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Abstract: Complex functional brain network analyses have exploded over
the last decade, gaining traction due to their profound clinical implications.
The application of network science (an interdisciplinary offshoot of graph
theory) has facilitated these analyses and enabled examining the brain as
an integrated system that produces complex behaviors. While the field of
statistics has been integral in advancing activation analyses and some con-
nectivity analyses in functional neuroimaging research, it has yet to play
a commensurate role in complex network analyses. Fusing novel statistical
methods with network-based functional neuroimage analysis will engender
powerful analytical tools that will aid in our understanding of normal brain
function as well as alterations due to various brain disorders. Here we survey
widely used statistical and network science tools for analyzing fMRI net-
work data and discuss the challenges faced in filling some of the remaining
methodological gaps. When applied and interpreted correctly, the fusion of
network scientific and statistical methods has a chance to revolutionize the
understanding of brain function.
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1. Introduction

As evidenced by the launching of the Human Connectome Project (HCP) by
the National Institutes of Health (NIH) in 2009 and the 1000 Functional Con-
nectomes Project in the same year, whole-brain functional magnetic resonance
imaging (fMRI) connectivity analyses are key in our understanding of normal
brain function as well as alterations due to various brain disorders [1, 2]. fMRI
measures localized brain activity by capturing changes in blood flow (hemo-
dynamic response) and oxygenation associated with neural activity. The blood
oxygen level-dependent (BOLD) contrast exploits the magnetic properties of
oxygenated and deoxygenated blood to capture these changes [3]. The brain is
generally parcellated into cubic regions roughly a few millimeters in size called
voxels in which the brain activity measurements are made across a series of
scans. For coarser representations the BOLD signal time series are averaged
across voxels within a specified region. Functional connectivity analysis (FC)
examines functional associations (e.g., correlations) between time series pairs in
specified voxels or regions [4, 5]. Effective connectivity analysis (EC) examines
the directed influence of a time series from one region on that from another [5].
Complex functional brain network (or connectivity) analysis is a specific subfield
of connectivity analysis in which associations are quantified for all time series
pairs to create an interconnected representation of the brain (a brain network).
Studying the brain as a network is appealing as it can be viewed as a system
with various interacting regions that produce complex behaviors [6, 7]. As with
other biological networks, understanding the complex network organization of
the brain has profound clinical implications [1, 2, 6, 8].

This emerging area of complex fMRI network analyses has revealed method-
ological gaps that require the integration of statistical tools with network-based
neuroimage analysis. The application of network science to the brain has fa-
cilitated our understanding of how the brain is structurally and functionally
organized. Furthermore, studying the brain within this framework has already
shed light on how some disorders such as Parkinson’s disease, schizophrenia, and
Alzheimer’s disease affect the brain [8–10]. In the case of Alzheimer’s disease, the
precuneus shows the most reliable changes based on clinical positron emission
tomography (PET) imaging [11, 12]. It has been difficult to reconcile this find-
ing with the predominant clinical symptom of memory dysfunction, a cognitive
process associated with the hippocampi. However, recent network analyses have
discovered that the precuneus is anatomically and physiologically a central hub
(highly connected area) in the brain [13]; thus, damage to it can lead to a num-
ber of conditions and reverberate throughout many areas of the brain including
the hippocampus. In practice, graph metrics such as clustering coefficient, path
length and efficiency measures are often used to characterize system properties
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of brain networks. Centrality metrics such as degree, betweenness, closeness,
and eigenvector centrality determine critical areas within the network. Com-
munity structure is also essential for understanding network organization and
topology.

Network science has led to a paradigm shift in the neuroscientific community,
but many statistical issues remain unaddressed [14]. A more rigorous statisti-
cal assessment and a greater scientific understanding of how current network
models apply to the brain are needed. An integrated appraisal of multiple net-
work metrics should be performed to better understand network structure rather
than focusing on univariate assessments. Statistically comparing groups of brain
networks while accounting for their complex topologies remains a fertile area
for methodological development. In addition to accounting for the dependence
structure of networks, a framework in which the effects of multiple variables of
interest and local network features (e.g., disease status, age, race, nodal clus-
tering, nodal centrality, etc.) on the overall network structure can be examined
concurrently is paramount. In other words, (non)linear modeling and inferential
frameworks for brain networks are in their infancy and have yet to be developed
to the extent that equivalent tools have been developed for fMRI activation
data. The utility of network comparison tools varies by context; thus, outcomes
of interest should inform their development. Here we survey widely used sta-
tistical and network science tools for analyzing fMRI network data and discuss
the challenges faced in filling some of the remaining methodological gaps. These
methods necessitate a philosophical shift toward complexity science. In this
context, when applied and interpreted correctly, the fusion of network scientific
and statistical methods has a chance to revolutionize the understanding of brain
function.

For this survey of methods for complex functional brain networks, we de-
lineate network construction methods in Section 2. We then detail descriptive
methods for analyzing these constructed networks in Section 3. Modeling and
inferential brain network methods are discussed in Section 4. We conclude with
a summary discussion including important future directions for complex func-
tional brain network analysis in Section 5.

2. Network construction

A brain network is generally represented by an n × n matrix where n is the
number of nodes, with each node corresponding to an area of the brain. The size
of the area depends on the chosen parcellation scheme. The entries of the matrix
denote the functional similarity between the BOLD fMRI signal time series of all
node pairs. A schematic exhibiting how functional brain networks are generated
from fMRI time series data is presented in Figure 1. In the following subsections
we discuss the basic steps of network construction: 1) defining nodes (brain
parcellations), 2) network estimation, and 3) thresholding. We also discuss the
use of weighted networks.
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Fig 1. Schematic for generating brain networks from fMRI time series data. Functional con-
nectivity between brain areas is estimated based on time series pairs to produce a connection
matrix. A threshold is commonly applied to the matrix to generate a binary adjacency matrix.
From the adjacency matrix, various network analyses can be performed.

2.1. Defining nodes

A typical fMRI session measures brain activity in cubic regions a few millimeters
in size (voxels) across a series of scans. Appropriate selection and aggregation
of these brain regions to represent network nodes remains a methodological
challenge [15]. Brain regions are usually selected based on anatomical locations
in order to standardize nodal positions across subjects [16]. Careful considera-
tion should be given to the choice of the parcellation scheme (i.e., the scheme
used to subdivide the brain into presumably functionally homogeneous regions)
which must be consistent across all images [17, 18]. Ideally, a scheme should
cover the entire brain with non-spatially overlapping nodes that embody re-
gions with coherent patterns of functional activity. Coarser parcellations select
nodes based on regions from an atlas such as the Automated Anatomical Label-
ing (AAL) atlas [19], while more granular schemes use voxel-based networks [20].
The coarser representations extract the mean time series from each region (aver-
aged across the voxels within that region) conferring computational benefits due
to the reduction in dimensionality, and statistical benefits due to the reduction
in variability. However, some have suggested that the higher spatial resolution
voxel-based networks are more representative of the brain [21]. Others have rec-
ommended using an intermediate parcellation scheme in order to balance spatial
resolution with the added noise that comes from more resolved networks [15, 22].
[15] constructed intermediate parcellation templates by subdividing AAL atlas
based nodes into uniform contiguous micro nodes. Further refinement of voxel-
based networks to include more than the typical n ≈ 20, 000 nodes may be of
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limited scientific value given that cognitive function is dependent on large-scale
activation and coactivation of neuronal populations [16].

2.2. Network estimation

After selecting a parcellation scheme, the next step in the network construction
process is to estimate the network. That is, compute the entries of the n×n con-
nection matrix which represent the functional relationships between node pairs.
The best estimation approach is an area of ongoing research [23, 24]. Methods
for estimating functional connectivity between network nodes for complex brain
network analysis fall into two categories: association measures and modeling ap-
proaches. Linear association measures include correlation and coherence, while
nonlinear measures comprise mutual information and generalized synchroniza-

tion. The literature on modeling approaches for quantifying whole-brain func-
tional connectivity remains sparse, though a few important contributions have
been made by [25] and others. Prior to network estimation, a band-pass filter is
often applied to the time series in order to reduce confounding from physiolog-
ical noise and subject motion [26]. Here we focus on methods for determining
undirected functional connectivity (as distinct from directed or effective connec-
tivity (EC)) as the relatively poor temporal resolution of fMRI data generally
precludes accurately inferring causal relations in whole brain networks [27]. We
also leave out a discussion of independent component analysis (ICA) and sim-
ilar methods as their applicability in the context of complex functional brain
network analysis is debatable [23, 28]. While ICA provides a useful exploratory
technique for examining functional connectivity, it precludes quantitatively as-
sessing differences in overall network structure and investigating how different
modules (interconnected clusters of nodes) interact with and transfer informa-
tion between each other [28].

Correlation and partial correlation are the simplest and most commonly used
association measures to quantify the similarity between the time series or fre-
quency spectra (wavelet correlation) of node pairs [29–31]. Partial correlation
is the preferred method as it better distinguishes direct from indirect connec-
tions. Conceptually, partial correlation falls in the middle of the association
measure-modeling method continuum given that its computation involves time
series data from all nodes. It has even been promoted as a surrogate for struc-
tural equation modeling (SEM) under light regularization [32]. Computing the
inverse of the covariance matrix for the nodal time series provides an efficient
way to estimate the partial correlations. If it is expected that the connection
matrix is sparse, regularization (e.g., applying the Lasso method) allows dif-
ferentially shrinking smaller correlation values toward zero. This approach may
be useful with short fMRI scanning sessions with shorter nodal time series [23].
While linear partial correlation is sufficient for capturing functional associations
in most contexts [30], network metrics such as small-worldness may be biased
if careful attention is not paid to constructing appropriate null networks for
benchmarking [29, 33].
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Coherence is the spectral analogue of correlation [34–38], and is defined as

Ctitj =
|ftitj (λ) |

2

fti (λ) · ftj (λ)
, (1)

where ftitj (λ) is the cross-spectrum at frequency λ of the time series at nodes i
and j, and fti(λ) and ftj (λ) are the respective power spectrums at frequency λ.
This normalized measure takes a value of 0 in the absence of any linear rela-
tionship, and 1 if the time series are perfectly related by a linear magnitude
and phase transformation. It is generally estimated for either a single frequency
range, or multiple ranges with a subsequent combining of results. Use of this
measure is more common in EEG and MEG studies where the temporal resolu-
tion is much higher.

Mutual information (MI) is an often employed nonlinear association measure
[39–41] that captures both linear and nonlinear dependencies between nodal
time series, and is defined as

I (Ti, Tj) =

∫

Ti

∫

Tj

f (ti, tj) · log2

(
f (ti, tj)

f (ti) · f (tj)

)
dti dtj . (2)

Here f(ti, tj) is the joint probability density function of the time series at nodes
i and j, and f(ti) and f(tj) are the respective marginal probability density func-
tions. Conceptually, MI quantifies the shared information between time series
pairs. That is, it relays the amount of uncertainty remaining about one time se-
ries after knowing the other. If no information is shared (i.e., the BOLD signals
are independent) then I(Ti, Tj) = 0, otherwise I(Ti, Tj) increases as the amount
of information shared increases. Normalized MI allows comparing values within
and between subjects [40].

Generalized synchronization (or state space synchrony) is another nonlinear
association measure that quantifies the interdependence between two signals
in state space reconstructed mappings [42, 43]. Essentially, each time series is
mapped to a set of delay vectors (i.e., the data are resampled at variable time
bins) which have the form

Ti(b) = (ti(b), ti(b+ l), ti(b + 2l), . . . , ti(b + (m− 1)l)) . (3)

Here Ti denotes the time series from node i, b denotes a discrete reference time
point, l is the chosen time lag and m is the chosen embedding dimension. Appro-
priately choosing l and m, along with having time series that are generated by a
deterministic dynamical system with a smooth attractor, ensures that the delay
vectors lie on a smooth manifold in R

m. Synchrony assessment is then based
on the level of similarity among the delay vectors (state space reconstructed
mappings) for nodal pairs.

Although nonlinear association measures such as synchronization and MI are
more sensitive to higher order dependencies than correlation, their practical
relevance for fMRI network estimation is debatable and needs futher evalua-
tion [30]. These measures tend to be relatively sensitive to noise and prone to
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systematic errors such as estimation bias [44, 45]. Moreover, linear approaches
often perform well for signals with mild nonlinearity [30, 46].

While modeling methods are often employed for directed network estimation
(e.g., Bayes Net, multivariate autoregressive, and dynamic causal modeling),
they remain relatively limited for undirected functional network estimation. This
is likely, in part, due to the general acceptance of the use of association measures
in the fMRI brain network literature. However, a few important model-based
estimation contributions have been made. [25] developed a modeling approach
to improve the estimation of an individual subject’s network by leveraging infor-
mation contained in a group of subjects’ time series data. [47] applied Markov
models to infer functional connectivity structure. [48] introduced Dynamic Con-
nectivity Regression (DCR) which allows estimating multiple networks across
contiguous temporal partitions. Penalized regression methods have also been
proposed for network estimation [49].

2.3. Thresholding

After estimating a functional brain network from nodal time series, the next
step often involves thresholding the connection matrix to remove weak connec-
tions and produce an n× n adjacency matrix (Aij) which notes the presence or
absence of a functional connection between any two nodes (i and j). These bi-
nary functional connections are called edges or links in the network. The sparse
binary brain networks resulting from the thresholding process are comprised of
strong or “significant” connections and have served as the impetus for many
of the network scientific and statistical methods developed thus far [50]. In the
case of a dense network generated by eliminating the thresholding step or by
employing a very lenient threshold, preserving edge weights is most appropriate
(Section 2.4). Weighted versions of the traditional descriptive metrics (described
in Section 3) can then be used [14, 50].

Credible network analysis requires careful choice of the thresholding approach
as it affects the density of connections and network topology in ways that can
yield erroneous conclusions [51]. As with all of the network construction steps,
thresholding strategy development is an area of ongoing research. How to assess
credibility and determine the “best” strategy remain open questions. The op-
timal method likely varies with the research question of interest. As a point of
clarification, thresholding is sometimes referred to as “network inference” since
a network structure is being inferred. This is distinct from the way we use “net-
work inference” in this review which refers to drawing statistical conclusions
about an already constructed network or group(s) of networks.

Most thresholding methods fall into three categories: fixed threshold, fixed
average degree, and fixed edge density [7, 51]. The fixed threshold approach re-
quires selecting a single threshold according to one of three criteria: (1) using
a specified significance level (e.g., α = 0.05) to retain “significant” connections
(with a correction for multiple comparisons); (2) employing a uniform thresh-
old across all networks (e.g., ρ̂ > 0.5); (3) defining a threshold that minimizes
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the number of connections while ensuring all nodes are connected to the main
component. The major limitation of this fixed threshold approach is that the
generated networks generally vary in average degree k (average number of con-
nections) which can confound subsequent comparative analyses [51]. The fixed

average degree method avoids this problem by varying the threshold applied to
each network so that k is fixed across all networks. However, problems arise if
the connectivity distributions vary significantly across networks. For example, to
maintain the desired average degree for a network dominated by weaker connec-
tion strengths with one dominated by stronger connection strengths, the former
will have weak, potentially non-significant connections converted to edges while
the latter will have strong, significant connections omitted. Alternatively, the
fixed edge density approach (or wiring cost) fixes the proportion of the number
of existing edges to the number of possible edges [17]. [21] proposed a thresh-
olding method falling within this category which ensures that S=log(n)/ log(k)
is the same across networks. This relationship is based on the path length of
a random network with n nodes and average degree k [52, 53], and can be re-
written as n = kS . For networks with the same number of nodes, the methods
in this category are equivalent to fixing the average degree.

Thresholding strategy development remains an area of ongoing research given
the lack of consensus on the best method. Often researchers will conduct sen-
sitivity analyses to show how their results change over various thresholds and
thresholding approaches [20, 31, 51, 54]. Threshold selection based on network
size presents one potential solution [55]. However, more work is needed given
the sensitivity of network topology to the thresholding process [51].

2.4. Weighted networks

Weighted (i.e., continuous) functional brain network analyses involve deriving a
weighted adjacency matrix (Wij) from the connection matrix. Often the connec-
tion matrix itself, or a simple transformation of it, is used, with the edges con-
taining information about connection strengths. These analyses allow avoiding
thresholding issues and have gained traction [9, 56, 57] due to recent method-
ological developments [14, 50, 58]. Such analyses utilize the entire connection
matrix rather than a sparse binary adjacency matrix. This option has the ben-
efit of eliminating the thresholding step but poses new challenges. First, the
computational burden of the analyses increases considerably since the graph is
fully connected. While calculations remain feasible on networks based on brain
atlases with a limited number of nodes (. 1000), the computational burden is
too great for voxel based networks. Second, the interpretation of analysis results
from a fully connected network must be made cautiously. These networks are
no longer comparable to sparse networks that depend on connections between
clusters for information spread [59]. Given these (and other) computational and
methodological challenges that weighted networks pose [7, 50, 58], binary net-
work analysis still dominates the literature. Thresholding weighted networks
to remove noise while retaining the continuous “significant” connections may
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mitigate some of these challenges. However, removing the “weak” links and re-
stricting the range of connection strengths in this manner may limit the power
of subsequent analyses and render certain distributional assumptions invalid.
Analysis approaches for weighted networks are in their infancy and may prove
vital for understanding normal and abnormal brain function.

3. Descriptive methods

3.1. Functional segregation and integration

Measures of functional segregation and integration are among the most widely
used metrics to characterize the topology of fMRI brain networks. Segregation
metrics quantify the presence of densely interconnected groups of brain regions,
which allow for specialized, segregated neural processing (regional specificity).
That is, these measures characterize the brain’s local communication ability.
Clustering coefficient (C) [53] and transitivity [60] are two such measures based
on the number of triangles (three interconnected nodes) in a network. Alterna-
tively, local efficiency (Eloc) [61] provides a scaled analogue of these metrics and
is defined as

Eloc =
1

n

∑

i∈N

Eloc,i =
1

n

∑

i∈N

∑
j,h∈N,j 6=i aijaih [djh (Ni)]

−1

ki (ki − 1)
, (4)

where Eloc,i is the local efficiency of node i, N is the set of all nodes in the
network, n is the number of nodes, aij is an indicator function for the existence
of an edge between nodes i and j, ki is the degree of node i, and djh(Ni) is the
shortest path between nodes j and h that contains only neighbors (connected
nodes) of node i. Eloc ranges from zero to one, with larger values representing
more functional segregation.

Functional integration metrics quantify the presence of statistical dependen-
cies between distributed brain regions, indicating the capacity for rapid infor-
mation transfer (distributive processing). That is, these measures characterize
the brain’s global communication ability. Characteristic path length (L), the
most commonly used of these measures, is the average shortest distance (min-
imum number of edges that must be traversed) between all node pairs. Global

efficiency (Eglob) [61], a scaled analogue of L, is the average inverse shortest
distance between node pairs and is defined as

Eglob =
1

n

∑

i∈N

Eglob,i =
1

n

∑

i∈N

∑
j∈N,j 6=i d

−1
ij

n− 1
, (5)

where Eglob,i is the global efficiency of node i, dij is the shortest path between
nodes i and j, and N and n are defined as before. Like Eloc, Eglob also ranges
from zero to one, with larger values representing more functional integration.
Weighted and directed analogues for C [62–64], transitivity, Eloc, L, and Eglob

have also been developed [50].
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3.2. Small-worldness

The brain is thought to optimize information transfer by maximizing functional
segregation and integration while minimizing wiring cost [65]. Small-worldness is
often the term used to describe such a design that enables distributive processing
and regional specificity. The seminal paper by [53] introducing this small-world
idea catalyzed the use of network science in many disciplines including neuro-
science. Subsequently, [67] introduced the small-world measure, σ, to quantify
this property. Conceptually, a small-world network is one that is more clustered
than a random network while still having approximately the same characteristic
path length as a corresponding random network. Mathematically it is defined
as

σ =
C/Crand

L/Lrand
, (6)

where C and Crand are the clustering coefficients, and L and Lrand are the char-
acteristic path lengths of the respective network of interest and random (null)
network used for benchmarking. Random (null) networks are commonly gener-
ated such that they have the same degree distribution as the original network
in order to avoid confounding network structure [66]. Though, appropriately
constructing these random networks depends, in part, on the method used for
estimating the original network [29]. Arbitrary thresholds are often set to distin-
guish values of σ (usually σ > 1) deemed to signify small-worldness. However,
work by [67] provides steps towards formally quantifying and testing for the
small-world property.

Lattice networks are also used as null networks [68] given that they pro-
vide a better benchmark for assessing network clustering. For this reason, [69]
developed an alternative small-world measure defined as

ω =
Lrand

L
−

C

Clatt
, (7)

where the clustering coefficient of the original network (C) is now indexed
against a corresponding lattice network (Clatt). This scaled metric, ω∈ [−1, 1],
takes values close to zero for small-world networks, positive values for more ran-
dom networks, and negative values for more regular, or lattice-like, networks.

3.3. Resilience measures

Infrastructural properties of functional brain networks determine the capac-
ity of localized brain injury or degeneration to affect overall brain capabilities.
Complex network analysis allows characterizing these properties with several
topological measures that assess network vulnerability to insult. The degree

distribution [70] is the most commonly assessed property. Empirically, these
distributions follow a power-law (Pareto distribution) or exponentially trun-
cated power-law in fMRI brain networks [21]. Networks with a power-law de-
gree distribution tend to be resilient to random injury (i.e., random removal
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of nodes), but vulnerable to injuries that target network hubs (highly con-
nected nodes). Those with an exponentially truncated power-law distribution
maintain resilience to random injuries, while being slightly less vulnerable to
injuries that target network hubs given that the hubs tend to be less connected
than in the power-law counterpart. Despite the slightly disparate implications of
the two distributions for network robustness, rigorous statistical assessment of
distributional goodness-of-fit (GOF) in the literature is sparse. Recent work by
[71, 72] formally quantifying and testing for GOF will likely change this trend.

The assortativity coefficient (Rij) is another widely used measure of network
resilience [60, 73]. It quantifies the correlation between the degrees of connected
nodes and is defined as

Rij =
l−1
∑

(i,j)∈L kikj −
[
l−1
∑

(i,j)∈L
1
2 (ki + kj)

]2

l−1
∑

(i,j)∈L
1
2

(
k2i + k2j

)
−
[
l−1
∑

(i,j)∈L
1
2 (ki + kj)

]2 , (8)

where l is the number of edges (links), L is the set of all edges in the network,
and ki and kj are the degrees of nodes i and j respectively. Assortative networks
(those with Rij positive and closer to 1) imply the existence of a resilient core
of interconnected high-degree hubs. Conversely, disassortative networks (those
with Rij negative and closer to −1) imply the existence of more vulnerable high-
degree hubs due to their wider distribution throughout the network. Weighted
and directed extensions of Rij are discussed in [74] and [73] respectively.

3.4. Graph centrality and information flow

Centrality measures quantify the relative importance of a given node in a brain
network for the transfer of information. For fMRI networks (and biological net-
works more generally), four classical centrality assessment metrics are used: de-
gree centrality, betweenness centrality [75], closeness centrality [76], and eigen-
vector centrality [77]. These measures contain numerous extensions which fall
into two main categories (Table 1): radial and medial measures [78]. Radial mea-
sures quantify potential information transfer originating from or terminating at
a given node, whereas medial measures quantify potential information transfer
through a given node. Radial measures comprise degree, closeness, and eigen-
vector centrality, while medial measures include betweenness centrality metrics.
Brain network studies frequently employ these centrality measures due to their
implications in a variety of diseases [79–82].

Proper metric choice depends on the type of information transfer that a
system supports: serial transfer, serial duplication, or parallel duplication (see
Figure 2) [83]. Serial transfer refers to an information flow pattern in which a
node transfers information to only one connected node at time (e.g., package
delivery). Serial duplication has this same one-to-one information exchange, but
the information also remains at the source node (e.g., transmission of a virus).
Information is also replicated in parallel duplication, though it spreads to all
connected nodes (e.g., an email broadcast). It is our contention that neuronal
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Table 1

Classification of centrality measures (reproduced from [7])

Centrality measures
Radial Closeness Closeness-like measures

Centroid
Immediate effects centrality
Information

Degree Degree-like measures
Graph-theoretical power index
Leverage
K-path
Status
Total effects centrality
Eigenvector

Iterated Standing
Power
Prestige

Medial Betweenness Betweenness-like measures
Distance-weighted fragmentation
Flow betweenness
K-betweenness
Mediative effects centrality
Random-walk betweenness
Rush

physiology makes it likely that the brain uses parallel duplication to transmit
information [7, 84, 85].

3.5. Community structure

Functional brain networks subdivide into interconnected communities (modules)
that allow an efficient division of labor [86, 87]. This community structure arises
from network partitions that maximize the number of within-community nodal
connections while minimizing the number of between-community connections.
Detecting community structure presents a daunting task given that it is a non-
deterministic polynomial-time (NP-hard) problem [88], and that the number
and size of communities are unknown. However, many optimization algorithms
have proven useful [89]. The Girvan-Newman method delineates communities
based on the edge betweenness of nodes [86]. This algorithm provides reasonable
accuracy, but is limited to smaller networks due to its computational intensive-
ness. Modularity maximization, one of the most widely used methods in the
brain network literature, determines community structure by optimizing the
modularity statistic (illustrated in Figure 3)

Q =
∑

u∈M


euu −

(
∑

v∈M

euv

)2

 , (9)

where M indexes the set of nonoverlapping modules from the fully subdivided
network, and euv denotes the proportion of all edges that connect nodes in
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Fig 2. Information flow patterns (reproduced from [7]). Squares indicate the existence of
information at a node (circles). Arrows indicate the sequence and direction of information
flow.

module u with those in module v [88, 90]. While popular, this approach is
limited in its ability to detect relatively small communities [91], and encoun-
ters degeneracy issues for partitions with high modularity [92]. [93] introduced
Qcut to address the former (resolution limit) issue. Their approach combines
spectral graph partitioning and local search methods to optimize Q. Weighted
and directed analogues of Q have also been developed [94, 95]. Surprise (S)
maximization [96] and the Louvain method [97] are two other community de-
tection optimization algorithms that perform well across a wide range of ap-
plications. This list of algorithms for nonoverlapping community detection is
not exhaustive, but representative of those used in the functional brain network
literature. Given that the validity of detection algorithms varies with network
structure, it is unclear which is most appropriate for functional brain network
data.

In reality, many brain areas likely belong to multiple modules simultaneously
given that they can perform several roles [98]. Acknowledging the occurrence
of this phenomenon in networks across a wide variety of areas, [99] developed
a quickly adopted algorithm for detecting overlapping modular network struc-
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Fig 3. Modularity analysis (reproduced from [7]). Depending on the level where the subdivi-
sions are made (dashed line), the number of communities can change. (A) In this example
network, the optimal Q yields four communities (indicated by the red dashed line). Shifting
this line up or down (indicated by the dashed line with an arrow) produces a lower Q value
that yields a suboptimal community structure. (B) As the line shifts higher, fewer communi-
ties are formed (approaching a single community comprising all nodes). (C) As the line shifts
lower, more communities are formed (approaching every node being in their own community).

ture which employs the clique percolation method (CPM). Alternatively, the
Order Statistics Local Optimization Method (OSLOM) identifies (potentially)
overlapping communities based on the relative probability that a node connects
to a given network substructure compared with this connection likelihood in a
comparable random network [100]. ModuLand provides a conceptually different
approach to overlapping community structure that groups nodes into modules
based on their mutual influence (highly interconnected nodes are considered
mutually influential) [101].

Assessing the consistency of community structure within or across subjects
presents a challenge that requires innovative approaches. The approximation al-
gorithms employed to detect community structure can produce different results
across multiple runs for the same subject [102]. Inter-subject variability makes
across-subject analyses even more difficult as the number, size, and composition
of modules may vary widely. [103] offered an approach to understand dynamic
change in community structure that quantifies nodal stability within a com-
munity over time or across multiple realizations. [102] developed an alternative
approach, called scaled inclusivity, to assess community structure consistency
within and across subjects. While both approaches have proven useful [28, 104],
more work in this area is needed.
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Although identifying modular structure provides information about labor di-
vision within a network, assessing nodal roles within their given communities
allows for even more resolved insight. Functional cartography is a classifica-
tion scheme that determines nodal roles based on their connectivity patterns
[105, 106]. Each node is labeled as one of seven types: (R1) ultra-peripheral
nodes, (R2) peripheral nodes, (R3) nonhub connecter nodes, (R4) nonhub kin-
less nodes, (R5) provincial hubs, (R6) connector hubs, and (R7) kinless hubs.
Further details regarding the classification procedure are provided in [7, 105,
106].

3.6. Metrics as random variables

When characterizing functional brain networks with descriptive metrics like
those discussed in this section, the fact that the underlying network is esti-
mated (see Section 2.2) is largely ignored. That is, the fact that these metrics
are functions of an estimated network and thus are estimates themselves with
certain probability distributions is not taken into account. Other than [107], to
our knowledge, no work has been done on propagating the estimation error from
the network to the network metrics. More formally, we denote the true network
as Y = (N,E) and the estimated network as Ŷ = (N, Ê), where N is the set
of all nodes and E the set of all edges. Properly defining the true network re-
quires setting a priori the definition of nodes N , and the method(s) employed
to define the edges E. That is, we want to propagate conditional error given
these choices. The descriptive metrics are functions of the estimated network
which we denote by g(Ŷ ), with g(Y ) representing the true value of the net-
work metric. It is then of interest to examine several properties of the quantity
∆ = g(Ŷ ) − g(Y ): (1) Does E(∆) = 0? (2) What is the distribution of ∆? (3)
What are the confidence intervals for g(Y )? In other words, propagating error
appropriately allows making formal inferential decisions about network values
and gaining a better understanding of topological variability. [107] quantified
the propagation of error from network estimation to the density metric (pro-
portion of the number of existing edges to the number of possible edges) for
a correlation-based network. Even deriving the distribution of this simple de-
scriptive metric poses a difficult statistical challenge. Deriving the distributions
of the more complicated metrics discussed here will prove daunting. This area
of network error propagation has barely been tapped and provides extremely
fertile ground for statistical research.

4. Modeling and inferential methods

The emerging area of complex functional brain network analysis has created
modeling and inferential gaps that require the integration of statistical tools
with network-based neuroimaging analysis. As observed by [58], “a statisti-
cally principled way of conducting brain network analysis is still lacking.” Also,
as noted by [14], “between-subject comparisons in studies of brain networks
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will require the development of accurate statistical tools.” To date, the amount
of statistical work done in these areas has not been commensurate with their
level of importance [51]. Most current approaches to modeling and comparing
functional brain networks either rely on a specific extracted summary metric
[17, 79, 108, 109] which may lack clinical use due to low sensitivity and speci-
ficity, or on mass-univariate edge-based comparisons that ignore the inherent
topological properties of the network while also yielding little power to determine
significance [110]. While some univariate approaches have proven useful [111],
gleaning deeper insights into normal and abnormal changes in complex brain
function demands methods that match the complexity of the data while allow-
ing for tractable results. Fusing multivariate statistical approaches with network
science presents the best path to develop these methods. In the following sub-
sections we survey the univariate, multivariate, and doubly multivariate (longi-
tudinal networks/network dynamics) tools available for analyzing fMRI network
data noting gaps where they exist. We also discuss potential approaches to fill
these gaps with the development of new methods and modification of existing
methods from other scientific areas. As noted earlier, “network inference” is an
ambiguous term that can refer to network construction (Section 2). Here we use
the term to refer to drawing conclusions about already constructed networks or
group(s) of networks.

4.1. Univariate methods

As previously noted, most modeling and inferential methods employed in the
analysis of functional brain networks are univariate in nature. Often descriptive
metrics at the network or nodal level (like those discussed in Section 3) are
compared across groups using ANOVA like techniques [112] or the estimated
connectivity values (detailed in Section 2) themselves are compared at each
edge with a multiple testing correction applied [110]. The network-based statistic
(NBS) and spatial pairwise clustering (SPC) methods afford more power than
a traditional edge-based approach by looking for sub-network differences [111]
(see Figure 4 for a graphic example). Conceptually, they are network analogues
of cluster-based thresholding of statistical parametric maps (a mass-univariate
testing procedure for brain activation). The NBS and SPC both follow a similar
procedure: 1) admit edges with a test statistic surpassing a set threshold to
a set of supra-threshold connections; 2) search for distinct clusters in the set
of supra-threshold connections; 3) compute family-wise error corrected p-values
for each cluster via permutation testing. In other words, both approaches test
for an experimental effect at the cluster level as opposed to the edge level.
Differences in the methods lie in the criteria used to define clusters. [111] further
describes and compares the two approaches. The NBS generally better identifies
experimental effects spanning multiple interconnected regions; while the SPC
more accurately discerns effects between isolated region pairs. Figure 5 provides
an illustrative comparison of the two approaches. Both are gaining traction in
the brain network literature [113–115].
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Fig 4. (reproduced from [110]). The network-based statistic (NBS) as well as edge-based FWE
control provided by the false discovery rate (FDR) were used to detect a contrast that was
simulated between two groups: (i) a connected component, referred to as the contrast, was
disrupted in one of the groups to yield a contrast-to-noise ratio of unity between the two
groups. The red blocks of the adjacency matrix indicate edges comprising the contrast, while
the white blocks indicate the other edges that were tested but were not part of the contrast.
(ii) The FDR was used to identify the component using false discovery rate thresholds of
q = 5, 10 and 20%. (iii) The NBS was then used with primary (t-statistic) thresholds of
t = 1, 1.5 and 2. True positives, colored orange, correspond to connections that were part
of the contrast and correctly identified as such, while false positives, colored red, correspond
to connections that were not part of the contrast but incorrectly identified as such. Each
component identified by the NBS satisfied p < 0.01. With edge-based FWE control, the full
extent of the contrast only became evident for a liberal false discovery rate threshold. The
true and [false] positive rates for each threshold were: FDR: q = 5%: 0.3[0]; q = 10%: 0.5[0];
q = 20%: 0.7[0.006]; and NBS: t = 1: 1[0.08]; t = 1.5: 0.9[0.01]; t = 2: 0.9[0.006]. Nodes are
depicted at their two-dimensional center of mass. The two components evident for t = 2 were
each of sufficient size to be declared significant in their own right.
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Fig 5. (reproduced from [111]). Three examples illustrating the differences between the NBS
and SPC. Circles represent nodes, while lines represent a supra-threshold connection. Black
connections correspond to an experimental effect (true positives), while red connections cor-
respond to false positives that survived the cluster-forming threshold.

4.2. Multivariate methods

While univariate approaches like the NBS and SPC are useful and provide a
foundation for future developments, further elucidation of normal and abnor-
mal changes in complex brain function requires more sophisticated multivariate
methods. Massively univariate analyses do not allow harnessing the full power
of brain networks which lies in understanding their complex organization. The
complex topological properties of the system confer much of its functional abil-
ity. For example, functional connections may be lost due to an adverse health
condition but compensatory connections may develop as a result in order to
maintain topological consistency and functional performance. Ultimately, a mul-
tivariate explanatory and predictive (non)linear modeling framework is needed
that accounts for the complex dependence structure of networks and allows as-
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sessing the effects of multiple variables of interest and local network features
(e.g., demographics, disease status, nodal clustering, nodal centrality, etc.) on
the overall network structure. That is, if we have

Data

{
Y i : network of subject i

Xi : covariate information (metrics, demographics, etc.)
,

we want the ability to model the probability density function of the network
given the covariates P (Y i|Xi, θi), where θi are the parameters that relate the
covariates to the network structure. Optimal methods within this framework
likely vary by context; thus, outcomes of interest should inform their develop-
ment.

Exponential random graph models (ERGMs) provide one such multivariate
approach to modeling functional brain networks [116]. They have the form of
the well-studied regular exponential family given below:

Pθ (Y = y|X) = κ (θ)−1 exp
{
θTg (y,X)

}
. (10)

Here Y is an n × n (n nodes) random symmetric adjacency matrix represent-
ing a brain network from a particular class of networks, with Yij = 1 if an
edge exists between nodes i and j and Yij = 0 otherwise. The probability mass
function (pmf) (Pθ(Y = y|X)) of this class of networks is a function of the
prespecified network features defined by g(y,X). This vector of prespecified ex-
planatory metrics can consist of covariates that are functions of the network y

(e.g., number of paths of length two) and nodal covariates (X) (e.g., brain loca-
tion of the node). The parameter vector θ, associated with g(y,X), quantifies
the relative significance of the network features in explaining the structure of
the network after accounting for the contribution of all other network features
in the model. More specifically, θ indicates the change in the log odds of an
edge existing for each unit increase in the corresponding explanatory metric.
If the θ value corresponding to a given metric is large and positive, then that
metric plays a considerable role in explaining the network architecture and is
more prevalent than in the null model (random network with the probability
of an edge existing (p)= 0.5). Conversely, if the θ value is large and negative,
then that metric still plays a considerable role in explaining the network archi-
tecture but is less prevalent than in the null model. Consequently, inferences
can be made about whether certain local features/substructures are observed in
the network more than would be expected by chance [117], enabling hypothesis
development regarding the biological processes that produce these structural
properties. The normalizing constant κ(θ) ensures that the probabilities sum to
one. This approach allows representing the global network structure by locally
specified explanatory metrics, thus providing a means to examine the nature of
networks that are likely to emerge from these effects.

[116] illustrated the utility of ERGMs for modeling, analyzing, and simu-
lating functional brain networks. [118] showed how ERGMs can be used to
produce group-based “representative” networks that capture important average
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topological properties and nodal distributions of those properties in a group
of networks better than the standard approaches. Simply averaging the con-
nectivity matrices, and thresholding the resulting matrix, fails to produce an
accurate “summary” network [56] (Appendix A), [118]. The need for these rep-
resentative networks is well documented [31, 112, 119–124]. Despite the utility
of the ERGM framework for efficiently representing complex network data and
inherently accounting for higher order dependence/topological properties, it has
several limitations within the brain network context. Multiple-subject compar-
isons can pose problems given that these models were originally developed for
the modeling of one network at a time [116]. Additionally, the amount of pro-
gramming work increases linearly with the number of subjects since ERGMs
must be fitted and assessed for each subject individually [118]. Incorporating
novel metrics (perhaps more rooted in brain biology) may be difficult due to
degeneracy issues that may arise [125, 126]. While well-suited for substructural
assessments, edge-level examinations remain difficult with these models. More-
over, most ERGM developments have been for binary networks; approaches for
weighted networks have been proposed but remain in their infancy [127, 128].

While attempting to address the ERGM limitations directly is important, a
mixed modeling approach may provide a more flexible, complementary method
[129]. As with ERGMs, mixed modeling approaches for network data have
mostly been developed for analyzing an individual network [129–131]. Adapting
this framework to our multi-network context presents challenges, but addresses
many of the ERGM drawbacks: mixed models are well-suited for edge-level ex-
aminations and multiple subject comparisons; novel metrics can be easily incor-
porated; and they are easily adaptable to weighted and longitudinal networks.
However, unlike ERGMs, they do not inherently account for the higher order
dependence/topological properties of networks. [130] and others have begun ad-
dressing this issue, but more work is needed. We are currently working on adapt-
ing mixed modeling network approaches to the analysis of fMRI whole-brain
network data. Initially, we are assuming that partial correlations are employed
to estimate the network with negative correlations set to 0 (no connection) as
it is standard to examine negatively correlated networks separately due to their
differing topological properties [7]. Given that we have positively weighted net-
works, with negative weights set to 0/no connection, we will be proposing a
two-part mixed-effects model in order to model both the probability of a con-
nection (presence/absence) and the strength of a connection if it exists. These
models enable quantifying the relationship between an outcome (e.g., disease
status) and the functional connectivity between brain areas while reducing spu-
rious correlations through inclusion of confounding covariates. They also enable
prediction about an outcome based on connectivity structure and vice versa.
Several two-part models have been proposed in the literature for a variety of
applications [132, 133]. However, they have yet to be developed for networks in
general or, more specifically, for functional brain networks.

Let Yijk represent the strength of the connection (quantified as the partial
correlation in our case) and Vijk indicate whether a connection is present (pres-
ence variable) between node j and node k for the ith subject. Thus, Vijk = 0 if
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Yijk = 0 (or Yijk ≤ c if thresholding), and Vijk = 1 if Yijk > 0 (or Yijk > c if
thresholding) with conditional probabilities

P (Vijk = vijk|βv;dvi) =

{
1− pijk (βv;dvi) if vijk = 0

pijk (βv;dvi) if vijk = 1
, (11)

where βv is a vector of population parameters (fixed effects) that relate the
probability of a connection to a set of covariates (X ijk) for each subject and
nodal pair (dyad), and dvi is a vector of subject- and dyad-specific parameters
(random effects) that capture how this relationship varies about the population
average (βv) by subject and dyad. Hence, pijk(βv;dvi) is the probability of a
connection between nodes j and k for subject i. We then have the following
logistic mixed model (part I model) for the probability of this connection:

logit (pijk (βv;dvi)) = X ′
ijkβv + 1′dvi. (12)

For the part II model, which aims to model the strength of a connection given
that there is one, we let Sijk = [Yijk |Vijk = 1]. In our case, the Sijk are the values
of the partial correlation coefficients between nodes j and k for subject i. We
can then use Fisher’s Z-transform, denoted as FZT , and assume normality (we
have empirically observed normality in strength distributions) for the following
mixed model (part II model)

FZT (Sijk (βs;dsi)) = X ′
ijkβs + 1′dsi + eijk, (13)

where βs is a vector of population parameters that relate the strength of a
connection to the same set of covariates (Xijk) for each subject and nodal pair
(dyad), dsi is a vector of subject- and dyad-specific parameters that capture
how this relationship varies about the population average (βs) by subject and
dyad, and eijk accounts for the random noise in the connection strength of nodes
j and k for subject i. We assume that dvi, dsi, and ei = {eijk} are normally
distributed. Specifically, ei ∼ N(0,Σ = σ2Ω) (here σ represents a standard
deviation and not the small-world metric), where the matrix Ω contains the
correlations between connection strengths of dyads and may be modeled with
the linear exponent autoregressive (LEAR) structure that we have found to work
well for correlated neuroimaging data [134, 135].

The covariates (X ijk) used to explain and predict both the presence and
strength of connection generally fall into four categories: 1) Net: network mea-
sures (Section 3); 2) COI: Covariate of Interest (e.g., disease status); 3) Int:
Interactions of the Covariate of Interest with the metrics in 1); and 4) Con:
Confounders (race/ethnicity, gender, etc.). For the random-effects vectors we
have that dvi = [dvi,net δvi,j δvi,k φvi,jk]

′ and dsi = [dsi,net δsi,j δsi,k φsi,jk]
′.

Here dvi,net and dsi,net contain the subject-specific parameters that capture how
much the relationships between the network measures in 1) and the presence and
strength of a connection vary about the population relationships (βv and βs)
respectively. We let δvi,j and δsi,j contain nodal-specific parameters that rep-
resent the propensity for node j (of the given dyad) to be connected and the
magnitude of its connections respectively, and δvi,k and δsi,k contain nodal-
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specific parameters that represent the propensity for node k (of the given dyad)
to be connected and the magnitude of its connections respectively. Finally, φvi,jk

and φsi,jk contain dyad-specific parameters that account for higher-order de-
pendence/topological properties inherent in network data in general [130] and
particularly in brain networks [6]. Additional covariates can easily be incorpo-
rated as guided by the biological context.

One of the main challenges in this approach is properly specifying φvi,jk and
φsi,jk in order to accurately account for the topological properties inherent in
brain networks. Extant candidates include the bilinear effect (φi,jk = z′

jzk);
distance model (φi,jk = −|zj − zk|); and projection model (φi,jk = z′

jzk/|zk|).
Conceptually, these candidates attempt to capture third-order dependence pat-
terns, such as clustering, present in network data. See [130, 136, 137] for further
details on the respective constructions. As other potential candidates arise, they
will also be examined. While development of this mixed modeling framework
remains nascent, it will fill a critical gap in the fMRI brain network literature
and serve as a foundation for future methodological work in the area.

Graph subspace approaches that fall outside a general explanatory and pre-
dictive modeling framework may also prove useful for comparing groups of
functional brain networks. [138] generalized Kronecker product graph models
(KPGMs) to better capture the natural variability across a population of net-
works. However, this approach has yet to be ported into the brain network analy-
sis domain. [139] proposed representing fMRI brain networks as self-organizing
maps (SOMs) and then comparing these maps within a Frechean inferential
framework. They compute a mean SOM in each group as a Frechet mean with
respect to a metric on the space of SOMs and then compare groups by permuting
group labels and using different distance functions to quantify map differences.
That is, they conduct a single test to identify whether brain network regions are
different at a multivariate level by comparing two non-parametric unsupervised
representations of the original data. We are currently working on a similar ap-
proach in which Jaccard index values are compared using a permutation of the
group representations. Conceptually describing and interpreting multivariate re-
sults often present a challenge in general and particularly in the brain network
context. These challenges include (but are not limited to) difficulties in simulta-
neously interpreting several interrelated outcome network variables or complex
combinations of these variables, assessing the robustness of multivariate models
(diagnostics are less straightforward than in univariate settings), disentangling
macro (network-level) and micro (edge or node level) results, and drawing si-
multaneous inference about topological and spatial differences in whole-brain
networks. However, the elucidative benefits of multivariate approaches warrant
the additional effort.

4.3. Doubly multivariate methods

The connectivity structure of functional brain networks changes across time
and different task conditions. Evaluating how such dynamic changes in net-
work connectivity relate to brain dysfunction will provide insight into under-
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lying mechanisms. The methods discussed in Section 4.2 allow multivariately
modeling a static brain network, but extensions are needed to address the
dynamic/longitudinal component present in many contexts. These approaches
are considered doubly multivariate since there exists multivariate dependencies
within a network and across networks over time. Other, more specific terms for
these types of data include longitudinal network, network-temporal, network dy-
namics, and network panel data. The term “network dynamics” is ambiguous as
it can refer to dynamics of a network (our case here) or dynamics on a network
(i.e., information flow; Section 3.4). Henceforth we will refer to the analysis of
functional brain networks across time/task as longitudinal network analysis.

While advances in longitudinal network analysis have been made in other
areas [140–143], to our knowledge, no methods have been developed for brain
networks. As noted in Section 2.2, [48] introduced a method which allows es-
timating connectivity among specified ROIs within contiguous temporal parti-
tions; however, their approach is not intended to model and draw inference from
fully constructed longitudinal whole-brain networks. One potential approach to
analyzing longitudinal brain networks might be to construct a network of net-
works as done in [103] and then apply one of the techniques from Section 4.2.
Other potential methods may include adaptations of the approaches from other
areas as was done for ERGMs [116, 118] and mixed models (Section 4.2) in the
static case. The stochastic actor-oriented models for social network dynamics
proposed by [140, 141] provide one such potentially adaptable method. Tem-
poral ERGMs (TERGMs), a temporal extension of ERGMs, provide another,
similarly adaptable method [142, 144]. TERGMs have the following form:

Pθ

(
Y t|Y t−k, . . . ,Y t−1

)

= κ
(
θ, Y t−k, . . . ,Y t−1

)−1

exp
{
θTg

(
yt,yt−1, . . . ,yt−k

)}
. (14)

Here Pθ(Y
t|Y t−k, . . . ,Y t−1) is the probability mass function for the network

at a given time point t, conditioned on the previous k realizations. Thus, it is
assumed that the network at time t is independent of networks more than k time
periods away given knowledge of the networks at time points t−k through t−1.
That is, the information contained in networks prior to time point t − k is as-
sumed to be contained in the intermediate networks of time points t−k through
t − 1. In this manner, time dependence in an individual network can be mod-
eled and accounted for. While useful in many contexts, the actor-oriented and
TERGM approaches suffer from many of the same ERGM drawbacks discussed
in the previous section. Contrastingly, [143] proposed a more statistical mixed
modeling approach in which the model parameters represent expectations and
covariances of edge measurements. While their complementary method confers a
more flexible inferential and modeling framework (as discussed for mixed models
in the previous section), it does not account for the higher-order dependencies
inherent in networks. Additionally, as with the actor-oriented and TERGM ap-
proaches, the main adaptive difficulty lies in extending the framework to the
multi-network context of brain network analysis.
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Table 2

Stationary correlation structures that are continuous functions of distance

Structure (j, k)th elementa, j 6= k Params

LEAR ρdmin+δ[(djk−dmin)/(dmax−dmin)] 2

AR(1) ρdjk 1

DE ρd
ν
jk 2

GAR(1) ρdjk
Γ
(

djk + δ
)

F
(

δ, djk + δ; djk + 1; ρ2
)

Γ (δ) Γ
(

djk + 1
)

F (δ, δ; 1; ρ2)
2

Exponential exp
(

−djk/φ
)

1

Gaussian exp
(

−d2jk/φ
2
)

1

Linear
(

1− φdjk
)

I
(

φdjk ≤ 1
)

1

Matern [1/Γ (ν)]
(

djk/2φ
)ν

2Kv
(

djk/φ
)

2

Spherical
[

1−
(

3djk/2φ
)

+
(

d3jk/2φ
3
)]

I
(

djk ≤ φ
)

1

Note: adjk – distance between jth and kth measurement of ith subject.
Γ(·) – gamma function.
F (θ1, θ2; θ3; θ) – hypergeometric function.
Kv(·) – modified Bessel function of the second kind of (real) order v > 0.

Extending the mixed model framework delineated in the previous section
provides another potential approach to the analysis of longitudinal complex
brain network data. For example, elucidating task-based dynamic changes in
network connectivity that relate to brain dysfunction requires methods that
can model network structure variability within and across tasks. Both sources
of variation can be simultaneously modeled with a Kronecker product covariance
structure [135, 145–147]. Following the notation in equations (12) and (13), we
assume that the random error vector ei ∼ N(0,Σ = σ2(task)[Γ ⊗ Ω]), where
σ2(task) is the variability of connections strengths across the network dyads and
varies by task, Γ contains the correlations between tasks, and Ω again contains
the correlations between connection strengths of dyads. We adopt this technique
of modeling the correlation and variance components of the covariance models
separately while maintaining parsimony to ensure numerical stability and overall
efficiency. In specifying a structure for Γ, it will be important to assess whether
a patterned or unpatterned model is most appropriate. If the images for each
task are taken in the same imaging session, then a patterned structure like those
in Table 2 suffices, where the djk term represents the time between images. If
they are taken at times far enough apart such that temporal correlations are
weakened (and possibly negligible), then a completely unstructured matrix as
defined below for k tasks will be most applicable.

Γ =




1 ρt1,t2 ρt1,t3 . . . ρt1,tk
ρt2,t1 1 ρt2,t3 . . . ρt2,tk
ρt3,t1 ρt3,t2 1 . . . ρt3,tk
...

...
...

. . .
...

ρtk,t1 ρtk,t2 ρtk,t3 . . . 1




, (15)
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where ρti,tj is the correlation between tasks i and j. While this framework is
promising, suitability of a Kronecker product covariance structure for reasons
detailed in [148] may be an issue. Its appropriateness can be assessed by the
tests developed in [135, 147]. If found to be unsuitable, alternatives described in
[148] can be explored. However, the methodological and computational benefits
that the Kronecker approach affords may still make it preferable depending on
the level of unsuitability [135, 147].

5. Discussion and future directions

The recent explosion of complex functional brain network analyses has led to
a paradigm shift in the neuroscientific community and catalyzed the develop-
ment of the methods discussed in this review. While much has been done in
this area, the noted methodological gaps reflect the need for more analytical
tools. The most pressing statistical needs reside in the areas of weighted net-
work analysis (Section 2.4), propagating network estimation error to network
metrics (Section 3.6), and multivariate modeling and inferential methods (Sec-
tions 4.2 and 4.3). Developing informative descriptive metrics and addressing
computational issues due to dimensionality are two important problems requir-
ing statistical input in weighted network analysis. Quantifying the propagation
of error from network estimation to the metrics discussed in Section 3 remains
an important and largely untapped area. As discussed in Section 4, the paucity
of analytical methods for brain network analysis is most salient in network
modeling and inference. This area most requires the fusing of novel statistical
approaches with network-based functional neuroimage analysis. Many avenues
of research exist within this domain. Developing a multivariate modeling frame-
work that accounts for the complex dependence structure of networks and allows
assessing the effects of multiple variables of interest and local network features
on the overall network structure is paramount. Evaluating how dynamic changes
in network connectivity relate to brain dysfunction will require methodological
extensions of this framework. Further, these frameworks will necessitate assess-
ments of robustness and goodness-of-fit for the methods developed within them.
The nascent area of brain information flow dynamics, which aims to understand
how network topology supports brain activity, also remains fertile ground for
statistical inquiry [122].

Combining network-related information within or across subjects, particu-
larly with regard to community structure analysis, also presents a ripe area for
innovative methods development. Approaches to assess consistency of and com-
pare community structure within or across subjects require more work given that
intra- and inter-subject variability often leads to the number, size, and compo-
sition of modules varying widely. Additionally, constructing group-based “rep-
resentative” networks, often used for group-based community structure com-
parisons [112, 120, 121, 123, 124], remains challenging. [118] used an ERGM
framework to produce representative networks that captured important average
topological properties and nodal distributions of those properties in a group
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of networks, but their approach fails to appropriately incorporate anatomical
information and is computationally intensive.

Given the nascency of network-based functional neuroimaging research and
the variety of scientific questions of interest, it is unlikely that an optimal analy-
sis method exists. A multi-faceted suite of complementary approaches will likely
be needed to move the field forward in each area: network construction, network
description, and network modeling and inference. Much of the methodological
work thus far has come from computer science and statistical physics. The field
would benefit immensely from an influx of statistical expertise. The multidis-
ciplinary nature of the field requires collaborative research teams comprised of
scientists from a wide variety of disciplines. This approach not only utilizes the
individual expertise of each group member, but also engenders a unique cross-
fertilization of knowledge among these scientists focused on complex functional
brain network analysis.

The future of statistical network-based neuroimaging remains promising as
long as we take a conscientious approach to developing methods that appro-
priately account for data complexity. More generally, complexity-based neu-
roimaging analysis, which subsumes network-based analysis, represents a new
paradigm aimed at quantifying the complex patterns inherent in physiological
systems. This systems based approach represents the frontier in neuroscience,
statistics, and the sciences more generally. Incorporating innovative statistical
methods within this paradigm will aid in revolutionizing our understanding of
the human brain, psychiatric and neurological disorders such as depression and
Parkinson’s disease, and treatment for such disorders.
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