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Abstract: In this paper we study the problem of estimation of a distribu-
tion from data that contain small measurement errors. The only assumption
on these errors is that the average absolute measurement error converges
to zero for sample size tending to infinity with probability one. In partic-
ular we do not assume that the measurement errors are independent with
expectation zero. Throughout the paper we assume that the distribution,
which has to be estimated, has a density with respect to the Lebesgue-Borel
measure.

We show that the empirical measure based on the data with measure-
ment error leads to an uniform consistent estimate of the distribution func-
tion. Furthermore, we show that in general no estimate is consistent in
the total variation sense for all distributions under the above assumptions.
However, in case that the average measurement error converges to zero
faster than a properly chosen sequence of bandwidths, the total variation
error of the distribution estimate corresponding to a kernel density estimate
converges to zero for all distributions. In case of a general additive error
model we show that this result even holds if only the average measurement
error converges to zero. The results are applied in the context of estimation
of the density of residuals in a random design regression model, where the
residual error is not independent from the predictor.

AMS 2000 subject classifications: Primary 62G05; secondary 62G20.
Keywords and phrases: Density estimation, distribution estimation, to-
tal variation error, L error, measurement errors, nonparametric regression,
residuals, universal consistency.

Received March 2013.

*Corresponding author

2457


http://projecteuclid.org/ejs
http://dx.doi.org/10.1214/13-EJS850
mailto:abott@mathematik.tu-darmstadt.de
mailto:lucdevroye@gmail.com
mailto:kohler@mathematik.tu-darmstadt.de

2458 A.-K. Bott et al.

Contents
1 Introduction. . . . . . . . . . . . ... 2458
2 Mainresults . . . . . . .. 2460
3 Estimation of the density of residuals. . . . . .. ... .. ... ... 2463
4 Proofs . . . . . e 2466
4.1 Proofof Theorem 1. .. .. . ... ... ... ... ....... 2466
4.2 Proofof Theorem 2. . . . . . . . . . ... ... ... .. .... 2468
4.3 Proofof Theorem 3. . .. . . . ... ... ... ... .. .... 2469
4.4 Proofof Theorem 4. . . . . . . .. . . . . ... .. ... .... 2471
Acknowledgment . . . . . ... oL 2474
References . . . . . . . . .. . 2475

1. Introduction

Let X be a real-valued random variable with distribution p and let B be the
sigma field of all Borel sets on the real line. One of the main problems in statistics
is to estimate p from a sample Xi, ..., X,, of X. The well-known theorem
of Glivenko-Cantelli implies that in case X, Xi, X5, ...are independent and
identically distributed, we have,

SUp |pin (=00, 2]) = (=00, z) = 0 a.s, (1.1)

where
n

1
n(A) = — 14(X; AekB
=23 LX) (Aeb)
denotes the empirical distribution of X7, ..., X,, (cf., e.g., Theorem 12.4 in [11]),
and where Z,, — Z a.s. is the abbreviation for almost sure convergence, i.e.,
for Z,, — Z almost surely as n — oco. So with this estimate we get consistent
estimates of the probabilities of all intervals. However, if we are interested in
estimation of general sets, we can consider the total variation error

sup |fin(B) — u(B) (1.2)
BeB

and try to construct estimates ji,, such that this total variation error converges
to zero almost surely. Unfortunately, as was shown in [10], no estimate exists
with the property
sup |fin(B) — u(B)] = 0 a.s. (1.3)
BeB
for all distributions. But if we assume that a density f of X exists, i.e., if p is
given by

u(B) = /B f(z)dz (B €B),
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then we can construct estimates which satisfy (1.3) for all distributions via

properly defined density estimates. More precisely, let f,(-) = fn(-, X1,..., Xp)
be an estimate of f by a density f, satisfying

/|fn(x) — f(@)|dx =0 a.s. (1.4)

for all densities f. E.g., the kernel density estimate (cf., e.g., [30, 29])

1 « r— X;
fn<w>=n,hn;f<< ).

which depends on a density K : R — R (so-called kernel) and a sequence of
bandwidths A, > 0, has this property if h,, satisfies

hp, =0 (n—00) and n-h, 00 (n— 00) (1.5)

(cf., e.g., [27] and [5]; general results in density estimation can be also found in
the books [9, 6] and [12]). In this case, Scheffé’s Lemma (cf., e.g., [9]) implies
that the estimate

in(B) = /B fu(w)dz (B €B)

satisfies (1.3) for all distributions p, which have a density.
In this paper we assume that instead of the sample X7, ..., X, of X we have

available_only data X 1,ny - - -y Xn,n such that the average absolute error between
X; and X;,, converges to zero almost surely, i.e., we assume that

1 _
=1

Here we do not assume anything on the measurement errors X; , — X; (i =
1,...,n). In general, those errors do not need to be random, and, in case that
they are random, they do not need to be independent or identically distributed
and they do not need to have expectation zero. So estimates for convolution
problems, where independent and identically distributed noise is added to the
data (see, e.g., [26] and the literature cited therein), are not applicable in the
context of this paper. Note also that our set-up is triangular.

Since we do not assume anything on the nature of the measurement errors
besides that they are asymptotically negligible in the sense that (1.6) holds, it
seems to be a natural idea to ignore them completely and to try to use the same
estimates as in the case that an independent and identically distributed sample
is given. In this paper we investigate whether the above mentioned distribution
estimates are in this situation still consistent. As main results we first show
that the corresponding empirical distribution satisfies (1.1) for all distributions
w1 which have a density with respect to the Lebesgue-Borel measure. Secondly,
we show that the kernel density estimate

1 - :E_Xi,n
nhn;K< hn >

fn(z) =
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satisfies (1.4) whenever (1.5) and

n
. .lhn Z | Xi — Xin] =0 a.s.

i=1
hold. But, if we just assume (1.6), then our third result implies, that there
does not exist any estimate satisfying (1.4) for all distributions and all data
with measurement errors satisfying (1.6). Thus, (1.6) is in general not a strong
enough condition to guarantee total variation convergence. There is a large
literature on the recovery of densities from noisy data if the noise is fixed. If the
noise distribution is fixed and known, and if the noise is independent, then by
deconvolution, it is possible to consistently estimate the density (see, e.g., [26]
and the literature cited therein). However, if the noise distribution is fixed and
unknown, and if the noise is independent, then it is clearly impossible to recover
the density. The situation for independent but variable unknown noise is a bit
better. Our fourth result shows that (1.6) together with weak assumptions on the
kernel is all that is needed for the above kernel density estimate to satisfy (1.4).

Finally, we apply our results in the context of estimation of the density of
residuals in a random design regression model. Recent results in this setting
include [7, 19] and [20]. In the first one a consistency result was proven under
the assumption that the residual error is independent of the predictor. The latter
papers make the weaker assumption that a conditional density of Y given X =z
exists and derive consistency and rate of convergence results. In this paper we
consider a assumption, which is weaker than both kinds of assumptions, and
derive a consistency result.

The outline of the paper is as follows. The main results are formulated in
Section 2 and proven in Section 4. In Section 3 we describe the application of
our main results to the problem of estimation of the density of residual errors
in a regression model.

2. Main results

The empirical distribution function is possibly the simplest way to estimate a
distribution function. Even if there is no sample X1, ..., X,, of X available, we
obtain a Glivenko-Cantelli result with adequate assumptions on the available

data Xlﬁn, ..., X, n in case that the distribution of X; has a density with
respect to the Lebesgue-Borel measure.

Theorem 1. Let Xi,Xs... be independent and identically distributed real
valued random variables with density f (with respect to the Lebesgue-Borel-
measure), and let X1 p, ..., X, n be random variables which satisfy

1 _
=3 X = Xin| 20 as. (n—o0). (2.1)
n -
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Then the empirical distribution function

of le, ooy X satisfies

SUP |fin((—00, o)) = pl(=00,z)l = 0 a-s. (n = o0).

Whenever p has a density with respect to the Lebesgue-Borel measure the
total variation error of the above estimate does not converge to zero. Because
in this case we have p({X1,,...,Xnn}) = 0 and, by definition of fi,,, we have
fin({X1.ms -y Xnn}) = 1. However, our next theorem shows that if we choose
a proper sequence (h, ), of bandwidths satisfying

n
- '1h'n, Z | X; — Xinl =0 as. (n—o00),

i=1
then we can construct a density estimate which is universally consistent in the
Li-sense and hence for which by Scheffé’s Lemma the total variation error of
the corresponding distribution estimate converges to zero regardless of the den-
sity f. To do this, we ignore the measurement errors again completely for esti-
mation, and define a standard kernel density estimate applied to the data with
measurement errors via

fn(x) =

1 - :E_Xi,n
nhn;K< T >

Theorem 2. Let K be any density on Ry, let h,, > 0 and let f, be defined as
above. Assume that

hn—=0 and n-h, — o0 (n— o0). (2.2)
Then B
n .lh Z |Xi — Xin| =0 in Ly or as., resp. (2.3)
=1
implies

/|fn(x) — f(x)|dx = 0 in Ly or a.s., resp.

As shown in [8] (cf., proof of Theorem 2 in [8]), Theorem 1 is no longer valid
if we replace (2.3) by

1< _
- D IXi = Xin| 20 as. (2.4)

=1
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But if (2.4) holds we can always find h,, = hy,(X1, X1, .. Xn, Xp.n) such that
(2.2) and (2.3) hold, and consequently the resulting estimator f;, is strongly uni-
versally Li-consistent. However, this estimator depends on the non-observable
X4, ..., X,,. Surprisingly, as our next theorem shows, it is in general not possi-
ble to construct an estimate which is consistent for all densities and all samples
satisfying (2.4), even if our sample with measurement errors does not change
each time completely when the sample size changes, i.e., if we have given data
Xi,..., X, instead of )_(1,1, ... ,an. From this result we can also conclude
that in general a data-dependent choice of a more or less optimal bandwidth in
Theorem 2 is not possible.

Theorem 3. There does not exist a sequence (fp)n of density estimates satis-
fying

/|fn(x,X1,...,Xn)—f(x)|d:17 =P (n — o)

for all densities f and all random variables X1, X, ... satisfying
SR
n
i=1

for some independent and identically distributed X1, Xo, ... with density f.

Remark 1. Assume that )_(1,”, ..., Xn,n changes with every n € N such that

max |X; — X;,| =0 as. (2.6)

1=1,...,n

Then there does not exist a sequence (f,), of density estimates satisfying

/|fn(:v,)_(1)n,...,)_(n,n)—f(x)|d:v =70 (n— o)

for all densities f and all random variables X ,,, ..., X, ,, which satisfy the

condition (2.6). This can be proven as Theorem 3 above, if we set X;,, = Xl-(k)
for 1 <i¢<nandng_1 <n <ng (k€N) in the proof of Theorem 3.

In the sequel we show that under a particular noise model, where independent
noise is added to the true data such that the average noise is small, we can
obtain weak consistency of our kernel estimate under an even weaker assumption

than (2.5). More precisely, assume that the given data Xi ,,..., X, , is of the
following form

Xin=Xi+Yin (i=1,...,n),

where the additive noise Y; ,, is independent of X7, ..., X, and where (X, Y; ),
1 <i < n are independent. Additionally, we presume that Y7 ,,...,Y, , have
probability measures on the Borel sets of the real line. We don’t need to make
any structural conditions on these probability measures.
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The sequence (Y; ,,); of random variables is called diminishing additive noise
when

! E Py,, —d0 (n— ) (2.7)
” :
i=1

weakly, where dg denotes the probability measure with all of its mass at zero.

Here, %Z?:l Py, , is the probability measure which assigns to a Borel set B

the probability -+ >°" | Py, , (B). And a sequence of measures i, defined on B
converges weakly to a measure p: B — R, if

[ i [ ran (0 o0)

for all continuous and bounded functions f : R — R.
For the kernel estimate

1 " CC—Xi,n 1 E r—X;=Yin
nhn;K< ho, >_n~hn;K< ho, )

we obtain the following result.

fn(x) =

Theorem 4. Let K be a square integrable function that integrates to one, as-
sume that
hn, =0 and n-h, - o0 (n— o0)

and define f, as above. If the data satisfies the above diminishing additive noise
condition, then

n—oo

Jim E{/|fn(;v) —f(:c)|dx} 0.

If we drop the adjective “additive”, and assume merely that the pairs (X;,Y; ),
n > 1,4 < n are independent [but Y; ,, is not independent of X;| and that the
noise is diminishing, then, as shown previously, the density f cannot be con-
sistently estimated by any estimator. If we keep the additivity but drop the
diminishing noise condition then f can also not be estimated, although we will
not show that in this paper.

3. Estimation of the density of residuals

Let (X,Y), (X1,Y7), ...be independent and identically distributed R? x R-
valued random vectors such that EY? < co. Set m(z) = E{Y|X = z} and

assume that a density f of
e=Y —m(X)

exists. Here we do not assume that e and m are independent. Given (X1,Y1),. ..,
(Xn,Y,) we are interested in an estimation of f.

Estimating the density of the error distribution in nonparametric regression
models has been dealt with by several researchers. Ahmad showed in [1] that
under a Lipschitz-condition of the kernel function, the kernel density estima-
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tor converges in probability at every continuity point to the real density of the
residuals. In case of a continuous error density, the same estimator is pointwise
and uniformly consistent (see [4]), and, in addition, the histogram error density
estimator is uniformly and in L; consistent (see [3]). In [15] Efromovich in-
vestigated in a homeoscedastic regression model estimates which are as good as
estimates using an oracle that knows the underlying regression errors. In the het-
eroscedastic nonparametric regression model, where the Y;’s have different vari-
ances, Efromovich generalized his optimal estimation for a twice differentiable
error density with finite support (see [16]). Estimators of the residual distribu-
tion function include that of Akritas and Van Keilegom (see [2]), who extended
the results of Durbin (see [14]) and Loynes (see [23]) to a weak convergence
result for a distribution function estimator in a nonparametric heteroscedastic
regression model. The empirical distribution function of residuals was used as an
estimator in an heteroscedastic model with multivariate covariates by Neumeyer
and Van Keilegom (see [28]).

The L error of estimates of the density of residual errors was considered
in the papers [7, 19] and [20]. In the first one it is assumed that the residual
error is independent of the predictor, while the latter papers make the weaker
assumption that a conditional density of Y given X = x exists. In our setting
both kinds of assumptions are not satisfied.

In the sequel, we estimate f from (X3,Y7), ..., (X,,Y,) by the following
procedure: In a first step we compute a regression estimate

M2y (-) = M2 (5 (X1, Y1), (X ny2ps Ying2)))-
using the first half of the data. Then compute
& =Y, —m,(X;) (i=1[n/2]+1,...,n)
and estimate f by

)= o > K (5

" i=|n/2]+1

From Theorem 2 we can conclude the following result.

Corollary 1. Let K be any density on Ry, let h,, > 0 and let f,, be defined as
above. Assume that

hn—=0 and n-h, =00 (n—o0) (3.1)

and

% . E/ M5 y2) (x) —m(z)|Px(dz) =0 (n— 00) (3.2)

holds. Then
E/|fn(x) — f(x)|dz =0 (n— c0).
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Proof. Set

€ =Y — Min/2| (Xla (Xn—Ln/2J+laYn—\_n/2j+l)a SR (Xn,Yn))

for (i = 1,...,n — |[n/2]). Since our data is independent and identically dis-
tributed, we know that, whenever we compute an expectation, we can permutate
(X1, Y1), ..., (X,,Y,) arbitrarily. Hence,

B [ 15.0)- @)z =B [ WLZ” K (T8 - fw)|

=1

By combining (3.2) and the observation

& — €l = |mpya) (Xis (Xnz (n/2) 41> Yo [ny2)41)s - - - » (X, Ya)) — m(X5)|

we can conclude

1 n—|n/2]
—F |€; — €]
CA )

v
~ hnn—|n/2]
n—|n/2]

Z E [m /2y (Xis (Xn—ny2)41> Yoz [nj2)41)s - - - (X, Yn)) — m(X5)|
=1

— hin /|an/2J (z) — m(z)[Px(dz) = 0 (n — o).

Thus, the assertion follows from Theorem 2. O

It is well-known in the literature, that there exists weakly universally consis-
tent nonparametric regression estimates, i.e., estimates m,, with the property

E/ |mn (z) —m(x)|*Px(dz) = 0 (n — o)

for all distributions of (X,Y) satisfying EY? < co. This was first shown in [31]
in case of nearest neighbor regression estimates, and later also proven for many
other nonparametric regression estimates, cf., e.g., [13] for corresponding results
for kernel estimates, [17] for corresponding results for partitioning estimates, [24]
for corresponding results for least squares estimates, and [22] for corresponding
results for penalized squares estimates.

If we use such an estimate, the Cauchy-Schwarz inequality implies that for
every distribution of (X,Y) with EY? < oo we can find a sequence (hy,),, of
bandwidths satisfying h,, — 0 (n — co) and

E [ |[mn(x) — m(2)|Px (dx)
hy
This together with Corollary 1 implies

=0 (n— o).
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Corollary 2. Let K be any density on Ry, and let f, be defined as above,
where my, is one of the above mentioned weakly universally consistent regression
estimates. Then for any distribution of (X,Y) with EY? < oo there exists a
sequence of bandwidths (hy,)y such that

hn, =0 and n-h, - o0 (n— c0)

holds and the estimate f, corresponding to that sequence of bandwidths satisfies
E/|fn(x) — f(x)]dz =0 (n— c0).

Remark 2. The above estimate depends on the distribution of (X, Y") and hence
is not applicable in practice. It is an open problem, whether there exists a weakly
universally consistent regression estimate such that we can construct a data-
dependent choice of the bandwidth h,, = h,((X1,Y1),...,(X,,Y,)) satisfying
(3.1) and (3.2) for all distributions of (X,Y) with EY? < co.

If we impose regularity conditions on (X,Y’), in particular smoothness as-
sumptions on m, we can derive rate of convergence results for the expected
Lo error of the regression estimate, and choose a fixed sequence of bandwidths
satisfying (3.1) and (3.2). In this way we can prove results like

Corollary 3. Let K be any density on Ry, and let f,, be defined as above, where
> i L (mif) Y

St (52)
and hy, = n= /D Set b, =In(n) - n= /(@42 Then

mp(r) =

E/|fn(x) — f@)|dx =0 (n— o0) (3.3)

for all distributions of (X,Y") with the properties that m is Lipschitz continuous,
X has compact support supp(X) and sup,¢ ppx) E{Y?|X = 2} < o0,

Proof. Assume that (X,Y") satisfies the assumptions given at the end of Corol-
lary 3. By Theorem 5.2 in [18] we have

E/Imn(x) —m(z)]*Px (dz) < ¢-n~2/(Fd)

for some constant ¢ € R. Corollary 1 implies the assertion (3.3). (]

4. Proofs
4.1. Proof of Theorem 1

Let p, be the empirical distribution function of X1, ..., X, i.e., set

n

pal4) = 3 14(X) (A€ B).

=1
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We split the expression

/ln ((_007 CL‘]) —H ((—OO, x])

in two different ways for € > 0:

fin (=00, z]) — pu (=00, 2]) = fin((—00, 2]) = pn((—00, 2 + €])
+ pn((=00,2 + €]) — p((—00, 2 + €])
+ (=00, + €]) = p((—00,2])
=A1,+A2,+ A3,

and

fin((=00,2]) — (=00, z]) = fin((=00,2]) — pn((—00,2 — €])
+ pn (=00, — €]) — p((—o00,z —¢])
+ (=00, — €]) = p((—o0, z])

= By, + By + B3 .

First we consider

1< _
Al,n :E Z (1(7oo,m] (Xi,n) - 1(7oo,z+e] (Xz)) .
1=1

The i-th summand becomes one, if
)_(i)n <z and X;>z+e

In this case we have | X; ,, — X;| > e. If the i-th summand is not equal to one, it
is less than or equal to zero. Hence

1 & .
Al,n = E Z (1(—00,1] (Xl,n) - 1(—00,;E+6] (X’L))
i=1

1 — 11 _
< D Mixexsa S ¢y 21X = Kl
1=1 L

Analogously, we can conclude

n

1 _
Bl,n = ﬁ Z (1(—00,1](Xz,n) - 1(—oo,m—e] (X’L>)

=1
1 & 11 < _
z - D X e 2 o D IXs = Xl
i=1 =1
Hence, we get

sup (fin ((—00, z]) — pu ((—00, z])) = sup (A1n + Az, + Az n)
rcR z€R
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<2 Z %o = il +5p Jan((—00. + ) = (=00, + )|

+ sup u((:ﬂ, T +€l).
z€R

By the Glivenko-Cantelli Lemma and condition (2.1), it follows that,

lim sup sup (fi, ((~o0,2]) — 1 ((—00,]) < sup u((z, @ + ).

n—oo xEeR zeR

Similarly, we obtain the following assertion

sup (e (=00, z]) = fin (=00, 2])) = sup (=Bi,n = Ba.n — Ban)

z€eR zeR
11 & -
< < Do = Kol sup i ((—00,2 = o) — u( (00,2 — )|
i=1 ve

+ sup pu((z — €, 7),
z€R

from which we conclude that

lim sup sup (1 (=00, 2]) — jin ((—00,2])) < sup u((w, @ + ).

n—oo zeR R
Since p has a density with respect to the Lebesgue-Borel measure, u is Lebesgue
continuous. For the Lebesgue measure A we know sup,cp A((z, 2 + €]) < e. By
the Lebesgue continuity it follows for € — 0

sup p((z,z +€]) — 0.
z€R

From the above results we conclude

sup |M ((—o0, x]) — fin ((_007 .’L‘])|
z€R

sup ( (=00, 2]) — fin ((—o0, z]))
rcR

+8up (jin (=00, 2]) = p((=o00,2])) = 0 as.

IN

This completes the proof. O

4.2. Proof of Theorem 2

Set
fal

(5
By [9], Theorem 1 in Chapter 3, we know

/|f z)|dr — 0 in L; and a.s.
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Hence it suffices to show
[15a@) = fa@) dz =0

in expected value or almost surely, respectively. Now, writing Kp(z) =
(1/h)K(x/h) and setting u = (x — X;)/hy, we get

J 1) = i@l = 23 [ X0 = Ka o Kol
%é/’K(u)—K (u— Li’"h; Xi)’ du.

For € > 0, we may find a 0 > 0 so small that

sup /|K(u) - K(u—y)|du<e.
ly|<do

(In case that K is continuous and has compact support, this follows by an ap-
plication of the dominated convergence theorem. And otherwise we can approx-
imate K by such a function arbitrarily exactly.) Then, by Markov’s inequality,

1 « Xin—X;
il K(u) — K (g - Z286n 24
A /‘ (u) <u T >‘du

)

which is almost surely smaller than 2e for all n large enough by (2.3) in case that
this condition holds almost surely. Otherwise the expectation of the right-hand
side above is smaller than 2¢ for n large enough. This completes the proof. [J

4.3. Proof of Theorem 3

Assume to the contrary that there exists a sequence (f,), of density estimates
satisfying

/|fn(x,X1,...,Xn)—f(x)|da: =P (n — ), (4.1)

whenever X, Xs, ...are such that, for some independent and identically dis-
tributed X7, X, ... with density f, we have

R
=D X - Xi| =0 as.
n

=1
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Let X1, X, ...be independent and uniformly on [0, 1] distributed random vari-

ables and let
1 ifo<z <1,
g(z) =

0 else,

be the density of X;. For k € N, k > 2 set

2 fZ<p<2ilf k-1
gk(I)—{ if 5 < < 25— for some £ € {0,..., }

0 else
and
0 _ X; if%gXi<%forsomefe{o,...,k—l}
L X;— & if 22 < X; < 252 for some £ € {0,...,k —1}.

Here we shift all data points occuring in a interval of the form [(2] + 1)/k,
(21 4 2)/k) to the same relative position (with respect to the borders) of [21/k,
(214 1)/k). Hence all mass of the interval [(2] + 1)/k, (20 4+ 2)/k) is equally dis-

tributed among the interval [21/k, (20 + 1) /k). Consequently, Xl(k)7 XQ(k)7 ...are
independent and identically distributed random variables with density gi. So if

we set X; = Xi(k) for all 4 > N with N € N arbitrary, we know by (4.1) that

/|fn(x,)_(1,...,)_(n)—gk(:v)|dx =70 (n— o). (4.2)

Next, we define, for suitable chosen ng := 0 < ny < ny < --- our data with
measurement, error by

X, = Xi(k) ifng_1 <i<ng (keN).
Since |XZ-(k) — X;| <1/(2k), we have
I\~ o
— Z |Xl — le —0 a.s.,
i

so our theorem is proven as soon as we can show for some € > 0

lim sup P [/ |fn(z, X1y, X)) — g(2)| do > 6:| > 0. (4.3)

n—r00

Next we show that we can choose ny such that (4.3) holds. Let 0 < ¢ < 1 be
fixed, and choose ny such that

1
P [/|fn1(x,X1(1),...,X,(lll)) —g1(x)| dz > e} <3
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which is possible because of (4.1). Given nq, ..., ng_1, we choose ng > ng_1
such that

_ _ ) 1
P [/|fnk<x,xl,...,xnk1,X§L,31+1,...,X£i>>—gk<x>|dx>e} <3

which is possible because of (4.2). But if we define nq, no, ...in such a way, we
have

_ _ 1
P {/|fnk(x,X1,...,Xnk)—gk(a:)|dx >E:| < 3
and accordingly

P U|fnk(I,X1,---,Xnk)—gk(fr)ldxSe} >

for all k£ € N. By triangle inequality, we know

/ 0 (z) — g()| dx < / e (@) — gu(@)] d + / e (@) — ()] da.

Furthermore we have
[1a@) - 9@ dz = 1.

From this we can conclude for any k € N
P |:/|fnk(x7X17---;Xnk) _g($)|d17 > 1 —€:|

_p U|fnk(x,)‘(1,...,)‘<nk)—gk(x)mx <e}

>

N~

This completes the proof of Theorem 3. (I

4.4. Proof of Theorem 4

Throughout the proof we use the abbreviation K, (z) := (1/h)K (z/h) for z € R.
Furthermore, we introduce the probability measures v,,:

n
1
VUn = E § Px/i,n'
i=1

The diminishing noise condition implies that a random variable Z,, drawn from
vy, tends to 0 in distribution and hence also in probability (cf., e.g., Theorem 18.3
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n [21]). We use the notation * for the convolution operation. In general for a
function f and a measure u, we write

(Fm@) = [ 1o~ inty

Similarly, for two functions f, g, we have

(F+9)@) = [ £ =)oty

The first result we require is the following:

T [1760) = (<)@ do =0,

For an arbitrary € > 0, find a uniformly continuous density g, of compact sup-

port, such that
/ |f(z x)|dx < e.

Then, omitting (x) and dz in the integrals,

J1s=ssml< [1£=g1+ [lg-gml+ [17-9) <l
< [1r=al+ [la=gml+ [17 =gl s,
=2 [17 =g+ [lo=genl (44)

Next we consider the second integral on the right hand side of (4.4): First, since
Z, — 0 in probability, we can find a,, | 0 such that P{|Z,| > a,} — 0. Let the
uniform modulus of continuity of g : R — R be w, i.e.,

wé)=  sup  |g(z)—g(2)l,
z,z€ER, |z —2[<8

and assume that g vanishes off [—b, b]. Then, by triangle inequality, definition of
the modulus of continuity, the theorem of Fubini, the fact, that ¢ is a density,
the uniform continuity of g and the diminishing noise condition, we get

[1a=gsvl= [l9@) = [ gt~ dvn(a)]dz
< [ [19@) = gl = 2) dvnz) do

b+an,
< / w(ay, da:—l—// )+ g(x — 2)) dvp(2) de
—b—an | \>¢ln

< (2b+ 2a,)w(ay) + 2/ dvn(z)

[z|>an
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= (2b+ 2a,)w(ay) + 2P{|Z,| > an}
=0 (n— o0).

Hence,

1irnsup/|f(3:)—(f*un)(3:)|da:§2/|f(a:)—g(a:)|d3:<2e.

n—oo

Next, we have trivially,

/I(Khn*f*Vn)(I)—(f*Vn)(x)ldfr < /|<Khn*f><x>—f<x>|dx S0 (n— o0)

when h, — 0 (n — o0). This is a standard result from real analysis [e.g.,
Theorem 1, Chapter 2 in [9]]. By the triangle inequality, we thus have

n—roo

lim /|(Khn x fxvy)(x) — f(x)|de = 0. (4.5)

Finally, we are ready for the main argument. Split the L1 error traditionally
in bias and variation components:

[15u@) = s@ldo < [ 15ala) = Ba@) do + [ [Bfule) - f(a)] o
The last term tends to zero, because
E{Kp, (z — X; = Yin)} = (K, * [+ Py, ) (2),

and thus,

n

B{fu(e)} = = S (Kn, £+ Py, )(@) = (Kn, * ] ) (z).

i=1

By combining this observation with (4.5), the second right-hand side of the
above inequality tends to 0. Theorem 4 follows if we can show that

ti [ B{lfu() - B, (2)]} dz =0,
For given ¢ > 0, find a > 0 such that

/|m|>af(x) dr < e.

Note that
/ Efn(a:)d:r:/ (Kp, * [ *xvy)(x)dx
|z|>a |z[>a

< /|m|>af(a?) diE+/|(Khn x frvy)(x) — f(z)|de
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< e+/|(Khn x fxuy)(x) — f(x)|de.

Thus, using this and once more (4.5), we get

limsup/|x|>a E{|fn(z) = Efy(z)|} dx < 2limsup/z>a Ef,(z)dx < 2e.

n—oo n—oo

We conclude the proof by showing that

n—oo

lim sup /I<GE{|fn<:c> — Efu(@)]} do = 0.

By Jensen’s inequality and independence, we have
E{|fu(z) = Efa(2)}* < E{(fu(z) - Efa(2))*}

1 n
= = S VK (= X = Yin)}
=1

1 n
<5 Y B{Kn (2 Xi-Yi.)’}
i=1
1 n
= 2h, Z(K;QM « fxPy, ) (x)
i=1
1 2
= T(Khn * f * Vn)((E)

20

Hence,

/||< E{[fn(z) = Efp(2)[} dz < VEH{|fu(z) — Ef(2)[} do

|z|<a

1
< /|x|<a \/%(K,QM * fxuvp)(x)de

2a
< ”n—hn X \//z<a(K}21n * fxvy)(z)de

2a [ K?

nhy,

This tends to zero if nh,, — oco. The proof is complete. O

Acknowledgment

The authors would like to thank Reinhard Tent and the two anonymous referees
for valuable comments, which helped to improve the paper.



Distribution estimation with small measurement errors 2475

References

1]
2]

AHMAD, I. A. (1992). Residuals density estimation in nonparametric re-
gression. Statistics and Probability Letters, 14, pp. 133-139. MR1173411
AKRITAS, M. G. and VAN KEILEGOM, I. (2001). Non-parametric estima-
tion of the residual distribution. Board of the Foundation of the Scandi-
navian Journal of Statistics, Blackwell Publishers Ltd, 28, pp. 549-567.
MR1858417

CHENG, F. (2002). Consistency of error density and distribution function
estimators in nonparametric regression. Statistics and Probability Letters,
59, pp. 257-270. MR1932869

CHENG, F. (2004). Weak and strong uniform consistency of a kernel er-
ror density estimator in nonparametric regression. Journal of Statistical
Planning and Inference, 119, pp. 95-107. MR2018452

DEVROYE, L. (1983). The equivalence in L1 of weak, strong and complete
convergence of kernel density estimates. Annals of Statistics, 11, pp. 896—
904. MR0707939

DEVROYE, L. (1987). A Course in Density Estimation. Birkhduser, Basel.
MRO0891874

DEVROYE, L., FELBER, T. and KOHLER, M. (2013). Estimation of a den-
sity using real and artificial data. IEEE Transactions on Information The-
ory, 59, pp. 1917-1928. MR3030761

DEVROYE, L., FELBER, T., KOHLER, M. and KrRzvzZAK, A. (2012). L-
consistent estimation of the density of residuals in random design regression
models. Statistics and Probability Letters, 82, pp. 173-179. MR2863039
DEVROYE, L. and GYORFI, L. (1985). Nonparametric Density Estima-
tion. The L1 view. Wiley Series in Probability and Mathematical Statis-
tics: Tracts on Probability and Statistics. John Wiley and Sons, New York.
MRO780746

DEVROYE, L. and GYORFI, L. (1990). No empirical probability measure
can converge in the total variation sense for all distributions. Annals of
Statistics, 18, pp. 1496-1499. MR1062724

DEVROYE, L., GYORFI, L., and Lucost, G. (1996). A Probabilistic Theory
of Pattern Recognition. Springer, 1996. MR1383093

DEVROYE, L. and Lucosi, G. (2000). Combinatorial Methods in Density
Estimation. Springer-Verlag, New York. MR1843146

DEVROYE, L. and WAGNER, T. J. (1980). Distribution-free consistency
results in nonparametric discrimination and regression function estimation.
Annals of Statistics, 8, pp. 231-239. MR0560725

DurBIN, J. (1973). Weak convergence of the sample distribution func-
tion when parameters are estimated. Annals of Statistics, 1, pp. 279-290.
MRO0359131

EFROMOVICH, S. (2005). Estimation of the density of regression errors.
Annals of Statistics, 33, pp. 2194-2227. MR2211084

EFROMOVICH, S. (2006). Optimal nonparametric estimation of the density
of regression errors with finite support. AISM, 59, pp. 617-654. MR2397734


http://www.ams.org/mathscinet-getitem?mr=1173411
http://www.ams.org/mathscinet-getitem?mr=1858417
http://www.ams.org/mathscinet-getitem?mr=1932869
http://www.ams.org/mathscinet-getitem?mr=2018452
http://www.ams.org/mathscinet-getitem?mr=0707939
http://www.ams.org/mathscinet-getitem?mr=0891874
http://www.ams.org/mathscinet-getitem?mr=3030761
http://www.ams.org/mathscinet-getitem?mr=2863039
http://www.ams.org/mathscinet-getitem?mr=0780746
http://www.ams.org/mathscinet-getitem?mr=1062724
http://www.ams.org/mathscinet-getitem?mr=1383093
http://www.ams.org/mathscinet-getitem?mr=1843146
http://www.ams.org/mathscinet-getitem?mr=0560725
http://www.ams.org/mathscinet-getitem?mr=0359131
http://www.ams.org/mathscinet-getitem?mr=2211084
http://www.ams.org/mathscinet-getitem?mr=2397734

2476

[17]

A.-K. Bott et al.

GYORFI, L. (1981). Recent results on nonparametric regression estimate
and multiple classification. Problems of Control and Information Theory,
10, pp. 43-52. MR0611105

GYORFI, L., KOHLER, M., Krzvzak, A., and WaLK, H. (2002).
A Distribution-Free Theory of Nonparametric Regression. Springer-Verlag,
New York. MR1920390

GYORFI, L. and WALK, H. (2012). Strongly consistent density estimation
of regression residuals. Statistics and Probability Letters, 82, pp. 1923-1929.
MR2970293

GYORFI, L. and WALK, H. (2013). Rate of convergence of the density
estimation of regression residual. Statistics and Risk Modeling, 30, pp. 55—
73. MR3041505

Jacop, J. and PROTTER, P. E. (2000). Probability essentials. Universitext
— Springer-Verlag, Berlin Heidelberg. MR1736066

KOHLER, M. and KrzyZAK, A. (2001). Nonparametric regression esti-
mation using penalized least squares. IEEE Transactions on Information
Theory, 47, pp. 3054-3058. MR1872867

Loynes, R. M. (1980). The empirical sample distribution function of
residuals from generalized regression. Annals of Statistics, 8, pp. 285—298.
MR0560730

Lucosl, G. and ZEGER, K. (1995). Nonparametric estimation via em-
pirical risk minimization. IEEE Transactions on Information Theory, 41,
pp. 677-687. MR1331260

McDIARMID, C. (1989). On the method of bounded differences. Surveys in
Combinatorics 1989, vol. 141, pp. 148-188, London Mathematical Society
Lecture Notes Series, Cambridge University Press, Cambridge. MR1036755
MEISTER, A. (2009). Deconvolution Problems in Nonparametric Statistics.
Lecture Notes in Statistics, Vol. 193, Springer. MR2768576
MnNATSAKANOV, R. M., and KHMALADZE, E. V. (1981). On L;-
convergence of statistical kernel estimators of distribution densities. Soviet
Mathematics Doklady, 23, pp. 633—-636.

NEUMEYER, N. and VAN KEILEGOM, I. (2010). Estimating the error dis-
tribution in nonparametric multiple regression with applications to model
testing. Journal of Multivariate Analysis, 101, pp. 1067-1078. MR2595293
PArzEN, E. (1962). On the estimation of a probability density func-
tion and the mode. Annals of Mathematical Statistics, 33, pp. 1065—-1076.
MR0143282

ROSENBLATT, M. (1956). Remarks on some nonparametric estimates of
a density function. Annals of Mathematical Statistics, 27, pp. 832-837.
MRO079873

SToNE, C. J. (1977). Consistent nonparametric regression. Annals of
Statistics, 5, pp. 595-645. MR0443204


http://www.ams.org/mathscinet-getitem?mr=0611105
http://www.ams.org/mathscinet-getitem?mr=1920390
http://www.ams.org/mathscinet-getitem?mr=2970293
http://www.ams.org/mathscinet-getitem?mr=3041505
http://www.ams.org/mathscinet-getitem?mr=1736066
http://www.ams.org/mathscinet-getitem?mr=1872867
http://www.ams.org/mathscinet-getitem?mr=0560730
http://www.ams.org/mathscinet-getitem?mr=1331260
http://www.ams.org/mathscinet-getitem?mr=1036755
http://www.ams.org/mathscinet-getitem?mr=2768576
http://www.ams.org/mathscinet-getitem?mr=2595293
http://www.ams.org/mathscinet-getitem?mr=0143282
http://www.ams.org/mathscinet-getitem?mr=0079873
http://www.ams.org/mathscinet-getitem?mr=0443204

	Introduction
	Main results
	Estimation of the density of residuals
	Proofs
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4

	Acknowledgment
	References

