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Estimation of HIV Burden through
Bayesian Evidence Synthesis
Daniela De Angelis, Anne M. Presanis, Stefano Conti and A. E. Ades

Abstract. Planning, implementation and evaluation of public health policies
to control the human immunodeficiency virus (HIV) epidemic require regular
monitoring of disease burden. This includes the proportion living with HIV,
whether diagnosed or not, and the rate of new infections in the general popu-
lation and in specific risk groups and regions. Estimation of these quantities
is not straightforward: data informing them directly are not typically avail-
able, but a wealth of indirect information from surveillance systems and ad
hoc studies can inform functions of these quantities. In this paper we show
how the estimation problem can be successfully solved through a Bayesian
evidence synthesis approach, relaxing the focus on “best available” data to
which classical methods are typically restricted. This more comprehensive
and flexible use of evidence has led to the adoption of our proposed approach
as the official method to estimate HIV prevalence in the United Kingdom
since 2005.

Key words and phrases: Bayesian inference, evidence synthesis, graphical
model, HIV, disease burden.

1. INTRODUCTION

The HIV disease is associated with serious morbid-
ity, high costs of treatment and care, and, in developing
countries, with significant mortality and a high number
of potential years of life lost (Joint United Nations Pro-
gramme on HIV/AIDS, 2010). Planning for care pro-
vision and for implementation and evaluation of public
health policies to reduce transmission relies crucially
on robust monitoring of disease burden. This burden
includes the proportion (prevalence) living with HIV;
the proportion of infections remaining undiagnosed;
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and the rate at which new infections occur (incidence),
in both the general population and in specific groups
at high risk of infection and in different locations. To
acquire robust evidence on these quantities is not easy.
The assessment of HIV prevalence is complicated by
the absence of symptoms for a long time after infec-
tion. Incidence is even more difficult to measure, re-
quiring, at least, longitudinal follow-up of uninfected
individuals, with all the complications of cohort stud-
ies.

Devising appropriate methods for estimation of
prevalence and incidence has generated a rich litera-
ture in the last 30 years (Brookmeyer, 2010, Presanis,
2010). For HIV prevalence “direct” methods have been
particularly popular amongst the medical community
(e.g., McGarrigle et al., 2006, Lyerla et al., 2006 and
references therein) for their apparent transparency. The
underlying idea is that the general population, of size
N , is subdivided into G nonoverlapping groups at dif-
ferent risk of acquiring HIV. Estimates of proportions
ρg of risk group g (g = 1, . . . ,G) in the population are
multiplied by estimates of the prevalence πg of HIV
to produce a point estimate of the number of infected
individuals Nπgρg in each group and in the popu-
lation N

∑
g ρgπg = N

∑
g(ρgπgδg + ρgπg(1 − δg)).
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Here δg denotes the proportion of infected individ-
uals diagnosed in group g, and N

∑
g ρgπgδg and

N
∑

g ρgπg(1 − δg) represent the number of diagnosed
and undiagnosed infections in group g, respectively.
Typically, at least in developed countries with con-
centrated epidemics like the United Kingdom (UK),
the number of diagnosed infections is known from
surveillance schemes, so the problem is to estimate
the number of undiagnosed infections. Provided direct
data that measure size and prevalence for each group
are available, these methods are very simple and, con-
sequently, appealing. However, direct information on
all parameters is not typically available, whereas there
is a wealth of indirect information, from a variety of
sources, which may inform functions of the parame-
ters of interest. This additional indirect information is
generally discarded as difficult to incorporate in this
simplistic framework. As a result, on one hand, unveri-
fiable assumptions and ad hoc adjustments are made to
compensate for the lack of information. On the other
hand, an inefficient use is made of the information that
is available, with consequent imprecise and biased re-
sults due to the selective nature of the data used in
the estimation. Finally, in the “direct” methods there
is no explicit model formulation, so it is not possible
to quantify formally the uncertainty surrounding the
resulting estimates or to validate them.

The statistical challenge is then to provide an infer-
ential approach capable of combining direct and indi-
rect information from multiple sources and appropri-
ately accounting for any uncertainty in the data and pa-
rameters. The Bayesian paradigm naturally offers the
most appropriate framework to address this challenge
(see Section 5). Bayesian synthesis of evidence from
different studies, perhaps even those with different de-
signs, is not new (e.g., Eddy, Hasselblad and Shachter,
1992, Dominici et al., 1999, Ades and Sutton, 2006)
and is attracting increasing attention with applications
in various fields (e.g., Spiegelhalter and Best, 2003,
Clark et al., 2010, Govan et al., 2010, Birrell et al.,
2011).

In this paper, we describe how such an approach has
been successfully adopted to estimate HIV prevalence
and incidence in England and Wales (E&W) in the pop-
ulation aged 15–44. The remainder of the paper is or-
ganised as follows: the concept of Bayesian evidence
synthesis is defined in Section 2; the model to estimate
HIV prevalence is presented in Section 3; a joint model
for prevalence and incidence is described in Section 4;
and Section 5 offers a concluding discussion.

2. BAYESIAN EVIDENCE SYNTHESIS

Let θ = (θ1, . . . , θK) represent the parameter vector
we are interested in estimating. We refer to θ as basic
parameters. Denote by y = (y1, . . . ,yn) a collection of
n ≥ K independent data items available for the estima-
tion of θ . Each yi provides either direct information on
a single component θk of θ or indirect information, that
is, on functional parameters, expressed in terms of one
or more component(s) of θ . Denote by ψi = ψi(θ) a
generic function of θ , which may represent the iden-
tity function, that is, ψi = θk , a function of a single
parameter ψi = ψi(θk) or a function of multiple com-
ponents of θ , ψi = ψi(θ). Indicating by Li(ψi(θ);yi )

the likelihood contribution of yi to the basic parame-
ter vector θ , from the independence of the yi , the full
data likelihood is L(θ;y) = ∏n

i=1 Li(ψi(θ);yi ). From
a Bayesian perspective, expressing the prior knowl-
edge on θ through a prior distribution p(θ), inference
is conducted on the basis of the posterior distribution
p(θ | y) ∝ p(θ)L(θ;y), which summarises all infor-
mation, both direct and indirect, on θ . Such a distri-
bution fully reflects the uncertainty about θ , including
sampling variability and parameter uncertainty, which
automatically percolates through to any function of the
basic parameters θ . Figure 1 provides a direct acyclic
graph (DAG) (Lauritzen, 1996) representation of the
generic formulation above and shows schematically
the dependency between data and parameters as well
as the flow of information within the system. Here
stochastic “nodes” are represented by circles and ob-
served “nodes” by squares. The basic parameters, in
double circles, are given prior (possibly hierarchical)
distributions. Solid arrows represent distributional as-
sumptions, and dashed arrows indicate functional re-
lationships. Note the examples of functional param-
eters that inform multiple components of θ , such as

FIG. 1. DAG representation of a generic evidence synthesis
model.
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ψi = ψi(θ1, θk). Information flows along the arrows,
from the prior and from the data. The posterior distri-
bution of each θk is based on its prior distribution and
on direct and indirect information available on it, as
well as the priors and information on other components
of θ .

3. HIV PREVALENCE ESTIMATION

Extending the notation introduced in Section 1, HIV
prevalence πt,r in the general population at a single
point in time t in location r may be expressed as πt,r =∑

g ρt,g,rπt,g,r = ∑
g ρt,g,rπt,g,rδt,g,r + ∑

g ρt,g,r ×
πt,g,r (1 − δt,g,r ). The aim is to estimate the basic
parameters θ t,g,r = (ρt,g,r , πt,g,r , δt,g,r ). Having ob-
tained the posterior distribution of these, it is possi-
ble to obtain the posterior distribution of any function
of interest, for example, the total number of infections
Nt,r

∑
g ρt,g,rπt,g,r or the total number of undiagnosed

infections Nt,r

∑
g ρt,g,rπt,g,r (1−δt,g,r ), where Nt,r is

the location- and time-specific total population. There
are 13 mutually exclusive risk groups defining a hi-
erarchy of risk. Men are classified into the following:
men who have sex with men [MSM attending sexu-
ally transmitted infection (STI) clinics; MSM not at-
tending STI clinics; and past MSM]; injecting drug
users (IDU, current and past); heterosexual men born
in sub-Saharan Africa (SSA); heterosexual men attend-
ing STI clinics; and heterosexual men at low risk (LR)
of infection. Heterosexual women are classified in the
same way as heterosexual men. Geographically, there
are three locations (Inner London, Outer London, Rest
of E&W), and t refers to the year 2008. In total there
are 11 × 3 + 13 × 3 + 13 × 3 = 111 parameters as∑

g ρt,g,r = 1 for each gender.

3.1 Data

Different types of data are available on the follow-
ing: group sizes, HIV prevalence, prevalence of un-
diagnosed infections, proportion of infections diag-
nosed, total number of diagnosed infections and group
distribution amongst diagnosed cases. Data sources
are described in full and commented upon elsewhere
(Goubar et al., 2008, Presanis et al., 2010 and ref-
erences therein), and are only briefly reviewed here.
Mid-year population estimates provide information on
Nt,r and some risk group proportions ρt,g,r . The re-
maining ρt,g,r are derived from a behavioural sur-
vey. Unlinked anonymous sero-prevalence surveys
amongst STI clinic attendees inform the prevalence
of undiagnosed infection πt,g,r (1 − δt,g,r ). The anal-
ogous surveys amongst pregnant women and IDUs
inform prevalence πt,g,r and proportion diagnosed
δt,g,r , both directly for some groups and indirectly
through functions of πt,g,r , δt,g,r and ρt,g,r . The preg-
nant women’s survey, in particular, measures preva-
lence in those born in SSA and the remainder (NSSA).
These NSSA are a mixture of STI clinic attendees,
IDUs and lower risk women. The observed data,
therefore, provide information on a complex func-
tion of HIV prevalence in these groups and account
for the probability of each group being included in
the sample. An annual cross-sectional survey of diag-
nosed individuals collects information on functional
parameters representing both the total number living
with diagnosed HIV (Nt,r

∑
g ρt,g,rπt,g,rδt,g,r ) and the

distribution of risk groups amongst these individu-
als ((ρt,g,rπt,g,rδt,g,r )/(

∑
g ρt,g,rπt,g,rδt,g,r )) for each

group g. Table 1 summarises the spread and the type

TABLE 1
Relationship between available data and parameters for a generic location r

Risk group N ρ π δ ψ(ρ,π) ψ(π, δ) ψ(ρ,π, δ)

Men MSM � � �
IDUs � � � �

Born sub-Saharan Africa � �
STI clinic attendees � � �

Lower risk
ALL � �

Women IDUs � � � � �
Born sub-Saharan Africa � � � �

STI clinic attendees � � � �
Lower risk �

ALL � � �
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of information available as well as the relationship be-
tween the available data and the basic parameters, ex-
pressed here through generic functions ψ . Note the
sparseness of information on heterosexual men and the
multiplicity of data on heterosexual women.

3.2 Inference

Sampling distributions. Information yt,g,r from
most sources can be expressed in the form of count
data xt,g,r with an associated denominator nt,g,r . These
data can be assumed to naturally be realisations of a bi-
nomial random variable

Xt,g,r ∼ binomial(nt,g,r ,ψt,g,r ),

where ψt,g,r equals any of ρt,g,r , πt,g,r and δt,g,r if
yt,g,r provides direct information or is a function of
these basic parameters.

The observed total numbers of diagnosed men and
women in each location, xt,m,r and xt,f,r , respec-
tively, are assumed to be realisations of Poisson ran-
dom variables Xt,m,r ∼ Poisson(μt,m,r ) and Xt,f,r ∼
Poisson(μt,f,r ), where

μt,m,r = Nt,m,r

∑
gm

(1 − νt,gm)δt,gm,rπt,gm,rρt,gm,r ,

μt,f,r = Nt,f,r

∑
gf

(1 − νt,gf
)δt,gf ,rπt,gf ,rρt,gf ,r .

Here gm and gf refer to male and female groups, re-
spectively, and νt,gm, νt,gf

are parameters represent-
ing potential bias in the reported number of diagnosed
individuals due to nonattendance, under-reporting or
duplication. The region-specific numbers diagnosed in
each risk group, xt,gm,r and xt,gf ,r , are simultaneously
drawn from gender-specific multinomial distributions
with size parameters μt,m,r and μt,f,r , and probability
parameters

ξt,gm,r = (
(1 − νt,gm)δt,gm,rπt,gm,rρt,gm,r

)
/∑

gm

(1 − νt,gm)δt,gm,rπt,gm,rρt,gm,r ,

ξt,gf ,r = (
(1 − νt,gf

)δt,gf ,rπt,gf ,rρt,gf ,r

)
/∑

gf

(1 − νt,gf
)δt,gf ,rπt,gf ,rρt,gf ,r .

The full likelihood Lt(θ t ;yt ) results from the prod-
uct of each of these distributions, as generically de-
scribed in Section 2.

Sparseness of information. One of the challenges
to the “direct” methods is the lack of information on
some risk groups. Table 1 clearly shows that data on
πt,g,r and δt,g,r for male heterosexuals are sparse. This
sparsity can be addressed by sharing information be-
tween men and women. Although πt,g,r and δt,g,r are
expected to vary by gender and by location, it is rea-
sonable to assume that their male-to-female odds ratios
might be similar between regions. To borrow strength
across locations and risk groups, the following hier-
archical structures are then assumed for the male-to-
female log odds ratios of prevalence lor.πt,g,r and pro-
portion diagnosed lor.δt,g,r :

logit(πt,gm,r ) = lor.πt,g,r + logit(πt,gf ,r ),

lor.πt,g,r ∼ normal
(
Pt,g, σ

2
t,π

)
,

logit(δt,gm,r ) = lor.δt,g,r + logit(δt,gf ,r ),

lor.δt,g,r ∼ normal
(
Dt,g, σ

2
t,δ

)
,

with a further hierarchy over risk groups:

Pt,g ∼ normal
(

t,ω

2
t,π

)
, Dt,g ∼ normal

(
�t,ω

2
t,δ

)
.

The means 
t and �t are a priori distributed as
normal(0,1002). The standard deviations σt,π , σt,δ and
ωt,δ are given informative priors expressing the belief
that only 5% of region-specific male-to-female odds
ratios (of both prevalence and proportion diagnosed)
will vary from the mean by more than a 1.3 factor (Sec-
tion 5.7.3 of Spiegelhalter, Abrams and Myles, 2004).
The odds ratios for prevalence are assumed to vary
more across risk groups than across regions, hence, the
prior for ωt,π is weaker: a factor of 1.6 is used.

Bias modelling and other indirect information. A
further challenge to the estimation problem is repre-
sented by data that indirectly inform a specific pa-
rameter of interest. The most common example occurs
where the data are known to be affected by biases, as
for the above total number of diagnosed infections. The
parameters νt,gm and νt,gf

are, in this case, introduced
to model the known bias. In general, this is dealt with
by introducing “bias models” that take the generic form
θ ′ = θ + ε on a suitable scale, where θ is the parame-
ter of interest and θ ′ is the parameter directly informed
by the data. The “bias parameter” ε is a measure of the
discrepancy between θ ′ and θ . Where information or
expert opinion on the size and/or direction of the bias
is available, this is expressed as an informative prior
on ε.
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Other challenges in the data sources, such as greater
spatial heterogeneity than is captured by the regional
structure adopted in the model, are met by more com-
plex modelling, such as mixed effects regression on a
finer regional stratification. The parameters ψt,g,r in
the binomial expression above may therefore have a
more complex functional structure than the examples
given here; see Goubar et al. (2008), Presanis et al.
(2008), Presanis (2010) for more details.

Priors. Diffuse uniform priors are chosen for the ba-
sic parameters πt,g,r and δt,g,r . The proportions of the
male and female populations in each risk group ρt,gm,r

and ρt,gf ,r are given Dirichlet priors such that they sum
to 1. Informative normal or uniform priors are assigned
to bias parameters such as νt,gm and νt,gf

.

Results. Samples from the posterior distribution are
obtained using Markov chain Monte Carlo (MCMC),
implemented in WinBUGS (Lunn et al., 2000). Poste-
rior summaries are based on 8000 samples from two
chains after convergence is achieved. Figure 2 presents
the estimated number of HIV infections in E&W, by
diagnosis status and risk group.

4. JOINT PREVALENCE AND INCIDENCE MODEL

Application of the prevalence model over successive
years using a sequence of data sets {yt }, t ∈ 1, . . . , T ,
provides the joint posterior distribution of the propor-
tions of the population Nt,g,r in each of three com-
partments: susceptible to infection st,g,r = ρt,g,r (1 −
πt,g,r ); HIV infected but undiagnosed ut,g,r =
ρt,g,rπt,g,r (1 − δt,g,r ); and infected and diagnosed
dt,g,r = ρt,g,rπt,g,rδt,g,r . These can be interpreted as
estimates of the state at time t of a dynamical system
describing the processes of infection and diagnosis.
Such a system can be approximated by a continuous-
time Markov model whose dynamics are described
through a system of ordinary differential equations
(ODEs). As in Presanis et al. (2011), we focus here
on the MSM group and, for simplicity, drop the sub-
scripts g and r . Let ct = (st , ut , dt ) and denote by
λt the transition rates in the time interval [t, t + 1),
assumed piecewise constant over the interval. Using
additional data {zt } (Presanis et al., 2011) and prior in-
formation on demographics and risk behaviour uptake,
a joint prevalence and incidence model can be formu-
lated to allow simultaneous estimation of the preva-
lence parameters θ t , the compartment proportions ct

FIG. 2. Posterior median (95% credible interval) number of HIV infections in adults aged 15–44 in E&W in 2008, by diagnosis status and
risk group.
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FIG. 3. Schematic DAG of the joint prevalence and incidence
model.

and the transition rates λt including λ
s,u
t , the incidence

rate, that is, the rate at which susceptible individuals
enter the infected state. The DAG in Figure 3 pro-
vides a schematic representation of this joint model.
The proportions ct+1 at time t + 1 are defined, through
the ODEs, in terms of the rates λt during the period
[t, t +1) and the initial condition of the system at t = 1.
The prevalence parameters θ t and λt govern the preva-
lence and rate data, respectively. Note that this DAG
has the same structure as that in Figure 1. Now the λt

and c1 are the basic parameters and the θ t are func-
tional parameters.

Inference is conducted as described in Section 2. The
likelihood of the joint data is

L(c1,λ;y, z) =
T∏

t=1

Lt(c1;yt )Lt (λt ; zt ),

where Lt(λt ; zt ) is the likelihood contribution of the
demographic and behavioural data informing transi-
tion rates. Assuming independent vague priors for λt

and a Dirichlet(1,1,1,1) prior for the compartment
proportions at t = 1, c1, the joint posterior distribu-
tion for c1 and λ, and therefore also of θ , is obtained
through MCMC implemented in WinBUGS. Note that
the likelihood contribution of the prevalence data, yt ,
depends on the ct , the ODEs’ solutions, which are
derived numerically for the current parameter values
at each MCMC iteration using the Runge-Kutta algo-
rithm in the WBDiff package in WinBUGS. Figure 4
shows posterior distributions resulting from the joint
prevalence and incidence model.

5. DISCUSSION

From a methodological point of view, this work has
responded formally to the need, perceived by epidemi-

ologists working in the HIV arena, to “triangulate” all
information: from multiple and imperfect sources and
expert opinion on the epidemiological interpretation of
the data from these sources. The approach is clearly
appealing: it uses data fully, minimising potential bi-
ases due to selection of information; it typically leads
to more precise estimates, which are consistent with all
information; and it accounts for all sources of uncer-
tainty, naturally reflected in the posterior distributions
of parameters and quantities of interest.

5.1 Why Bayesian?

In principle, evidence synthesis does not need to be
carried out in a Bayesian framework; see, for instance,
Eddy, Hasselblad and Shachter (1992) and much of the
meta-analytical work referenced in Sutton et al. (2000).
Indeed, work exists to estimate HIV prevalence in a
single risk group by synthesising three data sources
in a classical approach, accounting for missing data
(Walker et al., 2011). However, the unprecedented mul-
tiplicity of data sources, risk groups and indirect infor-
mation involved in the work described here requires
a Bayesian approach, with clear benefits over classi-
cal, likelihood-based alternatives. The main advantage
is the ability to (i) explicitly introduce and (ii) formally
quantify expert judgements. The hierarchical model in-
troduced in Section 3.2 to tackle data sparseness of-
fers such an example: only through reasonably chosen
informative priors on the standard deviation hyperpa-
rameters has it been possible to overcome identifiabil-
ity problems due to lack of information (see sensitivity
analyses in Presanis, 2010). Second, a Bayesian model
can be easily extended to include auxiliary “bias” pa-
rameters to quantify lack of validity and relevance of
data items for the estimation for any specific parame-
ter. Expert epidemiological information on the direc-
tion and magnitude of such biases is naturally accom-
modated in a Bayesian setup through carefully cho-
sen priors (see Section 3.2 and references therein). It
is not immediately obvious how a classical modelling
approach would accommodate such information. Com-
putational convenience represents a further advantage
of a Bayesian approach. As the posterior distribution
is estimated through simulation, it is straightforward to
obtain inferences on any functional parameter of inter-
est. The likelihood function of even a moderately sized
evidence network is unlikely to be sufficiently tractable
to allow comparably streamlined inference.

5.2 Impact on the Real World

Since 2005 our “multi-parameter” evidence syn-
thesis has been the approach adopted to produce
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FIG. 4. Density strip plots of posterior distributions of incidence and diagnosis rates in MSM (darker colour corresponds to higher density
and horizontal black line denotes the posterior median), 2002–2008.

the official estimates of the magnitude of the HIV
problem in the UK, in particular, the undiagnosed
component, underlying current testing recommen-
dations (http://www.hpa.org.uk/web/HPAweb&Page&
HPAwebAutoListName/Page/1201094588821). In
2011, estimated trends on the prevalence of undi-
agnosed infection and incidence in MSM informed
the work of the House of Lords Select Committee
on HIV/AIDS in the UK (http://www.publications.
parliament.uk/pa/ld201012/ldselect/ldaids/188/
188.pdf). Recently, dissemination of the method has
also attracted the interest of international public health
organisations. Funded by the World Health Organi-
zation as part of an ongoing critical review of cur-
rent methods for HIV prevalence estimation in con-
centrated epidemics (Ghys et al., 2008), the prevalence
model has been adapted to estimate HIV burden in the
Netherlands for the year 2007 (Conti et al., 2011). In
comparison to other direct-type methods, the evidence
synthesis approach was found to be the most flexible
and statistically sound (van Veen et al., 2011).

5.3 Current Challenges

The model building and criticism processes in this
work have led to a critical understanding of the
strengths and weaknesses of the various sources of
HIV information available in the UK, often challenging
common interpretation of the data. Extensive sensitiv-
ity analyses have been carried out for prior and struc-
tural assumptions, to the sampling distributions em-
ployed, as well as to the data sources included (Goubar
et al., 2008, Presanis et al. 2008, 2011, Presanis, 2010).
Moreover, routine annual application of the model has
led to continual model development, responding to
changes in surveillance, the availability of new data
sources, and ongoing model criticism in the cycle
recommended by Box (1980) and O’Hagan (2003),
amongst others. Some of the development required
and in progress includes addressing issues of miss-
ing data, using ideas as in Walker et al. (2011) and
a comprehensive model of the process of diagnosis
in STI clinics based on a new surveillance system

http://www.hpa.org.uk/web/HPAweb&Page&HPAwebAutoListName/Page/1201094588821
http://www.publications.parliament.uk/pa/ld201012/ldselect/ldaids/188/188.pdf
http://www.hpa.org.uk/web/HPAweb&Page&HPAwebAutoListName/Page/1201094588821
http://www.publications.parliament.uk/pa/ld201012/ldselect/ldaids/188/188.pdf
http://www.publications.parliament.uk/pa/ld201012/ldselect/ldaids/188/188.pdf
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(http://www.hpa.org.uk/Topics/InfectiousDiseases/
InfectionsAZ/HIV/OverallHIVPrevalence/).

More generally, model criticism is essential in an ev-
idence synthesis approach. As data come from multiple
sources depending on shared parameters, it becomes
crucial to understand and communicate which sources
(including priors) drive conclusions and whether the
various items of evidence result in consistent or con-
flicting inference. Efforts clearly need to be focussed
on the development of transparent methods for model
assessment and criticism, given that evidence synthesis
approaches are being increasingly employed in differ-
ent areas of science.

In the same spirit, an important step toward im-
proved communication and dissemination of Bayesian
evidence synthesis would be the availability of a user-
friendly computing environment, facilitating access
and implementation of the methodology to nonex-
perts. van Veen et al. (2011) also identified the lack of
such a modelling interface as a restriction to the more
widespread adoption of our approach.
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