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EXPONENTIAL MOMENTS OF AFFINE PROCESSES

BY MARTIN KELLER-RESSEL AND EBERHARD MAYERHOFER1

TU Berlin and Dublin City University

We investigate the maximal domain of the moment generating function
of affine processes in the sense of Duffie, Filipović and Schachermayer [Ann.
Appl. Probab. 13 (2003) 984–1053], and we show the validity of the affine
transform formula that connects exponential moments with the solution of a
generalized Riccati differential equation. Our result extends and unifies those
preceding it (e.g., Glasserman and Kim [Math. Finance 20 (2010) 1–33], Fil-
ipović and Mayerhofer [Radon Ser. Comput. Appl. Math. 8 (2009) 1–40] and
Kallsen and Muhle-Karbe [Stochastic Process Appl. 120 (2010) 163–181])
in that it allows processes with very general jump behavior, applies to any
convex state space and provides both sufficient and necessary conditions for
finiteness of exponential moments.

1. Introduction. This article investigates the maximal domain of the moment
generating function of an affine process. An affine process is a time-homogeneous
Markov processes X on a finite-dimensional state space D ⊂ R

d whose character-
istic function has the following property: There exist a complex-valued function φ

and a C
d -valued function ψ such that

�(t, u, x) := E
[
e〈u,Xt 〉 | X0 = x

]= eφ(t,u)+〈ψ(t,u),x〉,(1.1)

for all u ∈ iRd , t ≥ 0 and x ∈ D. This so-called affine property implies that the
PDE

∂

∂t
�(t, u, x) =A�(t, u, x), �(0, u, x) = exp

(〈u,x〉),
where A denotes the infinitesimal generator of X, can be reduced to a system of
nonlinear ODEs, commonly referred to as generalized Riccati differential equa-
tions, which are of the form

∂

∂t
φ(t, u) = F

(
ψ(t, u)

)
, φ(0, u) = 0,(1.2a)

∂

∂t
ψ(t, u) = R

(
ψ(t, u)

)
, ψ(0, u) = u.(1.2b)
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A natural and important question is whether formula (1.1) and the generalized
Riccati system (1.2) can be extended to real exponential moments (u ∈ R

d) or
complex exponential moments (u ∈ C

d). One might expect that if F and R can
be suitably extended, for example, by analytic extension, then the exponential mo-
ment Ex[e〈u,XT 〉] is finite if and only if a solution to the extended Riccati system
exists up to time T , and that in this case also (1.1) remains valid. A statement of
this type is usually referred to as affine transform formula. Showing such a for-
mula in full generality is far from trivial—difficulties include the fact that analytic
extension of F and R may not be possible, that solutions of the extended Ric-
cati equations might not be unique and that the differentiability of t �→ φ(t, u)

and t �→ ψ(t, u) is not obvious from (1.1). The latter problem of showing that
differentiability of φ and ψ can be concluded from the definition of an affine pro-
cesses is known as the regularity problem for affine processes; cf. Duffie, Filipović
and Schachermayer (2003), Keller-Ressel, Schachermayer and Teichmann (2011),
Cuchiero (2011).

Several articles have been concerned with showing the affine transform formula
under different conditions on the process X or the state space D. In particular we
mention the following contributions:

• Glasserman and Kim (2010) show the affine transform formula for real mo-
ments of affine diffusion processes on D = R

m≥0 × R
n under a mean-reversion

condition;
• Filipović and Mayerhofer (2009) show the affine transform formula for real and

complex moments of affine diffusion processes on D =R
m≥0 ×R

n;
• Kallsen and Muhle-Karbe (2010) show that for affine semi-martingales on

D = R
m≥0 ×R

n existence of a solution to the extended Riccati system on [0, T ]
implies the validity of the affine transform formula for real moments under a
mild condition on the jump-measures;

• Spreij and Veerman (2010) show an affine transform formula for affine pro-
cesses whose jump measures possess exponential moments of all orders and
where the state space is a convex subset of Rd ;

• in the context of a stock price model with stochastic interest rates and possibility
of default, Cheridito and Wugalter (2012) show an affine transform formula
for affine processes with killing when the jump measures possess exponential
moments of all orders.

In this article we generalize and unify most of these results. In particular we re-
move the condition that all exponential moments of the jump measures must exist,
which is typically not fulfilled in applications; see the discussion in Section 3.5.
Moreover we show that the existence of a minimal solution to the extended Ric-
cati system is necessary and sufficient for the exponential transform formula to
hold, while Kallsen and Muhle-Karbe (2010) covers only sufficiency. Finally our
results apply to very general types of state spaces: The results on real exponential
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moments hold for affine processes on an arbitrary convex state space, and the re-
sults on complex exponential moments apply to affine processes on D =R

m+ ×R
n

and on D = S+
d (the positive semidefinite d × d matrices). These two state spaces

[see Duffie, Filipović and Schachermayer (2003) and Cuchiero et al. (2011)] are
of particular interest both from the theoretic viewpoint and from the applied one.
The outline of this paper is as follows: In Section 2 we present general definitions,
some useful notation and our main results:

• Theorem 2.14 proves the affine transform formula in terms of minimal solutions
to the so-called extended Riccati system, which comes from considering (1.2) in
the real domain. Here we only require the state space to be closed, convex and
with nonempty interior. The proof of Theorem 2.14 is provided in Section 4.

• Theorem 2.26 extends the validity of the affine property (1.1) to complex mo-
ments u = p+ iz, where z ∈ R

d . This extension succeeds under the premise that
the pth real moment is finite, or equivalently, that the extended Riccati equations
are solvable until time T . The result holds for the state space R

m≥0 × R
n and—

under some mild additional conditions—for the state space S+
d . For the proof of

Theorem 2.26, see Section 5.

In Section 3 several applications of our results to mathematical finance are out-
lined. Finally, Sections 4 and 5 contain the proofs of our main results for real
moments and complex moments respectively.

2. Definitions and main results.

2.1. Affine processes. Let (�,F,F) be a filtered space, with F = (Ft )t≥0 a
right-continuous filtration. We endow R

d, (d ≥ 1) with an inner product 〈·, ·〉 and
let D be a nonempty convex subset of Rd , which will act as the state space of the
stochastic process X we are about to define. The state space D has a measurable
structure given by its Borel σ -algebra B(D), and without loss of generality (see
the explanation after Definition 2.2), we may assume that D contains 0 and that the
linear span of D is the full space Rd . Under this assumption it follows in particular
that the interior D◦ of D is nonempty. Associated to D is the set

U = {
u ∈ C

d :x �→ e〈x,u〉is bounded on D
}
.(2.1)

Finally let (Px)x∈D be a family of probability measures on the filtered space
(�,F,F) and assume that F is complete with respect to (Px)x∈D in the sense
of Blumenthal and Getoor (1968), Chapter I.5.

Let X be a càdlàg2
F-adapted time-homogeneous conservative Markov process

with state space D. More precisely, writing

pt(x,A) = P
x(Xt ∈ A)

(
t ≥ 0, x ∈ D,A ∈ B(D)

)
(2.2)

for the transition kernel of X, pt(x,A) satisfies the following:

2For convex state spaces, affine processes have càdlàg modifications, see Remark 2.5 below.
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(a) x �→ pt(x,A) is B(D)-measurable for all t ≥ 0,A ∈ B(A),
(b) pt(x,D) = 1 for all t ≥ 0, x ∈ D,
(c) p0(x, {x}) = 1 for all x ∈ D and
(d) the Chapman–Kolmogorov equation

pt+s(x,A) =
∫
D

pt(y,A)ps(x, dy)

holds for every t, s ≥ 0 and (x,A) ∈ D ×B(D).

REMARK 2.1. Since X is càdlàg, the law of X under Px is a probability mea-
sure on the Skorokhod space of càdlàg paths D(R≥0,R

d), for each x ∈ D. There
will be no loss of generality by directly interpreting P

x as a measure on this path
space.

DEFINITION 2.2 (Affine process). The process X is called affine with state
space D, if its transition kernel pt(x,A) satisfies the following:

(i) it is stochastically continuous, that is, lims→t ps(x, ·) = pt(x, ·) weakly for
all t ≥ 0, x ∈ D, and

(ii) there exist functions φ :R≥0 × U → C and ψ :R≥0 × U → C
d such that∫

D
e〈u,z〉pt(x, dξ) = exp

(
φ(t, u) + 〈

x,ψ(t, u)
〉)

(2.3)

for all t ≥ 0, x ∈ D and u ∈ U .

REMARK 2.3. We explain why it is no loss of generality to assume that D

contains 0 and linearly spans the whole space R
d : For an arbitrary nonempty con-

vex subset D of R
d , let aff(D) be the smallest affine subspace of R

d that con-
tains D, and let (x0, x1, . . . , xk) be an affine basis of aff(D) such that x0 ∈ D. Let
h : aff(d) → R

k :x �→ A
(x−x0) be the projection to canonical affine coordinates,
that is, h(x0) = 0 and h(xi) = ei for each i ∈ {1, . . . , k}. Set D̃ = h(D) ⊂ R

k and
X̃ = h(X). Then D̃ is convex, contains 0 and linearly spans Rk . It is easily verified
that X̃ is again an affine process with

φ̃(t, u) = φ(t,Au) + 〈
x0,ψ(t,Au) − u

〉
,(2.4)

ψ̃(t, u) = A+ψ(t,Au),(2.5)

where A+ is the Pseudoinverse of A (or any other k × d-matrix such that A+A =
idk).

The next result shows that an affine process is a semimartingale with affine
(differential) semimartingale characteristics.
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THEOREM 2.4 [Cuchiero (2011)]. Let X be an affine process with state space
D ⊂ R

d . Then for each x ∈ D, the process X is a P
x -semimartingale with semi-

martingale characteristics

At =
∫ t

0
a(Xs−) ds,(2.6a)

Bt =
∫ t

0
b(Xs−) ds,(2.6b)

ν(ω,dt, dξ) = K
(
Xt−(ω), dξ

)
dt,(2.6c)

where a(x), b(x) and K(x, dξ) are affine functions of the form

a(x) = a + x1α
1 + · · · + xdαd,(2.7a)

b(x) = b + x1β
1 + · · · + xdβd,(2.7b)

K(x, dξ) = m(dξ) + x1μ
1(dξ) + · · · + xdμd(dξ),(2.7c)

and for each x ∈ D it holds that a(x) is a positive semidefinite d × d matrix, b(x)

is a R
d -vector and K(x, dξ) is a Radon measure on R

d , satisfying∫
Rd

(‖ξ‖2 ∧ 1
)
K(x, dξ) < ∞

and K(x, {0}) = 0.

PROOF. Follows from Cuchiero (2011), Theorems 1.4.8 and 1.5.4. �

REMARK 2.5. Note that several of the assumptions made at the beginning
of the section could be slightly weakened: Following Cuchiero and Teichmann
(2013) any affine process (satisfying a mild regularity property on φ,ψ which is
automatically fulfilled for convex state spaces) has a càdlàg modification; more-
over the (Px)x∈D-completion of the filtration generated by an affine process is
automatically right continuous. Note that it is unkown to this date, whether all
affine processes are Feller. Hence the proof of the càdlàg modification in Cuchiero
and Teichmann (2013) is not an immediate consequence of the Feller property, but
more involved.

2.2. Real moments of affine processes.

DEFINITION 2.6. Given an affine process X and the associated functions
(a(x), b(x),K(x, dξ)) in (2.6), define for each x ∈ D the function Rx :Rd →
(−∞,∞] by

Rx(y) = 1

2

〈
y, a(x)y

〉+ 〈
b(x), y

〉
(2.8)

+
∫
Rd\{0}

(
e〈ξ,y〉 − 1 − 〈

h(ξ), y
〉)
K(x, dξ),
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where h(ξ) = 1{|ξ |≤1}ξ .

For each fixed x ∈ D, the function Rx is a convex and lower semi-continuous
function3 that may take the value +∞. As for any convex function, the effective
domain Yx is the set of arguments for which Rx takes finite values. Taking the
intersection over all x ∈ D leads to the following definition.

DEFINITION 2.7. Given an affine process X and the associated function Rx

as in Definition 2.6, define

Y = ⋂
x∈D

{
y ∈R

d :
∫
|ξ |≥1

e〈y,ξ〉K(x, dξ) < ∞
}
.(2.9)

As an intersection of convex sets, also Y is convex. Moreover, Y contains 0 and
hence is nonempty, because Rx(0) = 0 for all x ∈ D.

Since the functions a(x), b(x) and K(x, dξ) are affine in x, we can decompose
Rx into Rx(y) = F(y) + 〈R(y), x〉. For arguments y ∈ Y , the functions F and R

are uniquely specified, since D contains 0 and d linearly independent points.

PROPOSITION 2.8. Let X be an affine process with state space D. Then there
exist functions F :Y →R, R :Y →R

d such that

Rx(y) = F(y) + 〈
R(y), x

〉
for all x ∈ D, y ∈ Y . Let (e1, . . . , ed) be the canonical basis vectors in R

d . Then
we can write F and Ri(y) := 〈R(y), ei〉 as

F(y) = 1

2
〈u,ay〉 + 〈b, y〉

(2.10a)
+
∫
Rd\{0}

(
e〈ξ,y〉 − 1 − 〈

h(ξ), y
〉)
m(dξ),

Ri(y) = 1

2

〈
y,αiy

〉+ 〈
βi, y

〉
(2.10b)

+
∫
Rd\{0}

(
e〈ξ,y〉 − 1 − 〈

h(ξ), y
〉)
μi(dξ),

with h(ξ) = 1{|ξ |≤1}ξ .

PROOF. The proof follows immediately from Definition 2.6 and Theorem 2.4.
�

3Lower semi-continuity follows from Fatou’s lemma applied to the integral with respect to
K(x,dξ).
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REMARK 2.9. Setting x = 0 in (2.8) yields that F(y) is a convex and lower
semi-continuous function of Lévy–Khintchine form. The same is not necessarily
true for R1, . . . ,Rd , since the matrices αi may not be positive semidefinite, or the
measures μi may be signed measures.

We use the functions F(y) and R(y) to set up a system of ODEs associated to
the affine process X. These equations play a key role in our main result.

DEFINITION 2.10 (Extended Riccati system). Let X be an affine process and
F,R and Y be defined as in Definition 2.7 and Proposition 2.8. Let T ≥ 0, y ∈ Y
and let

p : t �→ p(t, y), q : t �→ q(t, y)

be C1-functions mapping [0, T ] to R (resp., Y) that satisfy

∂

∂t
p(t, y) = F

(
q(t, y)

)
, p(0, y) = 0,(2.11a)

∂

∂t
q(t, y) = R

(
q(t, y)

)
, q(0, y) = y(2.11b)

for all t ∈ [0, T ]. Then we call (p, q) a solution (up to time T and with starting
point y) of the extended Riccati system associated to X.

It is important to note that in general the function R is locally Lipschitz con-
tinuous only on the interior of Y , but may fail to be Lipschitz continuous at the
boundary of Y . Hence solutions of (2.11) reaching or starting at the boundary of
Y may not be unique. For this reason we add the following definition.

DEFINITION 2.11 (Minimal solution). Let X be an affine process, and let
(p, q) a solution up of T starting at y ∈ Y to the associated extended Riccati sys-
tem. We call (p, q) a minimal solution, if for any other solution (p̃, q̃) up to T̃ ≤ T

and starting at the same point q(0, y) = q̃(0, y) = y it holds that

p(t, y) + 〈
q(t, y), x

〉≤ p̃(t, y) + 〈
q̃(t, y), x

〉
(2.12)

for all t ∈ [0, T̃ ] and x ∈ D.

REMARK 2.12. By setting qx(t, y) := p(t, y) + 〈q(t, y), x〉, the extended
Riccati system may be written in condensed form as

∂

∂t
qx(t, y) = Rx

(
q(t, y)

)
, qx(0, y) = 〈y, x〉 ∀x ∈ D.(2.13)

In this notation the minimality property can we written as

qx(t, y) ≤ q̃x(t, y) ∀x ∈ D, t ∈ [0, T̃ ], y ∈ Y.
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REMARK 2.13. The following properties are easy to see: If for a given starting
value y ∈ Y there is only one solution to the extended Riccati system, then it is
automatically a minimal solution. Also, if for a given starting value a minimal
solution (p, q) exists up to time T , it is automatically the unique minimal solution.
Indeed, if there were another minimal solution (p̃, q̃), then

p(t, y) + 〈
q(t, y), x

〉= p̃(t, y) + 〈
q̃(t, y), x

〉
for all t ∈ [0, T ], x ∈ D. Since D contains d linearly independent points and 0, it
follows that p = p̃ and q = q̃ in this case.

We can now formulate our main results on the behavior of exponential moments
of affine processes.

THEOREM 2.14 (Real moments of affine processes). Let X be an affine pro-
cess on D, and let T ≥ 0.

(a) Let y ∈ R
d , and suppose that Ex[e〈y,XT 〉] < ∞ for some x ∈ D◦. Then y ∈

Y and there exists a unique minimal solution (p, q) up to time T of the extended
Riccati system (2.11), such that

E
x[e〈y,Xt 〉]= exp

(
p(t, y) + 〈

q(t, y), x
〉)

(2.14)

holds for all x ∈ D, t ∈ [0, T ].
(b) Let y ∈ Y , and suppose that the extended Riccati system (2.11) has solutions

(p̃, q̃) that start at y and exist up to T . Then E
x[e〈y,XT 〉] < ∞ and there exist

unique minimal solutions (p, q) up to time T of the extended Riccati system such
that (2.14) holds for all x ∈ D, t ∈ [0, T ].

REMARK 2.15. We emphasize that in point (b) of the theorem p = p̃ and
q = q̃ does not necessarily hold, that is, the candidate solutions (p̃, q̃) have to be
replaced by the minimal solutions (p, q) in order for (2.14) to hold true.

The following corollary is a conditional version of Theorem 2.14 and thus ex-
tends the corresponding result [Filipović and Mayerhofer (2009), Theorem 3.3(iv)]
for affine diffusions on canonical state-spaces:

COROLLARY 2.16. Suppose that the conditions of either Theorem 2.14(a)
or (b) are satisfied, and let (p, q) be the associated minimal solutions of the Riccati
system (2.11). Then also E

x[e〈q(T −t,y),Xt 〉] < ∞ and

E
x[e〈y,XT 〉|Ft

]= exp
(
p(T − t, y) + 〈

q(T − t, y,Xt)
〉)

holds for all x ∈ D, t ∈ [0, T ].
The next proposition provides a way to identify whether some solution (p̃, q̃)

of the extended Riccati system is in fact the minimal solution.
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PROPOSITION 2.17. Let X be an affine process, and let (p̃, q̃) be a solution
up to time T ≥ 0 of the extended Riccati system associated to X. Each of the
following conditions is sufficient for (p̃, q̃) to be the unique minimal solution:

(a) X is a diffusion process;
(b) Y = R

d ;
(c) Y is open;
(d) q̃(t, y) ∈ Y◦ for all t ∈ [0, T ).

PROOF. From Definition 2.7 of Y it follows that (a) ⇒ (b) ⇒ (c) ⇒ (d), that
is, it is sufficient to show that (d) implies uniqueness of the solution (p̃, q̃). But R

is locally Lipschitz on Y◦, such that standard ODE results imply that (p̃, q̃) is the
unique (and hence unique minimal) solution of the extended Riccati system (2.11)
on [0, T ). Due to continuity, q̃ is unique on the compact interval [0, T ] as well.

�

REMARK 2.18. Condition (b) is equivalent to
∫
|ξ |≥1 e〈y,ξ〉K(x, dξ) < ∞ for

all x ∈ D, y ∈ R
d , that is, to the jump measure having exponential moments of

all orders. In this special case analogues of Theorem 2.14 have been shown in
Spreij and Veerman (2010) and Cheridito and Wugalter (2012). This condition is
restrictive, as it is typically not satisfied in applications; cf. Section 3.5.

We briefly discuss two important special cases, in which great simplifications
of the results occur. These cases have been treated previously in the literature, but
serve as a first “sanity check” of the main results of this article.

EXAMPLE 2.19 (Affine diffusion). Suppose that the affine process X is a dif-
fusion. In this case K(x, ·) = 0 for all x ∈ D and consequently Y = R

d and the
functions F(y),R1(y), . . . ,Rd(y) are quadratic polynomials (hence locally Lip-
schitz continuous everywhere). In this case any solution of the extended Riccati
system is unique, and there is no need to introduce the concept of minimal so-
lutions; see Proposition 2.17(a) above. Thus Theorem 2.14 holds true even with
“minimal solution” replaced by “solution.” For the case of affine diffusions on
canonical state spaces, the analogue of Theorem 2.14 has been shown in Filipović
and Mayerhofer [(2009), Theorem 3.3].

EXAMPLE 2.20 (Lévy process). Suppose that X is a Lévy process. Then X

is an affine process with R(y) = 0 and with F(y) equal to the Lévy exponent
of X. Consequently Y is simply the effective domain of the Lévy exponent. The
extended Riccati system has unique global solutions for each y ∈ Y , which are
given by p(t, y) = tF (y) and q(t, y) = y for t ≥ 0. It follows from Theorem 2.14
that Ex[e〈y,Xt 〉] is finite if and only if y ∈ Y , and in case of finiteness we have
E

x[e〈y,Xt 〉] = exp(tF (y)+〈y, x〉). In particular, finiteness of exponential moments
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is a time-independent property; that is, for given y ∈ R
d the exponential moment

E
x[e〈y,Xt 〉] is either finite for all t > 0 or for no t > 0. Of course, all these results

are well known in the case of Lévy processes and can be found, for example, in
Sato [(1999), Theorem 25.17].

2.3. Complex moments of affine processes. In this subsection we give an ana-
logue of Theorem 2.14 for complex exponential moments of X. The first step is to
analytically extend the functions F and R. We introduce the following notation:
For a set A ⊂R

d write

S(A) := {
u ∈ C

d : Reu ∈ A
}

for the complex “strip” generated by A.

PROPOSITION 2.21. Let X be an affine process, and suppose that Y◦ �= ∅.
Then, for every x ∈ D, the function Rx defined in (2.8) has an analytic extension
to S(Y◦) which we also denote by Rx . Moreover it holds that

Rx(u) = F(u) + 〈
R(u), x

〉
, x ∈ D,u ∈ S

(
Y◦),

where F,R are the analytic extensions of the functions defined in (2.10) to S(Y◦).

PROOF. Follows from standard results on Lévy–Khintchine-type functions;
see, for example, Sato (1999), Theorem 25.17. �

DEFINITION 2.22 (Complex Riccati system). Let X be an affine process such
that Y◦ �= ∅, and let F,R be defined as in Proposition 2.21. Let T ≥ 0, y ∈ S(Y◦),
and let

φ : t �→ φ(t, y), ψ : t �→ ψ(t, y)

be C1-functions mapping [0, T ] to C [resp., S(Y◦)] that satisfy

∂

∂t
φ(t, y) = F

(
ψ(t, y)

)
, φ(0, y) = 0,(2.15a)

∂

∂t
ψ(t, y) = R

(
ψ(t, y)

)
, ψ(0, y) = y(2.15b)

for all t ∈ [0, T ]. Then we call (φ,ψ) a solution (up to time T and with starting
point u) of the complex Riccati system associated to X.

REMARK 2.23. Let us compare the complex Riccati system to the extended
Riccati system (2.11a)–(2.11b). We observe that if u ∈ S(Y◦) is real valued, that is,
has Reu = y and Imu = 0, then any solution (φ,ψ) up to time T of the complex
Riccati system is also a solution of the extended Riccati system; that is, setting
p(t, y) = φ(t, u) and q(t, y) = ψ(t, u) for all t ∈ [0, T ] defines a solution (p, q)
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of the extended Riccati system. The reverse is not necessarily true. Furthermore we
point out that for a given starting value u any solution (φ,ψ) of the complex Ric-
cati system is automatically the unique solution. This is in contrast to the extended
Riccati system, where solutions starting at the boundary may be nonunique. This
difference is just a consequence of the fact that solutions of the complex Riccati
system are restricted to stay in the open domain S(Y◦), on which F and R are
locally Lipschitz.

ASSUMPTION 2.24. Let X be an affine process with state space D and as-
sume that either:

(i) D = R
m≥0 ×R

n, or

(ii) D = S+
d and there exists some x ∈ S++

d such that a(x) either vanishes, or it
is nondegenerate.

REMARK 2.25. Note that in the notation of (2.7) a(x) is given as a symmetric
d(d+1)

2 × d(d+1)
2 matrix. Of course we can also interpret it as quadratic form on S+

d ,
which is more natural and, in particular, a coordinate free notion. A simple charac-
terization of (ii) in terms of the admissible parameter set is given in Remark 5.11.

The analogue of Theorem 2.14 for complex moments reads as follows.

THEOREM 2.26 (Complex moments of affine processes). Let X be an affine
process that satisfies Assumption 2.24. Let T ≥ 0, u ∈ S(Y◦) and suppose that the
extended Riccati system (2.11a)–(2.11b) has a solution (p, q) with initial value
Reu up to time T such that q(t,Reu) ∈ Y◦ for all t ∈ [0, T ]. Then also the com-
plex Riccati system (2.15) has a solution (φ,ψ) with initial value u up to time T ,
E

x[|e〈u,Xt 〉|] < ∞ and

E
x[e〈u,Xt 〉]= exp

(
φ(t, u) + 〈

ψ(t, u), x
〉)

(2.16)

for all x ∈ D, t ∈ [0, T ].

3. Applications in mathematical finance. This section presents applications
of our main results, Theorems 2.14 and 2.26, to mathematical finance in the spirit
of Duffie, Filipović and Schachermayer (2003), Section 13. We consider the fol-
lowing generic setup: A traded asset S is modeled by the exponential of an affine
factor process X with state space D, that is, S = e〈θ,X〉 for some θ ∈R

d . Moreover,
bond prices are given through an affine short rate model of the form

rt = L(Xt) = l + 〈λ,Xt 〉,
where l ∈ R and λ ∈ R

d . This setup includes, in particular, affine term structure
models of interest rates [Cox, Ingersoll and Ross (1985), Dai and Singleton (2000),
Duffie and Kan (1996), etc.], affine stochastic volatility models [Heston (1993),
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Bates (2000), Barndorff-Nielsen and Shephard (2001), etc.] and combinations with
possible correlation of short rate and asset prices. Also credit risk can be included,
when rt is interpreted as a superposition of a risk-free short rate and an affine
default intensity process; cf. Lando (1998). Moreover, we can cover a setup with
multiple possibly dependent assets simply by setting Si = exp 〈θi,X〉 for different
θi ∈ R

d . For most applications the measures (Px)x∈D should be considered risk-
neutral measures, although there are few cases where also the behavior under the
physical measure is of relevance. Many problems of interest can be reduced to
determining the Ft -conditional expectations

QT −t g(x) = E
x[e− ∫ T

t L(Xs) dsg(XT ) | Ft

]
,(3.1)

for some measurable function g :D →R. In particular:

• g ≡ 1 corresponds to bond pricing;
• g(x) = e〈θ,x〉 corresponds to checking for the martingale property of the dis-

counted asset price;
• g(x) = e〈yθ,x〉, y ∈ R corresponds to calculating expectations of the type Ex[Sy

t ]
which are relevant for evaluation of power utility and determining the time of
“moment explosions.”

• g(x) = e〈u,x〉, u ∈ C
d corresponds to Fourier methods for the pricing of Euro-

pean contingent claims.

For a more detailed account of the literature on affine processes in financial mathe-
matics, we refer to Duffie, Filipović and Schachermayer (2003), Section 13; for an
easy-to-read introduction to discounting and pricing techniques (using the Fourier–
Laplace transform), we refer to Filipović and Mayerhofer (2009), Section 4. Let us
also remark that already Duffie, Filipović and Schachermayer (2003), Section 11,
gives sufficient conditions on an affine process such that the pricing operator QT −t

is well defined, but the results only apply to the state space R
m≥0 × R

n and condi-
tions are less general than the ones we obtain.

To deal with the discounting term in (3.1) we use the extension-of-state-space
approach outlined in Duffie, Filipović and Schachermayer [(2003), Section 11.2].
We define the extended state space D̃ := D × R. Let (a,α, b,β,m(dξ),μ(dξ))

be the parameters of X in the sense of Theorem 2.4. Following Duffie, Filipović
and Schachermayer [(2003), Section 11.2], we have that Z := (X,Y ) where Yt :=
y + ∫ t

0 L(Xs) ds is an affine process on D̃ with parameters (a′, α′, b′, β ′,m′(dξ),

μ′(dξ)) given by

a′ =
(

a 0
0 0

)
, α′

i =
(

αi 0
0 0

)
, b′ =

(
b

l

)
and

β ′
i =

(
βi

λ

)
, i = 1, . . . , d,β ′

d+1 = 0,
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and finally

m′(dξ) = m(dξ) × δ0
(
dξ ′), μ′

i(dξ) = μi(dξ) × δ0
(
dξ ′),

where δ0(dξ ′) denotes the unit mass at 0. Let F(u) and R(u) be the functions
associated with X through Proposition 2.8, and let q ∈ C. Then we can introduce
the new functions

F ′(u, q) := F(u) + lq, R′(u, q) = R(u) + λq,

which are related to the functions (FZ,RZ) of the extended process Z in the way
that RZ = (R′(u, q),0), while FZ(u, q) = F ′(u, q). We consider now solutions
φ(t, u, q) and ψ(t, u, q) of the system

∂tφ(t, u, q) = F ′(ψ(t, u, q), q
)
, φ(0, u, q) = 0,(3.2a)

∂tψ(t, u, q) = R′(ψ(t, u, q), q
)
, ψ(0, u, q) = u.(3.2b)

Note that ψ still is d-dimensional. These solutions are related to the (not neces-
sarily unique) solutions φZ,ψZ of the corresponding (d + 2)-dimensional system
associated with FZ,RZ as follows: φZ(t, (u, q)) = φ(t, u, q) and ψZ(t, (u, q)) =
(ψ(t, u, q), q).

3.1. Bond pricing in affine term structure models. The following result is an
immediate consequence of Theorem 2.14. As such it generalizes Duffie, Filipović
and Schachermayer [(2003), Proposition 11.2], as well as Filipović and Mayer-
hofer [(2009), Theorem 4.1].

THEOREM 3.1. Let τ > 0. The following are equivalent:

(1) E
x[e− ∫ τ

0 L(s) ds] < ∞, for some x ∈ D◦.
(2) For q = −1, there exists a solution (φ̃, ψ̃) on [0, τ ] to the generalized Ric-

cati differential equations (3.2a)–(3.2b) with initial data u = 0.

In any of the above cases, let us define A(t) := −φ(t, (0,−1)), B(t) :=
−ψ(t, (0,−1)) from the unique minimal solution (φ,ψ) of equations (3.2a)–
(3.2b).4 Then the price P(t, T ) of a zero-coupon bond is given, for all 0 ≤ t ≤
T ≤ τ , and all x ∈ D, by

P(t, T ) := E
x[e− ∫ T

t L(s) ds | Ft

]= e−A(T −t)−〈B(T −t),Xt 〉.(3.3)

4It follows from Theorem 2.14 that if some solution exists on a nonempty interval [0, T ], so does
the unique minimal solution.
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3.2. Martingale conditions. Conditions for the exponentials of affine pro-
cesses to be martingales have been obtained, for example, in Mayerhofer, Muhle-
Karbe and Smirnov (2011). The following result extends known criteria and fol-
lows again from Theorem 2.14.

THEOREM 3.2. Let S̃ = e− ∫ t
0 L(Xt )e〈θ,Xt 〉 be the discounted asset price. Then

the following holds:

(1) Suppose that θ ∈ Y◦, F(θ) = l and R(θ) = λ. Then (S̃t )t≥0 is a true mar-
tingale under any P

x, x ∈ D.
(2) Let x ∈ D◦. The process (S̃t )t≥0 is a true P

x-martingale if and only if θ ∈
Y , F(θ) = l, R(θ) = λ and φ(t, θ,−1) = 0 and ψ(t, θ,−1) = θ are the unique
minimal solutions of the Riccati equations (3.2a)–(3.2b).

Using (3.1) it is clear that S̃ is a P
x-martingale if and only if Qtg(x) = g(x)

for all t ∈ R≥0 and with g(x) = e〈θ,x〉. Applying Theorem 2.14 to the extended
process Z the above result follows immediately.

3.3. Moment explosions. Here we set L = 0 for simplicity. It is well under-
stood that the existence of moments E[Sy

t ] with y ∈ R is intimately connected to
the shape of the implied volatility surface derived from the prices of options on
the underlying S; cf. Lee (2004), Keller-Ressel (2011). Of particular interest is the
time of moment explosion, that is, the quantity

T+(y) = sup
{
t ≥ 0 :E

[
S

y
t

]
< ∞}

.

Applying again Theorem 2.14 we obtain the following:

PROPOSITION 3.3. Let S = exp 〈θ,X〉 with θ ∈ Y , and let y ∈ R.

(1) If yθ ∈ Y◦, then T+(y) is the maximal lifetime of the solution (p, q) of the
extended Riccati system.

(2) If yθ ∈ Y , then T+(y) is the maximal lifetime of the unique minimal solution
(p, q) of the extended Riccati system. If yθ /∈ Y , then T+(y) = 0.

Related applications include the approximation of more complicated payoff
functions by “power payoffs” [see Cheridito and Wugalter (2012)] and portfolio
optimization involving power utility; see Muhle-Karbe (2009) and the references
quoted therein.

3.4. Option pricing. In general, European option payoffs are nonlinear func-
tions that do not fall under the setup of the previous subsction. Numerically ex-
pensive Monte Carlo simulations may be avoided by the method of Fourier pric-
ing, if the characteristic function (or Fourier–Laplace transform) is given in closed
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form; cf. Carr and Madan (1999). This is the case for affine processes, and the
key for applying Fourier pricing is our Theorem 2.26 on complex exponential mo-
ments. We provide here an extension of Theorem 10.5 from the book of Filipović
[(2009), Chapter 10], which has been written in the context of affine diffusions,
where certain simplifications occur (most importantly Y◦ = R

d ). For general affine
processes with jumps we have to impose some stronger assumptions and obtain
the following result. To allow for multi-asset options, we consider a generic pay-
off g :D → R depending on all components of the underlying factor process X.
In typical applications g will be of the more specific form g(x) = h(e〈θ,x〉) with
h :R≥0 → R which can be accomodated in the theorem below by setting q = 1;
see also Filipović [(2009), Theorem 10.6].

THEOREM 3.4. Let X be an affine process satisfying Assumption 2.24. As-
sume there exists a d × q matrix K such that the payoff function g satisfies

g(x) =
∫
Rd

e〈v+iKλ,x〉g̃(λ) dλ(3.4)

for some integrable function g̃ :Rq → C, q ≤ d and with v ∈ Y◦. Suppose
that (3.2a)–(3.2b) has solutions on [0, τ ] for initial data u = 0 and u = v, which
stay in Y◦ for all t ≤ τ . Then we have

E
x[e− ∫ T

t L(s) dsg(XT )
]= ∫

Rq
eφ(T −t,v+iKλ)+〈ψ(T −t,v+iKλ),X(t)〉g̃(λ) dλ,

where (φ,ψ) are the unique solutions of (3.2a)–(3.2b) with complex initial data
v + iKλ.

3.5. Remarks on jump behavior and examples. As discussed in the Introduc-
tion, a main contribution of this article is that the results apply to conservative
affine processes with completely general jump measures. The condition that the
jump measures possess exponential moments of all orders that is imposed in Spreij
and Veerman (2010) and Cheridito and Wugalter (2012) is typically not fulfilled
in financial modeling. Considering, for example, the jump measures of the models
discussed in Cont and Tankov (2004), Chapter 4, the condition is satisfied only for
the Merton model, but not for the Kou, variance gamma, normal inverse Gaussian,
tempered stable and generalized hyperbolic models.

For some affine processes with jumps, the solution of the Riccati equations is
known explicitly. In this case, even when not all exponential moments of the jump
measures exist, ad-hoc arguments based on analyzing the singularities of the char-
acteristic function can be used to find sufficient conditions for the validity of an
affine transform formula; see Nicolato and Venardos (2003) for an example of this
approach. While this ad-hoc approach does not give a satisfactory answer on the
connection between exponential moments and solutions to the Riccati equations
in general, it can be sufficient for applications. However, as the following exam-
ples illustrate, several models proposed in the literature on financial mathematics



EXPONENTIAL MOMENTS OF AFFINE PROCESSES 729

are based on affine processes, for which the Riccati equations do not allow for ex-
plicit solutions. In these cases previous results do not apply and also the ad-hoc
approaches fail. Hence, Theorems 2.14 and 2.26 are essential for the applications
outlined in the previous sections and cannot replaced by simpler arguments or ex-
isting results.

EXAMPLE 3.5. Wu (2011) models the S&P 500 index as

St = S0 exp(L∫ t
0 vu du), t ∈ [0, T ],

where L is a Lévy process of unit variance at unit time, and a time-change is
induced by a general R≥0-valued affine process vt -independent of L—with func-
tional characteristics F,R; see Definition 5.3.5 We assume a riskless rate of re-
turn r and denote the log-returns process by Yt := log(St/S0) = L∫ t

0 vu du. Writing
g for the characteristic exponent of L, we have

E
[
eiuYt | v0 = v

]= eiuθt
E
[
eg(iu)

∫ t
0 vu du]= eiuθt+φ(t,g(iu))+vψ(t,g(iu)),

where (φ,ψ) satisfy

∂

∂t
φ = F(ψ),

∂

∂t
ψ = R(ψ) + ζ, ψ(0) = φ(0) = 0(3.5)

with ζ = g(iu). Under the risk-neutral measure, e−rtSt must be a martingale on
[0, T ], whence

E
[
e
L∫ t

0 vu du
]
< ∞,

for each t ∈ [0, T ]. Theorem 2.14 implies that the Riccati equations (3.5) with
ζ = g(1) allow a minimal solution (p, q) on [0, T ]. Furthermore, if q(t) lies in
Y◦ for each t ∈ [0, T ], an application of Theorem 2.26 extends the validity of the
affine property (1.1) to complex moments u ∈ (1 + ε) + iR, where ε > 0. Hence
the way is paved for pricing contingent claims on S by using, for example, the
Fourier pricing technique.

EXAMPLE 3.6. Schneider, Sögner and Veza (2010) propose a model for pric-
ing credit default swaps (CDS), where the hazard rate is a linear functional of an
affine process (η, γ ), given under the risk-neutral measure by

dηt = κη(γt − ηt ) dt + ση
√

ηt dWη,t + dZ1
t ,

dγt = κγ (ζγ − γt ) dt + σγ
√

γt dWγ,t + dZ2
t .

The two components are correlated via the instantaneous drift and by simultane-
ous jumps of the compound Poisson process Zt . The jump-size distributions of

5Wu (2011) also specifies a separate drift term, which we absorb into the drift of the Lévy pro-
cess L.
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the two components are assumed to be independent and exponentially distributed.
Also here, a closed-form expression for the characteristic function of (η, γ ) is not
available. However, due to the exponential distribution of jump sizes, the domain
Y◦ takes a particular, simple form

Y◦ = (−∞,μη) × (−∞,μγ ),

where μη,μγ are the expected jump sizes of η, γ , respectively. In this case, one
first produces a numerical solution of the extended Riccati system on [0, T ]. By
construction, this solution will lie in Y◦. Combining this approximate solution with
a global error bound we can find a T ′ ≤ T such that also the exact solution must
exist and stay in Y◦ on [0, T ′]. Theorem 2.14 then yields the existence of the as-
sociated real exponential moments. Having this solution, one can proceed to solve
the ODE with complex initial data. Existence of these solutions and the validity
of the corresponding affine transform formula is guaranteed by Theorem 2.26, and
Theorem 3.4 can be used for Fourier pricing of contingent claims in this case of
credit default swaps. An extension to state-dependent jump behavior is straightfor-
ward and can be similarly dealt by using Theorem 2.26.

We give a final example of an asset model for optimal portfolio choice with
affine factors which exhibit a nontrivial correlation structure:

EXAMPLE 3.7. Leippold and Trojani (2010) propose an affine model (Y,X),
where Yi,t+h − Yi,t = log(Si,t+h/Si,t ) (i = 1, . . . , d) are log-returns for assets Si

(i = 1, . . . , d), and X is a general d ×d positive semidefinite affine jump-diffusion.
They specify Y,X as a solution to the SDE

dYt = [
r1 + Xtη − 1

2 diag(Xt)
]
dt +√

Xt dZt ,

dXt = (
��
 + MXt + XtM


)dt +√
Xt dBtQ + Q
dB


t

√
Xt + dJt .

Here diag(Xt) = (Xt,11, . . . ,Xt,dd)
, 1 = (1, . . . ,1)
, both Z and B are d × d

standard Brownian motions, with a certain correlation structure defined by a cor-
relation parameter ρ ∈R

d ; see Leippold and Trojani (2010) for details. Moreover,
J is a pure jump-process independent of (B,W), whose jump intensity is an affine
function of Xt . The parameters are given by η ∈ R

d and M,�,Q are d × d matri-
ces satisfying the constraint ��
 − (d − 1)Q
Q ∈ S+

d , which guarantees a weak
solution (Y,X) to the above SDE. In this model, closed-form solutions for the as-
sociated Riccati equations exist only in the absence of jumps in X (i.e., J = 0).
Leippold and Trojani (2010) consider an investor with CRRA utility of terminal
wealth wT , trading in each of these asset Si and with riskless investment oportunity
at constant rate r > 0. It turns out that his/her value function is given by

V (t,wt ,Xt) = w
1−γ
t

1 − γ
exp

(
tr
(
A(T − t)Xt

)+ B(T − t)
)
,
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while the vector of optimal portfolio weights for the risky assets equals π∗(t) =
(η+2A(T − t)Q
ρ)/γ . The functions A,B satisfy a matrix-valued Riccati equa-
tion, and Leippold and Trojani (2010) make the salient assumption that (a) the
value function is well defined at the optimal trading policy π∗(t), which amounts
to assuming the existence of exponential moments of the process (X,Y ) for a
certain initial value; (b) the associated extended Riccati equations are (uniquely)
solvable and give the value of these exponential moments. Theorem 2.14 in this
paper now gives sufficient and necessary conditions that allows us to check the
validity of these assumptions.

4. Proofs for real moments of affine processes.

4.1. Decomposability and dependency on the starting value. Definition 2.2 of
an affine process immediately implies a decomposability property of the laws Px

on the path space; see also Duffie, Filipović and Schachermayer [(2003), Theo-
rem 2.15]. As in Duffie, Filipović and Schachermayer [(2003), Definition 2.14],
we write P � P′ for the image of P× P

′ under the measurable mapping (ω,ω′) �→
ω + ω′ : (� × �,F ×F) → (�,F).

PROPOSITION 4.1. Let X be an affine process with state space D. Its prob-
ability laws P

x satisfy the following decomposability property: Suppose that x, ξ

and x + ξ are in D. Then

P
x � Pξ = P

0 � Px+ξ .(4.1)

PROOF. Write u = (u1, . . . , uN) for an ordered set of points uk ∈ U . Choosing
some finite sequence 0 ≤ t1 ≤ · · · ≤ tN in R≥0, define

f (x,u) = E
x

[
exp

(
N∑

k=1

〈
Xtk , u

k 〉)] (
x ∈ D,

(
u1, . . . , uN ) ∈ UN ),

that is, f (x,u) is the joint characteristic function of (Xt1, . . . ,Xtn) under Px . Ap-
plying the affine property (2.3) recursively, we obtain

f (x,u) = exp
(
p(u) + 〈

x, q(u)
〉)
,(4.2)

where p(u) = p1 and q(u) = q1, with

pk−1 = φ
(
tk − tk−1, qk + uk)+ pk, pN = 0,(4.3)

qk−1 = ψ
(
tk − tk−1, qk + uk), qN = 0.(4.4)

From (4.2) we derive that

f (x,u)f (ξ,u) = f (0,u)f (x + ξ,u)
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for all u = (u1, . . . , uN) ∈ UN . Since the distribution of a stochastic process is
determined by its finite-dimensional marginal distributions, this equality is equiv-
alent to (4.1). �

In the following, we set

g(t, y, x) = E
x[e〈y,Xt 〉]= ∫

D
e〈y,ξ〉pt(x, dξ),

for all (t, y) ∈R≥0 ×R
d and x ∈ D. Note that g(t, y, x) is always strictly positive,

but might take the value +∞. By approximating g(t, y, x) monotonically from
below by bounded functions and using the Chapman–Kolmogorov equation, we
derive that

g(t + s, y, x) =
∫
D

g(t, y, ξ)ps(x, dξ)(4.5)

holds for all t, s ∈ R≥0, y ∈ R
d and x ∈ D, where +∞ is allowed on both sides

and in the integrand. The following lemma concerns the role of the starting value
X0 = x of the affine process with regards to finiteness of exponential moments.

LEMMA 4.2. Let X be an affine process on D, and let (T , y) ∈ R≥0 × R
d .

Then the following holds:

(a) E
0[e〈y,XT 〉] = ∞ implies Ex[e〈y,XT 〉] = ∞ for all x ∈ D◦;

(b) E
x[e〈y,XT 〉] < ∞ for some x ∈ D◦ implies Ex[e〈y,XT 〉] < ∞ for all x ∈ D;

(c) E
x[e〈y,XT 〉] < ∞ for all x ∈ D implies E

x[e〈y,Xt 〉] < ∞ for all t ∈
[0, T ], x ∈ D.

PROOF. As before we set g(t, y, x) = E
x[e〈y,Xt 〉], which takes values in the

extended positive half-line (0,∞]. Using the decomposability property of X (cf.
Proposition 4.1), we have

g(t, y, x)g(t, y, ξ) = g(t, y,0)g(t, y, x + ξ)

for all x, ξ ∈ D for which x + ξ ∈ D. Let x∗ be an arbitrary point in D. Setting
x = ξ = x∗/2 it follows that

g

(
t, y,

x∗
2

)2

= g(t, y,0)g(t, y, x∗).(4.6)

We conclude that g(t, y,0) = ∞ implies g(t, y, x∗
2 ) = ∞; hence (a) is verified for

the point x = x∗/2. We introduce the affine process X2,t := Xt − x∗/2 with state-
space D2 := D − x∗/2. Clearly 0 ∈ D2 and g2(t, y, z) := E[exp(〈y,X2,t 〉)|X2,0 =
z] = e−〈y,x∗〉/2g(t, y, z+x∗/2). Since g2(t, y,0) = ∞ and x∗/2 ∈ D2, we may ap-
ply the same argument as above to g2 instead of g and obtain that g2(t, y, x∗/4) =
∞. But this means g(t, y,3x∗/4) = ∞, and by iterating this procedure, we ob-
tain that for each k ≥ 1 g(t, y, x∗(1 − 2−k)) = ∞. Since x∗ was an arbitrary
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point in the convex set D, (a) follows. We prove (b) by contraposition: As-
sume that g(t, y, x) = ∞ for some x ∈ D, and introduce the affine process
Zt := Xt − x with state-space Dx := D − x. Clearly 0 ∈ Dx and E[e〈y,Zt 〉|Z0 =
0] = e〈y,x〉g(t, y, x) = ∞, by assumption. Applying (a) to the process Z yields
that

g(t, y, ξ) = e−〈y,ξ〉
E
[
e〈y,Zt 〉|Z0 = ξ − x

]= ∞
for all ξ ∈ D, which completes the proof of (b).

To show (c) pick an arbitrary x ∈ D◦ and ε > 0. Since X has càdlàg paths,
we can find δ > 0 such that Px(‖Xt − x‖ < ε) ≥ 1

2 for all t ≤ δ. With pt(x, dξ)

denoting the transition kernel of X, we can rewrite this as pt(x,Bε(x)) ≥ 1
2 for all

t ≤ δ. We show assertion (c) for t ∈ [T − δ, T ]; the general case follows then by
iteration. By (4.5),

g(T , y, x) =
∫
D

g(t, y, ξ)pT −t (x, dξ)

holds for all (t, y) ∈ [0, T ] × R
d . By assumption, the left-hand side is finite, and

we want to show that also g(t, y, ξ) is finite for all ξ ∈ D and t ∈ [T − δ, T ].
Assume for a contradiction that g(t, y, ξ∗) = ∞ for some t ∈ [T − δ, T ] and
ξ∗ ∈ D. Then by Lemma 4.2(b) g(t, y, ξ) = ∞ for all ξ ∈ D◦. But pT −t (x,D◦) ≥
pT −t (x,Bε(x)) ≥ 1

2 , and we conclude that g(T , y, x) = ∞, which is a contradic-
tion. �

4.2. From moments to Riccati equations. In this section we prove Theo-
rem 2.14(a), except for the minimality property of the Riccati solution.

LEMMA 4.3. Let X be an affine process on D, and let T ≥ 0. Suppose that
for some x ∈ D◦ and y ∈ R

d , it holds that Ex[e〈y,XT 〉] < ∞. Then y ∈ Y , and the
following holds:

(a) There exist functions t �→ p(t, y) ∈ R and t �→ q(t, y) ∈ R
d such that (2.14)

holds for all x ∈ D, t ∈ [0, T ].
(b) E

x[e〈q(T −t,y),Xt 〉] < ∞ for all t ∈ [0, T ] and

E
x[e〈y,XT 〉|Ft

]= exp
(
p(T − t, y) + 〈

q(T − t, y),Xs

〉)
for all x ∈ D.(4.7)

(c) The functions p(t, y), q(t, y) satisfy the semi-flow equations

p(T , y) = p(T − t, y) + p
(
t, q(T − t, y)

)
, p(0, y) = 0,(4.8a)

q(T , y) = q
(
t, q(T − t, y)

)
, q(0, y) = y,(4.8b)

for all t ∈ [0, T ].



734 M. KELLER-RESSEL AND E. MAYERHOFER

PROOF. From Lemma 4.2(c) it follows that Ex[e〈y,Xt 〉] < ∞ for all (t, x) ∈
[0, T ] × D. Fix t ∈ [0, T ], and write g(t, y, x) = E

x[e〈y,Xt 〉]. Then by Proposi-
tion 4.1 g(t, y, x) satisfies the functional equation (4.1). Since g(t, y,0) > 0 there
exists p(t, y) ∈ R such that g(t, y,0) = ep(t,y). Set h(t, y, x) = e−p(t,y)g(t, y, x).
Then h(t, y, x) is finite for all x ∈ D and satisfies Cauchy’s functional equation

h(t, y, x)h(t, y, ξ) = h(t, y, x + ξ), x, ξ, x + ξ ∈ D.

We conclude that there exists q(t, y) ∈ R
d such that h(t, y, x) = e〈q(t,y),x〉 for all

x ∈ D, and we have shown (2.14).
To show equation (4.7) note that by the Markov property of X,

E
x[1{|Xt |≤n}e〈y,Xt 〉|Fs

]= ∫
{ξ∈D : |ξ |≤n}

e〈y,ξ〉pt−s(Xs, dξ)

holds for all n ∈ N, x ∈ D,0 ≤ s ≤ t . Using dominated convergence we may take
the limit n → ∞ and obtain equation (4.7) from (2.14). Taking (unconditional)
expectations in (4.7) yields

exp
(
p(T , y) + 〈

x, q(T , y)
〉)

= exp
(
p(T − t, y) + p

(
t, q(T − t, x)

)+ 〈
x, q

(
t, q(T − t, y)

)〉)
,

for all t ≥ 0 and x ∈ D. Since D contains 0 and linearly spans Rd , the semi-flow
equations (4.8) follow. �

Note that if t �→ p(t, y) and t �→ q(t, y) are differentiable with derivatives F(y)

and R(y) at zero, then it follows by differentiating the semi-flow equations (4.8)
that (p, q) is a solution of the extended Riccati system (2.11). The main difficulty
thus is showing the differentiability of p and q . This is very similar to the regular-
ity problem for affine processes, where the same question is asked regarding the
functions φ(t, u) and ψ(t, u) in Definition 2.2. Several solutions of the regularity
problem have been given; see, for example, Keller-Ressel, Schachermayer and Te-
ichmann (2011) and Keller-Ressel, Schachermayer and Teichmann (2013). Here
we adapt the approach of Cuchiero (2011) to our setting.

We enlarge the probability space (�,F,F,P) such that it supports d + 1 in-
dependent copies of the affine process X, which we denote by X0, . . . ,Xd . With-
out loss of generality it can be assumed that X = X0. In what follows we will
use the convention that upper indices correspond to the different instances of the
process X, while lower indices correspond to the coordinate projections of a sin-
gle process. For a vector xi ∈ D denote by P

xi
the probability P conditional on

{Xi(0) = xi}; that is, the process Xi starts at the point xi with P
xi

-probability 1.
Similarly for an ordered set x = (x0, . . . , xd) of points in D, we denote by P

x the
probability P conditional on {(X0(0) = x0)∧ · · · ∧ (Xd(0) = xd)}; that is, the pro-
cesses X0, . . . ,Xd start at the points x0, . . . , xd respectively with P

x-probability 1.
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LEMMA 4.4. Let X0, . . . ,Xd be d + 1 independent copies of the affine pro-
cess X. Furthermore let x = (x0, . . . , xd) be d + 1 affinely independent points in
D. Define the matrix-valued random function

�(t;x,ω) =
⎛⎜⎝

1 X0
1(t,ω) · · · X0

d(t,ω)

...
...

. . .
...

1 Xd
1 (t,ω) · · · Xd

d (t,ω)

⎞⎟⎠ .

Then there exists δ > 0 such that

P
x(det�(t;x) �= 0 for all 0 ≤ t ≤ δ

)
> 1

2 ;
that is, t �→ �(t;x) stays regular on [0, δ] with P

x-probability at least 1
2 .

PROOF. Since (x0, . . . , xd) are affinely independent, and Xi(0) = xi for
all i ∈ {0, . . . , d} with P

x-probability one, the matrix �(0;x) is regular P
x-

almost surely. Define at = infs∈[0,t] |det�(s;x)|. Since the processes Xi are right-
continuous, also det�(s;x) is, and hence even at . By dominated convergence also
bt = P

x(at > 0) is right-continuous and has the starting value b0 = 1. We conclude
that there exists some δ > 0 such that bδ > 1

2 , which completes the proof. �

The following proposition settles Theorem 2.14(a) apart from the minimality
property of (p, q) as solutions of the extended Riccati system. The key ideas in
the subsequent proof come from Cuchiero (2011), proofs of Lemma 1.5.3, Theo-
rem 1.5.4.

PROPOSITION 4.5. Let X be an affine process on D, and let T ≥ 0. Let y ∈
R

d , and suppose that Ex[e〈y,XT 〉] < ∞ for some x ∈ D◦. Then y ∈ Y and there
exist a solution (p, q) up to time T of the extended Riccati system (2.11), such that
(2.14) holds for all x ∈ D, t ∈ [0, T ].

PROOF. Recall that we are working on an extended probability space that sup-
ports d + 1 independent copies (X0, . . . ,Xd) of X. Let x = (x0, . . . , xd) be d + 1
affinely independent points in D. By Theorem 2.4 each Xi is a Px-semi-martingale
with canonical semimartingale representation

Xi
t = xi +

∫ t

0
b
(
Xi

s−
)
ds + Ni

t +
∫ t

0

∫
Rd

(
ξ − h(ξ)

)
J i(ω;ds, dξ),(4.9)

where Ni
t is a local martingale and J i(ω;dt, dξ) is the Poisson random measure

associated to the jumps of Xi with predictable compensator K(Xi
t−, dξ) dx.

By Lemma 4.3 we know that

E
x[e〈y,Xi

T 〉|Ft

]= exp
(
p(T − t, y) + 〈

q(T − t, y),Xi
t

〉)
(4.10)
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for each i ∈ {0, . . . , d}, t ∈ [0, T ]. Let us denote Mi
t = E

x[e〈y,Xi
T 〉|Ft ]. Clearly,

each t �→ Mi
t is a P

x-martingale for t ≤ T and for each i ∈ {0, . . . , d}. Taking
logarithms and arranging the equations in matrix form, we get

⎛⎜⎝
logM0

t (ω)

...

logMd
t (ω)

⎞⎟⎠=
⎛⎜⎝

1 X0
1(t,ω) · · · X0

d(t,ω)

...
...

. . .
...

1 Xd
1 (t,ω) · · · Xd

d (t,ω)

⎞⎟⎠ ·

⎛⎜⎜⎜⎜⎝
p(T − t, y)

q1(T − t, y)

...

qd(T − t, y)

⎞⎟⎟⎟⎟⎠ ,(4.11)

and recognize on the right-hand side the matrix �(t;x,ω) from Lemma 4.4. The
latter allows us to conclude that there exists a set A ⊂ � with P

x(A) > 1
2 and

some δ > 0 such that �(t;x,ω) is invertible for all t ∈ [0, δ] and ω ∈ A. Hence for
T ′ = T ∧ δ we obtain⎛⎜⎝

1 X0
1(t,ω) · · · X0

d(t,ω)

...
...

. . .
...

1 Xd
1 (t,ω) · · · Xd

d (t,ω)

⎞⎟⎠
−1

·
⎛⎜⎝

logM0
t (ω)

...

logMd
t (ω)

⎞⎟⎠
(4.12)

=

⎛⎜⎜⎜⎜⎝
p
(
T ′ − t, y

)
q1
(
T ′ − t, y

)
...

qd

(
T ′ − t, y

)

⎞⎟⎟⎟⎟⎠ ,

for all t ∈ [0, T ′]. All processes occurring on the left-hand side of equation (4.12)
are semimartingales, hence also the right-hand side consists row-by-row of semi-
martingales for all t ∈ [0, T ′]. Since they are deterministic, the functions t �→
p(t, y) and t �→ q(t, y) are of finite variation on [0, T ′]. This implies in partic-
ular that they are almost everywhere differentiable and can be written as

p
(
T ′ − t, y

)− p
(
T ′, y

)= −
∫ t

0
dp
(
T ′ − s, y

)
,(4.13a)

q
(
T ′ − t, y

)− q
(
T ′, y

)= −
∫ t

0
dq
(
T ′ − s, y

)
.(4.13b)

Applying Itô’s formula to the martingales M
i,y
t , we obtain

M
i,y
t = M

i,y
0 +

∫ t

0
M

i,y
s−
(−dp

(
T ′ − s, y

)+ 〈−dq
(
T ′ − s, y

)
,Xi

s−
〉)

+
∫ t

0
M

i,y
s−
{〈

q
(
T ′ − s, y

)
, b
(
Xi

s−
)〉

+ 1

2

〈
q
(
T ′ − s, y

)
, a
(
Xi

s−
)
q
(
T ′ − s, y

)〉
+
∫
D

(
e〈q(T ′−s,y),ξ〉 − 1 − 〈

q
(
T ′ − s, y

)
, h(ξ)

〉)
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× K
(
Xi

s−, dξ
)}

ds

+
∫ t

0
M

i,y
s−
〈
q
(
T ′ − s, y

)
, dNi

s

〉
+
∫ t

0

∫
D

M
i,y
s−
(
e〈q(T ′−s,y),ξ〉 − 1 − 〈

q
(
T ′ − s, y

)
, h(ξ)

〉)
× (

J (ω,ds, dξ) − K
(
Xi

s−, dξ
)
ds
)
,

for all i ∈ {0, . . . , d}. On the right-hand side, the last two terms are local martin-
gales and the other terms are of finite variation. Hence the finite variation terms
have to sum up to 0. Rewriting in terms of the functions F(y) and R(y) this means
that

−dp
(
T ′ − t, y

)+ 〈−dq
(
T ′ − t, y

)
,Xi

s−
〉

= F
(
q
(
T ′ − t, y

))
dt + 〈

Xi
s−,R

(
q
(
T ′ − t, y

))〉
dt

holds for almost all t ∈ [0, T ′] Px-a.s. Inserting into (4.13) and using the regularity
of the matrix �(t,x,ω) on [0, T ′], this yields

p
(
T ′ − t, y

)− p
(
T ′, y

)= −
∫ t

0
F
(
q
(
T ′ − s, y

))
ds,(4.14)

q
(
T ′ − t, y

)− q
(
T ′, y

)= −
∫ t

0
R
(
q
(
T ′ − s, y

))
ds.(4.15)

Applying the fundamental theorem of calculus, we have shown that (p, q) is a
solution to the extended Riccati system (2.11) up to T ′ = T ∧ δ, where δ was given
by Lemma 4.4. To show the general case we conclude with an induction argument.
Suppose that (p, q) are solutions of the extended Riccati system up to Tk = T ∧
(kδ). We show that they can be extended to solutions up to Tk+1 = T ∧ ((k + 1)δ).
Set �k = Tk+1 −Tk ; clearly �k ≤ δ. By Lemma 4.2, Ex[e〈y,XT 〉] < ∞ implies that
E

x[e〈y,XTk+1 〉] < ∞, and by Lemma 4.3 we have that Ex[e〈q(y,Tk),X�k
〉] < ∞. Set

y′ = q(y,Tk). Then, proceeding exactly as in the proof above, we obtain

∂

∂t
p
(
t, y′)= F

(
q
(
t, y′)), p

(
0, y′)= 0,(4.16a)

∂

∂t
q
(
t, y′)= R

(
q
(
t, y′)), q

(
0, y′)= y′(4.16b)

for all t ∈ [0,�k]. Using the flow property, this is equivalent to

∂

∂t
p(t, y) = F

(
q(t, y)

)
, p(0, y) = 0,(4.17a)

∂

∂t
q(t, y) = R

(
q(t, y)

)
, q(0, y) = y(4.17b)
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for all t ∈ [Tk, Tk+1]. By the induction hypothesis (4.17) already holds for all t ∈
[0, Tk], and we have shown that (p, q) is a solution of the extended Riccati system
up to Tk+1 = T ∧ δ(k + 1). As this holds true for all k ∈ N, the proof is complete.

�

4.3. From Riccati equations to moments. Using the result from above, the step
from the extended Riccati system to the existence of moments is simple:

PROPOSITION 4.6. Let X be an affine process taking values in D. Let y ∈ Y ,
and suppose that the extended Riccati system (2.11) has a solution (p̃, q̃) that
starts at y and exists up to T ≥ 0. Then E

x[e〈y,XT 〉] < ∞ and (2.14) holds for all
x ∈ D, t ∈ [0, T ], where (p, q) is also a solution up to T to (2.11).

PROOF. Using the solution (p̃, q̃) of the extended Riccati system (2.11), de-
fine for t ∈ [0, T ],

M̃
y
t = exp

(
p̃(T − t, y) + 〈

q̃(T − t, y),Xt

〉)
.(4.18)

Applying Itô’s formula to M̃
y
t and using the semimartingale representation (4.9),

we see that

M̃
y
t = M̃

y
0 +

∫ t

0
M̃

y
s−
(−p̃(T − s, y) + 〈−q̃(T − s, y),Xs−

〉)
ds

+
∫ t

0
M̃

y
s−
(〈

q̃(T − s, y), b(Xs−)
〉

+ 1

2

〈
q̃(T − s, y), a(Xs−)q̃(T − s, y)

〉
+
∫
D

(
e〈q̃(T −s,y),ξ〉 − 1 − 〈

q̃(T − s, y), h(ξ)
〉)
K(Xs−, dξ)

)
ds

+
∫ t

0
M̃

y
s−
〈
q̃(T − s, y), dNs

〉
+
∫ t

0

∫
D

M̃
y
s−
(
e〈q̃(T −s,y),ξ〉 − 1 − 〈

q̃(T − s, y), h(ξ)
〉)

× (
J (ω,ds, dξ) − K(Xs−, dξ) ds

)
.

The ds-terms can be simplified to

−p̃(T − s, y) + 〈−q̃(T − s, y),Xs−
〉+ F

(
q̃(T − s, y)

)+ 〈
R
(
q̃(T − s, y)

)
,Xs−

〉
= 0,

and we conclude that (M̃
y
t )t∈[0,T ] is a local Px-martingale for all x ∈ D. It is also

strictly positive, and hence it is a P
x-supermartingale. Therefore

E
x[e〈y,XT 〉]= E

x[M̃y
T

]≤ M̃
y
0 < ∞
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for all x ∈ D. The second part of the assertion, and in particular the validity of
equation (2.14) follows now by applying Proposition 4.5. �

4.4. Proof of Theorem 2.14. Looking at Proposition 4.6 and Proposition 4.5
we see that Theorem 2.14 is almost proved. Only one issue in both parts of the
theorem is not answered yet, namely the minimality of (p, q) in (2.14) as minimal
(hence unique, see Remark 2.13) solution of the extended Riccati system. We start
with the following lemma:

LEMMA 4.7. Let (p, q) and (p̃, q̃) be given as in Proposition 4.6. Then for
all t ∈ [0, T ] and x ∈ D,

p(t, y) + 〈
q(t, y), x

〉≤ p̃(t, y) + 〈
q̃(t, y), x

〉
.

PROOF. Set M
y
t = exp(p(T − t, y) + 〈q(T − t, y), x〉), and define M̃

y
t as

in (4.18). Then, for each x ∈ D the process My is a P
x-martingale [see (4.10)

and below]; M̃y is a P
x -supermartingale, and they satisfy M

y
T = M̃

y
T . Hence

M
y
t = E

x[My
T |Ft

]= E
x[M̃y

T |Ft

]≤ M̃
y
t

for all t ∈ [0, T ]. Taking logarithms the claimed inequality follows. �

PROOF OF THEOREM 2.14. Proof of (a): In view of Remark 2.13 we only
need to show that the solution (p, q) of the Riccati system established in Proposi-
tion 4.5 is minimal. Let (p̃, q̃) be another solution on [0, T ′] of the extended Ric-
cati system, T ′ ≤ T . Then by Proposition 4.6 there exists (p∗, q∗) such that (2.14)
holds for all y ∈ D and t ∈ [0, T ′], as is the case for (p, q). By taking logarithms
of the respective right-hand sides of (2.14) and by applying Lemma 4.7, we see
that

p + 〈q, y〉 = p∗ + 〈
q∗, y

〉≤ p̃ + 〈q̃, x〉,
on [0, T ′] and for all y ∈ D. Hence by Definition 2.11 (p, q) is the minimal solu-
tion of the extended Riccati system, and we are done with part (a).

The proof of (b) follows immediately from Lemma 4.7, Definition 2.11 and
Remark 2.13. �

5. Proofs for complex moments of affine processes. In this section we show
Theorem 2.26 on the existence of complex moments of affine processes, whose
state space satisfies Assumption 2.24. The key to the proof is to relate the lifetime
of solutions (φ,ψ) of the complex Riccati system (2.15a)–(2.15b) and the solu-
tions (p, q) of the extended Riccati system (2.11a)–(2.11b). Unlike in preceding
parts of the paper, we only solve for initial values in the interiors y ∈ Y◦ [resp.,
u ∈ S(Y◦)]. Also, in this section we need more precise knowledge about the re-
strictions on the parameters, which appear in the Riccati equations.

With S+
d we denote the d × d positive semidefinite matrices. Let T+(y)

[resp., T+(u)] denote the maximal lifetime of t �→ (p(t, y), q(t, y)) [resp., t �→
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(φ(t, u),ψ(t, u))].

PROPOSITION 5.1. Suppose that Assumption 2.24 holds true, and let u ∈
S(Y◦) and y = Re(u). Then T+(u) ≥ T+(y).

We split the proof into the two cases covered by Assumption 2.24, a state space
D of the form R

m≥0 ×R
n and a state space of the form S+

d . Note that Rm≥0 ×R
n and

S+
d are convex cones. To apply certain results of Volkmann (1973) on multivariate

ODE comparison, we introduce the following property:

DEFINITION 5.2. Let K ⊂ R
d be a proper closed, convex cone, and denote

by � the induced partial order. Let U ⊂ R
d . A function f :U → R

d is called
quasimonotone increasing (with respect to K), if for all y, z ∈ U for which y � z

and 〈y, x〉 = 〈z, x〉 for some x ∈ K it holds that 〈f (y), x〉 ≤ 〈f (z), x〉.
5.1. State space D = R

m≥0 × R
n. In this section we consider the “canonical

state space” D = R
m≥0 × R

n from Duffie, Filipović and Schachermayer (2003).
We use the index sets I = {1,2, . . . ,m} and J = {m + 1, . . . , d} corresponding to
the positive and to the real valued components of D respectively. Accordingly, RI

denotes the function (R1, . . . ,Rm), and similarly RJ is constituted by the last n

coordinates of R.
First, we recall the definition of the admissible parameter set for (conservative)

affine processes on R
m≥0 ×R

n from Duffie, Filipović and Schachermayer (2003):

DEFINITION 5.3. A set of R
d -vectors b,β1, . . . , βd , positive semidefinite

d × d matrices a,α1, . . . , αd , Lévy measures m,μ1, . . . ,μd on R
d , is called ad-

missible for D = R
m≥0 ×R

n if and only if

akl = 0 for all k ∈ I or l ∈ I,

αj = 0 for all j ∈ J,

αi
kl = 0 if k ∈ I \ {i} or l ∈ I \ {i};
b ∈ D,

βi
k −

∫
ξkμ

i(dξ) ≥ 0 for all i ∈ I, k ∈ I \ {i},
βi

k = 0 for all j ∈ J, k ∈ I ;∫
|ξ |≤1

|ξI |m(dξ) < ∞,

μj = 0 for all j ∈ J,∫
|ξ |≤1

|ξI\{i}|μi(dξ) < ∞.
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REMARK 5.4. The matrices a,α1, . . . , αd are frequently referred to as diffu-
sion matrices, the vectors b,β1, . . . , βd as drift vectors and the Lévy measures
m,μ1, . . . ,μd as jump measures.

Let R(y) = (R1(y), . . . ,Rd(y)) be defined as in Proposition 2.8. The admis-
sibility conditions imply that each R1(y), . . . ,Rd(y) is a convex lower semi-
continuous function of Lévy–Khintchine-type. Denoting μ0(dξ) := m(dξ) we
therefore have

Y =
{
y ∈ R

d :
d∑

i=0

∫
|ξ |≥1

e〈y,ξ〉μi(dξ) < ∞
}
,(5.1)

which is the intersection of the effective domains of F,R1, . . . ,Rd .
We start with the following crucial lemma:

LEMMA 5.5. There exists a function g which is finite, nonnegative and convex
on Y such that for all u ∈ S(Y◦) we have

Re
(〈
uI ,RI (u)

〉)≤ g(Reu)
(
1 + |uJ |2)(1 + |uI |2).(5.2)

PROOF. It clearly sufficient to show

Re
(
uiRi(u)

)≤ gi

(
Re(u)

)(
1 + |uJ |2)(1 + |uI |2)

individually for each i ∈ I and with some nonnegative convex gi(·) that is finite
on Y . In addition we may split Ri(u) into the drift part, the diffusion part, a small-
jump part and a large-jump part and show the inequality for each part separately.
The drift and the large jump-part are the easiest to deal with. Using the Cauchy–
Schwarz inequality we infer the existence of a positive constant C such that

Re
(
ui

(〈
βi, u

〉))≤ |ui |(∣∣βi
I

∣∣|uI | +
∣∣βi

J

∣∣|uI |)
(5.3)

≤ C
(
1 + |uJ |2)(1 + |uI |2)

and

Re
(
ui

∫
|ξ |>1

e〈ξ,u〉μi(dξ)

)
≤ |ui |

∫
|ξ |>1

e〈ξ,Reu〉μi(dξ)

(5.4)
≤ g̃i(Reu)

(
1 + |uI |2)

for the large-jump part. Here g̃i(z) := ∫
|ξ |>1 e〈ξ,z〉μi(dξ) clearly is a nonnegative

convex function which is finite on Y . To estimate the diffusion part we have to take
into account the admissibility conditions, which tell us that αi

ij is zero if j ∈ I \{i}.
Thus we obtain

Re
(
ui

〈
u,αiu

〉)= αi
ii |ui |2 Reui + 2 Re

(|ui |2αiJ uJ

)+ Re
(
uiu



J αi

JJ uJ

)
(5.5)

≤ C
(
1 + (ReuI )+

)(
1 + |uJ |2)(1 + |uI |2),
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as desired. The hardest term to estimate is the small-jump part. We follow the proof
of Lemma 6.2 in Duffie, Filipović and Schachermayer (2003). As a shorthand no-
tation we introduce uI− = uI\{i} and uJ+ = uJ∪{i}. First we do a Taylor expansion
of the integrand h(ξ) = e〈ξ,u〉 − 1 − 〈ξJ+, uJ+〉 with |ξ | ≤ 1,

h(ξ) = e〈ξ,u〉 − e〈ξJ+,uJ+〉 + eξiui
(
e〈ξJ ,uJ 〉 − 1 − 〈ξJ , uJ 〉)

+ 〈ξJ , uJ 〉(eξiui − 1
)+ eξiui − 1 − ξiui

= e〈ξJ+,uJ+〉
(∫ 1

0
et〈ξI−,uI−〉 dt

)
〈uI , ξI 〉(5.6)

+ eξiui

(∫ 1

0
(1 − t)et〈ξJ ,uJ 〉 dt

) ∑
j,k∈J

ξj ξkujuk

+
(∫ 1

0
etξiui dt

)
ξiui

∑
j∈J

ξjuj +
(∫ 1

0
(1 − t)etξiui dt

)
ξ2
i u2

i .

Next we calculate

Re
(
uih(ξ)

)= K(u, ξ) + |ui |2ξi

∫ 1

0
(1 − t)Re

(
uiξie

tuiξi
)
dt.

Since |ξ | ≤ 1, we get∣∣K(u, ξ)
∣∣≤ e(Reu)+(|ui |2 + |uI ||uJ |2 + |uI ||uJ |)(|ξI−| + |ξJ+|2)

(5.7)
≤ (

1 + e(Reu)+)(1 + |uJ |2)(1 + |uI |2)(|ξI−| + |ξJ+|2)
for the first term. For the second term we use Lemma 5.6 below and estimate

|ui |2ξi

∫ 1

0
(1 − t)Re

(
uiξie

tuiξi
)
dt ≤ |ui |2ξi

(
eξi(Reui)+ − 1

)
.(5.8)

Adding up (5.7) and (5.7), and integrating against the Lévy measure μi we obtain

Re
(
ui

∫
|ξ |≤1

h(ξ)μi(dξ)

)
≤ ĝi(Reu)

(
1 + |uJ |2)(1 + |uI |2)(5.9)

with

ĝi(y) = ey+
∫
|ξ |≤1

(|ξI−| + |ξJ+|2)μi(dξ) +
∫
|ξ |≤1

ξi

(
eξiyi − 1

)
μi(dξ),

which is nonnegative, convex and finite for all y ∈ R
d . Adding up (5.3)–(5.5) and

(5.9) yields the desired estimate (5.2). �

LEMMA 5.6. For any z ∈ C,∫ 1

0
(1 − t)Re

(
zetz)dt ≤ (

e(Re z)+ − 1
)
.(5.10)
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PROOF. For Re z ≤ 0 the inequality was shown in Duffie, Filipović and
Schachermayer (2003). Denote the left-hand side by L(z). Writing z = p + iq

and evaluating the integral, we have that

L(z) =
∫ 1

0
(1 − t)ept (p cos(qt) − q sin(qt)

)
= 1

p2 + q2

{
p
(
ep cos(q) − 1 − p

)+ q
(
ep sin(q) − q

)}
.

The expression is symmetric in q such that we may assume that q ≥ 0. If in addi-
tion p ≤ 0, then using cos(q) ≥ 1 − q2/2 and sin(q) ≤ 1 we may estimate

L(z) ≤ 1

p2 + q2

(
p
(
ep − 1 − p

)− q2 + q2ep(1 − p/2)
)
.

Since ep(1 − p/2) ≤ 1 and (ep − 1 − p) ≥ 0, the right-hand side is smaller than
0 showing the lemma for p ≤ 0. If p ≥ 0, we may use that cos(q) ≤ 1, sin(q) ≤ q

and ep − 1 ≤ pep to estimate

L(z) ≤ 1

p2 + q2

{
p2(ep − 1

)+ q2(ep − 1
)}= (

ep − 1
)
,

thus completing the proof. �

Recall Definition 5.2 of quasimonotonicity with respect to a convex cone K .
Here, K = R

m+; in this particular setting, quasimonotonicity of a function f :U ⊂
K →R

m can be expressed in coordinates and is equivalent to

y � z, and yi = zi for some i ∈ {1, . . . ,m} ⇒ fi(y) = fi(z).

LEMMA 5.7. Let yJ ∈ R
n. For each t ≥ 0, yI �→ RI (yI ,ψJ (t, yJ )) is quasi-

monotone increasing (with respect to the natural cone R
m+) on Y .

PROOF. See, for instance, Keller-Ressel (2009) or Mayerhofer, Muhle-Karbe
and Smirnov (2011). �

We further need the following special property of Y◦.

LEMMA 5.8. If y ∈ Y◦, z ∈ R
d and zI � yI , zJ = yJ , then we also have

z ∈ Y◦.

PROOF. We choose ε > 0 such that Bε(y) = {w ∈ R
d | |y − w| < ε} ⊂ Y .

By (5.1) we have for i = 0,1, . . . , d ,∫
|ξ |≥1

e〈y+w,ξ〉μi(dξ) < ∞, |w| < ε.(5.11)
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Note the Lévy measures μi are clearly positive and supported on D. Now for all
ξ ∈ D we have

〈z + w,ξ〉 = z

I ξI + z


J ξJ + 〈w,ξ〉 = z

I ξI + y


J ξJ + 〈w,ξ〉 ≤ 〈y + w,ξ〉
because ξI ∈ R

m+ and zi ≤ yi for all i ∈ I , by assumption. Hence, by the mono-
tonicity of the exponential we see that (5.11) holds with y replaced by z. Hence,
once again by (5.1) we have Bε(z) ⊂ Y , that is, z ∈ Y◦. �

We are now prepared to prove Proposition 5.1 under Assumption 2.24(i).

PROOF OF PROPOSITION 5.1 UNDER ASSUMPTION 2.24(i). By a straightfor-
ward check, for every u ∈ Y ,

Re
(
Ri(u)

)≤ Ri

(
Re(u)

)
,

and by Lemma 5.7 we can apply the ODE comparison result of Volkmann
(1973) to the first m coordinates of ψ , which let us conclude that Re(ψI (t, u)) �
ψI (t,Re(u)) for t < T+(u)∧T+(Re(u)). In view of Lemma 5.8 we therefore have
T+(u) ≥ T+(Re(u)), unless |ψ(t, u)| explodes before |ψ(t,Re(u))| does. We show
in the following that this cannot happen: By Lemma 5.5 we have

∂

∂t

∣∣ψI (t, u)
∣∣2 = 2 Re

〈
ψI (t, u),RI

(
ψ(t, u)

)〉
≤ g

(
Reψ(t, u)

)(
1 + ∣∣ψJ (t, u)

∣∣2)(1 + ∣∣ψI (t, u)
∣∣2)

with a function g which is finite on all of Y . Since ψJ (t, u) ≡ ψJ (t, uJ ) exists
globally as solution of a linear ordinary differential equation, we obtain by Gron-
wall’s inequality applied to (1 + |ψI (t, u)|2) that

∣∣ψI (t, u)
∣∣≤ |uI |2 + (

1 + |uI |2) ∫ t

0
h(s)e

∫ s
0 h(ξ) dξ ds,

where h(t) := g(Reψ(t, u))(1 + |ψJ (t, u)|2). Hence we have shown T+(u) ≥
T+(Re(u)). �

5.2. Matrix state spaces. Let Sd be the space of symmetric real d × d matri-
ces, endowed with the inner product 〈x, y〉 = tr(xy), where tr denotes the trace
operator. We further denote by C

m×n the space of complex m × n matrices. We
make the latter into a normed space by introducing a norm as ‖a‖2 := tr(aā
).
Here 
 denotes matrix transposition, and ā is the element-wise conjugate of the
matrix a.

We start with the following observation, which is a generalization of Mayerhofer
(2012), Lemma B.1.
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LEMMA 5.9. There exists a locally Lipschitz function h :Sd → R+ such that
for all a ∈ C

m×n and for any b ∈ S(Sn), we have

Re tr
(−bāa
)≤ h(Reb) · ‖a‖2.(5.12)

PROOF. Recall that the projection π :Sd → S+
d is a well defined, convex

(hence locally Lipschitz continuous) map, which satisfies π(z) � z for all z ∈ Sd .
Let us write a = a1 + ia2 and b = b1 + ib2 with a1, a2 ∈ R

m×n and b1, b2 ∈ Sn.
Then we have

Re tr
(−bā
a

)= Re tr
(−(b1 + ib2)

(
a


1 − ia

2
)
(a1 + ia2)

)
= tr

(−b1
(
a


1 a1
))+ tr

(−b1
(
a


2 a2
))+ 0

≤ tr
(
π(−b1)

(
a


1 a1
))+ tr

(
π(−b1)

(
a


2 a2
))

≤ ∥∥π(−b1)
∥∥(‖a1‖2 + ‖a2‖2)

= ∥∥π(−b1)
∥∥‖a‖2.

The last inequality holds in view of the Cauchy–Schwarz inequality. We now see
that inequality (5.12) holds by setting h(x) := ‖π(−x)‖. �

Next we present the admissibility conditions for matrix-valued affine processes
that have been established in Cuchiero et al. (2011). Note that in the case d = 1 it
holds that S+

d = R≥0, that is, the one-dimensional case is already covered by the
previous section. Therefore we may assume that d ≥ 2, which leads to several sim-
plifications of the parameter conditions. It has been shown in Mayerhofer (2012)
that affine processes on S+

d (d ≥ 2) do not exhibit jumps of infinite total variation.
Compared with Cuchiero et al. (2011) this makes the use of a truncation function
in the definition of R obsolete and also simplifies the very complicated (i.e., hard
to check) necessary tradeoff between linear jump coefficient and drift; cf. Cuchiero
et al. (2011), 2.11. In the following, � denotes the partial order on Sd induced by
the cone S+

d .

DEFINITION 5.10. An admissible parameter set (α, b,B,m(dξ),μ(dξ)) con-
sists of:

• a linear diffusion coefficient α ∈ S+
d ,

• a constant drift b ∈ S+
d satisfying

b � (d − 1)α,

• a constant jump term: a Borel measure m on S+
d \ {0} satisfying∫

S+
d \{0}

(‖ξ‖ ∧ 1
)
m(dξ) < ∞,



746 M. KELLER-RESSEL AND E. MAYERHOFER

• a linear jump coefficient μ which is an S+
d -valued, sigma-finite measure on S+

d \
{0} satisfying ∫

S+
d \{0}

(‖ξ‖ ∧ 1
)
μ(dξ) < ∞

• and finally, a linear drift B , which is a linear map from Sd to Sd and “inward
pointing” at the boundary of S+

d . That is,

tr
(
xB(u)

)≥ 0 for all u,x ∈ S+
d with tr(ux) = 0.

REMARK 5.11. Using the notation a(x) from (2.7) we have a(x)(u) =
2 tr(xuαu), and the following are equivalent:

(1) condition 2.24(ii);
(2) α = 0 or α is invertible;
(3) either a(x) vanishes for all x ∈ S+

d , or it is nondegenerate for any x ∈ S+
d \

{0}.
The only nontrivial direction to prove is (1) ⇒ (2). Assume, for a contradiction,
that α �= 0, but α is degenerate. Then there exists u ∈ S+

d \{0} such that uα = αu =
0. But then a(x)(u) = tr(xuαu) = 0, for any x.

Note that Cuchiero et al. (2011) uses the Laplace transform to define the affine
property, which introduces several changes of signs compared with our definition.
To comply with the notation of Cuchiero et al. (2011), we introduce

F̂ (y) = −F(−y), R̂(y) = −R(−y),

which can now be written as

F̂ (y) = tr(by) −
∫
S+

d \{0}
(
e− tr(yξ) − 1

)
m(dξ),

R̂(y) = −2yαy + B
(y) −
∫
S+

d \{0}
(
e− tr(yξ) − 1

)
μ(dξ).

Writing furthermore

p̂(t, y) = −p(t,−y), q̂(t, y) = −q(t,−y),

and similarly for φ and ψ , then, by Cuchiero et al. (2011),

E
x[e− tr(yXt )

]= e−p̂(t,y)−tr(q̂(t,y)x)

for all t ≥ 0, y, x ∈ S+
d , and by Mayerhofer (2012) the exponents (p̂, q̂) :R+ ×

S+
d →R+ × S+

d solve the system of generalized Riccati equations

∂

∂t
p̂(t, y) = F̂

(
q̂(t, y)

)
,(5.13a)

∂

∂t
q̂(t, y) = R̂

(
q̂(t, y)

)
,(5.13b)
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given initial data p̂(0, y) = 0, q̂(0, y) = y.
Since μ is an S+

d -valued measure, tr(μ) is a well-defined, nonnegative measure,
naturally given by

tr(μ)(A) = tr
(
μ(A)

)
.

Accordingly, the domain Ŷ := −Y is given by

Ŷ =
{
y ∈ Sd

∣∣∣ ∫
‖ξ‖≥1

e− tr(yξ)(m(dξ) + tr(μ)(dξ)
)
< ∞

}
.(5.14)

The inclusion ⊇ holds in view of the positive definiteness of the measure μ, while
the inclusion ⊆ follows from Mayerhofer (2012), Lemma 3.3. Similarly to the
preceding section, we start with the following crucial estimate: I denotes the d ×d

unit matrix.

LEMMA 5.12. Suppose that the diffusion coefficient satisfies α = I or α = 0.
Then there exists a locally Lipschitz continuous function g on Ŷ◦ such that for all
u ∈ S(Ŷ◦) we have

Re
(
tr
(
ūR̂(u)

))≤ g
(
Re(u)

)(
1 + ‖u‖2).(5.15)

PROOF. As in the proof of Lemma 5.5 we start with drift and big-jump parts.
Clearly we have

Re tr
(
ūB
(u)

)≤ G1
(
1 + ‖u‖)2(5.16)

for some positive constant G1. What concerns the big-jump parts, we have

Re tr
(
ū

(∫
‖ξ‖>1

(
e− tr(uξ) − 1

)
μ(dξ)

))
≤ ‖u‖ tr(μ)

({
ξ :‖ξ‖ > 1

})
+ ‖u‖

∫
‖ξ‖>1

(
e− tr(Reuξ)) tr(μ)(dξ)(5.17)

≤ g2
(
Re(u)

)(
1 + ‖u‖2),(5.18)

for some locally Lipschitz continuous function g2. The integral (5.17) is finite,
because Re(u) ∈ Ŷ by assumption. Here we have also used Mayerhofer (2012),
Lemma 3.3. Note that we can set

g2(y) := tr(μ)
({

ξ :‖ξ‖ > 1
})+ ∫

‖ξ‖>1

(
e− tr(yξ)) tr(μ)(dξ).

For α = 0 we set g3 = 0. If α = I , we involve Lemma 5.9 and obtain

Re
(
ūu2)≤ g3

(
Re(u)

)‖u‖2,(5.19)

where g3(·) = h(·) = π(−·).
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It remains to estimate the small-jump part. Using again Mayerhofer (2012),
Lemma 3.3, we have

Re tr
(
ū

∫
0<‖ξ‖≤1

(
e− tr(uξ) − 1

)
μ(dξ)

)

= Re tr
(
ū

∫
0<‖ξ‖≤1

∫ 1

0
tr(uξ)e−s tr(uξ) dsμ(dξ)

)

≤ ‖u‖2
∫

0<‖ξ‖≤1

∫ 1

0
e−s tr(uξ)‖ξ‖ tr(μ)(dξ)

≤ e‖Reu‖‖u‖2
∫

0<‖ξ‖≤1
‖ξ‖ tr(μ)(dξ)

≤ g4
(
Re(u)

)(
1 + ‖u‖2)

with

g4(y) := e‖y‖
∫

0<‖ξ‖≤1
‖ξ‖ tr(μ)(dξ).

Summarizing the last estimate together with (5.16), (5.18) and (5.19) and setting

g(y) := G1 + g2(y) + g3(y) + g4(y)

proves the assertion. �

We provide two further lemmas:

LEMMA 5.13. If y ∈ Ŷ◦, and z ∈ Sd such that z � y, then we also have z ∈
Ŷ◦.

PROOF. Using (5.14) we infer the existence of some ε > 0 such that for all
w ∈ Bε(0) = {w ∈ Sd | ‖w‖ < ε}, we have∫

‖ξ‖≥1
e− tr((y+w)ξ)(m(dξ) + tr(μ)(dξ)

)
< ∞.

The assumption of the lemma implies that 〈z, ξ〉 ≥ 〈y, ξ〉 for all ξ ∈ S+
d . Further-

more, m and tr(μ) are supported on S+
d . Therefore we have∫

‖ξ‖≥1
e− tr((z+w)ξ)(m(dξ) + tr(μ)(dξ)

)
≤
∫
‖ξ‖≥1

e− tr((y+w)ξ)(m(dξ) + tr(μ)(dξ)
)
< ∞

for all w ∈ Bε(0), which in view of (5.14) proves that z ∈ Ŷ◦. �

LEMMA 5.14. R̂ is quasimonotone increasing (with respect to S+
d ) on Ŷ◦.
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PROOF. The proof is analogous to the one of Cuchiero et al. (2011),
Lemma 5.1, which states quasimonotonicity of R̂ on S+

d . �

We are now prepared to prove Proposition 5.1 for D = S+
d , d ≥ 2:

PROOF. According to Cuchiero et al. (2011), Theorem 4.14, for any affine
process X (with diffusion coefficient α) there exists a linear automorphism g of
S+

d such that the affine process Y = g(X) has diffusion coefficient α̃ = diag(Ir ,0),
where Ir is the r × r unit matrix, and r = rank(α). According to our assumption
r = 0 or r = d (see Remark 5.11), and linear transformations do not affect the
blow-up relation (between the real and complex-valued solutions) we are about to
prove here. Hence we may without loss of generality assume that α = 0 or α = I .

For any u ∈ S(Ŷ◦) we write y = Re(u). The quasimonotonicity of R̂ (Lem-
ma 5.14) allows us to apply the multivariate comparison result by Volkmann
(1973), and we conclude that for t < T+(u)∧T+(y), we have Re ψ̂(t, u) � q̂(t, y).
In view of Lemma 5.13 we only need to show that t �→ ‖ψ̂(t, u)‖ does not explode
before t �→ ‖q̂(t, y)‖. By Lemma 5.12, there exists a continuous function g such
that

Re tr
(
ūR̂(u)

)≤ g
(
Re(u)

)(
1 + ‖u‖2), u ∈ S

(
Ŷ◦).

Hence, we have for all t < T+(u) ∧ T+(y),

∂

∂t

(∥∥ψ̂(t, u)
∥∥2)= 2 Re tr

(
ψ̂(t, u)R̂

(
ψ̂(t, u)

))≤ g
(
Re
(
ψ̂(t, u)

))(
1 + ∥∥ψ̂(t, u)

∥∥2)
,

and by Gronwall’s inequality, we obtain∥∥ψ̂(t, u)
∥∥≤ (

1 + ‖u‖2) ∫ t

0
g(s)e

∫ s
0 g(ξ) dξ ds.

Hence we have shown that T+(u) ≥ T+(y). �

5.3. Proof of Theorem 2.26. The first part of Theorem 2.26 is proved in Propo-
sition 5.1. For the proof of the second part, the validity of the complex transform
formula (2.16), we utilize the concept of analytic continuation.

PROOF OF THEOREM 2.26. Consider the set

U := {
y ∈ Y◦ | T+(y) > T

}
.

By assumption U is nonempty, and from the standard existence and uniqueness
theorem for ODEs it follows that U is open. Next, we show that U is convex. For
y1, y2 ∈ U it follows from Theorem 2.14(b) on real moments that Ex[e〈y1,XT 〉] <

∞ and E
x[e〈y2,XT 〉] < ∞ for all x ∈ D. Let λ ∈ [0,1] and set yλ = λq1 +(1−λ)q2.

By Hölder’s inequality

E
x[e〈yλ,XT 〉]≤ E

x[e〈y1,XT 〉]λ ·Ex[e〈y2,XT 〉](1−λ)
< ∞
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for all x ∈ D and we conclude, using Theorem 2.14(a) that yλ ∈ U and hence
that U is convex. Now set U ′ := S(U) ⊂ C

d . From the properties of U we con-
clude that U ′ is nonempty, open and connected. By Proposition 5.1 we have
T+(u′) > T+(Reu′) for all u′ ∈ U ′. Furthermore, since u �→ R(u) and u �→ F(u)

are complex analytic on Y◦, we have by Dieudonné (1969), Theorem 10.8.2, that
the function

M(u) := eφ(t,u)+〈ψ(t,u),x〉

is complex analytic on U ′ for all t ≤ T . Furthermore, by Theorem 2.14 and by
Remark 2.23, we have that

M(y) = eφ(t,y)+〈ψ(t,y),x〉 = E
x[e〈y,Xt 〉], y ∈ U, t ≤ T .

We conclude that the function �(u) :U ′ → C :u �→ E
x[e〈u,Xt 〉] is an analytic

function, which coincides with M(u) on the nonempty open subset U ⊂ U ′.
Hence by the principle of analytic continuation6 [cf. Dieudonné (1969), (9.4.4)]
E

x[e〈u,Xt 〉] = M(u) on all of U ′, and the proof is complete. �
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