
Statistical Science
2013, Vol. 28, No. 4, 586–615
DOI: 10.1214/13-STS451
© Institute of Mathematical Statistics, 2013

Wildfire Prediction to Inform Fire
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Abstract. Wildfire is an important system process of the earth that occurs
across a wide range of spatial and temporal scales. A variety of methods have
been used to predict wildfire phenomena during the past century to better
our understanding of fire processes and to inform fire and land management
decision-making. Statistical methods have an important role in wildfire pre-
diction due to the inherent stochastic nature of fire phenomena at all scales.

Predictive models have exploited several sources of data describing fire
phenomena. Experimental data are scarce; observational data are dominated
by statistics compiled by government fire management agencies, primarily
for administrative purposes and increasingly from remote sensing observa-
tions. Fires are rare events at many scales. The data describing fire phenom-
ena can be zero-heavy and nonstationary over both space and time. Users
of fire modeling methodologies are mainly fire management agencies often
working under great time constraints, thus, complex models have to be effi-
ciently estimated.

We focus on providing an understanding of some of the information needed
for fire management decision-making and of the challenges involved in pre-
dicting fire occurrence, growth and frequency at regional, national and global
scales.

Key words and phrases: Environmetrics, forest fire, prediction, review,
wildland fire.

1. INTRODUCTION

“Predicting the behavior of wildland fires—among
nature’s most potent forces—can save lives, money,
and natural resources.”

Frank Albini (1984)
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Wildfires have likely occurred on the earth since the
appearance of terrestrial vegetation in the Silurian era,
420 million years B.P. (Bowman et al., 2009), and are
an important ecosystem process on all continents ex-
cept Antarctica, influencing the composition and struc-
ture of plant and animal communities, as well as carbon
and other biogeochemical cycles. Emissions of CO2,
other trace gasses and particulates from biomass burn-
ing contribute to annual and inter-annual variation in
atmospheric chemistry (Andreae and Merlet, 2001), in-
cluding the formation of cloud condensation nuclei that
influence global radiation and precipitation budgets,
and in the case of black carbon, accelerate the melting
of ice and snow (Bond et al., 2013). Wildfires also have
significant social and economic impacts, sometimes
resulting in the evacuation of communities, fatalities,
smoke impacts on human health (Finlay et al., 2012),
property loss and the destruction of forest resources.
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Instrumental records suggest that the average global
temperature increased 0.8◦C in the last century
(Hansen et al., 2006). However, because global an-
nual burned area data have only been available for
about the past 15 years from satellite observations,1

it has only been possible to examine the effects of
changes in climate during the past century on fire ac-
tivity in a few regions with long-term administrative
records. For example, area burned increased signif-
icantly in Canada as a whole, the province of On-
tario, Canada, and in northwestern Ontario in the lat-
ter compared to the earlier half of the period 1918–
2000 (Podur, Martell and Knight, 2002); and, the fire
season has been lengthening in the provinces of Al-
berta and Ontario, Canada (Albert-Green et al., 2013).
Increases in the area burned in the western US dur-
ing the 1970–2005 period were associated with earlier
spring snowmelt (Westerling et al., 2006). However,
at a regional scale, decreases in area burned in many
ecological zones in the province of British Columbia,
Canada, were associated with increases in precipita-
tion during 1920–2000 (Meyn et al., 2010). Climate
warming scenarios of 2.5–3.5◦C over the next century
are expected to result in increases in global wildfire
activity (Flannigan et al., 2009), but such changes are
expected to vary by region due to projected changes in
the amount and distribution of precipitation (Krawchuk
et al., 2009).

Since wildfire management is likely to become in-
creasingly challenging under a changing climate, better
predictive tools will be needed. We believe that statis-
tical science can make important contributions to im-
proving wildfire prediction at local to global scales.

1.1 Prediction in Wildfire Management

Most wildfire management organizations in North
America and elsewhere have developed the capacity
to respond rapidly to wildfires that threaten communi-
ties and other values with highly-mobile fire manage-
ment resources (fire fighters, equipment and aircraft)
in order to contain and extinguish fires while they are
small. Minimizing the time intervals between when a
fire is ignited, detected and actioned is key to success-
ful initial attack. While this approach is effective for
most fires, a small number (typically less than 5% in
Canada) escape initial attack and continue to spread,

1Using MODIS satellite data, Giglio et al. (2009) estimated that
the global annual burned area was between 3.31 and 4.31 million
km2 during 1997–2008 (Figure A.3).

requiring additional resources as fire size and complex-
ity increase.2

The number, severity and sizes of fires vary substan-
tially within and between regions, as well as within and
between years, due in part to variation in weather, cli-
mate, other environmental conditions and demographic
and human behavioral factors. Much early fire research
in North America focused on the development of fire
danger rating systems that were designed to capture the
cumulative effects of weather in numerical measures of
daily fire potential (Taylor and Alexander, 2006; Hardy
and Hardy, 2007). The fire danger systems developed
and used in Australia, Canada and the United States,
for example, are based primarily on empirical models
of weather effects on the moisture content and flamma-
bility of various organic layers (e.g., the moss layers
and dead pine needles on the forest floor) (Fujioka
et al., 2008). Fire danger measures are connected to
fire activity in many environments (Viegas et al., 1999).
Thus, when fire occurrence and fire behavior mod-
els were later developed, they often included fire dan-
ger measures as covariates (Wotton, 2009). Computer-
based fire management information systems have sub-
sequently been developed to collect, process, interpo-
late and distribute weather, fire danger measures and
model predictions throughout fire organizations, many
in almost real-time (Doan and Martell, 1974; Lee et al.,
2002).

One important feature of many fire regimes is the
sharp peaks in fire activity that are often associated
with high pressure systems, lightning storms or other
severe synoptic-scale weather events. Although fire
management organizations collaborate and often share
resources on regional, national and even continental
scales, they are not always able to respond fully to
some peaks in fire activity, which subsequently place
significant stress on the system and increase the likeli-
hood of elevated costs and losses. In addition to limits

2The Incident Command System (ICS) is used by many wild-
fire management organizations. It provides a flexible organizational
structure that can be expanded depending on the complexity of the
incident (Bigley and Roberts, 2001). The five incident complexity
classes (Type 5–1) recognized in ICS are associated with an in-
creasing need for resources for longer periods of time. For example,
a Type 5 wildfire that is less than a few hectares in size may be con-
trolled by 3–5 fire fighters, which may be supported by helicopters
or airtankers for up to one or two days, while a larger Type 1 in-
cident of thousands of hectares in size that threatens a community
will require a much more significant response, including a special-
ized incident management team (IMT) and hundreds, perhaps even
thousands of firefighters and other resources that can be sustained
for many days to weeks.
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on resources, fire suppression effectiveness varies with
fire size and intensity—direct fire suppression meth-
ods cannot be used when the fire intensity exceeds safe
working conditions for ground crews, or when high
winds or smoke ground aircraft or render their drops
ineffective. Thus, there is increasing interest in miti-
gating the risk of extreme fire behavior by manipulat-
ing fuel conditions (vegetation), in reducing the vul-
nerability of communities, and in choosing to monitor
rather than fully suppress some fires that pose little or
no threat to public safety, property or forest resources.

Fire activity varies substantially, and often rapidly,
from local to national scales; spatio-temporal variabil-
ity is one of the main challenges in wildfire man-
agement. Because resources are limited, both for mit-
igating and responding to wildfire risks, predictive
models are needed to support planning and decision-
making (Andrews, Finney and Fischetti, 2007; Preisler
and Ager, 2013). Martell (1982) described many of
the strategic, tactical and operational decision-making
problems faced by fire managers, and of early efforts
to bring operations research methods to bear on them.
These include:

1. Strategic decisions about the long-term require-
ments for resources (e.g., number and type of air-
tankers) in large regions, such as states or provinces,
and where they should be home-based, depending on
the expected number, variation and distribution of inci-
dents.

2. At the tactical level, the number and size of fires
that are expected to be ignited, detected and reported
over shorter periods of days to weeks influences deci-
sions concerning the state of preparedness or organi-
zational readiness, the allocation of resources within a
region, and the acquisition (or release) of additional re-
sources from outside the region through mutual aid re-
source sharing agreements. The expected daily fire oc-
currence is important for prepositioning fire crews and
routing aircraft for fire detection. The expected growth
of individual fires over days or weeks informs deci-
sions concerning the evacuation of communities in the
path of a fire or whether some fires burning in remote
areas can be simply monitored and allowed to burn
relatively freely without threatening public safety, re-
sources or infrastructure.

3. Because conditions can change rapidly, opera-
tional decisions are typically made over minutes and
hours during a day. Airtankers and other resources may
be re-deployed and dispatched to fires as each day pro-
gresses. The expected behavior and growth of an indi-
vidual fire over the daily burning period is important

FIG. 1. Wildland fire risk elements are compounded over a range
of spatial and temporal scales. Reinterpreted from Simard (1991).

for planning the dispatch and safe deployment of fire-
fighters and other resources on fires.

In this paper we review some of the models that
have been developed to predict fire occurrence, growth
and frequency, and how they are linked across mul-
tiple scales (Figure 1). While there have been impor-
tant contributions from many regions, we have focused
on the North American fire literature because that is
the region in which we have carried out most of our
fire-related research. Section 2 discusses tools for ig-
nition and fire occurrence prediction, with connections
to point processes and case–control methods. Section 3
discusses fire spread/growth and fire size models. Sec-
tion 4 reviews models for estimating burned area and
fire frequency. The Appendix provides an overview
of the sources—and limitations—of various types of
wildfire data that have been used in predictive models.

Interspersed throughout this paper, and especially in
the closing section, are discussions of open challenging
wildfire management questions that we hope will be of
interest, stimulating the development of new tools for
this critical area of science. We note that, personally,
our collaborative work with teams of statisticians, fire
scientists and fire managers has proven to be a rich and
rewarding platform for interdisciplinary research and
training.
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FIG. 2. The raw daily number of human- and lightning-caused fires in British Columbia, Canada, during the 1986 fire season observed
on fire days, defined as a day during which at least one fire is observed. The 20-year 90th percentile thresholds are indicated (Magnussen
and Taylor, 2012b). Days with >90th percentile number of lightning fire starts are difficult to predict but severely challenge the ability of fire
management agencies to respond quickly to all fires.

2. FIRE OCCURRENCE

Wildland fires are ignited by both people and nat-
ural processes. Natural fires are caused mainly3 by
cloud-to-ground lightning strokes (Anderson, 2002)
that ignite trees or organic matter at the base of the
tree they strike, while people-caused fires occur when
needle, leaf or grass litter is ignited. Anthropogenic
sources of ignition include machinery (sparks, friction
and hot surfaces), arcing from electrical transmission
lines, sparks or firebrands from escaped campfires, pre-
scribed fires, agricultural and land clearing fires, and
arson. An ignition that leads to sustained fire spread
may be reported and recorded by a fire management
agency or, in some cases (e.g., in more northern re-
gions of Canada), it is detected by satellite-borne sen-
sors. The locations, times and number of forest fire ig-
nitions appearing in historical fire records are inher-
ently random. In many cases such records contain trun-
cated or censored data: only fires that are reported to a
fire management agency appear in the records and in
many cases the time of ignition is estimated.4 Fire ig-
nition rates vary drastically over both time and space

3A small number of wildfires have also been ascribed to volcanic
activity (Ainsworth and Kauffman, 2009) and meteorites [e.g., the
1908 Tunguska event in Siberia (Svetsov, 2002)].

4Most fire managers and researchers use the term “occurrence”
to refer to fires that are detected and reported, although the queue-
ing theory term “arrivals” is also sometimes used to distinguish de-
tected and reported from nondetected fires.

and their relative frequency of occurrence depends on
locally observed covariates, including the intensity of
the ignition process. There is often greater variability
in the daily number of lightning than anthropogenic
ignitions (Figure 2). This is because, when lightning
storms occur, they can produce thousands of lighting
strikes and tens–hundreds of fire starts in a few hours.

2.1 Probability of Ignition

Regardless of the initial source of ignition, if suffi-
cient heat is produced from combustion, adjacent par-
ticles (e.g., needle, leaf, grass and twig litter, or other
organic material) will also be heated to their igni-
tion temperature, resulting in sustained fire spread. The
probability of ignition is related mainly to the physical
properties of dead organic matter and its moisture con-
tent, which varies by day and across all spatial scales.
Regression methods have been employed to quantify
the probability of sustained ignition under varying con-
ditions. In some studies, samples of litter or sub-litter
fuels taken in the field are subjected to ignition ex-
periments in the laboratory (Frandsen, 1997; Plucinski
and Anderson, 2008). In other cases, ignition experi-
ments are conducted directly in the field. In their lo-
gistic regression based reanalysis of experimental test
fires in Canada, Beverly and Wotton (2007) concluded
that the primary driver of sustained flaming ignition
from firebrands is the moisture content of fine fuels.
The moisture in more heavily compacted organic mat-
ter below these fine fuels along with relative humidity
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also impacted the probability of sustained ignition for
some fuel types. Similar results have been observed in
other regions of the world. An analysis of experimen-
tal fires in Tasmanian grasslands, for example, revealed
that sustained ignition was strongly driven by the mois-
ture content of the dead fuel as well as the amount of
dead fuel available for combustion (Leonard, 2009).
Earlier analyses, using logistic regression and classifi-
cation trees, for data on Tasmanian grassland fires also
revealed and quantified the interaction between wind
speed and dead fuel moisture: wetter fuels require a
higher wind speed to sustain ignition, otherwise they
are more likely to self-extinguish (Marsden-Smedley,
Catchpole and Pyrke, 2001).

2.2 Fire Occurrence Prediction

Early fire occurrence prediction related the number
of fires per day to fire danger indices, usually for a sin-
gle spatial unit or administrative region. Many models
have subsequently been developed using a variety of
modeling approaches and covariates and for a variety
of spatial and temporal scales. Fire occurrence mod-
els typically include variables believed to influence ig-
nition potential (fuels, fuel moisture, ignition source)
in a particular environment, tempered with practical
considerations regarding data availability. In addition
to weather, fuel moisture and fire danger indices, other
explanatory variables have included historic spatial and
seasonal trends, vegetation type, the number and at-
tributes of lightning strikes, population and road den-
sity.

Fire occurrence models for large areas need to ac-
commodate variation in topographic, fuel, weather
and fuel moisture conditions. Advances in computing,
communication and data collection from weather sta-
tion networks in near-real time (Lee et al., 2002) have
permitted the implementation of sophisticated grid-
based fire occurrence models for larger and more vari-
able geographic areas. In these models, the weather
and fire danger index variables derived from multiple
weather stations are interpolated across the grid units
based on distance and elevation (Kourtz and Todd,
1991; Todd and Kourtz, 1991). The advent of lightning
location systems (Krider et al., 1980) also facilitated
lightning-caused fire prediction (Kourtz and Todd,
1991). Models of lightning fire occurrence should have
greater temporal and spatial specificity (correct pre-
diction) than human-caused fires because the ignition
process can be observed.

It is important to note that the probability of igni-
tion differs from the probability of fire occurrence in

the sense that not all fires that achieve sustained igni-
tion may be detected: fire occurrence data is left cen-
sored. However, fire occurrence prediction models are
much more common than models for the probability
of ignition. Woolford et al. (2011) provided a brief re-
view of fire occurrence prediction, which focused on
the use of logistic generalized additive models to ap-
proximate the covariate-dependent, inhomogeneous in-
tensity function of a point process model. There, they
also discussed how the response-based sampling used
in some of these models is related to case–control stud-
ies. We paraphrase and expand upon that discourse in
what follows; we also summarize a newly developed
methodology for monitoring for temporal trends in his-
torical records on fire occurrence, motivated by climate
change concerns. For a recent and concise review of
fire risk and other forest fire models, see Preisler and
Ager (2013).

Given the stochastic nature of fire ignitions, a point-
process with a conditional intensity function is a nat-
ural modeling framework. The first stochastic model
for predicting the occurrence of fires appears to have
been developed by Bruce (1960), who utilized a nega-
tive binomial model that related counts to a fire danger
rating index. Subsequently, Cunningham and Martell
(1973) developed a Poisson model for counts of fires
whose nonspatial conditional intensity function de-
pended on fuel moisture, as measured by the Cana-
dian Fine Fuel Moisture Code (FFMC) (Van Wagner,
1987). The FFMC represents the moisture content of
litter fuels on the forest floor—for example, the higher
the FFMC, the drier the needle litter on the forest floor.
Data from a weather station near the center of a fire
management unit in northwestern Ontario were used to
predict daily counts of fires within that region.

In Ontario, Bernoulli processes have been used to
model the risk of forest fire occurrence since the late
1980s. For example, Martell, Otukol and Stocks (1987)
constructed a set of logistic models for the daily risk
of people-caused fires in northern Ontario. These were
marginal models, without spatial or temporal compo-
nents, fit to individual “subseasons” that partitioned
the fire season. Seasonal trends were subsequently in-
corporated by Martell, Bevilacqua and Stocks (1989)
through periodic functions. The seasonality of fire oc-
currence is of interest to fire management for planning
purposes, although the strong seasonal variation in On-
tario’s boreal is not universally observed in other re-
gions. Moreover, such seasonal trends are not spatially
homogeneous, as illustrated in the site-specific fire risk
curves presented by Woolford et al. (2009) who also
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explored for spatial patterns using a singular-value de-
composition approach, somewhat analogous to regres-
sion on principal component scores.

Some modeling efforts have quantified ignition and
occurrence risk, such as the site-specific models for fire
ignition and occurrence of Wotton and Martell (2005).
Logistic methods have the advantage that locally ob-
served covariates can be related to each individual fire,
while Poisson-based models connect counts to aver-
ages of such covariates over a larger region. More-
over, overdispersion is of concern when Poisson-based
methods are used to model counts. Overdispersion is of
less concern when logistic models are fit to binary data;
however, this is not true when temporal and/or spatial
correlation needs to be incorporated.

Relatively little work has been done to explore the
use of point-process methods for analyzing the occur-
rences of forest fires in space–time. However, some re-
cent advances in point-pattern software hold promise
in this regard [see Turner (2009) for an example]. Non-
parametric tests for investigating the separability of
a spatio-temporal marked point process are described
and compared in Schoenberg (2004), where a Cramer–
von Mises-type test is demonstrated to be powerful at
detecting gradual departures from separability, while
a residual test based on randomly rescaling the pro-
cess is powerful at detecting nonseparable clustering
or inhibition of the marks. An application to Los An-
geles County wildfire data shows that the separability
hypotheses are invalidated largely due to clustering of
fires of similar sizes within periods of up to about 4
years. In more recent work, Xu and Schoenberg (2011)
showed that the Burning Index, produced by the US
Fire Danger Rating System, and commonly used in
forecasting the hazard of wildfire activity, is less effec-
tive at predicting wildfires in Los Angeles County than
simple point process models incorporating raw meteo-
rological information. Their point process models in-
corporate seasonal wildfire trends, daily and lagged
weather variables, and historical spatial burn patterns.
Nichols et al. (2011) developed a method for summa-
rizing repeated realizations of a space–time marked
point process, called prototyping, and applied this tech-
nique to databases of wildfires in California to pro-
duce more precise summaries of patterns in the spatio-
temporal distribution of wildfires within each wildfire
season.

The importance of Poisson processes in model-
ing the risk of wildfire occurrence was described by
Brillinger, Preisler and Benoit (2003), who focused
on the underlying spatio-temporal conditional intensity

function and described methods for approximating the
corresponding likelihood. They advocated partitioning
the space–time domain into a set of space–time voxels
(x, x + dx] × (y, y + dy] × (t, t + dt], where (x, y)

are spatial location covariates and t indexes time. The
spatio-temporal point process of interest, N(x, y, t),
counts the number of fires in a voxel and has condi-
tional intensity function

λ(x, y, t) = Pr{dN(x, y, t) = 1|Ht }
dx dy dt

,

where the σ -algebra Ht denotes the history of N(x, y,

t) over (0, t], which consists of the set of observed
points in space–time up to time t .

If the underlying intensity function depends on a pa-
rameter θ = θ(x), where x denotes a vector of locally
observed covariates, the log-likelihood of the process
is

L(θ) =
∫ T

0

∫
x

∫
y

log
[
λ(x, y, t |θ)

]
dN(x, y, t)

−
∫ T

0

∫
x

∫
y

log
[
λ(x, y, t |θ)

]
dx dy dt.

Brillinger, Preisler and Benoit (2003) listed three
practical approaches to approximation of this log-
likelihood that could be used for model fitting. (Note
that although both terms in the above equation cover
large regions of both space and time, it is the second
term which is challenging to evaluate.) Their first ap-
proach outlined a method for approximating the ex-
pected value of the log-likelihood. However, that does
not appear to be widely employed in forestry appli-
cations. Instead, their two other approaches, related
to binomial approximations to the Poisson, are more
commonly used. In such approximations, the number
of binomial trials may be very large especially if a set
of voxels on a very fine spatio-temporal scale, such
as 1 km2 × daily cells, is used. On this scale fires are
very rare events and only presence/absence is recorded.
Then the underlying rate λx,y,t = λ(x, y, t |θ) is ap-
proximately the Bernoulli probability of observing a
fire in that given space–time region, leading to the
Bernoulli approximation to the log-likelihood:∑

x,y,t

Nx,y,t log(λx,y,t )

+ ∑
x,y,t

(1 − Nx,y,t ) log(1 − λx,y,t ).

Therefore, a generalized linear model with the linear
predictor logit{λ[x, y, t |θ(x)]} = xβ , where x denotes
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a vector of covariates and β denotes the correspond-
ing vector of parameters, can be used to approximate
the underlying process and, more importantly, quantify
the probability of fire occurrence as a function of lo-
cally observed covariates. Generalized additive models
(GAMs) have been employed to incorporate potential
nonlinear relationships for the explanatory variables
(Preisler et al., 2004; Preisler and Westerling, 2007;
Vilar et al., 2010; Woolford et al., 2011). For example,
periodic seasonal effects may be incorporated into the
linear predictor using locally weighted regression or
penalized spline smoothers (Wood, 2006). Thin plate
splines have also been used to add a spatial term as a
surrogate for unobservable human land use patterns or
unobserved vegetation patterns.

The Bernoulli approximation of the likelihood func-
tion induces computational difficulties since for any
practical study, the cardinality of the set of voxels ex-
plodes to such a large size that model fitting is not com-
putationally convenient/feasible. Response-based strat-
ified sampling schemes are employed to deal with this
issue: data from voxels where a fire is present are kept,
but only a random sample of the zero-fire voxels are
retained for the analysis.

The response-based sampling of the voxel data is
analogous to study designs from logistic retrospective
case–control studies. This induces a deterministic off-
set of log(1/πst ) in the logistic GAM, where πst de-
notes the inclusion probability for the observation at
site s at time t . Note that the use of an offset in the
linear predictor to account for the response-based sam-
pling only works when modeling on the logit scale and
not when other link functions, such as the probit or the
complementary log–log, are employed in a binomial
GAM. Garcia et al. (1995) appear to be the first to use
response-based sampling in a logistic model for fire oc-
currence. More recently, it has been employed in logis-
tic GAMs which incorporate temporal and spatial ef-
fects (e.g., Brillinger, Preisler and Benoit, 2003, 2006;
Preisler et al., 2004; Vilar et al., 2010; Woolford et al.,
2011).

Let Y denote the fire occurrence indicator, P(Y =
1|x) = px, and assume logit(px) = α+xβ , where x is a
row vector of covariates and β is a column vector of pa-
rameters. This logistic framework implies that the rela-
tive risk corresponding to two voxels with correspond-
ing explanatory variables x1 and x2 is exp{(x1 −x2)β}.
Similar formulations hold for a logistic GAM because
the nonlinear relationships on the link scale are mod-
eled as a linear combination of basis functions. In

that context, exp{fm(xm1) − fm(xm2)} is the associ-
ated change in risk when the covariate in the mth addi-
tive nonlinear partial effect fm in a GAM changes from
xm1 to xm2. This framework is the same as a prospec-
tive analysis in medical studies when whether or not
an individual will develop a disease is not known in
advance. In contrast, with a case–control study, sub-
jects are selected based on their disease status (here,
fire or nonfire voxel is the analogy) and their expo-
sure or treatment (here, covariate vector) is determined
retrospectively. In this context, the covariate values
are viewed as random. However, it has been shown
that inferences surrounding relative risk can be ob-
tained using the same logistic model as in the prospec-
tive study (Breslow and Powers, 1978). Letting δ de-
note an indicator for whether or not an individual is
sampled, the corresponding inclusion probabilities can
be stratified by response: π1 = Pr{δ = 1|Y = 1} and
π0 = Pr{δ = 1|Y = 0}. Usually a case (Y = 1) is a
rare event, relative to the population size. In the fire
study analogy, all cases are included (π1 is 1) and π0
is usually fairly small. Through a Bayes argument, it is
straightforward to show that such response-dependent
sampling induces a deterministic offset into the model.
Specifically, the intercept changes by an additive factor
of log(π1/π0). Since the sampling probabilities depend
only on the observed disease (fire) status and not on
covariates, the covariate effects are identical to those
from a prospective analysis. The analyses of the fire
occurrence data where all fire events are retained for
the analysis and only a sample of the nonfire events are
included is identical to the above case–control formu-
lation.

Over the past decade, there have been multiple stud-
ies using response-specific sampling in logistic GAMs
for fire occurrence. Brillinger, Preisler and Benoit
(2003) quantified “baseline” spatial and temporal ef-
fects for wildfire occurrence in federal lands in Ore-
gon, U.S.A. Preisler et al. (2004) extended that work,
incorporating partial effects of other locally observed
fire-weather covariates, and proposed modeling the
risk of a large fire event conditional on a fire occur-
rence being present [Figure 3(a)]. Similar models for
California were presented by Brillinger, Preisler and
Benoit (2006), who also assessed whether random ef-
fects should be included. Other related work includes
Vilar et al. (2010) and Woolford et al. (2011), who
modeled people-caused wildfire risk in Madrid, Spain
and a region of boreal forest in northeastern Ontario,
Canada, respectively. Both of those studies explored
how locally observed anthropogenic variables (e.g.,
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(a)

(b)

FIG. 3. (a) The probability of a large fire given ignition in 1 km
cells in Oregon on 29 July 1996 (Preisler et al., 2004). (b) The
probability of more than person-caused fire occurring in ∼9000
400 km2 cells and observed fires on 21 May 1985 in British
Columbia, Canada (Magnussen and Taylor, 2012a).

density of roads in the cell, distance to the nearest rail-
road line, population density, etc.) impacted the prob-
ability of fire occurrence. These types of models have
been extended to produce one month ahead forecasts
for the probability of large fires (Preisler and Wester-
ling, 2007; Preisler et al., 2008) and have been used to
quantify spatially explicit risk forecasts for large fires
and to estimate suppression costs (Preisler et al., 2011).
We elaborate on these latter developments when we
discuss burn probability models.

Recently, Magnussen and Taylor (2012a) devel-
oped a set of six models to predict daily lightning
and person-caused fire occurrence for the province of
British Columbia, Canada, at 20-km (400 km2) reso-
lution [Figure 3(b)]. Their methodology employs an
ensemble of annual logistic models for predicting the
risk of fires being present in a given cell. Piecewise

linear predictors were incorporated to handle nonlin-
ear relationships on the logit scale and separate annual
models were fit. Those models connected linear seg-
ments together at sets of knots which form a partition
over the range of the predictor to produce a piecewise
linear function. This piecewise linear framework had
the advantage that the placement of knots could be
done using domain knowledge, rather than the penal-
ized spline approach where many knots are employed
and the likelihood is penalized to prevent overfitting
of the data. Separate annual models were fit because
of known variability in parameter effects from year to
year. This permitted (1) leave-one-out cross-validation
assessment of predictive ability (e.g., Wood, 2006) and
(2) the quantification of unbiased estimators of the re-
gression parameters, and corresponding standard er-
rors, without explicitly stating the structure of year-to-
year random effects. This allowed for the joint fitting of
a province-wide model, rather than separate marginal
models over a partition of a province, such as Wotton
and Martell’s (2005) lightning occurrence models for
the province of Ontario, Canada. Magnussen and Tay-
lor (2012a) coupled the results from their logistic mod-
els to zero-truncated Poisson models in order to model
the daily number of fires, conditional on fires being
present in a given cell. They also developed models for
predicting medium-term (i.e., 2–14 days ahead) light-
ning fire occurrence using an atmospheric stability in-
dex (determined from the mesoscale ensemble weather
model output) as a proxy for future lightning activity.
While this model is less accurate than those including
observed lighting strikes, forecasts over this time pe-
riod are important for fire management planning.

It is desirable to model fire occurrence risk on a fine
scale, so the probability that a fire will occur can be re-
lated to locally observed conditions, rather than some
average value. Then, fitted values can be aggregated
to “scale up” to a coarser resolution. However, not all
such logistic GAMs use a fine scale. Large scale mod-
els must often be at coarser resolution because of data
availability and computational limitations. Krawchuk
et al. (2009) investigated spatio-temporal patterns in
fire activity in a global sense, by modeling on a coarser
100-km (10,000 km2) × decadal scale. Climate sce-
narios were then used to forecast future changes in fire
activity. Their work found increases in future fire ac-
tivity in certain regions and decreases in other regions.

Recently, researchers have been exploring methods
for monitoring long-term trends in forest fire occur-
rence through analyses driven by historical fire records,
focusing on natural, lightning-caused forest fires (e.g.,
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Albert-Green et al., 2013; Woolford et al., 2010, 2013).
Woolford et al. (2010) looked for changes to inter and
intra-annual trends in lightning-caused fire occurrences
in a region of Boreal forest in Ontario, Canada. They
compared a set of nested logistic generalized addi-
tive mixed models that had fixed effects for seasonal-
ity components, annual trends and their interactions,
along with annual random effects to account for year-
to-year variability, and an autoregressive component to
account for daily serial correlation. Their final model
employed a bivariate smoother of the ordered pair (day
of year, year) and suggested that the probability of fires
being present in this region was increasing over time
and that the effective length of the fire season appeared
to be lengthening.

One feature of the Woolford et al. (2010) model was
that the local seasonal behavior within a given year
could be impacted by neighboring years due to the
functional form of the specified signal component. In
arid regions, a wet growing season may result in higher
grass biomass and more fire activity in a subsequent
dry year (Greenville et al., 2009). However, except in
cases of extreme drought at the end of a fire season and
low winter precipitation, there is usually enough win-
tertime precipitation in temperate and boreal forests to
saturate surface organic fuels (Lawson and Armitage,
2008) such that fire seasons are essentially indepen-
dent. Albert-Green et al. (2013) addressed this con-
cern in the boreal forest by estimating the historical
seasonal trends in fire occurrence risk as a single risk
curve (i.e., a univariate smoother of time over the en-
tire study period). When annual slices of those curves
were explored, it appeared that the fire season’s length
was changing by starting earlier and/or ending later
each year. A second stage to their analysis tested for
trends in the lengthening of the fire season. The fire
season was defined as the time between the first up-
crossing and last downcrossing of a pre-specified fire
risk threshold each year. Confidence bands associated
with the estimate smoother were used to find a range of
dates that were plausible for each given crossing that
defined the start and end of each year’s fire season, so
uncertainty in these estimates was incorporated in test-
ing for trends. They found that the lightning-caused fire
season appeared to be both starting earlier and ending
later in Alberta, Canada, and ending later in Ontario.

A difficulty with historical analyses such as in
Woolford et al. (2010) or Albert-Green et al. (2013)
is the potential confounding effects of changes in fire
detection system effectiveness. For example, Woolford
et al. (2010) noted that the median size at detection

of lightning-caused fires decreased during 1963–2004.
Lightning fires occurring in remote areas may take
longer to detect (and so grow in size) than person-
caused fires, which tend to be concentrated near pop-
ulated places. Smaller lightning fire sizes at detection
suggested that detection may have become more effec-
tive, which is a potential confounder with any changes
due to a warming climate.

These and further complications to the analysis of
data from such historical records have led to more com-
plicated approaches, such as the use of mixture mod-
els for analyzing trends in historical fire risk. Three
dominant characteristics are observed in records of
lightning-caused fire occurrence in Ontario: regular
seasonal patterns and large departures above or below
this pattern, where many more fires are observed than
normal, or so-called zero-heavy behavior when no fires
are present on the landscape. Letting Xt denote the
number of fire days during time period t , and letting
0, R and E denote the zero-heavy, regular and extreme
behavior components, Woolford et al. (2013) proposed
the use of a mixture of logistic GAMs to model weekly
counts of fire days:

Xt ∼ π0(y)bin
(
7,p0(w) = 0

) + πR(y)Bin
(
7,pR(w)

)
+ πE(y)Bin

(
7,pE(w)

)
,

where w and y index the week and year, respectively.
The binomial probabilities for the nondegenerate com-
ponent are modeled using penalized spline smoothers
(e.g., Wood, 2006) and the mixing probabilities are pa-
rameterized to test for shifts away from zero-heavy be-
havior toward regular or extreme behavior by the multi-
nomial regression of the log-odds against year (y):

logit
(

πj (y)

π0(y)

)
= αj + βjy, j = R,E.

When used to analyze lightning-caused forest fire oc-
currences in a region of northwestern Ontario,
Woolford et al. (2013) found a dramatic decline in
the probability of zero-heavy behavior, which was off-
set by shifts toward increased chances membership in
the regular seasonal or extreme behavior components.
Their model corroborated that the probability of fire
occurrence, especially the length of elevated risk, has
been increasing over time in that region. Moreover,
through a second-stage analysis they found a signifi-
cant association with temperature anomalies and fire-
weather indices, which suggests that the increased like-
lihood of seeing more fire on the landscape than dur-
ing “regular” years was related to a warming climate.
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Their work also quantified the power of three hypoth-
esis tests (Wald, score and permutation) for testing for
trends, as well as the length of historical record which
would be required for achieving high power when test-
ing for trends. They found that the permutation test
had the highest power and that the power of such tests
would dramatically increase as the sample size (i.e.,
length of the study period) increased beyond 40 years
of data for this region. Investigating the length of his-
torical records required to test for trends with a speci-
fied power has been overlooked in these sorts of anal-
yses.

3. FIRE GROWTH

After a fire has been ignited, it will continue to
spread as long as sufficient heat is produced by the fire
front to ignite adjacent dead or live organic matter, if
available. The rate of fire spread (ROS) is determined
by the rate at which heat is transferred from burning
to unburned fuel, which is captured in the fundamental
equation of spread (Weber, 2001):

Rate of spread = Heat flux from active combustion

Heat required for fuel ignition

= q

ρQig
,

where q is the heat flux from active combustion, ρ is
the fuel density, and Qig is the enthalpy per unit mass
required for ignition. ROS is influenced by many en-
vironmental factors (e.g., moisture content of fine fu-
els, air temperature and wind speed) and characteristics
of the fuel complex (surface area/volume, void space,
depth, temperature).

Fires spread horizontally in surface fuels in two
dimensions—with and parallel to the wind direction at
the head of the fire, but also, at a decreasing rate, lat-
erally and against the wind direction around the flanks
and back of the fire (Figure 4). However, in coniferous
forests and shrub vegetation, fires can also spread from
the ground surface to and in the vegetation canopy if
sufficient heat is produced by the surface fire to heat
the crown foliage to ignition temperature (Van Wag-
ner, 1977). When a fire “crowns,” ROS increases sub-
stantially as the flame zone becomes exposed to the
ambient wind above the vegetation canopy. As a fire
continues to grow in size, firebrands may be lofted
ahead and start new fires; as the smoke plume extends
to greater heights in the atmosphere, it may develop a
three-dimensional circulation with stronger upper level
winds.

ROS and fireline intensity (energy release per unit
timer per unit of fire front length) have a diurnal cycle

FIG. 4. The Cobbler Road Fire near Yass, New South Wales, Australia, on 2 January 2013 (Photo: Chris Hadfield/NASA). At the time the
photograph was taken, the fire was approximately 18 km long and was spreading through fully-cured grass and open woodland under the
influence of an ∼50 km/h wind (Cruz and Alexander, 2013). The maximum flame zone depth and intensity occurs at the head of the fire in the
lower right, and decreases around the perimeter toward the origin in the upper left.
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associated with daily variation in temperature, relative
humidity and wind speed—typically following a sine-
wave pattern with a pre-dawn minimum and late after-
noon peak (Beck et al., 2002) which is compounded
by stochastic variation in wind speed over seconds–
minutes. Thus, ROS can vary over more than 2 orders
of magnitude from less than 1 m min−1 to 100–200+
m min−1 within and between days during a single fire
event, as well as between fires due to variation in the
environment.5

Fire duration (the time from ignition to extinguish-
ment) varies from shorter than 1 day to many weeks
or even months. Within this period a fire may only
exhibit significant spread for a period of minutes to
hours within a single day or during a number of burn-
ing periods on multiple days. Variation in wind direc-
tion also influences fire growth. In the extreme case, an
abrupt 90◦ shift in the surface wind direction (which
commonly precedes a cold front) can turn a long fire
flank (e.g., Figure 4) into the head, greatly increasing
fire growth. Thus, variation in the number, magnitude
and direction of spread events results in fire sizes6from
10−3–104 km2.

The simplicity of the fundamental equation of fire
spread belies the significant challenge of developing
models that provide useful estimates of wildfire spread
and growth over a range of weather conditions, veg-
etation types and time periods. Show (1919) carried
out the first known field research on wildland fire
spread, summarizing fire perimeter growth in relation
to fuel moisture content and wind speed, while Fons
(1946) proposed the first physical model of wildfire
spread. Subsequently, spread modeling has followed
these two divergent approaches, which are commonly
classified as (a) empirical or (b) physical and quasi-
physical (Sullivan, 2009a, 2009b). Empirical models
are based on statistical relationships between envi-
ronmental factors and ROS, while physical models
are based on physical and chemical principles; quasi-
physical conserve energy, but do not differentiate be-
tween modes of heat transfer. At least 30 empirical and
40 physical/quasi-physical models of fire spread have
been developed [see reviews by Weber, 1991; Pastor

5Sustained ROS of 110+ m min−1 has been observed in
crown fires in conifer forests in North America, while ROS of
250+ m min−1 has been documented in grass fires in Australia
(Cheney, Gould and Catchpole, 1998).

6The size of the largest recorded individual fire is an unsettled
question. Among the largest documented is the Great Black Dragon
fire, which coalesced from several fires to ultimately burn 1.3 ×
105 km2 in northern China during May 1987 (Cahoon et al., 1994).

et al., 2003; Sullivan, 2009a, 2009b, and Alexander and
Cruz, 2013].

3.1 Spread Rate Models

ROS models express fire growth as the simple one-
dimensional linear progression of the head, back or
flank of the fire at 0, 180 and 90◦ to the wind direction,
respectively (e.g., in units of m·min−1 or km·hr−1).

Empirical approaches have used regression methods
to predict ROS as function of wind speed, fuel mois-
ture content, fuel weight and ground slope. Models are
typically developed for different vegetation conditions
such as conifer and hardwood forests, grassland, shrub
and heathland fuels, and logging slash based on field
and laboratory experiments (e.g., Figure A.2), admin-
istrative fire reports and observations of wildfires.

The Canadian Forest Fire Behavior Prediction (FBP)
System (Forestry Canada Fire Danger Group, 1992) is
an example of a well-developed empirical fire behavior
system, where likelihood approaches were used to esti-
mate the parameters a and b in the Chapman–Richards
equation:

ROS = a × [
1 − e(−b×ISI)]c.

The parameter c represents the asymptote and was
set for each fuel type as the maximum fire spread rates
observed in coniferous forests and grasslands (see foot-
note 5). The Initial Spread Index (ISI) is an index that
is based on wind speed and fine fuel moisture content.
FBP model calibration was based on observations of
ROS in experimental fires and wildfires in 17 forest and
grass fuel types. The transition from surface to crown
fire is implicit in the sigmoidal curves relating initial
spread index to ROS (Figure 5), except in one vegeta-
tion type where it is based on physical considerations
(Van Wagner, 1977). In reanalyses of the FBP System
data, Cruz, Alexander and Wakimoto (2003) estimated
the probability of crown fire using a logistic model, and
developed a model of crown fire ROS as a function of
crown bulk density, wind speed and moisture content
in coniferous forests (Cruz, Alexander and Wakimoto,
2005).

An important milestone in translating physical prin-
ciples to practical application was Rothermel’s (1972)
semi-physical implementation of the fundamental
equation of spread as

ROS = (Ip)o(1 + φw + φs)

ρεQig
,

where the propagating heating flux for a zero wind/
slope situation (Ip)o, the wind and slope correction
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FIG. 5. Observed (points) and predicted (line) rate of fire spread
in lodgepole and jack pine forests in relation to the Initial Spread
Index of the FWI System (redrawn from Forestry Canada Fire Dan-
ger Group, 1992). The predicted curve is derived from MLE of pa-
rameters of the Chapman–Richards equation. The surface fire ob-
servations are from experimental fires, while a number of the crown
fires include wildfire observations.

factors φw and φs , and the effective heating number
ε were parameterized for surface fires in laboratory ex-
periments. The fuel density ρ can be estimated for var-
ious fuel types by field sampling. This equation was
incorporated in the BEHAVE model (Andrews, 1986),
which is widely used to predict surface fire spread in
the United States and elsewhere.

Sources of error in wildfire spread prediction in-
clude lack of model suitability and accuracy, as well
as measurement or sampling errors in data used as in-
put (Albini, 1976; Alexander and Cruz, 2013). It may
be difficult to decompose prediction error into these
sources when evaluating the accuracy of a particular
spread model against wildfire observations. A major
challenge in this regard is that model inputs such as
wind speed vary over both space and time. For exam-
ple, because air flow over and within forest canopies
is turbulent (and also may be affected by the fire dy-
namics), wind speed varies at a scale of seconds over
distances of 10 s metres, making accurate estimates at
the fire front difficult (Sullivan and Knight, 2001). In
a review of the accuracy of ten empirical and semi-
empirical models of fire spread (Cruz and Alexander,
2013), six of the models had mean absolute prediction
errors (MAPE) of 20–40% with respect to their source

data sets. MAPE was defined as

MAPE = 1

n

n∑
i=1

( |ŷi − yi |
yi

)
100,

where yi was the observed rate of spread, ŷi was its
corresponding predicted value, and i indexed the sam-
ple of size n.

Those identical ten spread models have been ap-
plied in at least forty-eight independent studies with
more than five observations arising from experimental,
prescribed fires and wildfires. Seven studies compris-
ing mostly experimental fires (which presumably had
the most accurate inputs and spread documentation)
had a MAPE of 20–30%. A further nine, twenty-six,
and seven studies with MAPE of 31–50%, 51–75%,
and >75%, respectively, are a mix of wild, experi-
mental, and prescribed fires. The Rothermel (1972)
spread model was the most widely applied—its median
MAPE in twenty-eight studies was 57% (range 20–
310%). Because there have been few model compari-
son studies (e.g., Sauvagnargues-Lesage et al., 2001)
or systematic model evaluation programs (Cruz and
Alexander, 2013), validation data have only accumu-
lated slowly over time. The accuracy of some models
and/or the accuracy of predictions in some vegetation
types is, unfortunately, not well described.

3.2 Fire Growth Models

Because fire spread rate in empirical and semi-
physical models such as BEHAVE and the FBP System
is one dimensional, geometric models have been de-
veloped to project fire growth over time in two dimen-
sions. Van Wagner (1969) proposed the use of an ellip-
tical fire growth model with fire size A and perimeter
length P :

A = π

2
(v + w) × u × t2;

P ≈ π(a + b)

(
1 + M2

4

)
,

where u, v and w are the flank, head and back fire ROS,
respectively, t is the elapsed time since ignition, and a

and b are the long and short semi-axes of the ellipse, re-
spectively [which are related to ROS as a = (v+w)t/2
and b = ut], and M = (a − b)/(a + b). The equa-
tion for P is an approximation for the circumference
of an ellipse, truncating an infinite Gauss–Kummer se-
ries at the second term. Other models that extend the
idea of an elliptical-based model have also been pro-
posed (Anderson, 1983). Although critical examina-
tion shows that fire growth, even in uniform conditions,
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(a)

(b)

FIG. 6. (a) The elliptical fire growth model is robust in early
stages of fire growth. The area and perimeter can be calculated
from the long and short semi-axes, a and b, respectively, which in
turn can be calculated from the head, back and flank fire spread
rates and the elapsed time from the fire origin, denoted by an “o”
in the plot (redrawn from Van Wagner, 1969). (b) Thirty-five-minute
simulation of fire perimeter growth in heterogenous fuels at 25 m
resolution at 5 minute intervals following the wavelet propagation
approach in Prometheus (Tymstra et al., 2010). The colors repre-
sent different fuel types (gray is boreal spruce, beige is grass, and
blue is spruce lichen woodland). The red circle represents the igni-
tion point, and the black dots are the individual vertices along the
fire perimeters.

is ellipse-like at best, the use of a model based on an
ellipse nonetheless provides robust estimates of area
and perimeter in the early stages of fire growth [Fig-
ure 6(a)].7 The elliptical model has two useful proper-

7It is worth noting that only a thin zone around the fire perimeter
from tens of centimetres–metres in depth is actively flaming at any
time [Figure 5(a)]; this is because the duration of flaming at any

ties when ROS is constant: (1) the area burned by the
fire at any time is proportional to the square of the time
since ignition (growth in area follows a power func-
tion), and (2) the rate of fire perimeter increase with
time is constant (Van Wagner, 1969).

However, where fires spread for periods of hours
to days, ROS and spread direction are influenced by
variation in wind speed and direction, as well as by
variation in fuel properties and topographic conditions.
Fire growth simulation models have been developed to
project fire growth in heterogeneous conditions in two
dimensions using one-dimensional ROS equations, of-
ten at hourly or sub-hourly intervals, for periods of
hours to days. At least 20 fire growth simulation mod-
els and 22 mathematical analogue models have been
developed (Pastor et al., 2003; Sullivan, 2009c); the lat-
ter implement a variety of methods including Markov
chains, interacting particle systems, percolation, cellu-
lar automata and differential equations.

Kourtz, Nozaki and O’Regan (1977) developed one
of the first “contagion” models of fire growth, imple-
mented in a lattice (grid) structure, where the spread
distance from cell to cell was based on ROS from the
FBP System and wind direction. However, lattice mod-
els constrain the potential spread direction and distance
in each time period. Richards (1995, 1990) developed
an algorithm to project the increase in fire perimeter
based on Huygens’ principle of wave propagation that
overcomes this constraint. The fire perimeter is dis-
cretized into a polygon of vertices joined by line seg-
ments. Fire spread from each vertex is then projected
as an elliptical wavelet of dimensions calculated from
ROS equations, and the new perimeter is formed as
the outer hull of the projected points (removing inte-
rior knots, overlaps and crossovers that may evolve)
[Figure 6(b)]. This method was implemented in the
fire growth simulators FARSITE (Finney, 1998) and
Prometheus (Tymstra et al., 2010); the spread distance
of wavelets in each iteration is calculated using BE-
HAVE and the FBP System in the former and lat-
ter models, respectively. Minimum travel time meth-
ods have subsequently been implemented in FARSITE
(Finney, 2002).

Hybrid empirical–physical approaches have also
been used, coupling empirical surface fire growth with
atmospheric fluid dynamics models in order to repre-
sent the complex interactions between large fires and

point is in the order of several seconds–minutes, and flame zone
depth = ROS× flaming duration.
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the atmosphere (Clark et al., 1997; Clark, Coen and
Latham, 2004).

More recently, physical models have been developed
which allow for fine scale representations of fuel struc-
tures and fire growth in a three-dimensional lattice.
Examples of these are FIRETEC (Linn et al., 2002)
and the Fire Dynamics Simulator (Mell et al., 2007).
FIRETEC has also been linked to a fluid dynamics
model in order to represent interactions with the atmo-
sphere. Fire growth is implicit in these physical mod-
els, although it is limited to relatively short time peri-
ods and small areas for computational reasons, while
head, back or flank fire spread rates are derived quanti-
ties. Furthermore, replicating the behavior of full scale
fires with physical models remains very challenging
(Mell et al., 2007; Linn et al., 2012).

Fire growth prediction errors may also arise due to
a lack of model suitability, accuracy limitations of the
given model (e.g., due to the scale on which predictions
are made) and noisy input data. Model performance
has been assessed using various measures that compare
observed and predicted results, including the differ-
ence in the radial distance from the fire origin to points
around the perimeter (Fujioka, 2002); difference in fire
spread distance (Duff, Chong and Tolhurst, 2013); as-
sociation between predicted and observed burn perime-
ters [using Cohen’s Kappa coefficient, Sorensen’s co-
efficient Arca et al. (2007) and a Shape Deviation In-
dex (Cui and Perera, 2010)]; and agreement in final
fire size distributions [using the Kullback–Leibler di-
vergence (Couce et al., 2010)] without regard to spatial
association. However, a major challenge is that valida-
tion data from wildfires are often of poor quality and/or
at a coarser spatio-temporal resolution than model sim-
ulations. Weather data inputs may be obtained from
a single station many kilometres distant from the fire
location or interpolated from a number of distant sta-
tions, or estimated from a numerical weather prediction
model (Jones et al., 2003). Furthermore, fire perime-
ters are not usually mapped more frequently than daily
in fire operations. It then becomes problematic when
the interval between observations is several times the
model time step because of error accumulation, par-
ticularly in fire spread direction and head fire loca-
tion. Importantly, note that after analysis of twenty-five
fires, Finney (2000) concluded that it was not possible
to determine growth model performance or error with-
out controlling or quantifying uncertainty in the input
data. On the other hand, analysis of a large number of
fire growth predictions should reveal model biases if
data input errors are unbiased.

The accuracy of both empirical and physical fire
spread models, as well as of fire growth simulation
models, is limited by imperfect understanding of and
ability to represent the physical processes over ap-
propriate scales, variation in atmospheric conditions
such as wind speed and direction that affect spread but
which cannot be precisely known or forecasted, and
variation in vegetation and topographic conditions that
is imperfectly represented in models.

However, uncertainty in data inputs has only be in-
corporated into fire growth models in a few cases.
Wiitala and Carlton (1994) estimated the probability of
a free-burning fire in wilderness areas spreading over
a period of weeks from the probability of a “spread
event day” with strong winds and the probability of
significant precipitation determined from climatolog-
ical records. Anderson (2010) extended these concepts
spatially, combining estimates of the spatial probabil-
ity of daily spread and extinguishment in a probabilis-
tic model of the fire growth over weekly to monthly
periods. Anderson, Flannigan and Reuter (2005) also
demonstrated the use of ensemble methods from me-
teorology to represent the effect of varying weather
conditions by introducing random and systematic per-
turbations to weather forecast inputs to a fire growth
model. Finney et al. (2011a) also applied ensemble
methods to implement FARSITE in a fire probability
simulator by randomly and systematically perturbing
the weather input data. Additional links could be made
to probabilistic methods utilized in meteorology and
climatology. Indeed, medium term ensemble numerical
weather model output, such as from the North Ameri-
can Ensemble Forecast System (Toth et al., 2005), are
believed to be well suited to making probabilistic fire
projections over 3–10 day time periods, while clima-
tological methods may be more suited to longer time
periods (Anderson, 2002).

Boychuk et al. (2009) developed a stochastic fire
growth model using a continuous time Markov chain
on a lattice, which also incorporates a stochastic spot-
ting mechanism. They remarked that while it is well
known that embers can be produced from intense fires,
lofted in the smoke plume and deposited ahead of the
fire, where they may start new fires, these processes are
difficult to observe and measure.

3.3 Fire Size

Wiitala and Carlton (1994) observed that the spread
of a free-burning wildfire over a long period is made
up of normal spread days, punctuated by rare spread
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events, where major growth occurs—this is particu-
larly true for crown fire regimes, where there can be
almost an order of magnitude increase between surface
and crown fire ROS. They considered that the proba-
bility of fire movement at any time was related to the
probability of spread and to the probability of extin-
guishment, both of which were calculated from wait-
ing time distributions for major wind events and fire-
ending rainfall.

A number of studies have suggested that fire size dis-
tributions follow an exponential (Baker, 1989), power
law (Malamud, Morein and Turcotte, 1998; Jiang et al.,
2009) or a truncated Pareto distribution (Cumming,
2001; Schoenberg, Peng and Woods, 2003; Cui and
Perera, 2008; Holmes, Hugget and Westerling, 2008).
Power-law behavior has been argued based on self-
organized criticality (Malamud, Morein and Turcotte,
1998) or highly optimized tolerance (Moritz et al.,
2005) arising in dynamical systems.

Reed and McKelvey (2002) provided an important
review of parametric models for fire size distributions.
They examined power-law behavior through the lens
of goodness of fit in analyses of several data sets (Fig-
ure 7) and demonstrated that such behavior is only

FIG. 7. Fire size distributions in the Nez Pierce and Clearwa-
ter National Forests, Idaho, USA, and in northern Alberta, and the
Northwest Territories, Canada (Reed and McKelvey, 2002). Note
the increasing maximum fire sizes in the latter two, larger and less
managed, northern regions.

approximated over limited ranges of fire sizes. More
importantly, a model is developed which blends both
stochastic processes for growth and extinguishment of
fires and is used to develop an essential model feature,
termed the extinguishment growth-rate ratio (EGRR)
from which conditions for power-law behavior are ex-
amined in depth. The growth in area burned is assumed
to depend on the current size of the fire (ignoring spa-
tial aspects, such as the fire’s shape), modeled as a pure
birth process whose discrete states represent regularly
spaced, increasing “markers” of fire sizes. The extin-
guishment of a fire is modeled through a stochastic
“killing rate” function, where the probability of extin-
guishment also depends on the current size (i.e., state)
of the fire. The EGRR is analyzed to determine gen-
eral conditions for when a given fire size distribution
follows power-law behavior. For example, power-law
behavior over a given interval of fire sizes would be
characterized by a constant EGRR over that interval;
deviations from a constant EGRR suggest departures
from a power-law behavior. Thus, a single power-law
distribution for the size distribution of a given set of
fires would be exhibited by a single, constant EGRR—
a rather restrictive condition—while power-law behav-
ior in the upper tail of a fire size distribution would be
exhibited by an EGRR converging to a positive limit.
Special cases are also considered, for example, when
the fire front moves at a fixed velocity or when the
shape of the fire is not regular but fractal, with area re-
lated to length by a power-law relationship and with the
fire front moving at a fixed velocity. None of the spe-
cial cases were generally deemed appropriate in prac-
tice; most seemed highly restrictive. Several models
are also proposed for fire size, including a 3-parameter
Weibull and a competing hazards model which allows
for competing causes of extinguishment. These are also
used to illustrate that no single model seems superior
for the several data sets examined. Although the power
law continues to be used in the literature (Malamud,
Millington and Perry, 2005; Holmes, Hugget and West-
erling, 2008), Zinck and Grimm (2009) emphasized
that it is better to refer to power law-like behavior and
to use caution when making interpretations based on
model assumptions.

There are several aspects of fire size modeling which
are not well incorporated into current approaches for
analysis. For example, the amount of effort applied to
extinguishing fires varies with a number of factors, in-
cluding proximity to settlements, commercial value of
timber and current fire load. Furthermore, fire size is
limited by factors such as fuel continuity, topography
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and the change of seasons (especially in regions where
snow accompanies the arrival of winter); the effect of
fuel continuity on extinction varies with fire size, while
seasonality effects vary with ignition date.

4. BURNED AREA AND FIRE FREQUENCY

The annual area burned (BA) in a region is one of
the most common statistics recorded by fire manage-
ment agencies. It is often used as a measure of fire sea-
son severity, as the risk to timber, air quality and other
values is more closely related to the area burned than
the number of wildfires (Wiitala, 1999). Annual BA of-
ten varies by a factor of 10 or more, in a region, with
variation in annual weather and fire danger, and longer
term climate cycles (Meyn et al., 2009). A number of
different methods have been used to model the rela-
tionship between BA and climate and fire danger vari-
ables, including so-called multivariate adaptive regres-
sion splines (Balshi et al., 2008) and general additive
models (Krawchuk et al., 2009). A surrogate measure
of suppression effectiveness was included in Martell
and Sun (2008) along with fuel and a climatic measure
of fire weather in their analysis of BA in the province
of Ontario. Both increases (Westerling et al., 2006) and
decreases (Meyn et al., 2010) in BA have been reported
in different regions in the past decades, suggesting that
BA is nonstationary in some regions.

Assessing correlation in the number of fires and BA
between regions is important for estimating the collec-
tive demand for fire management resources in larger
mutual aid schemes, such as the national resource shar-
ing systems used in Canada and the United States.
Magnussen and Taylor (2012b) modeled correlations
between regions and employed Monte Carlo sampling
to estimate the likelihood of peaks in BA between two
or more regions occurring within a 14 day period.

Wiitala (1999) combined a model for fire size vari-
ability with a Poisson process for fire arrivals to yield
the compound Poisson probability model of BA. How-
ever, because of the difficulties in parameterizing fire
size distributions, the risk of BA exceeding particu-
lar values was estimated by discretizing fire sizes into
classes, estimating parameters within classes and cal-
culating joint probabilities of the number of fires in
each class exceeding the threshold. Drawing on mod-
els of aggregate claims in insurance, Podur, Martell and
Stanford (2010) demonstrated that the annual BA could
be estimated as a compound Poisson distribution of the
large fire occurrence rate and expected large fire size.

FIG. 8. Compound Poisson distributions fitted to annual area
burned for four scenarios: mild and severe years in intensively (Int-
mea.) and extensively (Ext.) protected forests in Ontario, Canada
(Podur, Martell and Stanford, 2010). Categorization into mild or
severe years was based on a Seasonal Severity Rating, namely, an
average of the Canadian Forest Fire Weather Index System’s Daily
Severity Rating.

If fire sizes are exponentially distributed, the total BA
is Poisson-exponential and is distributed as

Fs(s) = e−(λ+sX)(2
√

λX/s)I1(
√

λsX), s > 0,

where s is the annual area burned, λ is the annual oc-
currence rate of large fires, X the expected fire size,
and I1 the modified Bessel function (Figure 8). If fire
sizes are Weibull-distributed, BA is Poisson–Weibull
and fire size distribution quantities can be calculated
using the lognormal or Pareto approximations.

The annual or average percentage BA has been used
as a measure of fire control success for many years
(Show et al., 1941; Beall, 1949). Heinselman (1973)
introduced the term Natural Fire Rotation (NFR) in an
ecological context, defined as the time required to burn
an area equal in size to the study area,

NFR = A

Af

Ny,

where A is the total area of the land, Af is the to-
tal area burned by all fires (re-burned areas included),
and Ny is the period of observation in years. However,
NFR is simply the inverse of the average annual per-
cent BA, which in turn is equal to the average probabil-
ity of a point in the landscape burning (Fall and Lertz-
man, 1999), assuming fires occur as a Poisson process
in space and time. Both percent BA and NFR are cal-
culated using annual BA, compiled from administra-
tive records (e.g., Figure A.1) or by reconstructing fire
boundaries from stand age maps. Thus, both the size of
the sampling area and the length of observation influ-
ence NFR, in as much as they influence the likelihood
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of including rare large fire events. Although informal,
NFR remains a popular concept because it is easy to
calculate and to communicate.

However, a complete history of burned areas is often
not available. In unmanaged forests of fire origin, the
so-called age distribution depends principally on fire
frequency. The age-distribution represents the distri-
bution of time-since-fire over every point on the land-
scape. Conceptually, the statistical problem can be un-
derstood as dividing the study area into a large number
of small subunits over a grid and viewing the resulting
survival analysis as a context where time moves back-
ward, with subunits surviving until they fail through
the most recent past fire occurrence. What is typically
available for analysis is the proportion of the study area
that falls within various time-since-fire classes. Classes
are usually determined from forest stand age maps in
decades; where long term maps are available, annual
classes may be used.

Typically, the negative exponential survivorship
model is fitted to the cumulative time since fire data:

A(t) = eλt ,

where A(t) is the proportion of the landscape surviv-
ing to time t , and λ is the hazard rate or proportion of
area burned, assuming that fire occurrence in space and
time is a Poisson process (Van Wagner, 1969; Johnson
and Gutsell, 1994). Sampling areas should be homoge-
neous with a uniform hazard rate and larger than the
largest fire. The inverse of λ has been called the fire
cycle, which is the average stand age of a forest whose
age distribution fits the exponential or Weibull distri-
bution. When age class data are used, bias may be in-
troduced by the “missing tail” (Finney, 1995), where
very old stands are censored by other competing haz-
ards (insects, wind, old age).

The key element is the identification of changepoints
in fire hazard rates as well as comparisons of epochs
and their hazards over large scale landscapes globally.
Up until the early 1990s, estimation of such change-
points in the forestry literature was based on identify-
ing changes through visual inspection of related em-
pirical plots (Reed, 1994). In the late 1990s, likelihood
inference emerged in the forestry literature for estima-
tion of parameters of survivor functions arising from
step-function hazard forms, where changepoints were
specified (Reed et al., 1998). Reed et al. (1998) devel-
oped a test for homogeneous hazard against an alterna-
tive of their being a single changepoint.

A substantial shift to more rigorous approaches was
initiated by Reed (2000, 2001), where quasi-likelihood

methodology was employed to obtain estimates of
hazards, given k changepoints, while the number of
changepoints was determined through the Bayes In-
formation Criterion. Using the conceptual framework
described earlier where the study area is divided into
N subunits over a grid, the number of units falling
in each time-since-fire class is assumed to follow an
overdispersed multinomial distribution; overdispersion
is incorporated to accommodate spatial correlation in a
simple way. The quasi-log likelihood is

Q = 1

σ 2

m∑
j=1

yj log(θj )

= 1

σ 2

m−1∑
j=1

[
sj log

{
q(j)} + yj log

{
1 − q(j)}],

where

sj =
m∑

i=j+1

yi

and

q(j) = e−λjT .

In the above, θj is the probability that a particular
subunit belongs to time-since-fire class j ; classes here
are ((j − 1)T , jT ](j = 1, . . . ,m − 1), while period m

is defined as more than (m − 1)T years ago. As men-
tioned previously, T is typically 10 years. Models with
k changepoints at prespecified times p1T < · · · < pkT

have hazard rates λi between pi−1T and piT . Es-
timation of λi and the overdispersion parameter σ 2

is trivially accomplished through quasi-likelihood es-
timation. By assigning prior probabilities to models
Mk with k changepoints, the Bayes Information Cri-
terion for Mk as well as posterior probabilities for Mk

can be used to guide plausible choices for k. By con-
trasting changepoint values for a sequence of models
M0,M1,M2, . . . , and using a sensitivity analysis of
priors, assessments can be made on the consistency of
changepoints to evaluate model choice.

Reed (2000) applied this methodology to contrast
fire epochs over two major regions, identifying im-
portant scientific hypotheses related to fire regime in
these regions (Figure 9). Two major advancements in
this methodology would result from further treatment
of spatial correlation using more modern tools avail-
able, as well as incorporation of uncertainty in esti-
mates arising from the model selection process.
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FIG. 9. Cumulative time-since-fire distributions derived from for-
est stand ages in the Kananaskis watershed, Alberta, Canada, and
Glacier National Park, British Columbia, Canada. The line seg-
ments extend over epochs defined by the most plausible change
points; epochs are assumed to have a constant hazard (Reed, 2000).

4.1 Point Frequency

The interval between fire arrivals at a point in a
landscape, as recorded on fire scars on trees (e.g.,
Figure A.4) or as charcoal intensity in sediments, is
well modeled by a Poisson process. The challenging
problem of estimating fire frequency from fire-scar
data requires essential design and analysis considera-
tions which take into account that (i) all possible fire-
event chronologies have an equal chance of being cho-
sen, (ii) not all trees are scarred in a particular fire,
(iii) methods based on an independent normal assump-
tion are likely untenable, (iv) fire frequency intervals
change over large epochs of time. Johnson and Gut-
sell (1994) discuss design considerations related to (i)
above, including the impact of choosing trees for fire-
scar studies which are easily accessible or which have
the most scars. While this approach can extend esti-
mates of fire frequency to hundreds and thousands of
years (in the case of fire scars and sediments, resp.),
neither trees nor sediments are perfect recording in-
struments; some fires may be missed or erased by other
processes.

For many years the traditional approach considered
the observed intervals between scars on all trees in
the sample and computed estimates of the mean time
between fires—the mean fire interval (Arno, Sneck
and Forest, 1977; Kilgore and Taylor, 1979; Agee,
1996) where the confidence intervals come from the

t-distribution, assuming that all sites have equal prob-
ability of burning (data are normally distributed and
independent). Exploiting larger numbers of samples,
Grissino-Mayer (1999) fit two- and three-parameter
Weibull distributions to long fire interval data sets
in Arizona. Reed and Johnson (2004) advanced ap-
proaches substantively by developing methods which
account for the potential that fires may not leave scars
and, as well, that the independence assumption is in-
valid as fires spread spatially. The approach uses first
principles to develop a model whereby a constant haz-
ard rate for fire occurrence within epochs is combined
with an overdispersed binomial to handle the conta-
gious effect of fire spread; as well, the probability that
a scar-registering fire leaves a scar is assumed constant
for all objects sampled. By partitioning the probabil-
ity of the observed data into a sequence of conditional
probabilities, an overall log likelihood function is con-
structed. Estimation, however, proceeds via estimating
equations which are a combination of the maximum
likelihood equations for parameters in the mean and a
moment estimator for the dispersion parameter.

4.2 Burn Probability

Because data from unmanaged crown-fire dominated
forests and fire scarred trees are restricted to certain
environments (and in some cases are becoming rare
within these environments), other methods are needed
to estimate fire frequency at local and landscape scales,
the probability that fires may threaten settlements, in-
frastructure, timber and other values at risk, and the in-
fluence of climate changes on fire frequency. In the last
decade both simulation and regression-like approaches
have been developed.

Monte Carlo approaches implicitly or explicitly
combine distributions of ignitions and spread event
days with deterministic fire growth models to estimate
fire sizes, annual area burned and burn probability or
local hazard of burning in a landscape. For example,
the Prometheus fire growth model was implemented
in software called BurnP3, to simulate fire spread in
landscapes defined by vegetation (fuel type) and to-
pography grids (slope, aspect), over time periods de-
fined by a series of daily weather conditions (Parisien
et al., 2005). The fire footprints resulting from many
thousands of simulations are “added up” to determine
the burn probability or local hazard of burning in a
grid cell. Either random or spatially-explicit ignition
probabilities may be used (Braun et al., 2010). A sim-
ilar scheme was used to estimate burn probability in
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(a)

(b)

FIG. 10. (a) Annual probability of a 270 ha cell burning on fed-
eral lands in Washington and Oregon, USA, estimated from simu-
lation modeling of potential fire ignitions and spread (Finney et al.,
2011b). (b) Relative probability of burning in the western United
States estimated from MaxEnt methods (Parisien et al., 2012).

the contiguous United States of America (i.e., exclud-
ing the noncontiguous states of Alaska and Hawaii)
[Figure 10(a)] by implementing the FARSITE growth
modeling in FSIM software (Finney et al., 2011b).

In a two-stage approach, Preisler et al. (2011) used
a linear model to estimate mean suppression cost as
a function of covariates (including fire size) and para-
metric models were developed for the distribution of
fire sizes. Then, a Monte Carlo approach was em-

ployed: spatially explicit probabilities of large fire oc-
currence were forecast and then were stochastically
mapped to presence/absence of ignition in a cell. Con-
ditional on large fire ignition being present, a fire size
is simulated and then the projected mean suppression
cost is obtained from the related linear model. This pro-
cedure was repeated a large number of times to produce
spatial maps of expected suppression costs over an up-
coming fire season.

Parisien and Moritz (2009) applied two tree-based
machine learning algorithms (e.g., Hastie, Tibshirani
and Friedman, 2009), MaxEnt (maximum entropy) and
boosted regression trees (BRT), to predict the environ-
mental space where wildfire can occur in California
and in the contiguous United States of America. The
models were fitted to fire map and large fire occurrence
data, including a large suite of environmental variables
such as climate normals, as well as vegetation and to-
pography covariates, in order to evaluate the contri-
bution of the individual variables to the susceptibility
to fire in a landscape. Parisien et al. (2011) also used
boosted regression trees to evaluate environmental con-
trols on area burned in the boreal forest of Canada.
MaxEnt methods were used to evaluate a broader set of
environmental variables, including lightning and road
density on wildfire probability in the western United
States (Parisien et al., 2012) [Figure 10(b)].

5. DISCUSSION AND CONCLUSIONS

All events in a wildfire—ignition, growth and
extinguishment—are governed by physical principles
of conservation of energy, mass, chemical species and
angular momentum (Saito, 2001). While a number of
deterministic physical and empirical models of fire
spread have been developed, wildfire prediction is es-
sentially probabilistic. This is because, even if we had
perfect knowledge of the physical processes, (1) hu-
man and lightning ignition sources are random, (2) the
flammability of dead organic fuels and fire spread rates
are influenced by the state of the atmosphere, and this
cannot be precisely known over any period,8 (3) veg-
etation characteristics important to fire behavior vary
across the landscape and cannot be precisely repre-
sented in models. While physical models may con-
tribute further understanding, statistical models and ap-
proaches are needed to quantify uncertainties which

8Similar considerations apply to statistical uncertainty in me-
teorology (Palmer et al., 2005) and climatology (Von Storch and
Zwiers, 2002).
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are crucial for making decisions with specified preci-
sion. Data are available from a number of sources to
support modeling of fire risk elements over different
time periods; these include administrative and histor-
ical records, case studies, laboratory and field experi-
ments, vegetation proxies (tree rings, stand age, char-
coal), remote sensing and numerical models, as sum-
marized in our article’s Appendix. Each data source
has its own strengths and weaknesses. Administrative
records of fire management organizations have been a
primary source for fire occurrence and size data. How-
ever, such records are commonly only available for
decades to a century at most, and in a limited number
of regions. Data quality is variable, and there are few
opportunities for verification of historical records. Fur-
thermore, records collected for administrative purposes
may be at a different resolution or have missing infor-
mation that would be important for modeling. For ex-
ample, while it is common to record the day a fire starts
and its final size, the dates of control and extinguish-
ment may be missing, and information on daily fire
growth progression is rare and comes mostly from case
studies and historical records. Remote sensing data on
fires are available for the last few decades but at dif-
ferent temporal and usually coarse spatial scales. Fire
frequency can be inferred from proxy vegetation data
over periods of hundreds to thousands of years but with
declining temporal resolution. Censoring is common in
all of these data types. Small fires may be missing (left
censored) from administrative data, vegetation proxy
data (tree-rings, age class, charcoal) and remote sens-
ing data due to incomplete detection; furthermore, de-
tection effectiveness may vary over time in administra-
tive data. Right-censoring is common in tree ring and
stand age data because trees can die from other causes.
Over long time series, fire frequency records are non-
stationary, due to variation in climate, fire management
strategies and efficiency, patterns of development and
land use practices. Many studies combine more pre-
cise, extensive, physical data on weather or climate
covariates with less accurate, consistent and rigorous
fire data (or vice versa) without accounting for differ-
ences in the precision of various data elements. Differ-
ent study designs, some perhaps encompassing cluster-
ing, repeated measures, stratification and multi-stage
sampling, could be considered. Hence, substantial data
cleaning, in collaboration with forestry managers and
scientists, is required as a first step to any analysis.

The theoretical framework (Poisson process theory)
for fire occurrence modeling is well developed. Further

improvements in prediction may come from both im-
proved data, for model assessment and refinement, and
improved modeling frameworks. Although lightning
fire prediction has been greatly aided by lightning de-
tection system data, strikes are missed in a nonrandom
manner–detection efficiency and spatial accuracy is re-
lated to the proximity to a sensor. If detection system
effectiveness could be quantified (in particular, how the
probability of a fire not being reported has changed
over time/space), it could be incorporated into a logis-
tic model using inclusion probabilities analogous to the
case–control literature. One crucial aspect deserving of
further study is the prediction of sharp peaks where a
large number of lightning fires occur in a very short
time period, which can be a significant fire manage-
ment problem. A major challenge is the difficulty in
assessing (or predicting) whether lighting storms are
followed by precipitation (which can quench lightning
ignitions). This is because convective precipitation of-
ten has a local distribution that is not measured accu-
rately by sparse weather station networks. Assimila-
tion schemes that combine data from surface weather
stations, remote sensing, precipitation radar and nu-
merical weather models (e.g., Mahfouf, Brasnett and
Gagnon, 2007) may improve the accuracy of future
lightning fire prediction models by providing a better
representation of the spatial distribution of precipita-
tion.

Despite many decades of research and development,
fire spread modeling remains a challenge in some veg-
etation types. Although more than 70 fire spread mod-
els have been developed, only a small number (perhaps
not more than half a dozen) of empirical and quasi-
physical fire spread models are used in fire manage-
ment; physical models have limited ability to repli-
cate the full range of ROS observed in nature. Fire
growth models often have a temporal resolution of
seconds–minutes to match the temporal variability in
wind speed. However, most wildfire data have been
obtained by fire management agencies and are often
not recorded more than daily. Detailed data sets on fire
spread and growth at spatio-temporal scales that more
closely match model resolution are needed to facili-
tate validation and inter-comparison studies in differ-
ent vegetation types. However, obtaining good weather
data observations near and during wildfires is difficult,
and opportunities to carry out large free burning ex-
perimental fires (where weather can be closely moni-
tored) are very limited. It may be necessary to monitor
fire growth expressly for validation purposes (Finney,
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2000), such as with airborne infrared imagers (e.g.,
Jones et al., 2003).

Although it is likely that empirical models will con-
tinue to be used for practical applications for many
years, it is well recognized that they have limited flex-
ibility to account for variability in fuel characteristics
and do not explicitly account for interactions with the
mid-atmosphere that may occur in large fires. Repre-
senting different components of fire spread (surface
spread, crown fire initiation, crown fire spread, spot-
ting) in a system of equations may provide a means
for increasing flexibility of empirical models (Cruz,
Alexander and Fernandes, 2008).

Although extinguishment ultimately limits fire
growth, it is not well studied empirically and only
rarely included in fire growth models. Almost all of
the physical and empirical fire spread models that have
been developed are deterministic. Methods to represent
uncertainty in fire spread and growth models deserve
more attention, as this is important to decision-making.

Parametric modeling of fire sizes and area burned is
difficult due to a myriad of causes, including spatial
heterogeneity and the variable effects/effectiveness of
fire suppression over the range of fire sizes. As well,
fires that occur late in the year are not as likely to sur-
vive long due to changing weather, while earlier fires
have the potential to last much longer—and hence,
grow bigger; seasonality is not accounted for in cur-
rent models. Monte Carlo simulation of fire growth
can provide an approximation of fire sizes and area
burned; however, it depends critically on models of
fire spread and growth which are imperfect and often
do not account for fire management influences. In fu-
ture work, simulation and regression-like approaches
might be used in a complementary manner, where the
latter, for example, may provide validation of simula-
tion models.

In a warming climate, it will be imperative to im-
prove fire risk assessment and prediction. This is both
a scientific and management challenge. Systems are
needed to predict fire occurrence and frequency at na-
tional and larger scales, including correlation in fire
occurrence between regions. Methods are needed to
accommodate nonstationarity. Model development is
constrained in some regions by a lack of long term fire
records. Satellite observations can be used at a coarse
scale, such as for large fire prediction, and will likely
become increasingly important as resolution increases.
At present, few fire prediction models are used by fire
managers at national, let alone global scales.

Finally, when the aim of statistical model devel-
opment is to enhance fire management decision sup-
port systems used by fire managers to improve their
decision-making, it is crucial to consider how such
models can be integrated in management decision sup-
port tools while they are being developed. Complex
models need to be implemented in computer-based fire
management information systems in a manner that pro-
vides information (including uncertainty) at the appro-
priate scale for the decision problem. It can often take
up to 10 years or more from the development and vali-
dation of new models to full implementation in opera-
tional systems and practices. Experience suggests that
work is more likely to influence fire or land manage-
ment if it involves collaboration between statisticians
with an understanding of the strengths and limitations
of statistical methods as applied for fire science, and
scientists or practitioners with knowledge of the man-
agement questions, the knowledge of limitations of the
data, and sometimes the means to implement new mod-
els in practice (e.g., Reed et al., 1998; Preisler et al.,
2004; Wotton and Martell, 2005). Statistical science
has an important role in bringing rigour to fire predic-
tion and risk assessment in both fire management and
fire ecology, and so providing a link between these two
sometimes disparate disciplines.

APPENDIX: AN OVERVIEW OF WILDFIRE DATA
SOURCES AND LIMITATIONS

The types of statistical models that can be developed
and analyses that can be conducted are influenced by
the type, resolution and availability of data. This ap-
pendix outlines eight major sources of quantitative and
qualitative data which have been used to inform wild-
fire occurrence, growth, size and frequency models.

1. Administrative records: As systematic manage-
ment principles began to be applied to wildfire suppres-
sion across much of North America in the early 1900s,
foresters in some regions realized that detailed records
would be needed to assess the effectiveness of fire man-
agement efforts—reports of individual fires have been
kept in all national forests in the United States since
1922 (Show et al., 1941). Thus, individual fire reports,
maps of perimeters of significant fires and annual sum-
maries have been compiled for about 100 years in parts
of the United States and Canada, and more recently in
other regions (Figure A.1). Researchers soon realized
that administrative records were a rich data source. For
example, Show and Kotok (1923) used administrative
records to examine annual fire frequency in California,
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FIG. A.1. Maps and other administrative records are important sources of data on fire locations, sizes and area burned. Lightning- (yellow)
and person-caused (red) fires along the Columbia River in southern British Columbia, Canada, during 1920–1945 as recorded on a historical
watercolor-on-linen map.

while Abell (1940) made inferences about fire spread
rates from individual fire reports. Some common lim-
itations of administrative records include: (1) limited
accuracy of spatial locations in older records—fire
perimeters, for example, are often from sketched maps;
(2) data are often left censored, as not all small fires
may be detected; (3) the observational period may be
relatively short in relation to the return period of ex-
treme events in some regions; (4) data collected for
administrative purposes may be missing some infor-
mation that may be needed to address research ques-
tions; (5) the fire management agency passes over ju-
risdiction of some fires to other agencies (e.g., in the
province of Ontario, Canada, the Ontario Ministry of
Natural Resources transfers some fires over to munici-
palities). Nevertheless, administrative records continue
to be a primary source of information on fire occur-
rence, fire size and area burned in managed forests and
other regions where organized fire management is car-
ried out. It is important to note, however, this is only a
portion of the earth’s fire environment.

2. Historical records: Though anecdotal, records of
historical wildfires (Plummer, 1912) may provide im-
portant information on the occurrence of rare, extreme
events. For example, Haines and Kuehnast (1970)
reanalyzed the meteorological conditions of Amer-
ica’s deadliest wildfire, the 1871 Peshtigo fire disaster,
which killed at least 1500 people in Wisconsin. That

fire had been investigated by Robinson (1872), who re-
ported that embers from the fire landed 7 miles away
on the decks of vessels in Lake Michigan.

3. Outdoor experiments: Fires that were lit under
controlled conditions have provided among the most
reliable data on fire ignition probability and fire behav-
ior under measured environmental conditions for over
half a century (Curry and Fons, 1938). Because such
experiments are logistically difficult to carry out un-
der severe burning conditions (Stocks, Alexander and
Lanoville, 2004) (Figure A.2), they have been limited
to fires smaller than 10 hectares in size. However, some
phenomena associated with large fires cannot be read-
ily reproduced in small experimental fires. These in-
clude long-range spotting ahead of the fire front and
the development of smoke plumes reaching and inter-
acting with winds in the lower and mid-troposphere.

4. Case studies: Detailed analyses of significant
wildfires by expert observers (Gisborne, 1927; Olsen,
2003) can provide important insights into extreme or
unusual events (Alexander and Taylor, 2010). For ex-
ample, the report by Kiil and Grigel (1969) remains
the most complete documentation of one of the fastest
spreading fires observed in the northern Hemisphere—
a single fire spread event which extended 60 km
in 10 hours; an average sustained rate of spread of
110+ m min−1.
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FIG. A.2. Experimental fires allow for detailed observations of fire behavior. Crown fire in a 3 hectare jackpine stand carried out in the
International Crown Fire Modeling Experiment, Northwest Territories, Canada (Stocks, Alexander and Lanoville, 2004).

5. Laboratory experiments: The effect of individ-
ual environmental factors, such as fuel moisture (Fons,
1946) or wind speed (Rothermel, Anderson and For-
est, 1966), on fire ignition and spread has been exam-
ined under controlled laboratory conditions, which of-
ten employ wind tunnels. Such experiments have been
important to parameterize physical and semi-physical
models, but are limited to fires in the order of a metre
in size. Fire spread in complex vegetation structures
and phenomena related to vertical development, such
as crown fire initiation, cannot be readily reproduced
in the laboratory.

6. Numerical and simulation modeling: Mathemati-
cal models of fire initiation and spread have been im-
plemented in computer simulations since the 1970s
(Kourtz and O’Regan, 1971), allowing for experiments
in the computer that are not possible in the laboratory
or in nature. Physical models can be computationally
intensive, so simulations of individual fires have typ-
ically been of limited size (several hectares) and du-
ration (minutes). Monte Carlo-like methods have been
used to simulate the growth of many thousands of fires
(using empirical and quasi-physical spread models) on
a regional scale to estimate fire size distributions and
burn area probability or fire frequency (Parisien et al.,
2005; Finney et al., 2011b). There are still practical

limits on the size of region that can be modeled at high
resolution, which can result in edge matching issues
between regions.

7. Infra-red imaging and other remote sensing: Infra-
red imaging systems have been used to detect and
map forest fires from aircraft since the late 1960s
(Bjornsen, 1968), allowing accurate repeated measure-
ments of forest fire perimeters and growth of large fires
over periods of hours or days. Satellite imagery on
the earth’s land surface became available in the 1970s,
and this has provided increasingly refined estimates
of global burned area. LANDSAT imagery has been
used to map burned areas, particularly in remote re-
gions, since the late 1970s at 30 m resolution, but with
only monthly sampling frequency. Radiometers such
as the Advanced Very High Resolution Radiometer
(AVHRR) and the Moderate Resolution Imaging Spec-
troradiometer (MODIS) deployed on the NOAA and
the NASA Aqua and Terra satellites, respectively, have
been used to detect and map forest fires since the 1980s
and 2000s (Flannigan and Haar, 1986; Justice et al.,
2002). AVHRR and MODIS sensors detect fire activ-
ity at 1000 and 500 m resolution, respectively, several
times a day at a global scale. Global burned area esti-
mates, derived primarily from MODIS data, are shown
in Figure A.3. Since 2002, the European MeteoSat geo-
stationary satellites have detected fires over Europe and
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FIG. A.3. Satellite imagery has been used to map fires since the 1970s. Mean annual global burned area (top) and associated one-sigma
uncertainties (bottom) expressed as a fraction of each grid cell that burns each year derived from 1997–2008 (Giglio et al., 2009).

Africa every 15 minutes at 3000 m resolution (Roberts,
Wooster and Lagoudakis, 2009). Remote sensing ob-
servations may provide an important source of data for
fire occurrence modeling in regions where administra-
tive records are incomplete.

8. Vegetation and charcoal proxies: Surface fires of-
ten cause nonlethal injuries in tolerant trees that re-
sult in “fire scars” observable in the live wood (Fig-
ure A.4). Dating fire scars using tree rings provides
a point sample of time since fire. The frequency of
such fires, typically in the order about 10–40 years, was
first examined by Clements (1910), Howe (1915) and
other pioneering researchers (McBride, 1983). How-
ever, the sampling period for fire scar records is lim-
ited by the lifespan of the tree species—up to several
hundred years for long-lived species such as Ponderosa
pine. Thus, the number of records in a region tends to
decrease over time (right censored) as trees are cut or
die from various other causes. Similar methods have
been used to date anomalies in ring growth in euca-
lypts (Burrows, Ward and Robinson, 1995) and Aus-
tralian grasstrees (Xanthorrhoea) that can survive high
intensity fires.

Charcoal resulting from burning of woody vegeta-
tion is incorporated into the soil, while small frag-

ments may be transported and deposited in lake sedi-
ments. Counts of charcoal fragments in soil or lake sed-
iment cores represent point samples. Combined with
carbon dating, fire frequency has been determined from
the time between charcoal pulses in sediment cores
(Swain, 1973). Although temporal resolution is coarser
than annual tree rings, sampling periods can extend
from centuries to millennia, depending on the geolog-
ical history of the sampling area. Laboratory analysis
of sediment cores is time consuming, which limits the
sampling intensity. In a review of data analysis meth-
ods, Higuera et al. (2011) note that fire frequency over
long time periods is usually nonstationary. Indeed, the
association between climate variation and fire risk is
often the motivation for paleo-ecological studies.

Northern temperate and boreal coniferous forests
with crown fire regimes are made up of cohorts of ap-
proximately even-aged stands, whose ages can be used
to date the fire initiating events. The age distribution
of stands in a region can be used to estimate the fire
frequency (typically 50 years to several centuries) as-
suming a frequency distribution such as the negative
exponential (Heinselman, 1973; Van Wagner, 1978) or
the Weibull. However, the frequency of extreme events
may be underestimated because it is difficult and time
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FIG. A.4. Low intensity fires scar living trees, creating a record of the time between fires at a point over long time periods. Cross section
of a western larch (90 cm diam.) from southern British Columbia with approximately 10 fire scars over 400 years (NRCan photo).

consuming to classify the age of all forest stands ex-
cept in relatively small areas and such sampling areas
are often small relative to the size of extreme events. As
with tree ring data, older stands may be missed in sam-
pling or lost due to mortality from other causes (right
censored).
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