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SPATIAL PREFERENTIAL ATTACHMENT NETWORKS:
POWER LAWS AND CLUSTERING COEFFICIENTS1

BY EMMANUEL JACOB AND PETER MÖRTERS

ENS Lyon and University of Bath

We define a class of growing networks in which new nodes are given a
spatial position and are connected to existing nodes with a probability mech-
anism favoring short distances and high degrees. The competition of prefer-
ential attachment and spatial clustering gives this model a range of interesting
properties. Empirical degree distributions converge to a limit law, which can
be a power law with any exponent τ > 2. The average clustering coefficient
of the networks converges to a positive limit. Finally, a phase transition oc-
curs in the global clustering coefficients and empirical distribution of edge
lengths when the power-law exponent crosses the critical value τ = 3. Our
main tool in the proof of these results is a general weak law of large numbers
in the spirit of Penrose and Yukich.

1. Introduction. Many of the phenomena in the complex world in which we
live have a rough description as a large network of interacting components. It is
therefore a fundamental problem to derive the global structure of such networks
from basic local principles. A well-established principle is the preferential attach-
ment paradigm which suggests that networks are built by adding nodes and links
successively, in such a way that new nodes prefer to be connected to existing nodes
if they have a high degree [3]. The preferential attachment paradigm offers, for ex-
ample, a credible explanation of the observation that many real networks have de-
gree distributions following a power law behavior. On the global scale preferential
attachment networks are robust under random attack if the power law exponent is
sufficiently small, and have logarithmic or doubly logarithmic diameters depend-
ing on the power law exponent. These features, together with a reasonable degree
of mathematical tractability, have all contributed to the enormous popularity of
these models.

Among the many criticisms directed at preferential attachment models is a sig-
nificant deviation of their local structure from that observed in real networks. In
preferential attachment models, the neighborhoods of typical nodes have a tree-
like topology [4, 10], which is a crucial feature for their global analysis, but is not
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in line with the behavior of many real world networks. The most popular quanti-
ties used to measure the local clustering of networks are the clustering coefficients,
which are measured to be positive in most real networks, but which invariably van-
ish in preferential attachment models that do not incorporate further effects [2, 6].
A possible reason for the clustering of real networks is the presence of a hidden
variable assigned to the nodes, such that similarity of values is a further incentive
to form links. Several authors have therefore proposed models combining pref-
erential attachment with spatial features in order to address the weaknesses of
pure preferential attachment. Among the mathematically sound attempts in this
direction are the papers of Flaxman, Frieze and Vera [11, 12], Jordan [14], Jordan
and Wade [16], Aiello et al. [1] and Cooper, Frieze and Prałat [7]. These papers
show that combining preferential attachment and spatial dependence can retain
the global power law behavior while changing the local topology of the network,
for example, by showing that the resulting graphs have small separators [11, 12],
but none of them discusses clustering systematically by analyzing the clustering
coefficients.

In this paper we propose a natural model of a network in which the preferential
attachment paradigm is modulated by spatial proximity. Our model is a general-
ization and variant of the one introduced in Aiello et al. [1]. The model is best
described as a growing network in continuous time. New nodes are born according
to a Poisson process of rate one and placed uniformly on the one-dimensional torus
of length one. A node born at time t is connected by an ordered edge to each exist-
ing node independently with a probability ϕ(tρ/f (d)) where d is the indegree of
the older node at time t , and ρ is the distance of the nodes. The decreasing profile
function ϕ : [0,∞) → [0,1] and increasing attachment rule f :N ∪ {0} → (0,∞)

are the parameters of the model. Loosely speaking, the fact that the time t and the
spatial distance ρ appear as a product in the connection probability ensures that the
probability that new nodes connect to their spatially nearest neighbors, which typi-
cally are distance 1/t away and have bounded indegree, does not go to zero or one.
This is necessary to balance the spatial and preferential attachment effects in our
model. We show that this modification of the original idea of preferential attach-
ment preserves the power law behavior of existing preferential attachment models
while significantly changing the local topology leading to a positive average clus-
tering coefficient. We also observe interesting phase transitions in the behavior of
the global clustering coefficient and the empirical edge length distribution.

Our analysis of this model is using methods developed originally for the study
of random geometric graphs; see Penrose and Yukich [18] for a seminal paper in
this area and [17] for an exhibition. This approach is new in the context of prefer-
ential attachment and quite different from the established route to study dynamical
random graph models, which is based on the use of differential equations to study
the evolution of expected quantities and concentration inequalities to relate them
to the empirical quantities. By contrast, our analysis is based on a rescaling which
transforms the growth in time into a growth in space. This transformation stabi-
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lizes the neighborhoods of a typical vertex and allows us to observe convergence
of the local neighborhoods of typical vertices in the graph to an infinite graph. This
infinite graph, which is not a tree, is locally finite and can be described by means of
a Poisson point process. We establish a weak law of large numbers, similar to the
one given in [18], which allows us to deduce convergence results for a large class
of functionals of the graph. Some further work is required to show that certain rare
effects, like vertices having a very high degree or being linked to distant vertices,
do not affect our functionals.

The paper is organized as follows. In Section 2 we present the model. The main
results concerning the degree distribution, the clustering coefficients and the edge
length distribution, are stated in Section 3. In Section 4 we describe the general
method and main tools developed for the study of the network. Section 5 completes
the proofs of our main results and, finally, Section 6 briefly discusses some variants
and further developments.

2. The model. Write T1 for the one-dimensional torus of length 1 represented
as R/Z endowed with the usual distance. Let X denote a Poisson point process of
unit intensity on T1 × (0,∞). A point x = (x, s) in X is a vertex x, born at time s

and placed at position x. Observe that, almost surely, two points of X neither have
the same birth time nor the same position. We say that (x, s) is older than (y, t) if
s < t . An edge is always oriented from the younger to the older vertex. For t > 0,
write Xt for X ∩ (T1 × [0, t]), the set of vertices already born at time t . We con-
struct a growing sequence of graphs (Gt)t>0, starting from the empty graph, and
adding successively the vertices in X when they are born (so that the vertex set of
Gt is Xt ), and connecting them to some of the older vertices. The rule is as follows:

Construction rule. Given the graph Gt− and y = (y, t) ∈ X , we add the ver-
tex y and, independently for each vertex x in Gt−, we insert the edge (y,x), inde-
pendently of X , with probability

ϕ

(
td(x,y)

f (Zx(t−))

)
.(2.1)

The resulting graph is denoted by Gt .
Here the following definitions and conventions apply:

(1) d(x,y) denotes the length of the edge (y,x), which is the usual distance
in T1 (for which, by a minor abuse of notation we also use the notation d) between
the spatial positions of the vertices x and y.

(2) ϕ : [0,∞) → [0,1] is the profile function. It is supposed to be nonincreasing
and of total integral 1/2. Informally, it describes the spatial dependence of the
probability that the newborn vertex y is linked to the existing vertex x.

(3) Zx(t−) [resp., Zx(t)] denotes the indegree of vertex x at time t− (resp., t),
that is, the total number of incoming edges for the vertex x in Gt− (resp., Gt ).
Similarly, we denote by Yy the outdegree of vertex y, which remains the same at
all times u ≥ t .
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(4) f :N∪{0} → (0,∞) is the attachment rule. It is supposed to be nondecreas-
ing. Informally, f (k) quantifies the preferential “strength” of a vertex of current
indegree k, or likelihood of attracting new links. We assume that the attachment
rule f has an asymptotic slope

γ := lim
k→∞

f (k)

k
∈ (0,1).

Note that, for any r > 0, the profile function ϕ and attachment rule f together
define the same model as the profile function x �→ ϕ(rx) and the attachment
rule k �→ rf (k). The normalization convention

∫
ϕ = 1

2 , which will always be as-
sumed for convenience, represents therefore no loss of generality.

Whereas in classical preferential attachment the linking probability itself is
multiplied by the preferential attachment factor f (Zx(t−)), in our spatial setup
this factor enters as the spatial expansion of the influence profile around the ver-
tex x = (x, s) at time t , which is described by the function

y �→ x + ϕ

(
td(x, y)

f (Zx(t−))

)
.

The probability of connecting a new vertex (y, t) to an old one is given by the
value of the influence profile around the old vertex at the position y of the new
one. In the important special case of the profile function ϕ(r) = 1{r < 1

2}, which
only takes the values zero or one, this decision is not random. In this case a ver-
tex x is linked to a new vertex born at time t if and only if their positions are within
distance f (Zx(t−))/(2t). In other words, every vertex x is surrounded by an in-
fluence region, a ball of time-dependent radius f (Zx(t−))/(2t), and a new vertex
is linked to all older vertices in whose influence regions it falls at the time of its
birth. This special case already reveals the complexity and interest of the model,
and the reader is encouraged to first figure out its behavior.

The model introduced by Aiello et al. [1] and further studied by Cooper, Frieze
and Prałat [7] and by Janssen, Prałat and Wilson [13] is essentially the same model
for the special case that the attachment rule is of the form f (k) = A1k + A2 and
the profile function is of the form ϕ(x) = p1{x < 1/(2p)}. Small differences are
that they work in discrete rather than continuous time, and allow for spaces more
general than T1, but these differences are inessential for the purposes of this paper;
see also our comments in Section 6.

Recall the definition of the asymptotic slope γ of the attachment function
from (4). As γ > 0 this means that f is asymptotically linear, and this is known,
in nonspatial preferential attachment models, to lead to scale-free networks with
power law exponent τ = 1 + 1

γ
.

We now illustrate the connection between nonspatial preferential and spatial
attachment models. Suppose the graph Gt− is given, and a vertex is born at time t ,
but we do not know its position, which is therefore uniform on T1. Then, for each
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vertex x = (x, s) ∈ Gt−, the probability that it is linked to the newborn vertex is
equal to ∫

T1

ϕ

(
td(x, y)

f (Zx(t−))

)
dy = f (Zx(t−))

t
2

∫ t/(f (Zx(t−)))

0
ϕ(y)dy.

As a consequence, the process (Zx(t))t≥s is a time-inhomogeneous pure birth pro-
cess, starting from 0 and jumping at time t from state k to state k +1 with intensity

f (k)

t
2

∫ t/(f (k))

0
ϕ(x)dx.

This quantity is bounded by f (k)/t . As the pure birth process (Zx(t))t≥s grows
roughly like tγ (see Lemma 8 for a precise statement), the normalization of ϕ

makes this bound asymptotically sharp. Hence the jumping intensity of our process
is the same as in the classical Barabási–Albert model of preferential attachment
[3, 19], or its variant studied by Dereich and Mörters [8–10]. Not surprisingly, our
spatial model exhibits the same limiting indegree distribution.

However, as soon as one deepens the study of the graph further than the first
moment calculations, the essential difference with the nonspatial models appears.
The presence of edges is now strongly correlated through the spatial positions of
the vertices. These strong correlations both make the model much harder to study
and allow the network to enjoy interesting clustering properties. These are the main
concerns of this paper and will be described in the next section. We will henceforth
use the common notation g = o(h) to indicate that g/h converges to zero, g 	 h

if g/h is bounded from zero and infinity and g ∼ h to indicate that g/h converges
to one.

3. Main results.

3.1. Indegree distribution. While the indegree of a given vertex grows indef-
initely with the size of the network, the mean indegree in the graph Gt converges
to a limiting distribution with polynomial decay. More precisely, for t > 0 such
that Xt is nonempty, denote by μt the law of the indegree of a randomly (and uni-
formly) chosen vertex in the graph Gt , or empirical indegree distribution. More
formally, the empirical indegree distribution is the random measure on N ∪ {0},
which gives to each k ∈N∪ {0} the weight

μt(k) = 1

|Xt |
∑

x∈Xt

1
{
Zx(t) = k

}
,

if Xt �= ∅ and μt(k) = 1{k = 0} otherwise. We introduce the probability mea-
sure μ, determined by its weights

μ(k) = 1

1 + f (k)

k−1∏
l=0

f (l)

1 + f (l)
.(3.1)



SPATIAL PREFERENTIAL ATTACHMENT NETWORKS 637

For any measure λ on N ∪ {0} and any function g :N ∪ {0} → [0,∞), we write
〈λ,g〉 for the expectation of g under the law λ, or

∑
k≥0 λ(k)g(k). The following

theorem states a convergence result for the empirical indegree distribution μt to
the probability measure μ, which we call limiting indegree distribution. This result
implies, in particular, convergence in probability, in the total variation norm.

THEOREM 1. For any nondecreasing function g :N∪ {0} → [0,∞) satisfying
〈μ,gp〉 < ∞ for some p > 1, the following limit holds:

〈μt, g〉 −→ 〈μ,g〉,
in probability, when t → ∞.

REMARK 1. The convergence in the theorem still holds for any function g,
not necessarily positive or monotonous, but with g(k) = o(kδ) for some δ < 1/γ .

It is easy to check that, the limiting distribution μ satisfies

μ(k) = k−(1+(1/γ ))+o(1) as k ↑ ∞,

which highlights the scale-free property of the network with exponent τ = 1+1/γ .
In the particular case of a linear attachment rule f (k) = γ k + β , with γ ∈ (0,1)

and β > 0, we have

μ(k) = 1

γ

	(k + (β/γ ))	((β + 1)/γ )

	(k + ((β + γ + 1)/γ ))	(β/γ )
∼ 	((β + 1)/γ )

γ	(β/γ )
k−τ as k ↑ ∞,

a result that has already been obtained for their variant of the model in Theorem 1.1
of Aiello et al. [1] by a completely different technique of proof.

Our result shows that under our normalization convention, the profile function
has no influence on the degree distribution. Note, however, that in the presence of
spatial dependence the normalization of the profile function typically enforces a
significant change to the attachment rule. As an example, we look at the case when
the vertex y born at time t connects to vertex x with probability(

f (Zx(t−))

tαd(x,y)α

)
∧ 1,

for α > 1, where a ∧ b denotes the minimum of a and b. In our setup, this must
correspond to the normalized profile function ϕ(r) := ( 2α

α−1r)−α ∧ 1 and the at-

tachment rule f ′(k) := 2α
α−1f 1/α(k). Thus if f 1/α is approximately linear with

slope γ , the resulting power law exponent is τ = 1 + α−1
2γα

.
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3.2. Outdegree distribution. In the original preferential attachment model of
Barabási and Albert, the outdegree is constant. In the model variant of Dereich and
Mörters, it is asymptotically Poisson, therefore it is light-tailed, which implies that
it is not relevant in the study of the tail of the degree distribution. In our model,
the limiting outdegree distribution is not Poisson, and we could not find a closed
formula defining it. Still, we prove that it is light-tailed.

Denote by νt the empirical outdegree distribution in the graph Gt , defined by
its weights

νt (k) = 1

|Xt |
∑

x∈Xt

1{Yx = k},

if Xt �=∅ and νt (k) = 1{k = 0} otherwise. The following theorem holds:

THEOREM 2. There exists a probability measure ν on N∪ {0} such that:

(1) For any function g :N∪ {0} → R satisfying g(k) = o(ekδ
) for some 0 < δ <

1 − γ , we have

〈νt , g〉 −→ 〈ν, g〉,
in probability, when t → ∞.

(2) The measure ν is light-tailed in the following sense: for any 0 < δ < 1 − γ ,
we have

ν
([k,+∞)

) = o
(
e−kδ )

.

The limiting outdegree distribution ν is implicitly defined [see formula (5.2)
below], but it is not easy to compute explicitly. Moreover, it is not hard to see from
our proofs that the indegree and the outdegree of a randomly chosen vertex are
asymptotically independent and hence the limiting total degree distribution is the
convolution μ ∗ ν.

3.3. Clustering. We now define the clustering coefficients for a finite simple
graph G = (V ,E) with unoriented edges, forgetting the orientation of edges in
the case of an oriented graph. A subgraph of G containing exactly three distinct
vertices and the three edges linking them is called a triangle. A subgraph of the
form ({x,y, z}, {{x,y}, {x, z}}) is called an open triangle with tip x. In other words,
an open triangle with tip x consists of the vertex x and two of its neighbors y and z,
which themselves could either be connected and hence form a triangle in G, or not.
Note that every triangle in G contributes three open triangles.

The global clustering coefficient of G is defined as

cglob(G) := 3
Number of triangles included in G

Number of open triangles included in G
,
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if there is at least one open triangle in the graph, and cglob(G) = 0 otherwise. Note
that always cglob(G) ∈ [0,1]. The local clustering coefficient of G at a vertex x
with degree at least two is defined by

cloc
x (G) := Number of triangles included in G containing vertex x

Number of open triangles with tip x included in G
,

which is also an element of [0,1]. Finally, the average clustering coefficient is
defined as

cav(G) := 1

|V2|
∑

x∈V2

cloc
x (G),

if the set V2 ⊂ V of vertices with degree at least two in G is not empty, and as
cav(G) := 0 otherwise.

THEOREM 3. (1) Average clustering coefficient:
There exists a strictly positive number cav∞ such that

cav(Gt) −→ cav∞
in probability, as t → ∞.

(2) Global clustering coefficient:

(a) There exists a nonnegative number c
glob∞ such that

cglob(Gt) −→ c
glob∞

in probability, as t → ∞.
(b) The global clustering coefficient c

glob∞ is positive if and only if
∑

k2μ(k) < ∞.

REMARK 2. Our proofs allow us to write c
glob∞ and cav∞ explicitly as multiple

integrals over the network parameters.

REMARK 3. The precise criterion given in Theorem 3(2b) implies that c
glob∞ >

0 if γ < 1
2 , and c

glob∞ = 0 if γ > 1
2 . Hence the phase transition in the global clus-

tering coefficient occurs when the power law exponent crosses the critical value
τ = 3.

REMARK 4. The global and average clustering coefficients have the following
probabilistic interpretation:

• Pick a vertex uniformly at random and condition on the event that this vertex
has degree at least two. Pick two of its neighbors, uniformly at random. Then
the probability that these two vertices are linked is equal to cav(G).
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• Pick two edges sharing a vertex, uniformly from all such pairs of edges in the
graph. Then the probability that the two other vertices bounding the edges are
connected is equal to cglob(G).

Here is an informal discussion of the clustering phenomenon. For a randomly
chosen vertex, both the number of open triangles with tip in that vertex as well as
the number of triangles containing it converge to a finite random variable. The ratio
of these variables determines the average clustering coefficient, which therefore is
always positive. To understand the phase transition in the behavior of the global
clustering coefficient, first note that, as the outdegree distribution is always light-
tailed, new vertices typically generate a bounded number of triangles and hence
the number of triangles in the network grows linearly in time. If

∑
k2μ(k) < ∞

the average number of open triangles per vertex is finite, and so the number of
open triangles also grows linearly in time, and the global clustering coefficient
is positive. However, if this sum is infinite, the total number of open triangles
has superlinear growth, which is enough to guarantee that the global clustering
coefficient vanishes. In this case, the tip of a randomly chosen open triangle is
typically a very old vertex with a high degree. This is best seen in the case γ > 1

2 ,
in which the degree of the first born vertex at time t is of order tγ , so that this vertex
alone gives rise to a superlinear number t2γ of open triangles. Observe that these
effects match the structure of real networks. For example, if you pick a webpage
at random, and click on two hyperlinks, it is likely that the two pages you get
have actually a direct hyperlink. Now, if you pick two webpages which both have
a hyperlink to the Google homepage, it is not likely that these two pages have a
direct link.

3.4. Edge length distribution. In the graph Gt , we could hope that a typical
edge connects two vertices with birth times of order t and degrees of order one. We
would then expect from the construction rule (2.1) that its length is of order 1/t .
This description is actually always valid within our range of parameters (it would
be false for γ ≥ 1), and explains the rescaling below.

Write E(Gt) for the set of the edges of the graph Gt . Define λ, the (rescaled)
empirical edge length distribution, by

λt = 1

|E(Gt)|
∑

(x,y)∈E(Gt )

δtd(x,y),

if E(Gt) �= ∅, and λt = δ0 otherwise, where δu is the Dirac measure giving mass
one to {u}.

THEOREM 4. There exists a probability distribution λ on the real line such
that:
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(1) For every continuous and bounded g : [0,∞) →R we have

〈λt , g〉 −→ 〈λ,g〉,
in probability, when t → ∞.

(2) Suppose that there exists δ > 1 such that the profile function satisfies ϕ(x) 	
1 ∧ x−δ . Then

λ
([K,+∞)

) 	 1 ∧ K−η,

where η ∈ (0,1] is the smallest of the three constants 1, 1
γ

− 1 and δ − 1.

The heavy tails of the empirical edge length distribution highlight the nature
of our networks as small worlds. Observe that the distribution λ never has a first
moment, implying that the mean edge length is of larger order than 1/t . As the
profile function ϕ is integrable, if it decays polynomially, it must be of order x−δ

for some δ > 1. If δ ≥ 2, then the profile function does not influence the decay
rate of the tail of the limiting edge length distribution. This stays true if ϕ is any
function satisfying

∫
vϕ(v)dv < ∞. Conversely, a choice of ϕ can lead to any

exponent within (0,1] if γ ≤ 1/2, or within (0,1/γ − 1] if γ > 1/2; see Figure 1.
In Janssen, Prałat and Wilson [13] the empirical edge length distribution is stud-

ied for the model defined in [1]. This is essentially the case of an affine func-
tion f (k) = γ k +β and a profile function ϕ(x) = p1{x < 1/(2p)}, corresponding
roughly to the case δ = ∞. They show that if γ > 1

2 and 3γ+2
4γ+2 < α < 1, then∣∣{edges of length longer than t−α

}∣∣ ∼ Ct(2−α)+((1/γ )(α−1))

FIG. 1. Level sets for the length exponent η in the (δ, γ ) plane consist of a rectangular block
corresponding to the value η = 1 and a family of lines starting vertically at the δ-axis and turning
horizontally upon hitting the graph given by δγ = 1.



642 E. JACOB AND P. MÖRTERS

for an explicit constant C > 0. Our result uses a different order of limits, but leads
to the same order of growth for the comparable quantity tλ[t1−α,∞). If γ < 1

2 they
show that the expected number of edges of length longer than t−α , for 0 ≤ α < 1,
grows of order tα , which is also of the same order as tλ[t1−α,∞). Note that the
general form of the profile functions allows for a genuinely richer phenomenology
in our case.

4. Methods of proof.

4.1. The rescaled picture. First, it is convenient to describe more explicitly the
randomness involved in the “construction rule,” which determines the presence or
absence of each edge in the network. To this end, denote by T1 × (0,∞) the set of
potential vertices, and by

E
(
T1 × (0,∞)

) := {
(y,x),y,x ∈ T1 × (0,∞),y younger than x

}
the set of potential edges. Introduce a family V of independent random variables,
independent of X , indexed by the set of potential edges and uniformly distributed
on [0,1]. We will denote these variables by Vx,y or V(x,y). A realization of Xt

and V defines a network G1(Xt ,V), with vertex set Xt , obtained with the same
construction as before, but with the construction rule replaced by the rule that you
connect x to y if and only if

V(x,y) ≤ ϕ

(
sd(x,y)

f (Zx(s−))

)
,(4.1)

where s is the birth time of the younger vertex y. The growing networks
(G1(Xt ,V))t>0 and (Gt)t>0 have the same law and will be identified. Moreover,
the deterministic functional G1 associates a graph structure to any set of points in
T1 × (0,∞) and family of points in [0,1] indexed by E(T1 × (0,∞)).

Second, we want to generalize the construction, replacing T1 by Tt = R/(tZ),
the one-dimensional torus of length t . We permit the case t = ∞, with the conven-
tion T∞ = R. The definition of the set of potential vertices Tt × (0,∞) and the set
of potential edges E(Tt × (0,∞)) is straightforward. We define the functional Gt ,
for t ∈ (0,∞], in analogy to the case t = 1, by associating a graph structure to
any set of points in Tt × (0,∞), and any family of values in [0,1] indexed by
E(Tt × (0,∞)). In the construction, rule (4.1) is unchanged, but with the new
understanding that the distances are now those in Tt .

For finite t , we introduce the rescaling mapping

ht : T1 × (0, t] → Tt × (0,1],
(x, s) �→ (tx, s/t)

which expands the space by a factor t , the time by a factor 1/t . The mapping ht

operates on the set X , but also on V , with

ht (V)ht (x),ht (y) := Vx,y.
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The operation of ht preserves the rule (4.1), and it is therefore simple to verify that
we have

Gt (ht (Xt ), ht (V)
) = ht

(
G1(Xt ,V)

) = ht (Gt),

that is, it is the same to construct the graph and then rescale the picture, or to first
rescale the picture, then construct the graph on this rescaled picture. Observe also
that ht (Xt ) is a Poisson point process of intensity 1 on Tt × (0,1], while ht (V) is
still an independent family of i.i.d. uniform random variables on [0,1], indexed by
E(Tt × (0,1]).

From now on, we denote by X a Poisson point process with intensity 1 on
R × (0,1], and V an independent family of i.i.d. uniform on [0,1] random vari-
ables, indexed by E(R× (0,1]). For finite t > 0, identify (−t/2, t/2] and Tt , and
write X t for the restriction of X to Tt × (0,1], and V t for the restriction of V
to the indices in E(Tt × (0,1]). We write Gt(X ,V) for Gt(X t ,V t ), and observe
that this graph has the same law as ht (Gt). However, the process t �→ Gt(X ,V)

behaves very differently from the original process t �→ Gt . Indeed, in the original
process, the degree of any fixed vertex grows like tγ+o(1) (see Lemma 8) and thus
goes to +∞. By contrast, for the graphs Gt(X ,V), the following result establishes
convergence to the graph G∞(X ,V) as defined in the preceding paragraph.

PROPOSITION 5. (i) The graph G∞(X ,V) defined above is almost surely lo-
cally finite, in the sense that its vertices all have finite degrees.

(ii) The graph Gt(X ,V), almost surely, converges locally to G∞(X ,V), in the
sense that for each x ∈ X , for large t , the neighbors of x in Gt(X ,V) and in
G∞(X ,V) coincide.

As a direct consequence we obtain the following corollary.

COROLLARY 6. Almost surely, for any x ∈ X and each n ≥ 1, the neighbor-
hood of vertex x in the graphs Gt(X ,V) and G∞(X ,V) up to graph distance n

will coincide for large t .

The key to the understanding of the drastically different behavior of the graph-
valued process t �→ Gt(X ,V) lies in the fact that a fixed vertex in this sequence
of graphs has a birth time which is comparable to the age of the network. This age
would be highly variable in time if mapped onto the original graph, but is kept
constant in the process t �→ Gt(X ,V).

Regardless of the strength of Proposition 5, it only states a local convergence
result and is therefore insufficient for our purpose. Global results require the intro-
duction of a specific law of large numbers, which we state and prove now.
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4.2. A general weak law of large numbers. For x0 ∈ R, we introduce the trans-
lation

θx0 : R× (0,1] → R× (0,1],
(x, s) �→ (x + x0, s).

The translation θx0 operates on R × (0,1], and in a canonical manner also on the
point sets in R × (0,1], and on families indexed by E(R × (0,1]). Consider a
functional ξ∞, which associates a nonnegative real number ξ∞((x, s),Z,W) to a
point set Z ⊂ R × (0,1] with a distinguished point x = (x, s) ∈ Z , and a family
W of numbers in [0,1] indexed by E(R × (0,1]). The functional is supposed to
be translation invariant, in the sense that

ξ∞(x,Z,W) = ξ∞
(
θx0(x), θx0(Z), θx0(W)

)
.

Similarly, for each t > 0, and x0 ∈ Tt , we introduce the translation

θ t
x0

: Tt × (0,1] → Tt × (0,1],
(x, s) �→ (x + x0, s),

and we consider functionals ξt , which associate a nonnegative real number
ξt ((x, s),Z,W) to a point set Z ⊂ Tt ×(0,1] with a distinguished point (x, s) ∈ Z
and a family W of numbers in [0,1] indexed by E(Tt × (0,1]). The functionals ξt

are supposed to be invariant under the translations θ t
x0

.
Finally, for the sake of simplifying notation, we will also write ξ∞(x,Z,W) for

ξ∞(x,Z ∪ {x},W) when the set Z does not contain x, and similarly ξt (x,Z,W)

for ξt (x,Z ∪ {x},W). We also write

ξ∞(Z,W) :=
∫ 1

0
ξ∞

(
(0, s),Z,W

)
ds,

ξt (Z,W) :=
∫ 1

0
ξt

(
(0, s),Z,W

)
ds.

Recall the notation of the Poisson point process X and of the family of random
variables V , as well as their restrictions X t and V t . In the following theorem,
U denotes a random variable, uniform on (0,1], and independent of the point
process X and of V .

THEOREM 7 (Weak law of large numbers). Suppose that the following two
conditions hold:

(A) as t → ∞, the random variable ξt ((0,U),X t ,V t ) converges in probability
to the random variable ξ∞((0,U),X ,V);

(B) for some p > 1 we have the uniform moment condition

sup
t>0

E
[
ξt

(
(0,U),X t ,V t )p]

< ∞.
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Then, as t → ∞, we have the following convergence in the L1-sense:

1

t

∑
x∈X t

ξt

(
x,X t ,V t ) −→ E

[
ξ∞

(
(0,U),X ,V

)] = E
[
ξ∞(X ,V)

]
.(4.2)

REMARK 5. (i) Theorem 7 is an adaptation of Theorem 2.1 of Penrose and
Yukich [18] to our purpose. Their result also includes a de-Poissonisation, but this
is incompatible with our set-up because of the explicit time dependence of the
attachment probabilities.

(ii) Suppose now that only condition (A) is satisfied. On the one hand, the proof
still works if the family (ξt ((0,U),X t ,V t ))t>0 is uniformly integrable. On the
other hand, if E[ξ∞(X ,V)] = ∞, then, by applying the theorem to the bounded
functional ξk

t (x,Z,W) := ξt (x,Z,W) ∧ k and letting k go to ∞, we get the con-
vergence in probability of

1

t

∑
x∈X t

ξt

(
x,X t ,V t )

to +∞. The only case when the theorem does not yield any convergence result
is when E[ξ∞(X ,V)] is finite, but the family (ξt ((0,U),X t ,V t ))t>0 fails to be
uniformly integrable.

PROOF. As in Theorem 2.1 in [18] the proof relies on a first moment calcula-
tion, and then a second moment calculation which is performed under a stronger
uniform moment condition, and finally a step to allow the removal of this extra
condition.

First moment: We compute, by Campbell’s formula,

E

[
1

t

∑
x∈X t

ξt

(
x,X t ,V t )] =

∫
Tt×(0,1]

dx ds

t
E

[
ξt

(
(x, s),X t ,V t )]

=
∫ 1

0
dsE

[
ξt

(
(0, s),X t ,V t )]

= E
[
ξt

(
(0,U),X t ,V t )].

Note that in all these expressions but the first one, a point is added to X t . The sec-
ond equality follows from the spatial invariance by the translation θ t−x , both of the
functional ξt and of the law of (X t ,V t ). Now condition (A) states that the variables
ξt ((0,U),X t ,V t ) converge in probability to ξ∞((0,U),X ,V). Condition (B) en-
sures that they are uniformly integrable. Therefore we have convergence of the
expectations E[ξt ((0,U),X t ,V t )] to E[ξ∞((0,U),X ,V)], and this expectation is
finite.
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Second moment: We work here under the stronger assumption that the uniform
moment condition holds for some p > 2. Similarly as in the case of the first mo-
ment, we get

E

[(
1

t

∑
x∈X t

ξt

(
x,X t ,V t ))2]

= E

[
1

t2

∑
x∈X t

ξt

(
x,X t ,V t )2

]
+E

[
1

t2

∑
x,x′∈X t

x�=x′

ξt

(
x,X t ,V t )ξt

(
x′,X t ,V t )]

= 1

t
E

[
ξt

(
(X1,U1),X t ,V t )2]

+E
[
ξt

(
(tX1,U1),X t ∪ {

(tX2,U2)
}
,V t )

× ξt

(
(tX2,U2),X t ∪ {

(tX1,U1)
}
,V t )],

with X1 and X2 uniform in T1, U1 and U2 uniform in (0,1), and X , X1, U1,
X2, U2 independent. The first term goes to zero, thanks to the uniform moment
condition with p > 2 (p = 2 would be enough).

Now, the second term is the expectation of the following product of random
variables:

ξt

(
(0,U1), θ

t−tX1

(
X t ) ∪ {(

t (X2 − X1),U2
)}

, θ t−tX1

(
V t ))

(4.3)
× ξt

(
(0,U2), θ

t−tX2

(
X t ) ∪ {(

t (X1 − X2),U1
)}

, θ t−tX2

(
V t )),

whose behavior we have to understand. We first concentrate on the first term. Write

X̃ t := θ t−tX1

(
X t ) ∪ {(

t (X2 − X1),U2
)}

, Ṽ t := θ t−tX1

(
V t ).

We introduce three events, Et := {td(X1,X2) >
√

t}, Ft := {td(X1,1/2) >
√

t/2}
and Gt the event that the Poisson point process X t has at least one point in
{(x, s) :d(x,0) >

√
t}. These are all asymptotically almost sure (a.a.s.), in the

sense that their probability goes to one when t → ∞. We make two important
observations:

• On the event Et ∩ Ft , the restrictions to T√
t × (0,1] of the sets X̃ t and

θ−tX1(X ) coincide. Similarly, the restrictions to T√
t × (0,1] of the families

Ṽ t and θ−tX1(V) also coincide.
• The law of (X̃ t , Ṽ t ) knowing Et equals the law of (X t ,V t ) knowing Gt .

These observations allow the following calculation, with η some positive real
number. Note that we will apply now (and until the end of this proof) the functional
ξ√

t to point sets on R× (0,1] or Tt × (0,1] (and families indexed by E(R× (0,1])
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or E(Tt × (0,1])). This is only to lighten the notation a bit. It should always be
understood that the functional is applied to the restrictions on T√

t × (0,1].
lim sup
t→∞

P
{∣∣ξt

(
(0,U1), X̃ t , Ṽ t ) − ξ√

t

(
(0,U1), θ−tX1(X ), θ−tX1(V)

)∣∣ > η
}

= lim sup
t→∞

E
[
1
{∣∣ξt

(
(0,U1), X̃ t , Ṽ t )

− ξ√
t

(
(0,U1), θ−tX1(X ), θ−tX1(V)

)∣∣ > η
}
1Ft |Et

]
= lim sup

t→∞
E

[
1
{∣∣ξt

(
(0,U1), X̃ t , Ṽ t ) − ξ√

t

(
(0,U1), X̃ t , Ṽ t )∣∣ > η

}
1Ft |Et

]
= lim sup

t→∞
E

[
1
{∣∣ξt

(
(0,U1),X t ,V t ) − ξ√

t

(
(0,U1),X t ,V t )∣∣ > η

}
1Ft |Gt

]
= lim sup

t→∞
P

{∣∣ξt

(
(0,U1),X t ,V t ) − ξ√

t

(
(0,U1),X t ,V t )∣∣ > η

} = 0.

The last equality uses condition (A). Hence, the variable

ξt

(
(0,U1), X̃ t , Ṽ t ) − ξ√

t

(
(0,U1), θ−tX1(X ), θ−tX1(V)

)
converges in probability to zero. Similarly, one can see that the variable

ξt

(
(0,U2), θ

t−tX2

(
X t ) ∪ {(

t (X1 − X2),U1
)}

, θ t−tX2

(
V t ))

− ξ√
t

(
(0,U2), θ−tX2(X ), θ t−tX2

(V)
)

converges in probability to zero. Next, observe that the two variables

ξ√
t

(
(0,U1), θ−tX1(X ), θ−tX1(V)

)
and

ξ√
t

(
(0,U2), θ−tX2(X ), θ−tX2(V)

)
are independent conditionally on the event Et . Moreover, observe that the law of
each one converges to that of ξ∞((0,U1),X ,V), thanks to condition (A) again.
Gathering the results, we get that the product in (4.3) converges in law to the
product of two independent copies of ξ∞((0,U1),X ,V).

Finally, use Cauchy–Schwarz to get a uniform moment condition for this prod-
uct for p

2 > 1. Hence the expectation of the product goes to E[ξ∞((0,U1),X ,V)]2.
Therefore we get (4.2), with convergence even in L2.

Relaxing the moment condition: We finally work under the assumptions of the
theorem, that is, the uniform moment condition is satisfied only for some p > 1.
Introduce the bounded functional

ξk
t (x,Z,W) := ξt (x,Z,W) ∧ k.

This functional clearly satisfies condition (A) and the uniform moment condition
for any p, in particular for some p > 2. Therefore, we get the convergence of

1

t

∑
x∈X t

ξ k
t

(
x,X t ,V t )
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to E[ξ∞((0,U1),X ,V) ∧ k], in L2, and thus in L1. Now note that

E

[
1

t

∑
(x,s)∈X t

(
ξt

(
(x, s),X t ,V t ) − ξk

t

(
(x, s),X t ,V t ))]

= E
[
ξt

(
(0,U),X t ,V t ) − ξk

t

(
(0,U),X t ,V t )],

which is nonnegative and goes uniformly to zero for k → ∞, as the variables
ξt ((0,U),X t ,V t ) are uniformly integrable, by the uniform moment condition. It
follows that

1

t

∑
x∈X t

ξt

(
x,X t ,V t )

converges in L1 to the limit of E[ξ∞((0,U),X ,V) ∧ k], that is E[ξ∞((0,U),

X ,V)]. �

4.3. A bound on the indegree and on the linking probability. As we consider
various graphs on various spaces, we need to introduce more flexible notation for
the degrees. If G is a graph with vertices in Tt × (0,∞) we write x ↔ y to indicate
that there is an edge between the vertices x and y. If x0 = (x0, s0) is in G, then, for
any s ≥ s0, we define

Zx0(s,G) = ∣∣{(x, r) ∈ G : (x, r) ↔ (x0, s0), s0 < r ≤ s
}∣∣,

the indegree of x0 in G “at time s” and

Yx0(G) = ∣∣{(x, r) ∈ G : (x, r) ↔ (x0, s0), r < s0
}∣∣,

its outdegree. For t ∈ (0,∞] and for 0 < s0 ≤ s ≤ 1, we write

Zt
x0

(s) = Zx0

(
s,Gt (X ∪ {x0},V))

and Y t
x0

= Yx0

(
Gt (X ∪ {x0},V))

.

For fixed t and x0, call (Zt
x0

(s))s0≤s≤1 the indegree process. In this part only, we
extend the Poisson point process X on the whole R × (0,∞), and allow any 0 <

s0 ≤ s in the definition of Zt
x0

(s). For x0 ∈ T1 × (0,∞), the process (Z1
x0

(s))s≥s0

has the same law as the process (Zx0(s))s≥s0 introduced earlier in Section 2, so
that the results of this part apply simultaneously for the rescaled graphs and for the
unrescaled ones. Now, observe that the law of the indegree process does not depend
on the spatial position x0 ∈ Tt . Therefore, we simply write Zt

s0
(s) for Zt

(0,s0)
(s) and

Y t
s0

for Y t
(0,s0)

. If x and y are two vertices in X , we write x↔
t

y for the event that x

and y are linked in Gt(X ,V).

LEMMA 8. For all t > 0 and x0 ∈ Tt , we have almost surely

lnZt
x0

(s) ∼ γ ln s as s → ∞.



SPATIAL PREFERENTIAL ATTACHMENT NETWORKS 649

This lemma confirms that the degree of a fixed vertex in the unrescaled graphs
grows polynomially of order γ > 0, and in particular that it explodes. Before prov-
ing it we give a bound on the probability that a vertex reaches an exceptionally high
degree, allowing it to be connected to an exceptionally distant vertex. Exponential
bounds, uniform in t , are provided in the following lemma and its corollary. For
the sake of simplicity, they are only stated in the case of a linear function f . We
refer to Remark 6 for the general case.

LEMMA 9. Suppose f (k) = γ k +β , with γ ∈ (0,1) and β > 0. Let p = �β
γ

−
1�, so that f (k) ≤ γ (k +p+1). For any t ∈ (0,∞], any s0 < s ≤ 1 and any k ≥ 0,
the following inequality holds:

P
{
Zt

s0
(s) ≥ k

} ≤ ep/4 exp
(
−k

8

(
s0

s

)γ )
.(4.4)

COROLLARY 10. Under the assumptions of Lemma 9, define the inverse of
the profile function ϕ by

ϕ−1(u) := inf
{
x > 0 :ϕ(x) < u

}
.

Then there is a constant c depending only on f , such that for any t ∈ (0,∞] and
any (x, s) ∈ R× (0,1], we have

P
{
(0,1)↔

t
(x, s)|(0,1) ∈ X , (x, s) ∈ X ,V(0,1),(x,s) = u

}
(4.5)

≤ c exp
(
− |x|sγ

8γ ϕ−1(u)

)
.

REMARK 6. In the nonlinear case, we can first bound f from above by a linear
function, then, by an easy stochastic domination argument, get the inequalities of
the lemma and its corollary with the linear bound instead of f . We get almost
equally good bounds. More precisely, for any γ ′ > γ , we can find β ′ > 0 such
that f (k) ≤ γ ′k + β ′ for any natural number k, and we thus get bounds for any
exponent γ ′ > γ .

A first corollary of Lemma 9 is that the indegree Zt
x0

(s) is always almost surely
finite, even when t = ∞. The same holds for the outdegree; see Proposition 13
below.

At this stage, let us discuss the important monotonicity property. If we fix s0
and s and let t grow to +∞, then Zt

s0
(s) will grow and converge to Z∞

s0
(s). More-

over, if we change the position of the vertex to be nonzero, we do not change the
law of its indegree and therefore its indegree will still be stochastically increasing
in t and stochastically dominated by Z∞

s0
(s). By contrast, no such property holds

for the outdegree. Indeed, increasing t may increase the distance of two vertices
near opposite ends of the boundary of [− t

2 , t
2 ], thus decreasing the indegree of the
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younger vertex which, in turn, might destroy further links, eventually reducing the
outdegree of the vertex at the origin.

PROOF OF LEMMA 8. We fix s0 > 0 and start with the case t = ∞. The inde-
gree process (Z∞

s0
(s))s>s0 is an time-inhomogeneous pure birth process, starting

from Z∞
s0

(s0) = 0, and for which, at time s, the transition density from state k to
state k + 1 is f (k)/s. Indeed, given Zs0(s) = k, we have Z∞

s0
(s + ds) ≥ k + 1 if

and only if the set{
(y, u) ∈ X :u ∈ (s, s + ds],V(

(0,1), (y, u)
) ≤ ϕ

(
ud(y,0)

f (k)

)}
is nonempty, which due to the normalization of ϕ happens with probability
f (k)

s
ds + o(ds). We introduce a logarithmic change of time and write

Z̃(u) := Z∞
s0

(
s0e

u)
.

Then the process Z̃ is a time-homogeneous pure birth process, with jumping in-
tensity from state k to state k + 1 equal to f (k). Write Tk := inf{u : Z̃(u) ≥ k} for
the first time when this process hits state k, which is finite as f is nondecreasing.
Then (Ti+1 − Ti)i≥0 are independent, and Ti+1 − Ti is exponential with parameter
f (i). The process

Mk := Tk −
k−1∑
i=0

1

f (i)

is a martingale, which is bounded in L2 and thus convergent. Hence, we have
Tk ∼ 1

γ
lnk, and further

ln Z̃(u) ∼ γ u and lnZ∞
s0

(s) ∼ γ ln s.

For the case of a finite t , we first get, from the monotonicity property, the upper
bound

lim sup
s→∞

lnZt
s0

(s)

ln s
≤ γ.

In particular, a.s., we have Zt
s0

(s) ≤ s(1+γ )/2 for s large enough. But the process
(Zt

s0
(s))s>s0 is a time-inhomogeneous pure birth process with transition density

from state k to state k + 1

2f (k)

∫ (st)/(f (k))

0
ϕ(y)dy,

which is equivalent to f (k) when t ↑ ∞, uniformly for all s and k ≤ s(1+γ )/2. The
same arguments as in the case t = ∞ then yield the lower bound, showing that we
still have lnZt

s0
(s) ∼ γ ln s. �
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PROOF OF LEMMA 9. By the monotonicity argument we can suppose t = ∞
and, as before, we study the chain Z̃ and its hitting times Tk . The parameter of the
exponential variable Ti+1 − Ti is f (i), which is less than or equal to (p + i + 1)γ .
It follows that Tk (!!CHANGE!!) dominates stochastically a sum of independent
exponential random variables with parameters (p + 1)γ , (p + 2)γ, . . . , (p + k)γ ,
respectively.

Let (τ̃i)1≤i≤k+p be a family of i.i.d. random variables, each following an ex-
ponential law with the same parameter γ . Let (τ̃i1, τ̃i2, . . . , τ̃ik+p

) denote their de-
creasing rearrangement, and τ̃ik+p+1 = 0. For 1 ≤ j ≤ k + p, let τj = τ̃ij − τ̃ij+1 .
Then the family (τj )1≤j≤k+p is independent, and τj is an exponential variable
with parameter jγ . Observe also that

τp+1 + · · · + τp+k = τ̃ip+1 .

Hence,

P
{
Z∞

s0

(
s0e

u) ≥ k
} ≤ P{τ̃ip+1 ≤ u}.

Now write

{τ̃ip+1 ≤ u} =
{k+p∑

j=1

1{τ̃j > u} ≤ p

}
.

The sum of indicators follows a binomial law of parameters k + p and exp(−γ u).
Recall the concentration inequality for binomial random variables X,

P
{
X ≤ E[X] − λ

} ≤ exp
(
− λ2

2E[X]
)
.

We apply this with λ = 1
2(k + p) exp(−γ u) and get

P

{k+p∑
j=1

1{τ̃j > u} ≤ p

}
≤ exp

(
−k

8
e−γ u

)
1
{
2p ≤ ke−γ u} + 1

{
2p > ke−γ u}

≤ exp(p/4) exp
(
−k

8
e−γ u

)
.

Finally, gathering the results, and taking u = ln s − ln s0 gives, for any k ≥ 0,

P
{
Z∞

s0
(s) ≥ k

} ≤ exp(p/4) exp
(
−k

8

(
s0

s

)γ )
,

as required. �

PROOF OF COROLLARY 10. The event (0,1)↔
t

x coincides with the event

that the indegree of vertex x at time one is large enough to ensure that the linking
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condition is satisfied. This indegree has the same law as Zt
s(1) and is independent

of V((0,1),x). We thus get

P
{
(0,1)↔

t
x|(0,1) ∈ X ,x ∈ X ,V

(
(0,1),x

) = u
}

≤ P

{
ϕ

( |x|
f (Zt

s(1))

)
≥ u

}

≤ P

{
Zt

s(1) ≥ f −1
( |x|

ϕ−1(u)

)}

≤ ep/4 exp
(
−sγ

8

( |x|
γ ϕ−1(u)

− β

γ

))

≤ e(p/4)+(β/(8γ )) exp
(
− |x|sγ

8γ ϕ−1(u)

)
,

yielding (4.5) with the explicit constant c = e(p/4)+(β/(8γ )). �

5. Specific proofs of the main results. All the proofs of this section rely on
the application of Theorem 7 to appropriate functionals. The functionals we use
are only defined and used within each subsection. That is, the same notation in
different subsections indicates different functionals.

5.1. Empirical indegree distribution. The following lemma provides the ex-
pected indegree of a vertex in the infinite graph with age uniform on (0,1].

LEMMA 11. Let U be uniformly distributed in (0,1] and independent of the
point process X . Then, for any k ≥ 0, we have

P
{
Z∞

U (1) = k
} = μ(k),

where μ is the probability measure defined by

μ(k) = 1

1 + f (k)

k−1∏
l=0

f (l)

1 + f (l)
.(5.1)

PROOF. Recall that the process (Z∞
s0

(s0e
u))0≤u≤ln(1/s0) is a time-homoge-

neous pure birth process with transition intensity from state k to state k + 1
equal to f (k). Consider also the Markov chain (Ẑu)0≤u≤ln(1/s0) with values in
[s0,1] × N ∪ {0} started in Ẑ0 = (s0,0), such that at time u the jumping inten-
sity from state (s, k) to state (s, k + 1) equals f (k), and from state (s, k) to state
(s0e

u,0) equals one.
The following facts are easy to check:

(1) The first coordinate Ẑ1
ln(1/s0)

of the chain (Ẑu)0≤u≤ln(1/s0) at time ln(1/s0) is
equal to s0 with probability s0 and otherwise uniformly distributed on the interval
[s0,1].
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(2) Conditionally on Ẑ1
ln(1/s0)

= s1, the second coordinate Ẑ2
ln(1/s0)

has the same
law as the random variable Z∞

s1
(1).

(3) The second coordinate (Ẑ2
u)0≤u≤ln(1/s0) is a time-homogeneous Markov

chain, jumping from k to k + 1 with intensity f (k), and from k to zero with inten-
sity one.

The Markov chain stated in the third point was already encountered in [8]. It is
recurrent and its law converges to its invariant measure, which is precisely μ. From
the first two points, we deduce that the law of Ẑ2

ln 1/s0
conditional on Ẑ1

ln 1/s0
�= s0

is the same as the law of Z∞
U (t), where U is uniform on [s0,1]. Now, letting s0 go

to zero gives the result. �

PROOF OF THEOREM 1. Let g be a nondecreasing functional satisfying
〈μ,gp〉 < ∞ for some p > 1. We will apply Theorem 7 with the functionals
ξt (x,Z,W) := g(Zx(1,Gt(Z ∪ {x},W))), t ∈ (0,∞], so that for x ∈ X t , we have
ξt (x,X ,V) = g(Zt

x(1)).
First, observe that the expectation of ξ∞(X ,V) is 〈μ,g〉. Second, observe the

following two simple consequences of the monotonicity property. The process
(Zt

U (1))t>0 is nondecreasing and converges almost surely to Z∞
U (1), which is fi-

nite almost surely. Moreover, the following uniform moment condition is satisfied:

sup
t>0

E
[
ξt

(
(0,U),X ,V

)p] ≤ E
[
ξ∞

(
(0,U),X ,V

)p] = 〈
μ,gp〉

< ∞.

Hence, Theorem 7 ensures the convergence

1

t

∑
x∈X t

g
(
Zt

x(1)
) −→ 〈μ,g〉,

in L1 and thus in probability. Combining this with the well-known convergence
|X t |/t → 1 gives the convergence in probability

1

|X t |
∑

x∈X t

g
(
Zt

x(1)
) −→ 〈μ,g〉,

and thus proves Theorem 1. �

We close this subsection with a lemma which implies Proposition 5(i).

LEMMA 12. Almost surely, for any x = (x, s) ∈ X , the incoming edges of x in
Gt(X ,V) and in G∞(X ,V) are finite in number and coincide for large t .

REMARK 7. The monotonicity property implies that the indegree of a vertex
x in Gt(X ,V) converges almost surely to that in G∞(X ,V) if the position of the
vertex is zero, or in probability if its position is nonzero. The lemma guarantees
that there is actually always almost sure convergence.
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PROOF. We work conditionally on x = (x, s) ∈ X , and start by showing that
there exists an almost surely finite random variable M such that, for all t ∈ (0,∞]
and y ∈ X younger than x and at distance at least M of x, the vertices x and y are
not linked in Gt(X ,V).

The strategy is to find a coupling with a model independent of t , based on the
observation that the distance between x and y in Tt can be shortened by at most
2|x| compared to that in R. Let K be the number of vertices in X located at dis-
tance at most 2|x| of x, which is an almost surely finite random variable. Consider
the model where:

• the vertices within distance 2|x| of x are deleted;
• the other vertices all come closer to x by distance 2|x|;
• the attachment rule f is replaced by the rule fK : i �→ f (i + K).

It should be clear that the vertices y ∈ X younger than x, at distance at least 2|x|
of x, which are linked to x in some finite graph Gt(X ,V), are also linked to x
in this model. Furthermore, the indegree of x is still finite almost surely. Hence it
suffices to choose M as the distance of x to the furthest younger vertex it is linked
to in this model, plus 2|x|.

Finally, all that is left to show is that the incoming edges of x linking it to a
younger vertex y within distance M coincide in Gt(X ,V) and in G∞(X ,V), for
large t . This follows from the following two simple observations. First, the vertex
x is linked to no other younger vertex beyond distance M—in G∞(X ,V) or in
any Gt(X ,V)—which could influence its indegree. Second, for t ≥ |x| + M , the
vertices in X and in X t within distance M of x coincide. Hence, for t ≥ |x| + M ,
the vertex x has the same incoming edges in Gt(X ,V) and in G∞(X ,V). �

5.2. Empirical outdegree distribution. The following proposition describes
what we know about the expected outdegree distribution in the infinite picture.

PROPOSITION 13. For any u ∈ (0,1], the expected outdegree distribution, de-
fined by the weights

ν(k) := P
{
Y∞

u = k
}
, k ∈N∪ {0,∞},(5.2)

is independent of u. Moreover, the measure ν is a probability measure on N ∪ {0}
[i.e., ν(∞) = 0] and it is light tailed in the sense that for any δ ∈ (0,1 − γ ), we
have

ν
([k,∞)

) = o
(
e−kδ )

.

PROOF. The fact that ν(k) does not depend on u is a simple consequence of
the rescaling invariance property. Therefore we only consider u = 1, and we watch
for the law of Y∞

1 , the outdegree of the point (0,1) in the infinite picture.
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Attach to each vertex x ∈ X the value Vx := V((0,1),x). Then each vertex can
be identified with a point of R× (0,1] × (0,1), and the set of vertices becomes a
Poisson point process of intensity one on R× (0,1] × (0,1). The idea is to define
a domain Ek such that the probability that there is any vertex in Ek linked to (0,1)

is O(e−kδ
), and the probability that there are in total at least k vertices in the com-

plement of Ek (not necessarily linked to 0) is also O(e−kδ
). This goes as follows:

• Fix δ ∈ (0,1 − γ ). Choose first γ ′ ∈ [γ,1 − δ) such that inequality (4.5) is
satisfied for some constant c ∈ (0,∞) (this is always possible, in the linear case
even with γ ′ = γ , see Corollary 10 and Remark 6). Then, choose δ1, δ2 such
that δ < δ2 < δ1 < 1 − γ ′.

• Introduce

Ek =
{
(x, s, u) ∈ R× (0,1] × (0,1) :

x

ϕ−1(u)
≥ kδ/δ2, s ≥

(
x

ϕ−1(u)

)−(1−δ1)/γ
′}

.

Then, from Corollary 10, for any x = (x, s) and u such that (x, s, u) ∈ Ek , we have

P
{
(0,1)↔

t
x|x ∈X ,Vx = u

}
≤ c exp

(
− |x|sγ ′

8γ ′ϕ−1(u)

)
≤ c exp

(
− 1

8γ ′
( |x|

ϕ−1(u)

)δ1)
.

Therefore, we get

E
[∣∣{(x, s, u) ∈ Ek : (x, s) ∈X ,Vx = u, (0,1)↔∞ (x, s)

}∣∣]
≤

∫∫∫
Ek

dx ds duc exp
(
− 1

8γ ′
( |x|

ϕ−1(u)

)δ1)

≤
∫∫

{|x|/(ϕ−1(u))≥kδ/δ2 }
dx duc exp

(
− 1

8γ ′
( |x|

ϕ−1(u)

)δ1)

≤ 2
∫ 1

0
ϕ−1(u)du

∫
[kδ/δ2 ,∞)

c exp
(
− 1

8γ ′ y
δ1

)
dy,

with the change of variable y = |x|/ϕ−1(u). The first integral is equal to the inte-
gral of ϕ on [0,∞), that is, 1/2. For the second integral, introduce an appropriate
constant C1 and get∫

[kδ/δ2 ,∞)
c exp

(
− 1

8γ ′ y
δ1

)
dy

≤
∫
[kδ/δ2 ,∞)

C1
δ2

8γ ′ y
δ2−1 exp

(
− 1

8γ ′ y
δ2

)
dy ≤ C1 exp

(−kδ).
The right-hand side is a bound to the expected number of vertices in Ek linked to
(0,1), and thus it is also a bound to the probability that there is any vertex in Ek

linked to (0,1).
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Now, with an easier calculation we get that the total Lebesgue measure of the
complement of Ek is bounded by∫∫∫

R×(0,1]×(0,1)
dx duds

(
1
{
y ≤ kδ/δ2

} + 1
{
s ≤ y−(1−δ1)/γ

′})
≤ 2

∫ 1

0
ϕ−1(u)du

∫
(0,∞)

(
1
{
y ≤ kδ/δ2

} + (1 ∧ y)−(1−δ1)/γ
′)

dy

and is therefore less than kδ/δ2 plus a constant C2. As the total number of points
of X in this domain is a Poisson variable of parameter less than kδ/δ2 + C2, we
have

P
{∣∣{(x, s, u) /∈ Ek : (x, s) ∈ X ,Vx = u, (0,1)↔∞ (x, s)

}∣∣ ≥ k
}

≤ (kδ/δ2 + C2)
k

k! ≤ 1√
2πk

(
e

k

(
kδ/δ2 + C2

))k

,

by Stirling’s formula. As δ < δ2 the right-hand side is decaying superexponentially
fast and therefore, summing up the estimates, the overall probability that the out-
degree of (0,1) is greater than or equal to k is bounded by a constant multiple of
exp(−kδ). Hence ν([k,∞)) = O(exp(−kδ)), as claimed. �

The same proof, with the sets Ek and their complements replaced by their re-
strictions to x ∈ (−t/2, t/2] also yields

P
{
Y t

u ≥ k
} ≤ (C1 + C3) exp

(−kδ)(5.3)

with the same constants C1 and C3 for any u and t . Hence, the variables Y t
u are

stochastically dominated by a light-tailed random variable (this variable may not
be Y∞

1 , recall that Y t
u is not monotone in t).

Take g a function satisfying g(k) = O(exp(kδ)) for some δ < 1 − γ , and define

ξt (x,Z,W) := g
(
Yx

(
Gt (Z ∪ {x},W)))

,

for t ∈ (0,∞], so that ξt (x,X ,V) = g(Y t
x). Domination (5.3) provides the uni-

form moment condition (for any given p > 1). Theorem 2 follows, provided we
prove the convergence in probability of ξt ((0, u),X ,V) to ξ∞((0, u),X ,V), for
any u ∈ (0,1]. The following lemma proves more, and also completes the proof of
Proposition 5.

LEMMA 14. Almost surely, for any x = (x, s) ∈ X , the outgoing edges of x in
Gt(X ,V) and in G∞(X ,V) are finite in number and coincide for large t .

PROOF. Again, we suppose without loss of generality s = 1 and work condi-
tionally on x = (x,1) ∈ X . Observe that if M is any finite number then, almost
surely, all the indegrees of vertices in the graph Gt(X ,V) with spatial position
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in [x − M,x + M] go to the corresponding indegrees in G∞(X ,V). Therefore,
almost surely, the outgoing edges linking x to a vertex within distance M of x co-
incide in Gt(X ,V) and in G∞(X ,V), for large t . The latter remains true if M is
random, but finite almost surely. The lemma then follows if we show that there ex-
ists an almost surely finite random variable M such that for all t ∈ (0,∞], for each
x′ ∈ X at distance at least M of x, the vertices x and x′ are not linked in Gt(X ,V).

To prove this, we use again the coupled model introduced in the proof of
Lemma 12. Again, the vertices linked to x in some finite graph Gt(X ,V) are also
linked to x in the coupled model. Furthermore, in the coupled model, it is clear
that the outdegree of x is still finite almost surely, and we can simply choose M

to be the distance of x to the furthest vertex it is linked to in this model, plus 2|x|.
�

5.3. Clustering.

5.3.1. Average clustering coefficient. In this part, consider, for t ∈ (0,∞], the
functionals ξt and ξ ′

t defined by

ξt (x,Z,W) = cloc
x

(
Gt (Z ∪ {x},W))

,

ξ ′
t (x,Z,W) = 1

{
x ∈ V2

(
Gt (Z ∪ {x},W))}

,

with the convention ξt (x,Z,W) = 0 if x /∈ V2(G
t(Z ∪ {x},W)), that is, if x has

degree less than two. Thanks to Proposition 5 and its corollary, we know that
for any x, there is almost sure convergence of ξt (x,X ,V) to ξ∞(x,X ,V), and of
ξ ′
t (x,X ,V) to ξ ′∞(x,X ,V). In particular, condition (A) of Theorem 7 is satisfied

for both functionals. Moreover, as they take values in [0,1], the uniform moment
condition (B) is also satisfied. We immediately deduce the convergence in L1 and
in probability of

1

t

∑
x∈X t

cloc
x

(
Gt(X ,V)

)
and

|V2|
t

to the constants E[ξ∞((0,U),X ,V)] and P{(0,U) ∈ V2(G
t(X ∪ {(0,U)},V))},

respectively. Hence the average clustering coefficient converges in probability to

cav∞ := E
[
ξ∞

(
(0,U),X ,V

)|(0,U) ∈ V2
(
Gt (X ∪ {

(0,U)
}
,V

))]
.

This constant is the expected local clustering coefficient of the infinite graph at
vertex (0,U), conditionally on the event that its degree is at least two. It is hard to
compute analytically, but it clearly belongs to (0,1). The first part of Theorem 3 is
proved.

5.3.2. Global clustering coefficient. The estimation of the global clustering
coefficient relies on separate estimations of the number of triangles and of the
number of open triangles in the network. We choose to count the triangles from
their youngest vertex, and define the functional ξt (x,Z,W) to be the number of
triangles in Gt(Z ∪ {x},W) having x as youngest vertex. Again, Proposition 5
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ensures that condition (A) is satisfied. The simple observation that ξt (x,X ,V) is
bounded from above by Y t

x(Y t
x − 1)/2, together with inequality (5.3), ensures that

the uniform moment condition (B) is satisfied for any p > 1, and we can apply
Theorem 7. The number of triangles in the network Gt(X ,V), divided by t , con-
verges to a positive and finite constant. In other words, the number of triangles is
asymptotically proportional to the number of vertices.

Similarly, we introduce the functionals

ξ ′
t (x,X ,V) = Zt

x(1)(Zt
x(1) − 1)

2
and

ξ ′′
t (x,X ,V) = Y t

xZt
x(1) + Y t

x(Y t
x − 1)

2
,

where ξ ′
t corresponds to the open triangles whose tip x is the oldest vertex, and ξ ′′

t

are the remaining open triangles with tip in x. For both functionals, condition (A)
follows again from Proposition 5. Condition (B) for functional ξ ′′

t is also automat-
ically satisfied, for any 1 < p < 1

γ
. More precisely, to bound the expectation of the

product (Y t
UZt

U (1))p , first use their independence conditionally on U = u, then
use the domination (5.3) to bound uniformly E[(Y t

u)
p], before integrating with

respect to u. Therefore the number of open triangles whose tip is not the oldest
vertex, divided by t , converges in probability to a positive and finite constant.

It is only for the functional ξ ′
t that we must discuss different cases. Suppose

first
∑

k2μ(k) = ∞, which implies E[ξ ′∞(X ,V)] = ∞. In that case, Theorem 7
and Remark 5 imply that the number of open triangles with tip the oldest ver-
tex, divided by t , goes to +∞ in probability. Hence, the global clustering co-
efficient converges in probability to zero. Finally, suppose

∑
k2μ(k) < ∞ and

hence E[ξ ′∞(X ,V)] < ∞. The monotonicity property implies that the variables
ξ ′
t ((0,U),X t ,V t ) are always uniformly integrable, even when condition (B) is not

satisfied,2 and allows to conclude that the global clustering coefficient converges
in probability to a positive constant.

5.4. Empirical edge length distribution. The law of the distribution λt , the
rescaled empirical edge length distribution in the original graph Gt , is the same as
the law of the unrescaled empirical edge length distribution in the graph Gt(X ,V),
which we will denote by λ̃t . We have, abbreviating Et := E(Gt(X t ,V t )) and as-
suming it is not empty,

λ̃t = 1

|Et |
∑

(x′,x)∈Et

δd(x′,x) =
( ∑

x∈X t

Y t
x

)−1 ∑
x∈X t

∑
x′∈X t ,x′ ↔

t
x

x′ older than x

δd(x′,x),

2If γ < 1
2 , then (B) holds for any 1 < p < 1

2γ
, but if γ = 1

2 and
∑

k2μ(k) < ∞, then (B) does not
hold.
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where we have chosen to count each edge from its younger vertex. Define the
probability measure λ on [0,+∞) by

λ(A) = 1

E[Y∞
(0,U)]

E
[∣∣{(x, s) ∈ X : (x, s)↔∞ (0,U), s < U, |x| ∈ A

}∣∣],
for any Borel set A ⊂ [0,∞), where U denotes a random variable uniformly dis-
tributed on (0,1) and independent of X and V . By application of Theorem 7 we
get, for any x ∈ [0,∞),

λ̃t

([x,∞)
) −→ λ

([x,∞)
)
,

in probability. A technical but simple argument shows convergence in probability
of λ̃t to λ in the space of probability measures on [0,+∞), equipped with the
Lévy–Prokhorov metric, which defines narrow convergence. This proves the first
part of Theorem 4.

Next we estimate the order of λ([K,∞)) when K is large. Fix K > 0. We have

λ
([K,∞)

) = 2
∫
�

dx ⊗ dt ⊗ du ⊗ ds P
{
(x, s)↔∞ (0, t)|V(

(x, s), (0, t)
) = u

}
,

where � is the domain {(x, t, u, s) ∈ [K,∞) × (0,1)3 : s < t}. The factor two
comes from the fact that we have chosen x > 0. The linking probability contains
an implicit conditioning on the event that (x, s) and (0, t) are in X . As in the proof
of Corollary 10 we can rewrite

P
{
(x, s)↔∞ (0, t)|V(

(x, s), (0, t)
) = u

} = P
{
Z∞

s (t) ≥ f −1(
tx/ϕ−1(u)

)}
= P

{
Z∞

s/t (1) ≥ f −1(
tx/ϕ−1(u)

)}
,

where f −1 is the right-continuous inverse of f . Changing the variable

(x, t, u, s) �→ (y, z, u, r) with y = tx

ϕ−1(u)
, z = Kϕ−1(u)

x
, r = s

t
,

sending � to �′ = {(y, z, u, r) ∈ (0,∞)3 × (0,1), z ≤ K
y
,u ≤ ϕ(z)} we get

λ
([K,∞)

) = 2K−1
∫
(0,∞)

dy y

(∫
(0,K/y)

dz

∫
(0,ϕ(z))

duϕ−1(u)

)

×
(∫

(0,1)
dr P

{
Z∞

r (1) ≥ f −1(y)
})

= 2K−1
∫ ∞

0
dy yI

(
K

y

)
J (y),

with I and J defined to be the two integrals in brackets in the first line. For an
estimate of J , we simply note that J (y) = μ(�f −1(y)�,∞) 	 1 ∧ y−1/γ . For an
estimate of I we start with the equality∫

(0,ϕ(z))
duϕ−1(u) =

∫
(0,∞)

ϕ(z ∨ v)dv,
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based on the observation that they both represent the area of{
(u, v) ∈ (0,∞)2 :u ≤ ϕ(z), v ≤ ϕ(z)

}
,

to get

I (a) =
∫
(0,a)×(0,∞)

dz ⊗ dv ϕ(z ∨ v) = 2
∫
(0,a)

vϕ(v)dv + a

∫
(a,∞)

ϕ(v)dv.

Now, elementary calculations yield

I (a) 	
⎧⎨⎩a ∧ 1, if

∫ ∞
0

vϕ(v)dv < ∞,

a ∧ a2−δ, if ϕ(v) 	 1 ∧ v−δ for δ ∈ (1,2].
Finally, another elementary calculation shows that we have

λ
([K,∞)

) 	 1 ∧ (
K−1 + K1−(1/γ ) + K1−δ),

and Theorem 4 follows.

6. Variants of the model.

6.1. Discrete versus continuous time. We have decided to define our model
in continuous time, as this is naturally aligned with our techniques of proof. We
expect that all our results hold without change for the analogous discrete model,
but we have not attempted to derive this from our results as we do not expect to
get interesting insights from this. We point out that the weak law of large num-
bers in [18] includes a de-Poissonisation, but this cannot be applied directly in
our case as it does not deal with the explicit time dependence of the attachment
probabilities.

6.2. The case γ ≥ 1. This assumption leads to a very different behavior, which
we briefly discuss. Lemma 8 does not hold anymore. Instead, the indegree of a
fixed vertex (the oldest one, e.g.), grows roughly linearly, and it will be eventu-
ally connected to a positive proportion of the younger vertices. The length of its
incoming edges is thus of order one. The law of large numbers, Theorem 7, holds
unchanged, as well as Theorem 1. That said, we have

∑
kμ(k) = ∞, which implies

that the total number of edges is superlinear. The empirical outdegree distribution
converges vaguely to the null distribution, as all the mass escapes to infinity. In
the infinite picture, the outdegree of each vertex is almost surely infinite. Finally,
the same phenomenon happens to the empirical edge length distribution, if we still
rescale it by the same factor of t . Note that [1] also contains results for the case
γ = 1, corresponding to pA1 = 1 in their notation, which are consistent with our
observations.

6.3. Higher-dimensional space. We have chosen to present our results for spa-
tial distributions given as uniform distributions on the one-dimensional torus to
keep technicalities to a minimum. Nothing would change if we replace the torus
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by the unit interval, as boundary effects will be negligible. There is also no prob-
lem generalizing results to higher-dimensional tori Td , or unit cubes. In fact, if we
connect the vertex y = (y, t) to an older vertex x with probability

ϕ

(
t1/dd(x,y)

f (Zx(t−))1/d

)
,

and normalize the profile function so that∫
Rd

ϕ
(
d(0, y)

)
dy = 1,

we can recover Theorems 1, 2 and 3 verbatim by the same arguments. In the em-
pirical edge length distribution we need to rescale by a factor of t1/d instead of t ,
and we obtain a limiting edge length distribution λ, which depends on the dimen-
sion. If the profile function scales like ϕ(x) 	 1 ∧ x−δ we need to have δ > d to
meet the integrability condition. Then we recover Theorem 4 with η ∈ (0, d] the
smallest of the three constants d , δ − d and d( 1

γ
− 1). If η > 1, then λ has a first

moment, and the mean edge length is of order t−1/d .

6.4. More general underlying spaces. It is no problem to define our model in
a general metric space. However this can lead to a significant change in the be-
havior, as inhomogeneities in the underlying space introduce an element of fitness
of individual vertices. In a similar spirit one can change the spatial distribution of
incoming vertices. Again one would expect that small changes do not change the
qualitative behavior, whereas highly fluctuating densities can have a major effect.
These problems have recently been discussed by Jordan [15] for a closely related
model.

6.5. Further remarks and problems. Our technique allows the analysis of a
wide range of functionals of spatial preferential attachment networks, and we have
only picked those that appeared most interesting to us at this point. Other network
“metrics” that could be studied are the total edge length, the number of occurrences
of a particular finite subgraph (or motif), or the number of (suitably defined) high
density spots.

More generally, the local limit results established here offer a handle to the
study of global connectivity problems, for example, the existence and diameter
of a giant component. This would be of particular interest as nontrivial rigorous
results on the existence of the giant component have never been established for
dynamic network models that are not locally tree-like. Existence of a giant com-
ponent for an interesting static example, which is not locally tree-like, is studied
in [5]. A first discussion including a simulation-based conjecture for the location
of a phase transition related to the existence of a giant component in the model
of [1] can be found in [7].
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