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Abstract: This paper deals simultaneously with linear structural and func-
tional errors-in-variables models (SEIVM and FEIVM), revisiting in this
context the ordinary least squares estimators (LSE) for the slope and in-
tercept of the corresponding simple linear regression. It has been known
that, subject to some model conditions, these estimators become weakly
and strongly consistent in the linear SEIVM and FEIVM with the measure-
ment errors having finite variances when the explanatory variables have an
infinite variance in the SEIVM, and a similar infinite spread in the FEIVM,
while otherwise, the LSE’s require an adjustment for consistency with the
so-called reliability ratio. In this paper, weak and strong consistency, with
and without the possible rates of convergence being determined, is proved
for the LSE’s of the slope and intecept, assuming that the measurement
errors are in the domain of attraction of the normal law (DAN) and thus
are, for the first time, allowed to have infinite variances. Moreover, these
results are obtained under the conditions that the explanatory variables are
in DAN, have an infinite variance, and dominate the measurement errors
in terms of variation in the SEIVM, and under appropriately matching ver-
sions of these conditions in the FEIVM. This duality extends a previously
known interplay between SEIVM’s and FEIVM’s.

MSC 2010 subject classifications: Primary 62J99, 62G20, 60E07.
Keywords and phrases: Linear structural and functional errors-in-var-
iables models, explanatory variables, measurement errors, least squares es-
timators, reliability ratio, signal-to-noise ratio, domain of attraction of the
normal law, infinite variance, slowly varying function at infinity, weak and
strong consistency.

Received May 2013.

Contents

1 Introduction and main results . . . . . . . . . . . . . . . . . . . . . . 2852
1.1 Linear structural and functional errors-in-variablesmodels (SEIVM

and FEIVM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2852
1.2 Least squares estimators for the slope and intercept in SEIVM’s 2853
1.3 Least squares estimators in FEIVM’s . . . . . . . . . . . . . . . 2855

∗Research supported by the NSERC Canada Individual Discovery Grant of Yu. V. Mart-
synyuk.

2851

http://projecteuclid.org/ejs
http://dx.doi.org/10.1214/13-EJS863
mailto:Yuliya.Martsynyuk@UManitoba.CA


2852 Yu. V. Martsynyuk

1.4 Model assumptions and introduction to main results . . . . . . 2856
1.5 Main results with remarks . . . . . . . . . . . . . . . . . . . . . 2857

2 Auxiliary results and proofs . . . . . . . . . . . . . . . . . . . . . . . 2862
2.1 Auxiliary results . . . . . . . . . . . . . . . . . . . . . . . . . . 2862
2.2 Proofs of the main results . . . . . . . . . . . . . . . . . . . . . 2866

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2872
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2873
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2873

1. Introduction and main results

1.1. Linear structural and functional errors-in-variables models
(SEIVM and FEIVM)

We consider the linear errors-in-variables model (EIVM)

yi = βξi + α+ δi, xi = ξi + εi, (1.1)

where (yi, xi) ∈ R2 are vectors of observations, ξi are unknown explanatory/la-
tent variables, the real-valued slope β and intercept α are to be estimated, and
δi and εi are unknown measurement error terms/variables, 1 ≤ i ≤ n, n ∈ N.
EIVM (1.1) is also known as a measurement error model, or regression with
errors in variables. It is a generalization of the simple linear regression of the
form yi = βξi +α+ δi in that in (1.1) it is assumed that, in addition to the two
variables η := βξ + α and ξ being linearly related, now not only η, but also ξ,
are observed with respective measurement errors δi and εi.

This paper deals simultaneously with structural and functional versions of
EIVM (1.1) (SEIVM and FEIVM). In an SEIVM the explanatory variables ξi
are assumed to be independent identically distributed (i.i.d.) random variables
(r.v.’s) that are independent of the error terms, while in case of an FEIVM, one
treats them as deterministic variables.The vectors of the error terms {(δ,ε),(δi,εi),
i ≥ 1} are usually, and also presently, assumed to be i.i.d. mean zero random
vectors.

Hereafter, the following notations will be used:

un =
1

n

n
∑

i=1

ui, u2
n =

1

n

n
∑

i=1

u2
i , uvn =

1

n

n
∑

i=1

uivi,

si,uv = (ui − c un)(vi − c vn), and Suv =
1

n

n
∑

i=1

si,uv,

where {ui, 1 ≤ i ≤ n} and {vi, 1 ≤ i ≤ n} are real-valued variables and constant

c =

{

0, if the intercept α is known to be zero,
1, if the intercept α is unknown.

(1.2)
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1.2. Least squares estimators for the slope and intercept in
SEIVM’s

It is well-known that the ordinary least squares estimators (LSE’s) of the slope
and intercept of the simple linear regression yi = βxi + α + δi, 1 ≤ i ≤ n, that
is

β̂n =
Sxy

Sxx
and α̂n = yn − β̂nxn, (1.3)

are inconsistent in SEIVM (1.1) when 0 < Var ξ,Var δ,Var ε < ∞. However, if
E(δε) = 0, using the so-called reliability ratio kξ that is defined via what is
known as the signal-to-noise ratio k as

k :=
Eξ2 − c(Eξ)2

Var ε
and kξ :=

k

k + 1
=

Eξ2 − c(Eξ)2

Eξ2 − c(Eξ)2 +Var ε
, (1.4)

one can adjust β̂n and α̂n and obtain consistent estimators for β and α as
follows:

β̃n = k−1
ξ β̂n and α̃n = yn − β̃nxn. (1.5)

The reliability ratio kξ is a measure of relative spread of the explanatory
variables ξi to that of the observables xi, and, clearly, 0 < kξ < 1. Larger
values of k lead to larger values of kξ and to that ξi are more dominant over
the measurement errors εi, and to that xi, and hence the statistical inference in
SEIVM (1.1), are more precise.

To ensure identifiability and the possibility of consistent estimation of un-
known parameters in the model (1.1), such as β and α for example, it is common
in the literature to make use of some side conditions in this regard. Assuming
prior knowledge of kξ of (1.4) in SEIVM (1.1) is one of the several standard
conditions of this kind (cf. Cheng and Van Ness (1999) for further details on
identifiability in (1.1)). In practice, this assumption is usually unrealistic. Hence,
(consistent) estimation of the reliability ratio kξ has become a standard practice

in SEIVM (1.1). The estimators β̃n and α̃n in (1.5), with known or estimated
kξ, are also known as the correction-for-attenuation estimators for β and α.

A new type of SEIVM (1.1), with new asymptotic methodologies and results,
was introduced in Martsynyuk (2004), and then studied also in Martsynyuk
(2005, 2007a, 2007b, 2009), where the explanatory variables ξi are, for the first
time, assumed to belong to the domain of attraction of the normal law (DAN)
with a possibly infinite variance. In particular, this enriched the traditional two-
moment space of the explanatory variables that had been used for consistency
and central limit theorems studies in SEIVM (1.1) in the literature.

Remark 1.1. For i.i.d. r.v.’s {ξ, ξi, i ≥ 1}, ξ ∈ DAN means that there are

constants an and bn, bn > 0, for which (
∑n

i=1 ξi − an)b
−1
n

D→ N(0, 1), n → ∞,
where an can be taken as nEξ and bn =

√
nℓξ(n), where ℓξ(n) is a slowly varying

function at infinity defined by the distribution of ξ, that is ℓξ(az)/ℓξ(z) → 1,
as z → ∞, for any a > 0. If ξ ∈ DAN, then E|ξ|ν < ∞ for all ν ∈ (0, 2),
and ℓξ(n) =

√
Var ξ > 0, if Var ξ < ∞, and ℓξ(n) ր ∞ , as n → ∞, if



2854 Yu. V. Martsynyuk

Var ξ = ∞. Also, ξ ∈ DAN with some nonstochastic constants an and bn > 0 if

and only if
∑n

i=1(ξi − Eξ)2/b2n
P→ 1, n → ∞, with some nonstochastic constants

bn > 0 (cf. Feller (1971, p. 236, Theorem 2)), and hence, ξ ∈ DAN implies that
∑n

i=1(ξi−ξn)
2/(nℓ2ξ(n))

P→ 1 and, if also Var ξ = ∞, that
∑n

i=1 ξ
2
i /(nℓ

2
ξ(n))

P→ 1,

as n → ∞. In addition, ξ ∈ DAN if and only if max1≤i≤n ξ
2
i /
∑n

i=1 ξ
2
i

P→ 0,
n → ∞ (cf. Breiman (1965)).

Example 1.1. From Remark 1.1, all the distributions with finite positive vari-
ances are in DAN. As to some examples of the distributions in DAN that have
infinite variances, a Pareto distribution and its modification that has a some-
what heavier tail, with the respective probability density functions (pdf’s)

f1(u) =

{ 2

u3
, if u > 1,

0, otherwise,

and

f2(u) =

{

4 logu

u3
, if u > 1,

0, otherwise,

were shown to belong to DAN and to have the following slowly varying functions
at infinity in the respective norming constants bn as in Remark 1.1:

ℓ1(n) =
√

logn and ℓ2(n) =
logn√

2

(cf. Martsynyuk (2013, Example 1)).

Among other things, it was observed in Martsynyuk (2005, Remark 1.1.6)

that the LSE’s β̂n and α̂n of (1.3), as well as the estimators

˜̃
βn =

Syy

Sxy
and ˜̃αn = yn − ˜̃

βnxn, (1.6)

are strongly consistent in SEIVM (1.1) with 0 < Var δ < ∞ and 0 < Var ε < ∞
when Var ξ = ∞ (independently of whether E(δε) = 0 or not). Thus, unlike
in the traditional model with 0 < Var ξ < ∞, the LSE’s do not require any
adjustments for consistency if Var ξ = ∞, when one can formally put kξ := 1.
This can be interpreted as follows: the impact of the finite variance measurement
errors εi in the observables xi is negligible as compared to that of the infinite
variance explanatory variables ξi, so much so that the model becomes close in
spirit to, and behaves as if it were, the simple linear regression yi = βxi+α+δi,
1 ≤ i ≤ n. The LSE’s of (1.3) and estimators in (1.6) in SEIVM (1.1) with
Var ξ = ∞ add to a handful of examples of consistent estimators in special
SEIVM’s that do not require any additional information, such as prior knowledge
of kξ for example (cf. Van Montfort (1988) and texts Kendall and Stuart (1979)
and Cheng and Van Ness (1999) for details on these examples). It is interesting
to note that the existence of these consistent estimators for β implies that β is
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identifiable, and the latter fact, when (δ, ε) has a normal distribution, can also
be concluded from Reiersøl (1950), as it accordingly holds if and only if ξ is not
normally distributed.

1.3. Least squares estimators in FEIVM’s

We now turn our attention to FEIVM (1.1), a companion to SEIVM (1.1), and
describe a parallel picture on the LSE’s of (1.3) in it.

When 0 < Var δ < ∞ and 0 < Var ε < ∞, just like in SEIVM (1.1) with
0 < Var ξ < ∞, the LSE’s of (1.3) are inconsistent in FEIVM (1.1) with the
deterministic explanatory variables {ξi}i≥1 satisfying the assumptions

∣

∣

∣ lim
n→∞

ξn

∣

∣

∣ < ∞ and 0 < lim
n→∞

(ξ2n − (ξn)
2) < ∞, (1.7)

which have been most common for FEIVM (1.1). The estimators in (1.5), with

limn→∞ Sξξ

limn→∞ Sξξ +Var ε
(1.8)

in place of kξ of (1.4), are adjustments of the LSE’s for strong consistency when
E(δε) = 0, where, similarly to kξ, the ratio in (1.8) usually requires estimation
and may be viewed as a measure of relative spread of the explanatory variables
to that of the error terms.

In Martsynyuk (2005, 2007b, 2009), simultaneously with SEIVM (1.1) with
ξ ∈ DAN, we studied FEIVM (1.1) and established new asymptotics in it un-
der the conditions on the deterministic explanatory variables that match the
condition ξ ∈ DAN, and hence are also new and most general in the context.
Accordingly, we assumed that

∣

∣

∣ lim
n→∞

ξn

∣

∣

∣ < ∞, 0 < lim
n→∞

(ξ2n − (ξn)
2) and,

if lim
n→∞

(ξ2n − (ξn)
2) = ∞, also lim

n→∞
max1≤i≤n ξ2i
∑n

i=1 ξ
2
i

= 0. (1.9)

This also led to the obtained asymptotics being very similar in form for the
SEIVM and FEIVM in hand that, in turn, extended a previously known inter-
play between SEIVM’s and FEIVM’s (cf. Martsynyuk (2005, pp. 158–159) and
Martsynyuk (2007b, Section 2.2)).

It was argued in Martsynyuk (2005, Remark 2.1.10 (e)) that the LSE’s β̂n and
α̂n of (1.3), as well as the esimators in (1.6), are weakly consistent estimators
of the slope and intercept in FEIVM (1.1), provided that | limn→∞ ξn| < ∞,
limn→∞(ξ2n − (ξn)

2) = ∞, 0 < Var δ < ∞, and 0 < Var ε < ∞, while these
estimators are strongly consistent if, additionally, all the four limits in (1.9) are
satisfied and E|δ|2+∆, E|ε|2+∆ < ∞ for some ∆ > 0. The limit limn→∞(ξ2n −
(ξn)

2) = ∞ parallels the condition Var ξ = ∞ in SEIVM (1.1) discussed above,
makes the ratio in (1.8) take its maximal possible value 1, and results in FEIVM
(1.1) resembling the corresponding simple linear regression yi = βxi + α + δi,
1 ≤ i ≤ n, due to the effect of the measurement errors εi being less pronounced.
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Liu and Chen (2005) proved that in FEIVM (1.1) with 0 < Var δ < ∞ and

0 < Var ε < ∞, the LSE β̂n of (1.3) is consistent, both strongly and weakly if
and only if limn→∞(ξ2n − (ξn)

2) = ∞, while the LSE α̂n is a weakly consistent
estimator of α if and only if limn→∞ nξn/max(n,

∑n
i=1(ξi − ξn)

2) = 0.
Miao et al. (2011), among other things, refined the results of Liu and Chen

(2005) by obtaining rates of strong and weak consistency for β̂n and α̂n in
FEIVM (1.1) (with c = 1 in (1.2)) as follows:

if 0 < E|δ|p < ∞ and 0 < E|ε|p < ∞ for some p ≥ 2, and

limn→∞ Sξξ/n
1−2/p = ∞, then n−1/p

√

nSξξ(β̂n − β)
a.s.−→ 0,

and, if also n1/2−θ+1/p|ξn|/
√

Sξξ = O(1) for some θ ∈ (1/2, 1],

then n1−θ(α̂n − α)
a.s.−→ 0, as n → ∞;

(1.10)

if 0 < Var δ < ∞, 0 < Var ε < ∞, limn→∞ Sξξ = ∞, and

limn→∞ Sξξ b̃
2
n/n = ∞ for some real numbers b̃n such that 0 < b̃n → ∞,

then b̃−1
n

√

nSξξ(β̂n − β)
P→ 0 and, if also limn→∞(ξn)

2/(b̃2nSξξ) = 0 and

limn→∞ n1/2|ξn|/(b̃nSξξ) = 0, then b̃−1
n

√
n(α̂n − α)

P→ 0, as n → ∞.

(1.11)

1.4. Model assumptions and introduction to main results

The results of Martsynyuk (2004, 2005), Liu and Chen (2005) and Miao et al.
(2011) in connection with consistency of the LSE’s of (1.3) in EIVM (1.1), which
were discussed in sections 1.2 and 1.3, are all for the model with 0 < Var δ < ∞
and 0 < Var ε < ∞. In contrast, in this paper we deal with SEIVM and FEIVM
(1.1) where both measurement errors δ and ε are, for the first time, allowed to
have infinite variances via assuming that

(A1) {(δ, ε),(δi, εi)}i≥1 are i.i.d. mean zero random vectors with δ, ε ∈DAN

and the respective slowly varying functions at infinity ℓδ(n) and ℓε(n)

that are such that
∑n

i=1δi/(
√
nℓδ(n))

D→ N(0, 1) and
∑n

i=1εi/(
√
nℓε(n))

D→ N(0, 1), as n → ∞ (cf. Remark 1.1).

Concerning our conditions on the explanatory variables, throughout the paper,

(A2)















{ξ, ξi}i≥1 are i.i.d. r.v.’s with ξ ∈ DAN, Var ξ = ∞,
and the slowly varying function at infinity ℓξ(n) as
in Remark 1.1, and ξ is independent of (δ, ε), in SEIVM (1.1),
{ξi}i≥1 are deterministic and lim

n→∞
Sξξ = ∞, in FEIVM (1.1).
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Sometimes, we will also assume that

(A3) lim sup
n→∞

|ξn| < ∞ in FEIVM (1.1).

The main Theorems 1.1 and 1.2 of the present paper prove respectively weak
and strong consistency of the LSE’s β̂n and α̂n under (A1)–(A3), and some
additional assumptions that ensure that the explanatory variables dominate the
measurement errors in terms of variation, a natural requirement for obtaining
meaningful inference in the model (1.1). In our main Theorems 1.3 and 1.4, we
refine the results of Theorems 1.1 and 1.2 and establish possible rates of weak
and strong consistency of β̂n and α̂n.

To the best of our knowledge, EIVM (1.1) with the explanatory variables
having an infinite variance or spread (as in (A2)), and with the error terms pos-
sibly having infinite variances (as in (A1)), as well as estimation problems in this
model, have not been previously studied in the literature. On the other hand,
various authors have studied practical and theoretical aspects of linear regres-
sion when both errors and regressors may have infinite variances, and established
asymptotics for the LSE’s for the slope and intercept in it. Initial work in this
regard was offered in Blattberg and Sargent (1971) and Smith (1973), under the
condition that the errors followed stable laws. Andrews (1987a, 1987b) provides,
among other things, a complete list of references for applications of infinite vari-
ance regression, particularly in economics. Assuming that the regressors are in a
stable domain of attraction (in particular, in DAN), Cline (1989) considers the
LSE’s for the slope and intercept in linear regression and determines necessary
and sufficient conditions for their weak consistency in terms of a relationship
between the regressors’ and errors’ distributions. The latter relationship roughly
amounts to a certain asymptotic dominance of the tail probabilities of the re-
gressors over those of the errors. For some further related works on infinite
variance linear regression models and asymptotics for the LSE’s in them, we
refer to a useful survey of the literature in Cline (1989).

1.5. Main results with remarks

Theorem 1.1 (weak consistency of the LSE’s). Let (A1) and (A2) be satisfied.
Assume also that, as n → ∞,



















ℓ2ε(n)

ℓ2ξ(n)
→ 0, in SEIVM (1.1),

ℓ2ε(n)

Sξξ
→ 0, in FEIVM (1.1),

(1.12)

and, if Var δ = ∞ and E|δε| = ∞, that


















ℓε(n)ℓδ(n)

ℓ2ξ(n)
→ 0, in SEIVM (1.1),

ℓε(n)ℓδ(n)

Sξξ
→ 0, in FEIVM (1.1).

(1.13)
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Then,

β̂n
P→ β, n → ∞. (1.14)

If (A3) is also valid in FEIVM (1.1), then

α̂n
P→ α, n → ∞. (1.15)

Hereafter, without loss of generality, we assume for convenience that Sξξ > 0
for all n ≥ 1 in FEIVM (1.1), in view of having limn→∞ Sξξ = ∞ in (A2).

Theorem 1.2 (strong consistency of the LSE’s). Let (A1) and (A2) hold true.
In SEIVM (1.1), assume that Var ε < ∞ and, if Var δ = ∞, that E|δε| < ∞. In
FEIVM (1.1), if Var ε = ∞, let

∞
∑

n=1

1

n

Eε21{|ε|≤n1/2+d}
Sξξ

< ∞ for some d > 0, (1.16)

and, if Var δ = ∞, suppose additionally that (A3) (if α is not known to be zero)
and one of (2.2)–(2.5) are satisfied, and that either E|δε| < ∞, or E|δε| = ∞
and

∞
∑

n=1

1

n

(

Eε21{|ε|≤n1/2+ν}
)1/2 (

Eδ21{|δ|≤n1/2+η}
)1/2

Sξξ
< ∞ for some ν, η > 0.

(1.17)
Then,

β̂n
a.s.−→ β, n → ∞. (1.18)

If (A3) is also valid in FEIVM (1.1), then

α̂n
a.s.−→ α, n → ∞. (1.19)

Remark 1.2. When Var ξ,Var ε < ∞ in SEIVM (1.1) and limn→∞ Sξξ,Var ε <
∞ in FEIVM (1.1), the respective ratios ℓ2ξ(n)/ℓ

2
ε(n) and limn→∞ Sξξ/ℓ

2
ε(n) that

appear in (1.12) coincide with the signal-to-noise ratio k of (1.4) and its proto-
type limn→∞ Sξξ/Var ε in FEIVM’s (cf. (1.8) and the lines below it). Otherwise,
ℓ2ξ(n)/ℓ

2
ε(n) and limn→∞ Sξξ/ℓ

2
ε(n) extend the notion of the signal-to-noise ratio

as, in view of Remark 1.1, if ξ ∈ DAN with Var ξ = ∞ (or if limn→∞ Sξξ = ∞)
and ε ∈ DAN with Var ε ≤ ∞, then ℓ2ξ(n) (or limn→∞ Sξξ) and ℓ2ε(n) continue
to be the respective measures of spread of the explanatory variables ξi and mea-
surement errors εi. Condition (1.12) states that ξi must vary substantialy more
than εi do, so much so that the signal-to-noise ratio converges to infinity, as
n → ∞. It agrees with the intuitive notion that in (1.1) the signals ξi should
dominate the errors εi in order to diminish the effect of the latter and thus
observe more precise data xi resulting in more precise estimators of β and α.
For example, in SEIVM (1.1), when εi follow the Pareto distribution with the
pdf f1(u) as in Example 1.1, while ξi have the pdf f2(u) of that example, with a
heavier tail and thus a larger variation, then ℓ2ε(n)/ℓ

2
ξ(n) = logn/(log2 n/2) → 0,

as n → ∞, that is (1.12) is satisfied. It is also natural and desirable to control
the effect of the measurement errors δi on inference in EIVM (1.1). In Theo-
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rem 1.1, if Var δ = ∞ and E|δε| = ∞, we have condition (1.13) in this regard.
For example, in SEIVM (1.1), (1.13) amounts to saying that, further to having
ℓ2ε(n)/ℓ

2
ξ(n) → 0, as in (1.12), we assume that (ℓ2δ(n)/ℓ

2
ξ(n))(ℓ

2
ε(n)/ℓ

2
ξ(n)) → 0,

as n → ∞.

Remark 1.3. Conditions (1.16) and (1.17) for strong consistency of β̂n and
α̂n in FEIVM (1.1) in Theorem 1.2 are of the same essence as, and amount to
stronger versions of, respective conditions (1.12) and (1.13) required for weak
consistency of these estimators in Theorem 1.1. Indeed, in view of (2.26), func-
tions ℓ2ε(n) and ℓ2δ(n) in (1.12) and (1.13) can be replaced with Eε21{|ε|≤√

nℓε(n)}
and Eδ21{|δ|≤√

nℓδ(n)} that are also slowly varying functions at infinity (cf.

(2.10)). Thus, if Var ε = ∞, from (1.16) for example, the ratio Eε21{|ε|≤n1/2+d}/
Sξξ approaches zero, as n → ∞, and does so at an appropriate rate, and this
and (2.11) clearly imply that ℓ2ε(n)/Sξξ = (1 + o(1))Eε21{|ε|≤√

nℓε(n)}/Sξξ →
0, n → ∞, as in (1.12). As to how fast Eε21{|ε|≤n1/2+d}/Sξξ in (1.16) and

(Eε21{|ε|≤n1/2+ν}Eδ21{|δ|≤n1/2+η})
1/2/Sξξ in (1.17) may converge to zero, we

note that the series in (1.16) and (1.17) are both of form
∑∞

n=1 f(n)/n. By the
MacLaurin-Cauchy integral criterion, examples of convergent series of this form
are

∑

n>1

1

n(lnn)q
,
∑

n>e

1

n lnn(ln lnn)q
,
∑

n>ee

1

n lnn ln lnn(ln ln lnn)q
, . . . , for q > 1.

(1.20)
Thus, if Var ε = ∞ and the slowly varying function Eε21{|ε|≤n1/2+d} converges
to infinity, as n → ∞, then in (1.16), Sξξ may also be a slowly varying function,
but with the rate of convegence to infinity being, for example, at least (lnn)q

times as fast as that of Eε21{|ε|≤n1/2+d}. In particular, if ε has the Pareto dis-
tribution with an infinite variance and the pdf f1(u) as in Example 1.1, then
Eε21{|ε|≤n1/2+d} = (1 + 2d) logn, and the rate of convergence to infinity of Sξξ

may be as slow as (log n)q+1 for example, where q > 1. For discussions on con-
ditions (2.2)–(2.5) that are used in Theorem 1.2, we refer to Remark 2.1 after
the proof of Lemma 2.1.

Remark 1.4. As briefly mentioned in the introduction, SEIVM (1.1) and
FEIVM (1.1) have exhibited some interplay in the literature in that they share
similar asymptotic results provided that the respective conditions on error and
explanatory variables in FEIVM (1.1) resemble those in SEIVM (1.1). The-

orem 1.1 of the present paper adds further to this interplay: β̂n and α̂n are
weakly consistent both in SEIVM (1.1) and FEIVM (1.1), under the same as-
sumptions on the error terms in (A1), while the conditions on the explanatory
variables in (A2) and those on ξi versus (δi, εi) in (1.12) and (1.13) in FEIVM
(1.1) are simply deterministic versions of the respective conditions in SEIVM
(1.1). In view of such duality between the two models in Theorem 1.1, we believe

that strong consistency for β̂n and α̂n in SEIVM (1.1) in Theorem 1.2 should
also hold true when Var ε = ∞ and E|δε| is not necessarily finite, under similar
assumptions to those in FEIVM (1.1) in Theorem 1.2. However, we were unable
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to prove this, since we could not verify one of the key convergence for the proof
of Theorem 1.2 when Var ε = Var ξ = ∞, namely that Sεε/Sξξ

a.s.−→ 0, n → ∞.

Remark 1.5. We note that in the special case of (A1) when Var δ,Var ε < ∞,
Theorems 1.1 and 1.2 hold true simply under (A2) and, in case of consistency of
α̂n, also under (A3). Hence, Theorems 1.1 and 1.2 extend weak and strong con-

sistency results for β̂n and α̂n in SEIVM and FEIVM (1.1) that were previously
obtained in Martsynyuk (2004, 2005) and Liu and Chen (2005) (cf. sections 1.2
and 1.3).

The following theorem provides refinements of (1.14) and (1.15) of Theo-
rem 1.1, under some stronger model assumptions than those used in Theo-
rem 1.1.

Theorem 1.3 (rates of weak consistency of the LSE’s). Let (A1)–(A3) be sat-
isfied. Suppose that there exist a sequence of positive real numbers {bn}n≥1 such
that, as n → ∞, bn → ∞ and



















bn
ℓ2ε(n)

ℓ2ξ(n)
→ 0, in SEIVM (1.1),

bn
ℓ2ε(n)

Sξξ
+

b2n
n

ℓ2ε(n) + ℓ2δ(n)

Sξξ
→ 0, in FEIVM (1.1),

(1.21)

and, if Var δ = ∞ and E|δε| = ∞, that



















bn
ℓε(n)ℓδ(n)

ℓ2ξ(n)
→ 0, in SEIVM (1.1),

bn
ℓε(n)ℓδ(n)

Sξξ
→ 0, in FEIVM (1.1).

(1.22)

Then,

bn(β̂n − β)
P→ 0, n → ∞. (1.23)

If also
b2n
n

(

ℓ2ε(n) + ℓ2δ(n)
)

→ 0 in FEIVM (1.1), n → ∞, (1.24)

then
bn(α̂n − α)

P→ 0, n → ∞. (1.25)

Remark 1.6. In FEIVM (1.1), if the explanatory variables {ξi}i≥1 behave as if
they were i.i.d. r.v.’s in DAN and had an infinite variance, like in SEIVM (1.1),
so that, like in Remark 1.1,

lim
n→∞

Sξξ/ν(n) = 1, (1.26)

with some slowly varying function at infinity ν(·), then the respective condition
in (1.21) reduces to having only bnℓ

2
ε(n)/Sξξ → 0, n → ∞, while that of (1.24)

is automatically satisfied. Indeed, (1.26) and convergence to zero of the first
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summand in (1.21) imply that bn cannot converge to infinity as fast as, or faster
than, a slowly varying function Sξξ does. This, via (2.11), implies (1.24) and
that b2n(ℓ

2
ε(n) + ℓ2δ(n))/(nSξξ) = (bn/Sξξ)[bn(ℓ

2
ε(n) + ℓ2δ(n))/n] → 0 in (1.21), as

n → ∞.

Remark 1.7. In the special case of FEIVM (1.1) with 0 < Var δ < ∞ and
0 < Var ε < ∞, the results and respective conditions of Theorem 1.3 reduce to
those of Miao et al. (2011, Theorems 2.3 and 2.4) quoted in (1.11), provided
(A3) is assumed when dealing with α̂n. Accordingly, (1.23) with bn = b̃−1

n

√

nSξξ

holds true if Sξξ → ∞ and Sξξ b̃
2
n/n → ∞, and, if additionally (A3) is satisfied,

we have (1.25) with bn = b̃−1
n

√
n, where positive real numbers b̃n are such that

b̃n → ∞, as n → ∞.

Theorem 1.4 (rates of strong consistency of the LSE’s). Let (A1)–(A3) hold
true. In SEIVM (1.1), on assuming that Var ε < ∞ and, if Var δ = ∞, that
E|δε| < ∞, we have

S1−a
ξξ (β̂n−β)

a.s.−→ 0 and S1−a
ξξ (α̂n − α)

a.s.−→ 0 for any a ∈ (0, 1], n → ∞.
(1.27)

In FEIVM (1.1), if there exist a sequence of positive real numbers {bn}n≥1 such
that bn → ∞, as n → ∞, and



























lim sup
n→∞

bn
√

Sξξ

< ∞, if Var δ,Var ε < ∞,

∞
∑

n=1

1

n

b2n
(

Eε21{|ε|≤n1/2+ν} + Eδ21{|δ|≤n1/2+η}
)

Sξξ
< ∞ for some ν, η > 0,

otherwise,
(1.28)

then
bn(β̂n − β)

a.s.−→ 0, n → ∞, (1.29)

and, provided also that for some d, θ > 0,

∞
∑

n=1

1

n

b2n
(

Eε21{|ε|≤n1/2+d} + Eδ21{|δ|≤n1/2+θ}
)

n
< ∞ (1.30)

and
bn
(

Eε21{|ε|≤n1/2+d} + Eδ21{|δ|≤n1/2+θ}
)

√
n

→ 0, n → ∞, (1.31)

we have
bn (α̂n − α)

a.s.−→ 0, n → ∞. (1.32)

Remark 1.8. In FEIVM (1.1), (1.29) and (1.32) of Theorem 1.4 are refinements
of (1.18) and (1.19) that were obtained under (2.3) if Var δ = ∞ in Theorem 1.2,
and condition (1.28) of Theorem 1.4 implies those in (2.3) (if Var δ = ∞) and
(1.16) (if Var ε = ∞), and hence the one in (1.17) as well. One can also obtain
versions of Theorem 1.4 corresponding to when Var δ = ∞ and, instead of
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(2.3), one of (2.2), (2.4) and (2.5) is assumed in Theorem 1.2. In FEIVM (1.1),
similarly to comparing the assumptions of Theorem 1.2 to those of Theorem 1.1
in Remark 1.3, the conditions of Theorem 1.4 are seen to be stronger than the
ones of Theorem 1.3: (1.28), (1.30) and (1.31) imply that convergence to zero
in (1.21), (1.22) and (1.24) hold true at an appropriate rate.

Remark 1.9. In view of being unable to estimate with a deterministic sequence
how fast Sξξ could possibly converge to infinity almost surely when ξ ∈ DAN
and Var ξ = ∞, we provided the stochastic rate of S1−a

ξξ for strong consistency
in (1.27), for any a ∈ (0, 1]. In the special case of a = 1, (1.27) reduces to (1.18)
and (1.19) obtained for SEIVM (1.1) in Theorem 1.2.

Remark 1.10. Further to Remark 1.7, we compare the results of Theorem 1.4
for FEIVM (1.1) with δ, ε ∈ DAN to (1.10) that is due to Miao et al. (2011,
Theorems 2.1 and 2.2) and proved under E(|δ|p + |ε|p) < ∞ for some p ≥ 2.

Thus, if p = 2, then the speed of strong consistency for the LSE β̂n in (1.10) is
√

Sξξ, which is the maximum possible rate bn in (1.29) of Theorem 1.4 when

Var ε,Var δ < ∞, in view of having lim supn→∞ bn/
√

Sξξ < ∞ in (1.28). Both
consistency results hold true in this case simply if limn→∞ Sξξ = ∞. If at least
one of the error variances is assumed to be infinite in Theorem 1.4, then bn
in (1.29) for strong consistency of β̂n is slower than

√

Sξξ (cf. (1.28)). As to
the respective rates of strong consistency of the LSE α̂n in (1.10) and (1.32),
we note that while they are both slower than

√
n, the rate bn in (1.32) can

sometimes be a bit faster than the rate of n1−θ in (1.10), where θ ∈ (1/2, 1]:
for example, when Var ε,Var δ < ∞, we can have bn = n1/2/(lnn)q/2 in (1.32),
with q > 1, under (A2), (A3) and (1.28). Moreover, when (A3) is satisfied
and, in particular, Var ε,Var δ < ∞ and bn = n1−a for some a ∈ (1/2, 1] in
Theorem 1.4, then (1.32) holds true under the conditions of limn→∞ Sξξ = ∞
and n1−a/

√

Sξξ = O(1), and this amounts to (1.10) for α̂n.

Remark 1.11. By adapting accordingly the conditions of Theorems 1.1–1.4,
we can also prove weak and strong consistency, with and without determining

the respective possible rates of convergence, for the estimators ˜̃βn and ˜̃αn of
(1.6). The statements and proofs of these results are omitted here.

2. Auxiliary results and proofs

2.1. Auxiliary results

Lemma 2.1. In FEIVM (1.1), let {δ, δi}i≥1 be i.i.d. mean zero r.v.’s and δ ∈
DAN with Var δ = ∞, and let

Sξξ ≥ const > 0 for all n ≥ 1. (2.1)

Assume that one of the following conditions (2.2)–(2.5) is satisfied:

∞
∑

n=1

1

n

|ξn|
ξ2n

< ∞; (2.2)
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∞
∑

n=1

1

n

Eδ21{|δ|≤n1/2+b}

ξ2n
< ∞ for some b > 0; (2.3)

∞
∑

n=1

1

n

Eδ21{|δ|≤n1/2+b}

ξ2n

ξ2n

nξ2n
< ∞ for some b > 0; (2.4)

∞
∑

n=1

1

n1+a

Eδ21{|δ|≤(n+1)(1+a)(1/2+b)}

ξ2n1+a

∑(n+1)1+a−1
i=n1+a+1 ξ2i
∑n1+a+1

i=1 ξ2i
< ∞ for some a, b > 0.

(2.5)
If the intercept α of (1.1) is not known to be zero, suppose also that (A3) holds
true. Then,

Sξδ

Sξξ

a.s.−→ 0, n → ∞. (2.6)

Proof of Lemma 2.1. The proof of (2.6) reduces to showing that
∑n

i=1 ξiδi
∑n

i=1 ξ
2
i

a.s.−→ 0, n → ∞, (2.7)

on account of having

Sξδ

Sξξ
=

(

ξδn

ξ2n
− c ξnδn

ξ2n

)(

1 +
c(ξn)

2

Sξξ

)

and, if α 6= 0 (and c of (1.2) is 1), also applying the strong law of large numbers
(SLLN) for δn and conditions (2.1) and (A3).

If (2.2) holds true, then (2.7) follows directly from Lemma A.2 of Appendix
(with r = 1), using only that E|δ| < ∞, while the rest of the proof is dedicated
to establishing (2.7) when one of the conditions (2.3)–(2.5) is satisfied.

First, we note that the following three statements are equivalent:

δ ∈ DAN; (2.8)

z2P (|δ| > z)

Eδ21{|δ|≤z}
→ 0, z → ∞; (2.9)

ℓ(z) := Eδ21{|δ|≤z} is a slowly varying function at∞. (2.10)

That (2.8)⇔(2.9) is due to Lévy (1937), while it follows from Feller (1971, p. 313,
Theorem 1a) that (2.8)⇔(2.10).

It is not hard to see next that for any nondecreasing slowly varying function
at infinity ℓ(·), including ℓ(·) of (2.10),

∀a > 0,
ℓ(z)

za
≤ const for all z ≥ some z0 > 0. (2.11)

Indeed, since limn→∞ ℓ(2n)/ℓ(2n+1) = 1 (cf. Remark 1.1), we have that for all
n ≥ somen0,

ℓ(2n)

(2n)a
=

ℓ(2n+1)

(2n+1)a
· 2

aℓ(2n)

ℓ(2n+1)
>

ℓ(2n+1)

(2n+1)a
(2.12)
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and, if 2n < z < 2n+1,

ℓ(z)

za
<

ℓ(2n)

(2n)a
· ℓ(z)

ℓ(2n)
≤ ℓ(2n)

(2n)a
· ℓ(2

n+1)

ℓ(2n)
< 2a

ℓ(2n)

(2n)a
. (2.13)

Combining (2.12) and (2.13) results in

ℓ(z)

za
≤ max

{

ℓ(2n0)

(2n0)a
, 2a

ℓ(2n0+1)

(2n0+1)a

}

for all z ≥ 2n0+1.

We next observe that, due to (2.8)–(2.11), for any b > 0,

∞
∑

n=1

P (|δn| > n
1
2+b) ≤ const

∞
∑

n=1

ℓ(n
1
2+b)

n1+2b
≤ const

∞
∑

n=1

1

n1+b
< ∞. (2.14)

Consequently, sequences {ξnδn}n≥1 and {ξnδn1{|δn|≤n
1
2
+b}}n≥1 are Khinchin

equivalent (that is
∑∞

n=1 P (ξnδn 6= ξnδn1{|δn|≤n
1
2
+b}) < ∞) and, in view of

having
∑n

i=1 ξ
2
i → ∞, n → ∞, via Shorack (2000, p. 206, Proposition 2.1) for

example, as n → ∞,

∑n
i=1 ξiδi
∑n

i=1 ξ
2
i

a.s.−→ 0 if and only if

∑n
i=1 ξiδi1{|δi|≤i

1
2
+b}

∑n
i=1 ξ

2
i

a.s.−→ 0. (2.15)

Thus, the proof of (2.7) is now reduced to showing the second convergence in
(2.15) that, in turn, amounts to establishing

∑n
i=1 ξi

(

δi1{|δi|≤i
1
2
+b} − Eδ1{|δ|≤i

1
2
+b}

)

∑n
i=1 ξ

2
i

a.s.−→ 0, n → ∞, (2.16)

with some b > 0, provided that

∑n
i=1 ξiEδ1{|δ|≤i

1
2
+b}

∑n
i=1 ξ

2
i

→ 0, n → ∞. (2.17)

From Griffin and Kuelbs (1989, Lemma 6.2 with θ ↓ 0), (2.9) implies

zE|δ|1{|δ|>z}
ℓ(z)

→ 0, z → ∞, (2.18)

with ℓ(z) of (2.10). On using (2.18), (2.11) and (2.1),

∣

∣

∣

∑n
i=1 ξiEδ1{|δ|≤i

1
2
+b}

∣

∣

∣

∑n
i=1 ξ

2
i

=

∣

∣

∣

∑n
i=1 ξiEδ1{|δ|>i

1
2
+b}

∣

∣

∣

∑n
i=1 ξ

2
i

≤
∑n

i=1 |ξi|E|δ|1{|δ|>i
1
2
+b}

∑n
i=1 ξ

2
i

≤const

(
∑n

i=1 ξ
2
i

)1/2
(

∑n
i=1 ℓ

2(i
1
2+b)/i1+2b

)1/2

∑n
i=1 ξ

2
i
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≤ const
ℓ(n

1
2+b)√
n

(

n
∑

i=1

1

i1+2b

)1/2

≤ const

n1/4

(

1 +

∫ n

1

dx

x1+2b

)1/2

=
const

n1/4

(

1 +
1

2b
− 1

2bn2b

)1/2

→ 0, n → ∞, (2.19)

that is (2.17) has been verified.
In the rest of the proof, we will establish (2.16), and thus (2.7) as well,

assuming that one of the conditions (2.3)–(2.5) is satisfied.
If (2.3) holds true with some b > 0, then (2.16) is on account of the Borel-

Cantelli lemma and having

P





∣

∣

∣

∑n
i=1 ξi

(

δi1{|δi|≤i
1
2
+b} − Eδ1{|δ|≤i

1
2
+b}

)∣

∣

∣

∑n
i=1 ξ

2
i

≥ d





≤
∑n

i=1 ξ
2Eδ21{|δ|≤i

1
2
+b}

d2(
∑n

i=1 ξ
2
i )

2
≤

Eδ21{|δ|≤n
1
2
+b}

d2
∑n

i=1 ξ
2
i

,

for any d > 0.
The Hájek-Rényi inequality (cf. Lemma A.1 of Appendix) and steps similar

to those in Kounias and Weng (1969) that were used for concluding Lemma A.2
of Appendix, give (2.16) when (2.4) is valid.

Finally, suppose that (2.5) is satisfied with some a, b > 0. Due to (2.1), for
any d > 0,

P





∣

∣

∣

∑m1+a

i=1 ξi

(

δi1{|δi|≤i
1
2
+b} − Eδ1{|δ|≤i

1
2
+b}

)∣

∣

∣

∑m1+a

i=1 ξ2i
≥ d





≤
∑m1+a

i=1 ξ2i Eδ21{|δ|≤i
1
2
+b}

d2(
∑m1+a

i=1 ξ2i )
2

≤
ℓ
(

m(1+a)( 1
2+b)

)

d2
∑m1+a

i=1 ξ2i
≤ const

ℓ
(

m(1+a)( 1
2+b)

)

m1+a
,

(2.20)

with ℓ(·) of (2.10), and via Kolmogorov’s inequality, we similarly have

P



 max
m1+a<n<(m+1)1+a

∣

∣

∣

∑n
i=m1+a+1 ξi

(

δi1{|δi|≤i
1
2
+b}−Eδ1{|δ|≤i

1
2
+b}

)∣

∣

∣

∑n
i=1 ξ

2
≥ d





≤P



 max
m1+a<n<(m+1)1+a

∣

∣

∣

∣

∣

∣

n
∑

i=m1+a+1

ξi

(

δi1{|δi|≤i
1
2
+b}−Eδ1{|δ|≤i

1
2
+b}

)

∣

∣

∣

∣

∣

∣

≥d

m1+a+1
∑

i=1

ξ2i





≤
ℓ
(

(m+ 1)(1+a)( 1
2+b)

)

∑(m+1)1+a−1
i=m1+a+1 ξ2i

d2
(

∑m1+a+1
i=1 ξ2i

)2 . (2.21)
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We note that for any n ∈ N, there exist m ∈ N, such that
∣

∣

∣

∑n
i=1 ξi

(

δi1{|δi|≤i
1
2
+b} − Eδ1{|δ|≤i

1
2
+b}

)∣

∣

∣

∑n
i=1 ξ

2
i

≤

∣

∣

∣

∑m1+a

i=1 ξi

(

δi1{|δi|≤i
1
2
+b} − Eδ1{|δ|≤i

1
2
+b}

)∣

∣

∣

∑m1+a

i=1 ξ2i

+ max
m1+a<n<(m+1)1+a

∣

∣

∣

∑n
i=m1+a+1 ξi

(

δi1{|δi|≤i
1
2
+b} − Eδ1{|δ|≤i

1
2
+b}

)∣

∣

∣

∑n
i=1 ξ

2
i

.

(2.22)

Now, on combining (2.20)–(2.22) and using (2.11), (2.5) and the Borel-Cantelli
lemma, we obtain (2.16) under (2.5) and thus conclude the proof of Lemma 2.1.

Remark 2.1. According to (2.3), we must have ξ2n → ∞, n → ∞, and, further-
more, the relative variability of δ to that of ξ1, . . . , ξn, namely Eδ21{|δ|≤n1/2+b}/

ξ2n, must converge to zero at an appropriate rate. This ratio also plays a role
in (2.4), but less prominently so when ξ2n/

∑n
i=1 ξ

2
i → 0, n → ∞. If the latter

convergence has a fast enough speed in (2.4), then there is no need for having
ξ2n → ∞, n → ∞, even when Var δ = ∞. Concerning condition (2.5), it is
satisfied for any a, b > 0 when limn→∞ ξ2n exists and is finite, regardless of
whether Var δ < ∞ or Var δ = ∞ (cf. (2.11)). If limn→∞ ξ2n = ∞ in such a way
that limn→∞ ξ2n/ν(n) = 1, with some slowly varying function at infinity ν(·),
as if {ξn}n≥1 were i.i.d. r.v.’s in DAN (cf. Remark 1.1), then

∑(n+1)1+a−1
i=n1+a+1 ξ2i
∑n1+a+1

i=1 ξ2i
=

((n+ 1)1+a − 1)ν((n+ 1)1+a − 1)− n1+aν(n1+a)

(n1+a + 1)ν(n1+a + 1)
+ o(1)

= o(1), n → ∞.

Consenquently, (2.5) holds true in this case as well, both when Var δ < ∞
and Var δ = ∞. We also note that the series in (2.2)–(2.4) are all of form
∑∞

n=1 f(n)/n. For examples of convergent series of this form we refer to (1.20)
in Remark 1.3.

2.2. Proofs of the main results

Proof of Theorem 1.1. We have

β̂n − β =
Sxy − βSxx

Sxx
=

Sξδ − βSξε + Sδε − βSεε

Sξξ + 2Sξε + Sεε
, (2.23)

where, in view of the weak law of large numbers (WLLN), (A1), (A2), Re-
mark 1.1, and (1.12),

Sεε

Sξξ
=

ε2n
Sξξ

− c
(εn)

2

Sξξ
=

ε2n
Sξξ

+ oP (1)



Consistency of the LSE’s in linear errors-in-variables models 2867

=



















(1 + oP (1))
ℓ2ε(n)

ℓ2ξ(n)
+ oP (1), in SEIVM (1.1),

(1 + oP (1))
ℓ2ε(n)

Sξξ
+ oP (1), in FEIVM (1.1),

= oP (1),

(2.24)

with c of (1.2), and, since |Sξε|/Sξξ ≤ (Sεε/Sξξ)
1/2,

Sξε

Sξξ
= oP (1), (2.25)

as n → ∞.
For δ ∈ DAN,

Eδ21{|δ|≤√
nℓδ(n)}

ℓ2δ(n)

−→
n → ∞







Eδ2

Var δ
, if Var δ < ∞,

1, if Var δ = ∞,
(2.26)

(cf., e.g., Giné et al. (1997, proof of Lemma 3.2)). On combining (2.26) with
(2.9),

nP
(

|δ| >
√
nℓδ(n)

)

→ 0, n → ∞. (2.27)

In FEIVM (1.1), we have

Sξδ

Sξξ
=

∑n
i=1(ξi − cξn)δi

∑n
i=1(ξi − cξn)

2

=

∑n
i=1(ξi − cξn)

(

δi1{|δi|≤√
nℓδ(n)} − Eδ1{|δ|≤√

nℓδ(n)}
)

∑n
i=1(ξi − cξn)

2

+
Eδ1{|δ|≤√

nℓδ(n)}
∑n

i=1(ξi−cξn)
∑n

i=1(ξi − cξn)
2

+

∑n
i=1(ξi−cξn)δi1{|δi|>√

nℓδ(n)}
∑n

i=1(ξi − cξn)
2

,

(2.28)

where, in view of (2.11), (2.1), and (2.26), for any d > 0,

P

(
∣

∣

∑n
i=1(ξi − cξn)

(

δi1{|δi|≤√
nℓδ(n)} − Eδ1{|δ|≤√

nℓδ(n)}
)∣

∣

∑n
i=1(ξi − cξn)

2
≥ d

)

≤
Eδ21{|δ|≤√

nℓδ(n)}

d2
∑n

i=1(ξi − cξn)
2
≤ const

ℓ (
√
nℓδ(n))

n
→ 0, (2.29)

while, similarly to (2.19),

|Eδ1{|δ|≤√
nℓδ(n)}

∑n
i=1(ξi − cξn)|

∑n
i=1(ξi − cξn)

2
≤

E|δ|1{|δ|>√
nℓδ(n)}

√

Sξξ

→ 0, (2.30)
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and, due to (2.27), for any d > 0,

P

(

|∑n
i=1(ξi − cξn)δi1{|δi|>√

nℓδ(n)}|
∑n

i=1(ξi − cξn)
2

≥ d

)

≤ P

(

n
⋃

i=1

{|δi| >
√
nℓδ(n)}

)

≤ nP (|δ| >
√
nℓδ(n)) → 0, (2.31)

as n → ∞. Putting together (2.28)–(2.31) gives

Sξδ

Sξξ
= oP (1), n → ∞, (2.32)

which is also true in SEIVM (1.1), since Sξδ = ξδn − c ξnδn = oP (1) and
S−1
ξξ = oP (1) in this model, as n → ∞, simply by the WLLN, (A1) and (A2).
Convergence

Sδε

Sξξ
= oP (1), n → ∞, (2.33)

follows directly from the WLLN, (A1) and (A2), if E|δε| < ∞, or from (1.13),
Remark 1.1 and having

|Sδε|
Sξξ

≤ (SδδSεε)
1/2

Sξξ
=



















(1 + oP (1))
ℓδ(n)ℓε(n)

ℓ2ξ(n)
, in SEIVM (1.1),

(1 + oP (1))
ℓδ(n)ℓε(n)

Sξξ
, in FEIVM (1.1).

Finally, weak consistency of the LSE β̂n is concluded from (2.23)–(2.25),
(2.32) and (2.33), and then, that of α̂n is easily seen via

α̂n − α = yn − α− β̂nxn = δn − βεn − (β̂n − β)(ξn + εn). (2.34)

Proof of Theorem 1.2. Similarly to the proof of Theorem 1.1, we obtain strong
consistency of β̂n on account of (2.23) and arguing that

Sεε

Sξξ

a.s.−→ 0, (2.35)

Sξε

Sξξ

a.s.−→ 0, (2.36)

Sξδ

Sξξ

a.s.−→ 0, (2.37)

and
Sδε

Sξξ

a.s.−→ 0, (2.38)

as n → ∞. The proof of strong consistency of α̂n goes via (2.34) and is omitted.
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In SEIVM (1.1) with Var ε < ∞ and E|δε| < ∞, (2.35)–(2.38) are immediate.
Consider FEIVM (1.1) now. Convergence in (2.35), seen from the SLLN if

Var ε < ∞, reduces to proving that for some d > 0,

∑n
i=1 ε

2
i1{|εi|≤i1/2+d}
nSξξ

a.s.−→ 0, n → ∞, (2.39)

if Var ε = ∞, similarly to (2.24) and (2.15). Due to (1.16), (2.39) is on account
of Lemma A.2 of Appendix with r = 1. Clearly, (2.35) ⇒ (2.36). As to (2.37)

and (2.38), if Var δ < ∞, then Sδδ/Sξξ
a.s.−→ 0 and hence, Sξδ/Sξξ

a.s.−→ 0 and

|Sδε|/Sξξ ≤ (Sδδ/Sξξ)
1/2(Sεε/Sξξ)

1/2 a.s.−→ 0, n → ∞. Suppose now that Var δ =
∞. Using (A3) (if α 6= 0), one of the conditions (2.2)–(2.5) and Lemma 2.1, we
obtain (2.37), while convergence in (2.38) follows from the SLLN, if E|δε| < ∞,
and from the condition (1.17) and Lemma A.2 of Appendix (with r = 1), if
E|δε| = ∞, similarly to concluding (2.35).

Proof of Theorem 1.3. Consider first SEIVM (1.1). By the WLLN, (A1), (A2),
Remark 1.1, and (1.21), as n → ∞,

bn
Sξδ

Sξξ
=

bn
ℓ2ξ(n)

oP (1) = oP (1) and bn
Sξε

Sξξ
= oP (1), (2.40)

while

bn
Sεε

Sξξ
= bn

ℓ2ε(n)

ℓ2ξ(n)
(1 + oP (1)) = oP (1) (2.41)

and, using also (1.22) when Var δ = ∞ and E|δε| = ∞,

bn
|Sδε|
Sξξ

≤



















bn
OP (1)

ℓ2ξ(n)
= oP (1), if E|δε| < ∞,

bn
(SδδSεε)

1/2

Sξξ
= bn

ℓε(n)ℓδ(n)

ℓ2ξ(n)
(1 + oP (1)) = oP (1), if E|δε| = ∞.

(2.42)

Combining (2.40)–(2.42) and (2.23), we obtain (1.23) for the LSE β̂n.
As to (1.25) for α̂n, arguing similarly and applying also (2.34), (A1), (1.21),

(2.11), and (1.23), we get

bn(α̂n − α) = bn(δn − βεn)− bn(β̂n − β)(ξn + εn)

= bn

(

ℓδ(n)√
n

OP (1) +
ℓε(n)√

n
OP (1)

)

+ oP (1)OP (1) = oP (1), n → ∞.

(2.43)

We will now prove (1.23) and (1.25) in FEIVM (1.1). Similarly to (2.41) and
(2.42), we have

bn
Sεε

Sξξ
= bn

ℓ2ε(n)

Sξξ
(1 + oP (1)) = oP (1) and bn

Sδε

Sξξ
= oP (1), (2.44)
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as n → ∞. The respective version of (2.40) is obtained similarly to the lines in
(2.28)–(2.31), which amount to the proof of (2.32). Thus, in order to prove that
bnSξδ/Sξξ = oP (1), it suffices to adapt only (2.29) and (2.30). Accordingly, on
account of (2.26), (A3) and having bn/Sξξ → 0 and b2nℓ

2
δ(n)/(nSξξ) → 0 from

(1.21), as n → ∞,

P

(

bn

∣

∣

∑n
i=1(ξi − cξn)

(

δi1{|δi|≤√
nℓδ(n)} − Eδ1{|δ|≤√

nℓδ(n)}
)∣

∣

∑n
i=1(ξi − cξn)

2
≥ d

)

≤ b2n
Eδ21{|δ|≤√

nℓδ(n)}

d2
∑n

i=1(ξi − cξn)
2
≤ const

b2nℓ
2
δ(n)

nSξξ
→ 0 (2.45)

and

bn
|Eδ1{|δ|≤√

nℓδ(n)}
∑n

i=1(ξi − cξn)|
∑n

i=1(ξi − cξn)
2

≤ const
bn
Sξξ

E|δ|1{|δ|>√
nℓδ(n)} → 0.

(2.46)
Likewise, we conclude that bnSξε/Sξξ = oP (1), n → ∞, and then, via (2.23)
and (2.44), that (1.23) holds true. The proof of (1.25) is as in (2.43), with
the difference that one has to use (A3) and that convergence bnℓδ(n)/

√
n → 0

and bnℓε(n)/
√
n → 0 used in (2.43) has to be guaranteed by condition (1.24)

now, since in (1.21), Sξξ and hence bn may not necessarily converge to infinity
respectively as, and at most as fast as, slowly varying functions, like they do in
SEIVM (1.1), as n → ∞.

Proof of Theorem 1.4. Clearly, if Var ε < ∞ and E|δε| < ∞, then (2.35)–(2.38)
hold true also when Sξξ is replaced with Sa

ξξ, for any a ∈ (0, 1], and, via (2.23),
this results in the first convergence in (1.27). Consequently, for the second con-
vergence in (1.27), we have

S1−a
ξξ (α̂n − α) = S1−a

ξξ (δn − βεn)− S1−a
ξξ (β̂n − β)(ξn + εn)

a.s.
= S1−a

ξξ (δn − βεn) + o(1)
a.s.
= o(1), n → ∞,

where, by using the Hartman-Wintner law of the iterated logarithm for
∑n

i=1 εi
and, if Var δ < ∞, for

∑n
i=1 δi, and applying the Marcinkiewicz-Zygmund SLLN

for Sξξ and, if Var δ = ∞, for
∑n

i=1 δi,

S1−a
ξξ (δn−βεn)=

(

Sξξ

n1/4

)1−a
n(1−a)/4

n1/4

(∑n
i=1 δi

n3/4
−β

∑n
i=1 εi

n3/4

)

a.s.
= o(1), n → ∞.

(2.47)

Consider FEIVM (1.1) now. First, let Var δ,Var ε < ∞. Then, on account of
Lemma A.3 of Appendix, (1.28), the SLLN, and (A2), as n → ∞,

bn
Sξδ

Sξξ
=

bn
√

Sξξ

∑n
i=1(ξi − ξn)δi

√

n
∑n

i=1(ξi − ξn)
2

a.s.
= o(1), (2.48)
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bn
Sξε

Sξξ

a.s.
= o(1), bn

Sεε

Sξξ
=

bn
√

Sξξ

Sεε
√

Sξξ

a.s.
= o(1), (2.49)

and

bn
Sδε

Sξξ

a.s.
= o(1). (2.50)

Suppose now that at least one of the error variances is infinite. Condition
(1.28) implies that

∞
∑

n=1

b2nEδ21{|δ|≤n1/2+η}/(nξ
2
n) < ∞ and hence that b2n/ξ

2
n → 0, n → ∞.

(2.51)
Using (2.51) and adapting the steps of the proof of (2.6) under (2.3) and (A3)
(α 6= 0), we note first that convergence in (2.48) reduces to

bn

∑n
i=1 ξi

(

δi1{|δi|≤i1/2+η} − Eδ1{|δ|≤i1/2+η}
)

∑n
i=1 ξ

2
i

a.s.−→ 0, n → ∞, (2.52)

since

bn
Sξδ

Sξξ
=

(

bn
ξδn

ξ2n
− c

bn

ξ2n
ξnδn

)(

1 +
c(ξn)

2

Sξξ

)

a.s.
=

(

bn
ξδn

ξ2n
+ o(1)

)

(1 + o(1)),

due to (2.51), (A3) and the SLLN, and since we have (2.15), with bn/
∑n

i=1 ξ
2
i

replacing 1/
∑n

i=1 ξ
2
i , as well as

bn
|
∑n

i=1 ξiEδ1{|δ|≤i1/2+η}|
∑n

i=1 ξ
2
i

≤ const
bn
√

ξ2n

Eδ21{|δ|≤n1/2+η}√
n

→ 0, n → ∞,

where the latter convergence is argued similarly to (2.19), by using (2.51) and
(2.11). The Borel-Cantelli lemma and convergence of the series in (2.51) give
(2.52). Condition (1.28) also implies that

∑∞
n=1 bnEδ21{|δ|≤n1/2+η}/(nSξξ) < ∞,

leading to

bn
Sδδ

Sξξ

a.s.
= o(1), n → ∞, (2.53)

(cf. the proof of (2.35) via (2.39)). Similarly to the proofs of (2.48) and (2.53),
we argue (2.49) via (1.28). Finally, as to (2.50),

bn
|Sδε|
Sξξ

≤
(

bn
Sδδ

Sξξ

)1/2(

bn
Sεε

Sξξ

)1/2
a.s.
= o(1), n → ∞.

Thus, we obtain (1.29) using (2.23) and (2.48)–(2.50).
Concerning (1.32) for the LSE α̂n in FEIVM (1.1), using the expansion in

(2.43), we only need to show that

bn(δn − βεn)
a.s.
= o(1), n → ∞. (2.54)
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Similarly to (2.15)–(2.17), with θ > 0 as in (1.30) and (1.31), as n → ∞,

bnδn
a.s.−→ 0 if and only if

bn
∑n

i=1 δi1{|δi|≤i1/2+θ}
n

a.s.−→ 0

if and only if
bn
∑n

i=1

(

δi1{|δi|≤i1/2+θ}−Eδ1{|δ|≤i1/2+θ}
)

n

a.s.−→ 0,

(2.55)

since, on taking ξi = 1 in (2.19) and using (1.31),

bn
∣

∣

∑n
i=1 Eδ1{|δ|≤i1/2+θ}

∣

∣

n
≤ const

bn√
n

(

n
∑

i=1

(

Eδ21{|δ|≤i1/2+θ}
)2

i1+2θ

)1/2

≤ const
bnEδ21{|δ|≤n1/2+θ}√

n
→ 0.

Convergence in (2.55) is concluded by applying Lemma A.1 of Appendix and

condition (1.30). Convergence bnεn
a.s.−→ 0, n → ∞, is proved in the same way.

Thus, the proof of (2.54) and hence that of (1.32) is now complete.

Appendix

This section contains auxiliary results from the literature that are used for the
proofs in Section 2.

The well-known Hájek-Rényi inequality can be found in, for example, Petrov
(1987).

Lemma A.1 (the Hájek-Rényi inequality). Let X1, . . . , Xn be independent
r.v.’s such that EXi = 0 and EX2

i < ∞ for all i = 1, . . . , n, and let 0 <
cn ≤ cn−1 ≤ · · · ≤ c1. Then, for any x > 0 and m < n,

P

(

max
m≤k≤n

ck

∣

∣

∣

∣

∣

k
∑

i=1

Xi

∣

∣

∣

∣

∣

≥ x

)

≤ 1

x2

(

c2m

m
∑

k=1

EX2
k +

n
∑

k=m+1

c2kEX2
k

)

.

Kounias and Weng (1969) generalized the Hájek-Rényi inequality and, as a
consequence, proved the following almost sure convergence.

Lemma A.2 (Kounias and Weng (1969)). Let {Xi}i≥1 be a sequence of r.v.’s
such that E|Xi|r < ∞ for some r > 0 and all i ≥ 1, and let {bi}i≥1 be a
nondecreasing sequence of positive constants. Suppose that

∞
∑

n=1

E|Xn|r
brn

< ∞ for 0 < r ≤ 1, or

∞
∑

n=1

E1/r|Xn|r
bn

< ∞ for 1 ≤ r,

then
∑n

i=1 Xi

bn

a.s.−→ 0, n → ∞.
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The following almost sure convergence for weighted partial sums comes handy
for us in the proof of Theorem 1.4.

Lemma A.3 (Chow (1966)). If {Xi}i≥1 are i.i.d. r.v.’s with zero mean and
finite variance and {an,i, 1 ≤ i ≤ n, n ≥ 1} is a sequence of real numbers
satisfying

∑n
i=1 a

2
n,i = 1 for n ≥ 1, then

∑n
i=1 an,iXi

n1/2

a.s.−→ 0, n → ∞.
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Lévy, P. (1937). Théorie de l’Addition des Variables Aleatoires. Gauthier-
Villars, Paris.

Liu, J.X. and Cheng, X.R. (2005). Consistency of LS estimator in simple
linear EV regression models. Acta Math. Sci. Ser. B Engl. Ed. 25B 50–58.
MR2119336

Martsynyuk, Yu.V. (2004). Invariance principles via Studentization in linear
structural error-in-variables models. Technical Report Series of the Labora-
tory for Research in Statistics and Probability. 406-October 2004. Carleton
University-University of Ottawa, Ottawa.

Martsynyuk, Yu.V. (2005). Invariance Principles via Studentization in Linear
Structural and Functional Error-in-Variables Models. Ph.D. dissertation, Car-
leton University, Ottawa. MR2711020

Martsynyuk, Yu.V. (2007a). Central limit theorems in linear structural error-
in-variables models with explanatory variables in the domain of attraction of
the normal law. Electron. J. Stat. 1 195–222. MR2312150

Martsynyuk, Yu.V. (2007b). New multivariate central limit theorems in lin-
ear structural and functional error-in-variables models. Electron. J. Stat. 1
347–380. MR2346003

Martsynyuk, Yu.V. (2009). Functional asymptotic confidence intervals for
the slope in linear error-in-variables models. Acta Math. Hungar. 123 133–
168. MR2496486

Martsynyuk, Yu.V. (2013). On the generalized domain of attraction of the
multivariate normal law and asymptotic normality of the multivariate Student
t-statistic. J. Multivariate Anal. 114 402–411. MR2993895

Miao, Y., Wang, K. and Zhao, F. (2011). Some limit behaviors for the LS
estimator in simple linear EV regression models. Statist. Probab. Lett. 81

92–102. MR2740070
Petrov, V.V. (1987). Limit Theorems for Sums of Independent Random Vari-
ables. In Russian. Probability Theory and Mathematical Statistics Vol. 30,
Nauka, Moscow. MR0896036

Reiersøl, O. (1950). Identifiability of a linear relation between variables which
are subject to errors. Econometrica 18 375–389. MR0038054

Shorack, G.R. (2000). Probability for Statisticians. Springer-Verlag, New
York. MR1762415

Smith, V.K. (1973). Least squares regression with Cauchy errors. Bull. Oxford
Univ. Inst. Econom. Statist. 35 223–231.

Van Montfort, K. (1988). Estimating in Structural Models with Non-Normal
Distributed Variables: Some Alternative Approaches. M & T Series 12. DSWO
Press, Leiden.

http://www.ams.org/mathscinet-getitem?mr=2119336
http://www.ams.org/mathscinet-getitem?mr=2711020
http://www.ams.org/mathscinet-getitem?mr=2312150
http://www.ams.org/mathscinet-getitem?mr=2346003
http://www.ams.org/mathscinet-getitem?mr=2496486
http://www.ams.org/mathscinet-getitem?mr=2993895
http://www.ams.org/mathscinet-getitem?mr=2740070
http://www.ams.org/mathscinet-getitem?mr=0896036
http://www.ams.org/mathscinet-getitem?mr=0038054
http://www.ams.org/mathscinet-getitem?mr=1762415

	Introduction and main results
	Linear structural and functional errors-in-variables models (SEIVM and FEIVM)
	Least squares estimators for the slope and intercept in SEIVM's
	Least squares estimators in FEIVM's
	Model assumptions and introduction to main results
	Main results with remarks

	Auxiliary results and proofs
	Auxiliary results
	Proofs of the main results

	Appendix
	Acknowledgements
	References

