Since mi is the midpoint of the
interval, mi − βi = βi+1 − mi and

z′(βi+1)

z′(βi)
≥ z(βi+1) − z(mi)

z(mi) − z(βi)
= ηi/2 + δi

ηi/2 − δi

= 1 + 2δi/ηi

1 − 2δi/ηi

≥ exp(4δi/ηi). �

LEMMA 3.3. For a cooling schedule over [0, β] with z(βi+1) − z(βi) ≤ η for
all i,

Vrel(W) = Vrel(V ) ≤

⎧⎪⎪⎨
⎪⎪⎩

2, z′(β) < 1/2,(
2z′(β)

)η/2
, z′(0) ≥ 1/2,

2eη
[
2z′(β)

]η/2
, z′(0) < 1/2 ≤ z′(β).

For n ≥ 4 and η = 2/[2 + ln(2n)], regardless of z′(0) and z′(β),

Vrel(W) =Vrel(V ) ≤ 2e.
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PROOF. Recall that Vrel(W) ≤ exp(2
∑

i δi) so the goal is to bound
∑

i δi .
Consider a cooling schedule 0 = β0 < β1 < · · · < β� = β . It is well known that

z′(β) is just E[−H(X)] where X ∼ πβ

z′(β) = d

dβ
ln

(
Z(β)

) = Z′(β)

Z(β)
=

∑
x −H(x) exp(−βH(x))

Z(β)
= E

[−H(X)
]
.

Case I: z′(β) < 1/2. Then H(x) ≤ −1 �⇒ −H(x) ≥ 1 so∑
x : H(x)≤−1 −H(x) exp(−βH(x))

Z(β)
≤ 1

2

⇒
∑

x : H(x)≤−1 exp(−βH(x))

Z(β)
≤ 1

2

⇒
∑

x : H(x)=0 exp(−βH(x))

Z(β)
≥ 1

2

⇒ Z(0)

Z(β)
≥ 1

2
.

Hence z(β) − z(0) ≤ ln(2) which means
∑

i 2δi ≤ ln(2) and exp(
∑

i 2δi) ≤ 2.
Case II: z′(0) ≥ 1/2. Then 2z′(β) ≥ z′(β)/z′(0), and from the last lemma

z′(β)

z′(0)
= z′(β1)

z′(β0)
· · · z′(β�)

z′(β�−1)
≥ ∏

i

exp(4δi/ηi).

Raising to the η/2 power then finishes this case.
Case III: z′(0) < 1/2 ≤ z′(β). Since z′ is continuous, let a ∈ [0, β] be the pa-

rameter value where E[−H(X)] = 1/2 for X ∼ πa , and suppose a is in the j th
interval [βj ,βj+1]. As in case I, Z(βj )/Z(β0) ≤ 2. As in case II,

∏
i>j exp(4δi) ≤

[2z′(β)]η/2. Since 2δj ≤ η, this means that the combined relative variance is at
most 2eη[2z′(β)]η/2.

Since z′(β) = E[−H(X)] for X ∼ πβ , and X ≤ n, z′(β) ≤ n. Hence if η/2 ≤
1/[2 + ln(2n)], then eη[2z′(β)]η/2 ≤ e. �

PROOF OF THEOREM 3.1. Using the value of d from Section 3.2 and
Lemma 3.3 gives that the relative variance for an instance of W (or V ) is at
most 2e. All that remains is to analyze the third step of Algorithm 2.2. It is easy
to verify that if W̄ is the sample average of r independent, identically distributed
(i.i.d.) instances of W , then Vrel(W̄ ) = Vrel(W)/r . Let ε̃ = (1 + ε)1/2 − 1. For
�2e

√
10ε̃−2� i.i.d. draws of W , Vrel(W̄ ) ≤ ε̃−2/10.

Chebyshev’s inequality says that for a random variable X with finite relative
variance, P((1 − ε)E[X] ≤ X ≤ (1 + ε)X) ≥ 1 −Vrel(X)ε2. Hence

P
(
(1 + ε̃)−1

E[W ] ≤ W̄ ≤ (1 + ε̃)E[W ]) ≥ 1 − 1/10.
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Similarly, P((1 + ε̃)−1
E[V ] ≤ V̄ ≤ (1 + ε̃)E[V ]) ≥ 1 − 1/10.

Therefore, the chance that step 1 successfully gives a basic estimate of
ln(Z(β)/Z(0)), step 2 creates a well-balanced schedule and step 3 gives W̄

and V̄ both within a factor of (1 + ε̃) of their respective means is at least
1 − 1/100 − 4/100 − 1/10 − 1/10 = 75% by the union bound.

If both W̄ and V̄ are within 1+ ε̃ of their means, then W̄/V̄ is within (1+ ε̃)2 =
1 + ε of E[W̄ ]/E[V̄ ] = Z(β)/Z(0), completing the proof. �

3.4. The running time of the basic algorithm. How many samples does Algo-
rithm 2.2 take on average?

THEOREM 3.2. When n ≥ 4, and ε ≤ 1/10, Algorithm 2.2 takes on average
at most

(q + 1)
[
5 + (

2 + ln(2n)
)(

14.9 ln
(
100

(
2 + ln(2n)

)
(q + 1)

) + 48.2ε−2)]
samples. For fixed ε the number of samples is O(q[ln(n)(ln(q) + ln(ln(n)))]).

PROOF. A run of TPA uses a number of samples that is one plus a Poisson
random variable with mean z(β) − z(0), so on average q + 1 samples. So step
1 takes 5q + 5 samples on average. From the concavity of the ln function and
Jensen’s inequality, the second step takes at most

⌈
(2/3)

(
2 + ln(2n)

)⌉⌈
22 ln

(
100

(
2 + ln(2n)

)
(q + 1)

)⌉
q

samples on average. This is bounded above by

q
[
14.9

(
2 + ln(2n)

)
ln

(
100

(
2 + ln(2n)

)
(q + 1)

)]
.

The resulting schedule has on average at most q/(d/k)+1 = (2/3)[2+ ln(2n)]q +
1 intervals in it, and so the third step of the algorithm generates a number of sam-
ples that (on average) is at most

(2e
√

10)(2/3)
(
2 + ln(2n)

)
(q + 1)

(
(1 + ε)1/2 − 1

)−2
.

When ε ≤ 1/10, (1 + ε)1/2 − 1 ≥ ε/2.05, so the number of samples in this section
can be bounded by

48.2
(
2 + ln(2n)

)
(q + 1)ε−2. �
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