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Abstract: The cellular tree classifier model addresses a fundamental prob-
lem in the design of classifiers for a parallel or distributed computing world:
Given a data set, is it sufficient to apply a majority rule for classification,
or shall one split the data into two or more parts and send each part to a
potentially different computer (or cell) for further processing? At first sight,
it seems impossible to define with this paradigm a consistent classifier as
no cell knows the “original data size”, n. However, we show that this is
not so by exhibiting two different consistent classifiers. The consistency is
universal but is only shown for distributions with nonatomic marginals.
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1. Introduction

1.1. The problem

We explore in this paper a new way of dealing with the supervised classification
problem. In the model we have in mind, a basic computational unit in clas-
sification, a cell, takes as input training data, and makes a decision whether
a majority rule should be applied to all data, or whether the data should be
split, and each part of the partition should be given to another cell. All cells
must be the same—their function is not altered by external inputs. In other
words, the decision to split depends only upon the data presented to the cell.
Classifiers designed according to this autonomous principle will be called cel-
lular tree classifiers, or simply cellular classifiers. This manner of tackling the
classification problem is novel, but has a wide reach in a world in which paral-
lel and distributed computation are important. In the short term, parallelism
will take hold in massive data sets and complex systems and, as such, is one of
the exciting questions that will be asked to the statistics and machine learning
fields.

The purpose of the present document is to formalize the setting and to provide
a foundational discussion of various properties, good and bad, of tree classifiers
that are formulated following these principles. Our constructions lead to classi-
fiers that always converge. They are the first consistent cellular classifiers that
we are aware of. This article is also motivated by the challenges involved in “big
data” issues [see, e.g., 27], in which recursive approaches such as divide-and-
conquer algorithms [e.g., 11] play a central role. Such procedures are naturally
adapted for execution in multi-processor machines, especially shared-memory
systems where the communication of data between processors does not need to
be planned in advance.

In the design of classifiers, we have an unknown distribution of a random
prototype pair (X, Y ), where X takes values in R

d and Y takes only finitely
many values, say 0 or 1 for simplicity. Classical pattern recognition deals with
predicting the unknown nature Y of the observationX via a measurable classifier
g : Rd → {0, 1}. Since it is not assumed that X fully determines the label, it
is certainly possible to misspecify its associated class. Thus, we err if g(X)
differs from Y , and the probability of error for a particular decision rule g is
L(g) = P{g(X) 6= Y }. The Bayes classifier

g⋆(x) =

{

1 if P{Y = 1|X = x} > P{Y = 0|X = x}
0 otherwise

has the smallest probability of error, that is

L⋆ = L(g⋆) = inf
g:Rd→{0,1}

P{g(X) 6= Y }
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[see, for instance, Theorem 2.1 in 14]. However, most of the time, the distribution
of (X, Y ) is unknown, so that g⋆ is unknown too. Fortunately, it is often possible
to collect a sample (the data) Dn = ((X1, Y1), . . . , (Xn, Yn)) of independent and
identically distributed (i.i.d.) copies of (X, Y ). We assume that Dn and (X, Y )
are independent. In this context, a classifier gn(x;Dn) is a measurable function
of x and Dn, and it attempts to estimate Y from X and Dn. For simplicity, we
suppress Dn in the notation and write gn(x) instead of gn(x;Dn).

The probability of error of a given classifier gn is the random variable

L(gn) = P{gn(X) 6= Y |Dn},
and the rule is consistent if

lim
n→∞

EL(gn) = L⋆.

It is universally consistent if it is consistent for all possible distributions of
(X, Y ). Many popular classifiers are universally consistent. These include sev-
eral brands of histogram rules, k-nearest neighbor rules, kernel rules, neural
networks, and tree classifiers. There are too many references to be cited here,
but the monographs by Devroye et al. [14] and Györfi et al. [25] will provide the
reader with a comprehensive introduction to the domain and a literature review.
Among these rules, tree methods loom large for several reasons. All procedures
that partition space, such as histogram rules, can be viewed as special cases of
partitions generated by trees. Simple neural networks that use voting methods
can also be regarded as trees, and similarly, kernel methods with kernels that
are indicator functions of sets are but special cases of tree methods. Tree clas-
sifiers are conceptually simple, and explain the data very well. However, their
design can be cumbersome, as optimizations performed over all possible tree
classifiers that follow certain restrictions could face a huge combinatorial and
computational hurdle. The cellular paradigm addresses these concerns.

Partitions of Rd based upon trees have been studied in the computational
geometry literature [5, 34, 16, 31] and the computer graphics literature [42, 43].
Most popular among these are the k-d trees and quadtrees. Our version of space
partitioning corresponds to Bentley’s k-d trees [1975]. The basic notions of trees
as related to pattern recognition can be found in Chapter 20 of Devroye et al.
[14]. However, trees have been suggested as tools for classification more than
twenty years before that. We mention in particular the early work of Fu [50, 1,
33, 29, 38]. Other references from the 1970s include Meisel and Michalopoulos
[32], Bartolucci et al. [4], Payne and Meisel [36], Sethi and Chatterjee [44], Swain
and Hauska [48], Gordon and Olshen [22], Friedman [18]. Most influential in the
classification tree literature was the CART proposal by Breiman et al. [8]. While
CART proposes partitions by hyperrectangles, linear hyperplanes in general
position have also gained in popularity—the early work on that topic is by Loh
and Vanichsetakul [30], and Park and Sklansky [35]. Additional references on
tree classification include Gustafson et al. [24], Argentiero et al. [2], Hartmann
et al. [26], Kurzynski [28], Wang and Suen [49], Suen and Wang [47], Shlien
[45], Chou [10], Gelfand and Delp [19], Gelfand et al. [20], Simon [46], Guo and
Gelfand [23].
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Fig 1. A binary tree (left) and the corresponding partition (right).

1.2. The cellular computation spirit

In general, classification trees partition R
d into regions, often hyperrectangles

parallel to the axes (an example is depicted in Figure 1). In t-ary trees, each
node has exactly t or 0 children. If a node u represents the set A and its children
u1, . . . , ut represent A1, . . . , At, then it is required that A = A1 ∪ · · · ∪ At and
Ai∩Aj = ∅ for i 6= j. The root of the tree represents Rd, and the terminal nodes
(or leaves), taken together, form a partition of Rd. If a leaf represents region A,
then the tree classifier takes the simple form

gn(x) =

{

1 if
∑n

i=1 1[Xi∈A,Yi=1] >
∑n

i=1 1[Xi∈A,Yi=0], x ∈ A
0 otherwise.

That is, in every leaf region, a majority vote is taken over all (Xi, Yi)’s with
Xi’s in the same region. Ties are broken, by convention, in favor of class 0.

The tree structure is usually data-dependent, as well, and indeed, it is in the
construction itself where different trees differ. Thus, there are virtually infinitely
many possible strategies to build classification trees. Nevertheless, despite this
great diversity, all tree species end up with two fundamental questions at each
node:

① Should the node be split?

② In the affirmative, what are its children?

These two questions are typically answered using global information regard-
ing the tree, such as, for example, a function of the data Dn, the level of the
node within the tree, the size of the data set and, more generally, any parameter
connected with the structure of the tree. This parameter could be, for exam-
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Fig 2. Schematization of the cell, the computational unit.

ple, the total number k of cells in a k-partition tree or the penalty term in the
pruning of the CART algorithm [8; see also 21].

Cellular trees proceed from a different philosophy. In short, a cellular tree
should, at each node, be able to answer questions ① and ② using local infor-
mation only, without any help from the other nodes. In other words, each cell
can perform as many operations it wishes, provided it uses only the data that
are transmitted to it, regardless of the general structure of the tree. Just imag-
ine that the calculations to be carried out at the nodes are sent to different
computers, eventually asynchronously, and that the system architecture is so
complex that computers do not communicate. Such a situation may arise, for
example, in the context of massive data sets, that is, when both n and d are as-
tronomical, and no single human and no single computer can handle this alone.
Thus, once a computer receives its data, it has to make its own decisions ①
and ② based on this data subset only, independently of the others and without
knowing anything of the overall edifice. Once a data set is split, it can be given
to another computer for further splitting, since the remaining data points have
no influence. This greedy mechanism is schematized in Figure 2.

But there is a more compelling reason for making local decisions. A neurolo-
gist seeing twenty patients must make decisions without knowing anything about
the other patients in the hospital that were sent to other specialists. Neither does
he need to know how many other patients there are. The neurologist’s decision,
in other words, should only be based on the data—the patients—in his care.
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Decision tree learning is a method commonly used in data mining [see, e.g.,
41]. Its goal is to create a model that partitions the space recursively, as in
a tree, in which leaf nodes (terminal nodes) correspond to final decisions. This
process of top-down induction of decision trees—a phrase introduced by Quinlan
in 1968—is called greedy in the data mining and computer science literature. It
is by far the most common strategy for learning decision trees from data. The
literature on this topic is largely concerned with the manner in which splits are
made, and with the stopping rule.

For example, in CART [8], splits are made perpendicular to the axes based
on the notion of Gini impurity. Splits are performed until all data are isolated.
In a second phase, nodes are recombined from the bottom-up in a process called
pruning. It is this second process that makes the CART trees non-cellular, as
global information is shared to manage the recombination process. Quinlan’s
C4.5 [1993] also prunes. Others split until all nodes or cells are homogeneous
(i.e., have the same class)—the prime example is Quinlan’s ID3 [1986]. This
strategy, while compliant with the cellular framework, leads to non-consistent
rules, as we point out in the present paper. In fact, the choice of a good stopping
rule for decision trees is very hard—we were not able to find any in the literature
that guarantee convergence to the Bayes error.

We note here that decision networks have received renewed attention in wire-
less sensor networks [see, e.g., 3, or 9]. Physical and energy considerations impose
a natural restriction on the classifiers—decisions must be taken locally. This cor-
responds, in spirit, to the cellular framework we are proposing. However, most
sensor network decision trees use global criteria such as pruning that are based
on a global method of deciding where to prune. The consistency question has
not been addressed in these applications.

2. Cellular tree classifiers

2.1. A mathematical model

The objective of this subsection is to discuss a tentative mathematical model
for cellular tree classifiers. Without loss of generality, we consider binary tree
classifiers based on a class C of possible Borel subsets of Rd that can be used for
splits. A typical example of such a class is the family of all hyperplanes, or the
class of all hyperplanes that are perpendicular to one of the axes. Higher order
polynomial splitting surfaces can be imagined as well.

The class is parametrized by a vector σ ∈ R
p. There is a splitting function

f(x, σ), x ∈ R
d, σ ∈ R

p, such that R
d is partitioned into A = {x ∈ R

d :
f(x, σ) ≥ 0} and B = {x ∈ R

d : f(x, σ) < 0}. Formally, a cellular split can
be viewed as a family of measurable mappings σ from (Rd ×{0, 1})n to R

p (for
all n ≥ 1). That is, for each possible input size n, we have a map. In addition,
there is a family of measurable mappings θ from (Rd × {0, 1})n to {0, 1} that
indicate decisions: θ = 1 indicates that a split should be applied, while θ = 0
corresponds to a decision not to split. In that case, the cell acts as a leaf node
in the tree. Note that θ and σ correspond to the decisions given in ① and ②.



Cellular tree classifiers 1881

A cellular binary classification tree is a machine that partitions the space
recursively in the following manner. With each node we associate a subset of
R

d, starting with R
d for the root node. Let the data set be Dn. If θ(Dn) = 0,

the root cell is final, and the space is not split. Otherwise, Rd is split into

A =
{

x ∈ R
d : f (x, σ(Dn)) ≥ 0

}

and B =
{

x ∈ R
d : f (x, σ(Dn)) < 0

}

.

The data Dn are partitioned into two groups—the first group contains all
(Xi, Yi), i = 1, . . . , n, for which Xi ∈ A, and the second group all others.
The groups are sent to child cells, and the process is repeated.

A priori, there is no reason why this tree should be finite. We will impose
conditions later on that ensure that with probability 1, the tree is finite for all
n and for all possible values of the data. For example, this could be achieved
by hyperplane splits perpendicular to the axes that are forced to visit (contain)
one of the Xi’s. By insisting that the data point selected on the boundary be
“eaten”, i.e., not sent down to the child nodes, one reduces the data set by one
at each split, thereby ensuring the finiteness of the decision tree. We will employ
such a (crude) method.

When x ∈ R
d needs to be classified, we first determine the unique leaf set

A(x) to which x belongs, and then take votes among the {Yi : Xi ∈ A(x), i =
1, . . . , n}. Classification proceeds by a majority vote, with the majority deciding
the estimate gn(x). In case of a tie, we set gn(x) = 0.

A cellular binary tree classifier is said to be randomized if each node in the
tree has an independent copy of a uniform [0, 1] random variable associated
with it, and θ and σ are mappings that have one extra real-valued component
in the input. For example, we could flip an unbiased coin at each node to decide
whether θ = 0 or θ = 1.

Remark 2.1. It is tempting to say that any classifier gn is a cellular tree
classifier with the following mechanism: Set θ = 1 if we are at the root, and
θ = 0 elsewhere. The root node is split by the classifier into a set

A = {x ∈ R
d : gn(x) = 1}

and its complement, and both child nodes are leaves. However, the decision to
cut can only be a function of the input data, and not the node’s position in the
tree, and thus, this is not allowed.

2.2. Are there consistent cellular tree classifiers?

At first sight, it appears that there are no universally consistent cellular tree
classifiers. Consider for example complete binary trees with k full levels, i.e.,
there are 2k leaf regions. We can have consistency when k is allowed to depend
upon n. An example is the median tree [14, Section 20.3]. When d = 1, split
by finding the median element among the Xi’s, so that the child sets have
cardinality given by ⌊(n− 1)/2⌋ and ⌈(n− 1)/2⌉, where ⌊.⌋ and ⌈.⌉ are the floor
and ceiling functions. The median itself does stay behind and is not sent down to
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the subtrees, with an appropriate convention for breaking cell boundaries as well
as empty cells. Keep doing this for k rounds—in d dimensions, one can either
rotate through the coordinates for median splitting, or randomize by selecting
uniformly at random a coordinate to split orthogonally.

This rule is known to be consistent as soon as the marginal distributions of
X are nonatomic, provided k → ∞ and k2k/n → 0. However, this is not a
cellular tree classifier. While we can indeed specify σ, it is impossible to define
θ because θ cannot be a function of the global value of n. In other words, if we
were to apply median splitting and decide to split for a fixed k, then the leaf
nodes would all correspond to a fix proportion of the data points. It is clear that
the decisions in the leaves are off with a fair probability if we have, for example,
Y independent of X and P{Y = 1} = 1/2. Thus, we cannot create a cellular
tree classifier in this manner.

In view of the preceding discussion, it seems paradoxical that there indeed
exist universally consistent cellular tree classifiers. (We note here that we abuse
the word “universal”—we will assume throughout, to keep the discussion at
a manageable level, that the marginal distributions of X are nonatomic. But
no other conditions on the joint distribution of (X, Y ) are imposed.) Our first
construction, which is presented in Section 3, follows the median tree principle
and uses randomization. In a second construction (Section 4) we derandomize,
and exploit the idea that each cell is allowed to explore its own subtrees, thereby
anticipating the decisions of its children. For the sake of clarity, proofs of the
most technical results are gathered in Section 5 and Section 6.

3. A randomized cellular tree classifier

From now on, to keep things simple, it is assumed that the marginal distributions
of X are nonatomic. The cellular splitting method σ described in this section
mimics the median tree classifier discussed above. We first choose a dimension
to cut, uniformly at random from the d dimensions, as rotating through the
dimensions by level number would violate the cellular condition. The selected
dimension is then split at the data median, just as in the classical median tree.
Repeating this for k levels of nodes leads to 2k leaf regions. On any path of
length k to one of the 2k leaves, we have a deterministic sequence of cardinalities
n0 = n(root), n1, n2, . . . , nk. We always have ni/2− 1 ≤ ni+1 ≤ ni/2. Thus, by
induction, one easily shows that, for all i,

n

2i
− 2 ≤ ni ≤

n

2i
.

In particular, each leaf has at least max(n/2k − 2, 0) points and at most n/2k.

Remark 3.1. The problem of atoms in the coordinates can be dealt with
separately, but still within the cellular framework. The particularity is that
the threshold for splitting may now be at a position at which one or more data
values occur. This leaves two sets that may differ in size by more than one. The
atoms in the distribution of X can never be separated, but that is as it should
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be. We leave it to the reader to adapt the subsequent arguments to the case of
atomic distributions.

The novelty is in the choice of the decision function. This function ignores
the data altogether and uses a randomized decision that is based on the size of
the input. More precisely, consider a nonincreasing function ϕ : N → (0, 1] with
ϕ(0) = ϕ(1) = 1. Cells correspond in a natural way to sets of Rd. So, we can
and will speak of a cell A, where A ⊂ R

d. The number of data points in A is
denoted by N(A):

N(A) =

n
∑

i=1

1[Xi∈A].

Then, if U is the uniform [0, 1] random variable associated with the cell A and
the input to the cell is N(A), the stopping rule ① takes the form:

① Put θ = 0 if

U ≤ ϕ (N(A)) .

In this manner, we obtain a possibly infinite randomized binary tree classifier.
Splitting occurs with probability 1 − ϕ(n) on inputs of size n. Note that no
attempt is made to split empty sets or singleton sets. For consistency, we need
to look at the random leaf region to which X belongs. This is roughly equivalent
to studying the distance from that cell to the root of the tree.

In the sequel, the notation un = o(vn) (respectively, un = ω(vn) and un =
O(vn)) means that un/vn → 0 (respectively, vn/un → 0 and un ≤ Cvn for some
constant C) as n → ∞. Many choices ϕ(n) = o(1), but not all, will do for us.
The next lemma makes things more precise.

Lemma 3.1. Let β ∈ (0, 1). Define

ϕ(n) =

{

1 if n < 3

1/logβ n if n ≥ 3.

Let K(X) denote the random path distance between the cell of X and the root
of the tree. Then

lim
n→∞

P {K(X) ≥ kn} =

{

0 if kn = ω(logβ n)

1 if kn = o(logβ n).

Proof. Let us recall that, at level k, each cell of the underlying median tree
contains at least max(n/2k − 2, 0) points and at most n/2k. Since the function
ϕ(.) is nonincreasing, the first result follows from this:

P {K(X) ≥ kn} ≤
kn−1
∏

i=0

(

1− ϕ
(

⌊n/2i⌋
))

≤ exp

(

−
kn−1
∑

i=0

ϕ
(

⌊n/2i⌋
)

)

≤ exp (−knϕ(n)) .



1884 G. Biau and L. Devroye

The second statement follows from

P {K(X) < kn} ≤
kn−1
∑

i=0

ϕ
(

⌈n/2i − 2⌉
)

≤ knϕ
(

⌈n/2kn⌉
)

,

valid for all n large enough since n/2kn → ∞ as n→ ∞.

Lemma 3.1, combined with the median tree consistency result of Devroye
et al. [14], suffices to establish consistency of the randomized cellular tree clas-
sifier.

Theorem 3.1. Let β be a real number in (0, 1). Define

ϕ(n) =

{

1 if n < 3

1/logβ n if n ≥ 3.

Let gn be the associated randomized cellular binary tree classifier. Assume that
the marginal distributions of X are nonatomic. Then the classification rule gn
is consistent:

lim
n→∞

EL(gn) = L⋆ as n→ ∞.

Proof. By diam(A) we mean the diameter of the cell A, i.e., the maximal dis-
tance between two points of A. We recall a general consistency theorem for
partitioning classifiers whose cell design depends on the Xi’s only [14, Theorem
6.1]. According to this theorem, such a classifier is consistent if both

1. diam(A(X)) → 0 in probability as n→ ∞, and
2. N(A(X)) → ∞ in probability as n→ ∞,

where A(X) is the cell of the random partition containing X.
Condition 2. is proved in Lemma 3.1. Notice that

N (A(X)) ≥ n

2K(X)
− 2

≥ 1[K(X)<log(β+1)/2 n]

(

n

2log
(β+1)/2 n

− 2

)

= ω(1)1[K(X)<log(β+1)/2 n].

Therefore, by Lemma 3.1, N (A(X)) → ∞ in probability as n→ ∞.
To show that diam(A(X)) → 0 in probability, observe that on a path of length

K(X), the number of times the first dimension is cut is binomial (K(X), 1/d).
This tends to infinity in probability. Following the proof of Theorem 20.2 in
Devroye et al. [14], the diameter of the cell of X tends to 0 in probability with
n. Details are left to the reader.

Let us finally take care of the randomization. Can one do without random-
ization? The hint to the solution of that enigma is in the hypothesis that the
data elements in Dn are i.i.d. The median classifier does not use the ordering in
the data. Thus, one can use the randomness present in the permutation of the
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observations, e.g., the ℓ-th components of the Xi’s can form n! permutations if
ties do not occur. This corresponds to (1 + o(1))n log2 n independent fair coin
flips, which are at our disposal. Each decision to split requires on average at
most 2 independent bits. The selection of a random direction to cut requires no
more than 1 + log2 d independent bits. Since the total tree size is, with prob-

ability tending to 1, O(2log
β+ε n) for any ε > 0, a fact that follows with a bit

of work from summing the expected number of nodes at each level, the total
number of bits required to carry out all computations is

O
(

(3 + log2 d)2
logβ+ε n

)

,

which is orders of magnitude smaller than n provided that β+ε < 1. Thus, there
is sufficient randomness at hand to do the job. How it is actually implemented
is another matter, as there is some inevitable dependence between the data sets
that correspond to cells and the data sets that correspond to their children. We
will not worry about the finer details of this in the present paper.

Remark 3.2. For more on random tree models and their analyses, see the
texts of Drmota [15], and Flajolet and Sedgewick [17]. Additional material on
information-theory and bit complexity can be found in the monograph by Cover
and Thomas [12].

Remark 3.3. In the spirit of Breiman’s random forests [2001], one could en-
visage to use a collection of randomized cellular tree classifiers and make final
predictions by aggregating over the ensemble. Since each individual rule is con-
sistent (by Theorem 3.1), then the same property is also true for the ensemble
[see, e.g., Proposition 1 in 6]. Improvements are expected at the level of predic-
tive accuracy and stability.

4. A non-randomized cellular tree classifier

The cellular tree classifier that we consider in this section is more sophisticated
and autonomous, in the sense that it does not rely on any randomization scheme.
It partitions the data recursively as follows. With each node we associate a set
of Rd, starting with R

d for the root node. We first consider a full 2d-ary tree
(see Figure 3 for an illustration in dimension 2), with the cuts decided in the
following manner. The dimensions are ordered once and for all from 1 to d. At
the root, we find the median of (the projection of) the n data points in direction
1, then on each of the two subsets, we find the median in direction 2, then on
each of the four subsets, we find the median in direction 3, and so forth. A
split, contrary to our discussion thus far, is into 2d parts, not two parts. This
corresponds to Bentley’s k-d tree [1975]. Repeating this splitting for k levels of
nodes leads to 2dk leaf regions, each having at least max(n/2dk − 2, 0) points
and at most n/2dk.

This procedure is equivalent to dk consecutive binary splits at the median,
where we rotate through the dimensions. However, in our cellular set-up, such
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k = 0

k = 1

k = 2

Fig 3. A full 2d-ary tree in dimension d = 2.

rotations through the dimensions are impossible, and this forces us to employ
this equivalent strategy. Note, therefore, that the split parameter σ is an ex-
tension of the binary classifier split σ—one could consider it as a vector of
dimension 2d − 1, as we need to specify 2d − 1 coordinate positions to fully
specify a partition into 2d regions. It remains to specify a stopping rule θ which
respects the cellular constraint. To this aim, we need some additional notation.

Remark 4.1. By the very construction of the tree, at each node, the median
itself does stay behind and is not sent down to the subtrees. From a topological
point of view, this means that, in the partition building, each cell A and its 2d

child cells A1, . . . , A2d are considered as open hyperrectangles. Thus, for clas-
sification, assuming nonatomic marginals, we would thus strictly speaking not
be able to classify any data that fall “on the border” between A1, . . . , A2d . This
is a non-important detail for the calculations since the marginal distributions
of X are nonatomic. In practice, this issue can be solved with an appropriate
convention to break the boundary ties.

IfA is any cell of the full 2d-ary tree defined above, we letN(A) be the number
of Xi’s falling in A, and estimate the quality of the majority vote classifier at
this node by

L̂n(A) =
1

N(A)
min

(

n
∑

i=1

1[Xi∈A,Yi=1],
n
∑

i=1

1[Xi∈A,Yi=0]

)

.

(Throughout, we adopt the convention 0/0 = 0.)

Remark 4.2. Each cut at the median eliminates 1 data point. Thus, given a
cell A, the construction of its offspring k generations later rules out at most 1+
· · ·+2dk−1 = 2dk−1 observations. In particular, if A has cardinality N(A), then,
k generations later, its offspring A1, . . . , A2dk have a total combined cardinality
at least N(A)− (2dk + 1).

Fix a positive real parameter α and define the nonnegative integer k+ by

k+ = ⌊α log2(N(A) + 1)⌋ ,
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where, for simplicity, we drop the dependency of k+ upon A and α. Finally,
letting Pk+(A) be the 2dk

+

leaf regions (terminal nodes) of the full 2d-ary tree
rooted at A of height k+, we set

L̂n(A, k
+) =

∑

Aj∈Pk+ (A)

L̂n(Aj)
N(Aj)

N(A)
.

The quantity L̂n(A, k
+) is interpreted as the total (normalized) error of a major-

ity vote over the offspring of A living k+ generations later. It should be stressed
that both L̂n(A) and L̂n(A, k

+) may be evaluated on the basis of the data
points falling in A only (no matter what the rest of the tree looks like), thereby
respecting the cellular constraint.

Now, let β be a positive real parameter. With this notation, the stopping rule
① takes the following simple form:

① Put θ = 0 if

∣

∣

∣L̂n(A)− L̂n(A, k
+)
∣

∣

∣ ≤
(

1

N(A) + 1

)β

.

In other words, at each cell, the algorithm compares the actual classifica-
tion error with the total error of the cell offspring k+ generations later. This
bounded lookahead principle suggested by us is quite well-developed in the artifi-
cial intelligence literature—see, for example, Pearl’s book [1988] on probabilistic
reasoning. If the difference is below some well-chosen threshold, then the cellular
classification procedure stops and the node returns a terminal signal. Otherwise,
the node outputs 2d sets of data, and the process continues recursively. The pro-
tocol stops once all nodes have returned a terminal signal, and final decisions
are taken by majority vote. Thus, for x falling in a terminal node A, the rule is
as usual

gn(x) =

{

1 if
∑n

i=1 1[Xi∈A,Yi=1] >
∑n

i=1 1[Xi∈A,Yi=0]

0 otherwise.

In the next section, we prove the following theorem:

Theorem 4.1. Let gn be the cellular tree classifier defined above, with 1−dα−
2β > 0. Assume that the marginal distributions of X are nonatomic. Then the
classification rule gn is consistent:

lim
n→∞

EL(gn) = L⋆ as n→ ∞.

From a technical point of view, this theorem poses a challenge, as there are no
conditions on the distribution, and the rectangular cells do in general not shrink
to zero. In fact, it is easy to find distributions of X for which the maximal cell
diameter does not tend to zero in probability, even if all is restricted to the unit
cube. For distributions with infinite support, there are always cells of infinite
diameter. This observation implies that classical consistency proofs, that often
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use differentiation of measure arguments or rely on asymptotic justifications
related to Lebesgue’s density theorem, cannot be applied. The proof uses global
arguments instead.

For partitions that do not depend upon the Y -values in the data, consistency
can be shown by relatively simple means, following for example the arguments
given in Devroye et al. [14]. However, our partition and tree depend upon the
Y -values in the data. Within the constraints imposed by the cellular model, we
believe that this is the first (and only) proof of universal consistency of a Y -
dependent cellular tree classifier. On the other hand, we have proposed a model
that is a priori too simple to be competitive. There are choices of parameters
to be made, and there is absolutely no minimax theory of lower bounds for the
rate with which cellular tree classifiers can approach the Bayes error. On the
practical side, besides the question of how to efficiently implement the model,
it is also clear that the performance of the cellular estimate will be conditional
on a good tuning of both parameters α and β. As a first step, a good route to
follow is to attack the rate of convergence problem—we expect dependence on
the smoothness of (X, Y )—and deduce from this analysis the best parameter
choices. In any case, the work ahead is enormous and the road arduous.

5. Proof of Theorem 4.1

5.1. Notation and preliminary results

We start with some notation (see Figure 4). For each level k ≥ 0, we denote by
Pk the partition represented by the leaves of the underlying full 2d-ary median-
type tree. This partition has 2dk cells and its construction depends on the Xi’s
only. The labels Yi’s do not play a role in the building of Pk, though they are
involved in making the decision whether to cut a cell or not.

For each Aj ∈ Pk, we let N(Aj) be the number of Xi’s falling in Aj and note

that
∑2dk

j=1N(Aj) ≤ n, with a strict inequality as soon as k > 0 (see Remark
4.2). For each level k, Ak(X) denotes the cell of the partition Pk into which X

falls, and N(Ak(X)) the number of data points falling in this set.

We let µ be the distribution of X and η the regression function of Y on X.
More precisely, for any Borel-measurable set A ⊂ R

d,

µ(A) = P{X ∈ A}

and, for any x ∈ R
d,

η(x) = P{Y = 1|X = x} = E[Y |X = x].

It is known that the Bayes error is

L⋆ =

∫

Rd

min (η(z), 1 − η(z)) µ(dz).
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Fig 4. Some key notation.

Let us recall that, for any cell A,

L̂n(A) =
1

N(A)
min

(

n
∑

i=1

1[Xi∈A,Yi=1],

n
∑

i=1

1[Xi∈A,Yi=0]

)

.

Also, for every k ≥ 0,

L̂n(A, k) =
∑

Aj∈Pk(A)

L̂n(Aj)
N(Aj)

N(A)
,

where Pk(A) is the full 2d-ary median-type tree rooted at A of height k. At the
population level, we set

L⋆(A) =
1

µ(A)
min

(∫

A

η(z)µ(dz),

∫

A

(1− η(z)) µ(dz)

)

and

L⋆(A, k) =
∑

Aj∈Pk(A)

L⋆(Aj)
µ(Aj)

µ(A)
.
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For all k ≥ 0, we shall also need the quantity

L⋆
k = E [L⋆ (Ak(X))] .

Note that whenever A = A(X1, . . . ,Xn) is a random cell, we take the liberty to
abbreviate

∫

A
dµ by µ(A) throughout the manuscript, since this should cause

no confusion. We write for instance

L⋆
k = E

[

E [L⋆ (Ak(X)) |X1, . . . ,Xn]
]

= E

[

∑

A∈Pk

L⋆(A)µ(A)

]

instead of

L⋆
k = E

[

∑

A∈Pk

L⋆(A)

∫

A

dµ

]

.

Our proof starts with some easy but important facts.

Fact 5.1.

(i) For all levels k′ ≥ k ≥ 0,

L⋆ ≤ L⋆
k′ ≤ L⋆

k.

(ii) For each cell A and each level k ≥ 0,

L̂n(A, k) ≤ L̂n(A) +
2dk

N(A)
1[N(A)>0].

(iii) For each cell A and all levels k′ ≥ k ≥ 0,

L̂n(A, k
′) ≤ L̂n(A, k) +

2dk
′

N(A)
1[N(A)>0].

(iv) For each cell A and all levels k, k′ ≥ 0,

E [L⋆(Ak(X), k′)] = L⋆
k+k′ .

In particular, for k′′ ≥ k′ ≥ 0,

L⋆ ≤ E [L⋆(Ak(X), k′′)] ≤ E [L⋆(Ak(X), k′)] .

Proof. Proof of statement (i) is based on the nesting of the partitions. To es-
tablish (ii), observe that, by definition,

L̂n(A) =
1

2
− 1

2N(A)

∣

∣

∣

∣

∣

N(A)− 2

n
∑

i=1

1[Xi∈A,Yi=1]

∣

∣

∣

∣

∣

,

and

L̂n(A, k)

=
1

2N(A)

∑

Aj∈Pk(A)

N(Aj)−
1

2N(A)

∑

Aj∈Pk(A)

∣

∣

∣

∣

∣

N(Aj)− 2

n
∑

i=1

1[Xi∈Aj,Yi=1]

∣

∣

∣

∣

∣

≤ 1

2
− 1

2N(A)

∑

Aj∈Pk(A)

∣

∣

∣

∣

∣

N(Aj)− 2

n
∑

i=1

1[Xi∈Aj ,Yi=1]

∣

∣

∣

∣

∣

.
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But, by the triangle inequality and Remark 4.2,

∣

∣

∣

∣

∣

N(A)− 2

n
∑

i=1

1[Xi∈A,Yi=1]

∣

∣

∣

∣

∣

≤
∑

Aj∈Pk(A)

∣

∣

∣

∣

∣

N(Aj)− 2
n
∑

i=1

1[Xi∈Aj ,Yi=1]

∣

∣

∣

∣

∣

+ 2dk − 1.

This proves (ii). Proof of (iii) is similar. To show (iv), just note that

E [L⋆(Ak(X), k′)] = E





∑

A∈Pk

∑

Aj∈Pk′(A)

L⋆(Aj)
µ(Aj)

µ(A)
µ(A)





= E [L⋆ (Ak+k′ (X))]

= L⋆
k+k′ .

The next two propositions will be decisive in our analysis. Proposition 5.1
asserts that the diameter of Ak(X) tends to 0 in probability, provided k (as a
function of n) tends sufficiently slowly to infinity. Proposition 5.2 introduces a
particular level k⋆n which will play a central role in the proof of Theorem 4.1.

Proposition 5.1. Assume that the marginal distributions of X are nonatomic.
Then, if

k → ∞ and
k2dk

n
→ 0,

one has

diam (Ak(X)) → 0 in probability as n→ ∞.

Proof. Median-split trees are analyzed in some detail in Section 20.3 of the
monograph by Devroye et al. [14]. Starting on page 323, it is shown that the
diameter of a randomly selected cell tends to 0 in probability. The adaptation
to our 2d-ary median-type trees is straightforward. However, a few remarks are
in order. Section 20.3 of that book assumes that all marginals are uniform. This
can also be the set-up for us, because our rule is invariant under monotone
transformations of the axes. Note however that it is crucial that splits are made
exactly at data points for this property to be true. Also, the proofs in Section
20.3 of Devroye et al. [14] assume d = 2, but are clearly true for general d. The
only condition for the diameter result is that of Theorem 20.2, page 323:

k → ∞ and
k2dk

n
→ ∞.

The second condition is only necessary to make sure that the data medians do
not run too far away from the true distributional medians.
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Proposition 5.2. Let ψ(n, k) be the function defined for all n ≥ 1 and k ≥ 0
by

ψ(n, k) = L⋆
k − L⋆.

(i) Let {kn}n≥1 be a sequence of nonnegative integers such that kn → ∞ and
kn2

dkn/n→ 0. Then

ψ(n, kn) → 0 as n→ ∞.

(ii) Assume that α ∈ (0, 1/d) and, for fixed n, set

k⋆n = min







ℓ ≥ 0 : ψ(n, ℓ) <

√

(

2dℓ

n

)1−dα







.

Then
2dk

⋆
n

n
→ 0 as n→ ∞.

Proof. At first we note, according to Fact 5.1(ii), that for all n ≥ 1 and k ≥ 0,
ψ(n, k) ≥ 0. For x ∈ R

d, introduce

η̄n(x) =
1

µ (Akn(x))

∫

Akn (x)

η(z)µ(dz).

With this notation,

ψ(n, k) = E [L⋆ (Akn(X))]− L⋆

≤ E |η(X)− η̄n(X)|+ E |(1− η(X))− (1− η̄n(X))| .

Let us prove that the first of the two terms above tends to 0 as n tends to
infinity—the second term is handled similarly. To this aim, fix ε > 0 and find
a uniformly continuous function ηε on a bounded set C and vanishing off C so
that E|η(X) − ηε(X)| < ε. Clearly, by the triangle inequality,

E |η(X) − η̄n(X)| ≤ E |η(X)− ηε(X)|
+ E |ηε(X)− η̄n,ε(X)|
+ E |η̄n,ε(X) − η̄n(X)|

def
= I + II+ III,

where

η̄n,ε(x) =
1

µ (Akn(x))

∫

Akn (x)

ηε(z)µ(dz).

By choice of ηε, one has I < ε. Next, note that

II ≤ E









∫

Akn (X)

|ηε(X)− ηε(z)|µ(dz)

µ (Akn(X))









.
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As ηε is uniformly continuous, there exists a number δ = δ(ε) > 0 such that if
diam(A) ≤ δ, then |ηε(x)− ηε(z)| < ε for every x, z ∈ A. In addition, there is a
positive constant M such that |ηε(x)| ≤M for every x ∈ R

d. Thus,

II < ε+ 2M P {diam (Akn(X)) > δ} .

Therefore, II < 2ε for all n large enough by Proposition 5.1. Finally, III ≤ I < ε.
Taken together, these steps prove the first statement of the proposition.

Next, suppose assertion (ii) is false and set, to simplify notation, δ = 1−dα >
0. Then we can find a subsequence {k⋆ni

}i≥1 of {k⋆n}n≥1 and a positive constant
C such that, for all i,

2dk
⋆
ni

ni

≥ C.

Since ni → ∞, it can be assumed, without loss of generality, that ni ≥ 2 and
log2(Cni) ≥ 2d for all i. This implies in particular

k⋆ni
− 1 ≥ log2(Cni)

d
− 1

≥ log2(Cni)

2d
, (5.1)

and k⋆ni
≥ 2 as well.

On the one hand, by the very definition of k⋆ni
,

ψ(ni, k
⋆
ni

− 1) ≥

√

√

√

√

(

2d(k
⋆
ni

−1)

ni

)δ

≥
√

Cδ

2dδ
. (5.2)

On the other hand, by (5.1) and the monotonicity of ψ(ni, .) (Fact 5.1(ii)), we
may write

ψ(ni, k
⋆
ni

− 1) ≤ ψ

(

ni,
log2(Cni)

2d

)

.

But, setting

tni =
log2(Cni)

2d
,

we have
tni2

dtni

ni

=
log2(Cni)

2d

√

C

ni

.

This quantity goes to 0 as ni → ∞. Moreover, tni → ∞ and thus, according to
the first statement of the proposition,

ψ(ni, k
⋆
ni

− 1) → 0 as ni → ∞.

This contradicts (5.2).
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5.2. Proof of the theorem

Let {k⋆n}n≥1 be defined as in Proposition 5.2. We denote by Gn the leaf regions

of the cellular tree, and by G−
k⋆
n
(respectively, G+

k⋆
n
) the collection of leaves at

level at most (respectively, strictly at least) k⋆n. Finally, for any cell A, we set

Ln(A) = P{gn(X) 6= Y,X ∈ A | Dn}.

With this notation, we have

L⋆ ≤ EL(gn) = E

[

∑

A∈Gn

Ln(A)

]

= E







∑

A∈G−

k⋆
n

Ln(A)






+ E







∑

A∈G+
k⋆
n

Ln(A)






.

Set

ϕ(A) =

(

1

N(A) + 1

)β

.

Then, clearly,

E







∑

A∈G+
k⋆
n

Ln(A)






≤ E







∑

A∈G+
k⋆
n

µ(A)







≤ E





∑

A∈Pk⋆
n

1[|L̂n(A)−L̂n(A,k+)|>ϕ(A)]µ(A)





= P

{∣

∣

∣
L̂n

(

Ak⋆
n
(X)

)

− L̂n(Ak⋆
n
(X), k+)

∣

∣

∣
> ϕ

(

Ak⋆
n
(X)

)

}

.

In the second inequality, we used the definition of the stopping rule of the cellular
tree. Therefore, according to technical Lemma 6.5,

E







∑

A∈G+
k⋆
n

Ln(A)






≤ O





√

(

2dk
⋆
n

n

)1−dα−2β


 .

Since 1− dα− 2β > 0, this term tends to 0 as n→ ∞ by the second statement
of Proposition 5.2. Next, introduce the notation

N0(A) =

n
∑

i=1

1[Xi∈A,Yi=0] and N1(A) =

n
∑

i=1

1[Xi∈A,Yi=1],
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and observe that

E







∑

A∈G−

k⋆
n

Ln(A)






= E

[

∑

A∈G−

k⋆
n

{

1[N0(A)≥N1(A)]

∫

A

η(z)µ(dz)

+ 1[N0(A)<N1(A)]

∫

A

(1− η(z))µ(dz)

}

]

.

For x falling in the region covered by G−
k⋆
n
, denote by A−

k⋆
n
(x) the cell of G−

k⋆
n

containing x, and set

N(A−
k⋆
n
(x)) =

n
∑

i=1

1[Xi∈A−

k⋆
n
(x)].

Letting

η̂n(x) =
1

N
(

A−
k⋆
n
(x)
)

n
∑

i=1

1[Xi∈A−

k⋆
n
(x),Yi=1],

we may write

E







∑

A∈G−

k⋆
n

Ln(A)







≤ E

[

∑

A∈G−

k⋆
n

L̂n(A)µ(A)

+
∑

A∈G−

k⋆
n

{

1[N0(A)≥N1(A)]

(∫

A

η(z)µ(dz)−
∫

A

η̂n(z)µ(dz)

)}

+
∑

A∈G−

k⋆
n

{

1[N0(A)<N1(A)]

(∫

A

(1− η(z))µ(dz)−
∫

A

(1− η̂n(z)) µ(dz)

)}

]

.

It follows, evoking Lemma 6.6, that

E







∑

A∈G−

k⋆
n

Ln(A)






≤ E







∑

A∈G−

k⋆
n

L̂n(A)µ(A)






+ O

(
√

2dk
⋆
n

n

)

.

The rightmost term tends to 0 according to the second statement of Proposi-
tion 5.2.

Thus, to complete the proof, it remains to establish that

E







∑

A∈G−

k⋆
n

L̂n(A)µ(A)






→ L⋆ as n→ ∞.
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To this aim, observe that by the very definition of G−
k⋆
n
, we have

E







∑

A∈G−

k⋆
n

L̂n(A)µ(A)






≤ E







∑

A∈G−

k⋆
n

(

L̂n(A, k
+) + ϕ(A)

)

µ(A)







= E







∑

A∈G−

k⋆
n

L̂n(A, k
+)µ(A)






+ E







∑

A∈G−

k⋆
n

ϕ(A)µ(A)







def
= I+ II.

For every cell A of G−
k⋆
n
, one has

max
( n

2dk
⋆
n
− 1, 1

)

≤ N(A) + 1 ≤ n

2dk
⋆
n
+ 1. (5.3)

Therefore, taking n so large that n/2dk
⋆
n > 2 (this is possible by Proposition

5.2(ii)), we obtain

II ≤
( n

2dk
⋆
n
− 1
)−β

E







∑

A∈G−

k⋆
n

µ(A)






≤
( n

2dk
⋆
n
− 1
)−β

.

Applying Proposition 5.2(ii) again, we conclude that II → 0 as n→ ∞.

Next, define

kn =
⌊

α log2

( n

2dk
⋆
n
− 1
)⌋

and k′n =
⌊

α log2

( n

2dk
⋆
n
+ 1
)⌋

.

Inequality (5.3) implies that for every A ∈ G−
k⋆
n
and all n large enough,

kn ≤ k+ ≤ k′n.

Thus, by Fact 5.1(iii),

I ≤ E







∑

A∈G−

k⋆
n

L̂n (A, kn)µ(A)






+ E







∑

A∈G−

k⋆
n

2dk
′

n

N(A)
µ(A)







= E







∑

A∈G−

k⋆
n

L̂n (A, kn)µ(A)






+O

(

(

2dk
⋆
n

n

)1−dα
)

.
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On the other hand,

E







∑

A∈G−

k⋆
n

L̂n (A, kn)µ(A)







≤ E







∑

A∈G−

k⋆
n

L⋆(A, kn)µ(A)






+ E







∑

A∈G−

k⋆
n

∣

∣

∣L̂n(A, kn)− L⋆(A, kn)
∣

∣

∣µ(A)







= E







∑

A∈G−

k⋆
n

L⋆(A, kn)µ(A)






+O





√

(

2dk
⋆
n

n

)1−dα




(by Lemma 6.4).

Consequently,

I ≤ E







∑

A∈G−

k⋆
n

L⋆(A, kn)µ(A)






+O





√

(

2dk
⋆
n

n

)1−dα


 ,

and the rightmost term tends to 0 as n → ∞ by Proposition 5.2(ii). Thus, the
proof will be finalized if we show that

E







∑

A∈G−

k⋆
n

L⋆(A, kn)µ(A)






→ L⋆ as n→ ∞.

We have

E







∑

A∈G−

k⋆
n

L⋆(A, kn)µ(A)






= E







∑

A∈G−

k⋆
n

∑

Aj∈Pkn (A)

L⋆(Aj)
µ(Aj)

µ(A)
µ(A)







≤ E





∑

A∈Pkn

L⋆(A)µ(A)





= L⋆
kn
,

where, in the inequality, we use the fact that the cells in the double sum are at
level at least kn. But, clearly,

kn2
dkn

n
≤ α log2 n

n1−dα
,

and consequently, since dα < 1,

kn2
dkn

n
→ 0 as n→ ∞.

Thus, by Proposition 5.2(i), the term L⋆
kn

tends to L⋆. This concludes the proof.
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6. Some technical results

Throughout this section, we adopt the general notation of the document. In
particular, we let α and β be two positive real numbers such that 1−dα−2β > 0.
The sequence {k⋆n}n≥1 is defined as in Proposition 5.2 and we set

k+ = ⌊α log2(N(A) + 1)⌋ . (6.1)

We will repeatedly use the fact that, by Proposition 5.2(ii), 2dk
⋆
n/n → 0 as

n → ∞. For any k ≥ 0, Tk stands for the full 2d-ary median-type tree with k
levels of nodes, whose leaves represent Pk.

Recall that X has probability measure µ on R
d and that its marginals are

assumed to be nonatomic. The first important result that is needed here is the
following one:

Proposition 6.1. Let {kn}n≥1 be a sequence of nonnegative integers such that
2dkn/n→ 0. Then

E





∑

A∈Pkn

∣

∣

∣

∣

N(A)

n
− µ(A)

∣

∣

∣

∣



 = O

(
√

2dkn

n

)

.

Proof. In the sequel, we let n be large enough to ensure that n/2dkn > 2, so
that we do not have to worry about empty cells.

To prove the lemma, recall the construction of Tkn . At the root, which repre-
sents Rd, we order the points by the first component. We define the pivot as the
r-th smallest point, where r = ⌊(n+ 1)/2⌋, and cut perpendicularly to the first
component at the pivot. Let the pivot’s first component have value x⋆. Define

A =
{

x ∈ R
d : x = (x1, . . . , xd), x1 < x⋆

}

and
B =

{

x ∈ R
d : x = (x1, . . . , xd), x1 > x⋆

}

.

The sample points that fall in A, conditionally on the pivot, are distributed
according to µ restricted to A, and similarly for B. Also, importantly,

µ(A)
L
= Beta(r, n− r + 1)

and
µ(B)

L
= Beta(n− r + 1, r),

from the theory of order statistics [see, e.g., 13].
We need to see how large µ(A), µ(B), N(A) and N(B) are. To this aim, we

distinguish between the cases where n is odd and n is even.

1. n odd. Now r = (n+ 1)/2, N(A) = r − 1 = (n− 1)/2, N(B) = n− r =
(n− 1)/2, and

µ(A)
L
= µ(B)

L
= Beta

(

n+ 1

2
,
n+ 1

2

)

.
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2. n even. In this case we have r = n/2, N(A) = (n− 2)/2, N(B) = n/2,

µ(A)
L
= Beta

(

n

2
,
n+ 2

2

)

and

µ(B)
L
= Beta

(

n+ 2

2
,
n

2

)

.

As N(A)+N(B) = n−1, the pivot is not sent down to the subtrees. Let us have
a canonical way of deciding who goes left and right, e.g., A is left and B is right.
Next, still at the root, we rotate the coordinate and repeat the median splitting
process for the sample points in A and B (both open sets) in direction 2, then
in direction 3, and so forth until direction d. We create this way the 2d children
of the root and, repeating this scheme for kn levels of nodes, we construct the
2d-ary tree up to distance kn from the root. It has exactly 2dkn leaves.

On any path of length kn to one of the 2dkn leaves, we have a deterministic
sequence of cardinalities

n0 = n(root), n1, n2, . . . , nkn .

We have already seen that, for all i = 0, . . . , kn,

n

2di
− 2 ≤ ni ≤

n

2di
.

Now, consider a fixed path to a fixed leaf, (n0, n1, . . . , nkn). Then, conditionally
on the pivots, the set of Rd that corresponds to that leaf, i.e., a hyperrectangle
of Rd, has µ-measure distributed as

Beta(n1 + 1, n0 − n1)× · · · × Beta(nkn + 1, nkn−1 − nkn)
def
= Z1 × · · · × Zkn

def
= Z.

Observe that

EZ =

kn
∏

i=1

EZi =

kn
∏

i=1

ni + 1

ni−1 + 1
=
nkn + 1

n+ 1
.

Also,

EZ2 =

kn
∏

i=1

EZ2
i =

kn
∏

i=1

(ni + 1)(ni + 2)

(ni−1 + 1)(ni−1 + 2)
=

(nkn + 1)(nkn + 2)

(n+ 1)(n+ 2)
.

The objective is to bound

E

∣

∣

∣

nkn

n
− Z

∣

∣

∣ ≤
√

E

∣

∣

∣Z − nkn

n

∣

∣

∣

2

=

√

E |Z − EZ|2 +
∣

∣

∣

nkn

n
− EZ

∣

∣

∣

2
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=

√

VZ +
∣

∣

∣

nkn

n
− EZ

∣

∣

∣

2

=

√

VZ +

∣

∣

∣

∣

nkn

n
− nkn + 1

n+ 1

∣

∣

∣

∣

2

,

where the symbol V stands for the variance. Note

∣

∣

∣

∣

nkn

n
− nkn + 1

n+ 1

∣

∣

∣

∣

=

∣

∣

∣

∣

nkn − n

n(n+ 1)

∣

∣

∣

∣

≤ 1

n+ 1
.

Also,

VZ =

(

nkn + 1

n+ 1

)(

nkn + 2

n+ 2
− nkn + 1

n+ 1

)

=

(

nkn + 1

n+ 1

)

× n− nkn

(n+ 2)(n+ 1)

≤ nkn + 1

(n+ 1)(n+ 2)
.

Thus,

E

∣

∣

∣

nkn

n
− Z

∣

∣

∣ ≤
√

nkn + 1

(n+ 1)(n+ 2)
+

1

(n+ 1)2

≤ 1

n+ 1

√

nkn + 2.

Sum over all 2dkn sets in the partition Pkn , and call the subsequent set cardi-
nalities nkn(1), . . . , nkn(2

dkn). Then, denoting by Zi the “Z” for the i-th set in
the partition, we obtain

E





2dkn
∑

i=1

∣

∣

∣

∣

nkn(i)

n
− Zi

∣

∣

∣

∣



 ≤ 1

n+ 1

2dkn
∑

i=1

√

nkn(i) + 2

≤ 1

n+ 1

√

√

√

√

2dkn
∑

i=1

1

√

√

√

√

2dkn
∑

i=1

(nkn(i) + 2)

(by the Cauchy-Schwarz inequality).

Therefore,

E





2dkn
∑

i=1

∣

∣

∣

∣

nkn(i)

n
− Zi

∣

∣

∣

∣



 ≤
√
2dkn

n+ 1
×
√

n+ 2dkn+1

≤
√
2dkn

n+ 1

(√
n+

√
2dkn+1

)
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≤
√

2dkn

n
+

2dkn+1

n
.

Since 2dkn/n→ 0 as n→ ∞, this last term is O(
√

2dkn/n).

Corollary 6.1. Let {kn}n≥1 be a sequence of nonnegative integers such that
2dkn/n → 0, and let P−

kn
be the partition of Rd corresponding to the leaves of

any subtree of Tkn rooted at Rd. Then

E







∑

A∈P−

kn

∣

∣

∣

∣

N(A)

n
− µ(A)

∣

∣

∣

∣






= O

(
√

2dkn

n

)

.

Proof. The proof is similar to the proof of Proposition 6.1—just note that P−
kn

has at most 2dkn cells.

Proposition 6.2. Let {kn}n≥1 be a sequence of nonnegative integers such that
2dkn/n→ 0. Then

E

∣

∣

∣

∣

∣

1

N (Akn(X))

n
∑

i=1

1[Xi∈Akn (X),Yi=1] −
1

µ (Akn(X))

∫

Akn (X)

η(z)µ(dz)

∣

∣

∣

∣

∣

= O

(
√

2dkn

n

)

and, similarly,

E

∣

∣

∣

∣

∣

1

N (Akn(X))

n
∑

i=1

1[Xi∈Akn (X),Yi=0] −
1

µ (Akn(X))

∫

Akn (X)

(1− η(z))µ(dz)

∣

∣

∣

∣

∣

= O

(
√

2dkn

n

)

.

Proof. We only prove the first statement. Since n/2dkn → ∞ as n→ ∞, we can
always choose n large enough so that no cell of Pkn is empty. A quick check of
Tkn reveals that given the pivots (see Proposition 6.1), the points inside each cell
are distributed in an i.i.d. manner according to the restriction of µ to the cell.
Moreover, conditionally on X and the pivots, N(Akn(X)) has a deterministic,
fixed value. Thus, setting

η̄n(x) =
1

µ (Akn(x))

∫

Akn (x)

η(z)µ(dz),

we obtain, conditionally on X and the pivots,

E

∣

∣

∣

∣

∣

1

N (Akn(X))

n
∑

i=1

1[Xi∈Akn (X),Yi=1] −
1

µ (Akn(X))

∫

Akn (X)

η(z)µ(dz)

∣

∣

∣

∣

∣

≤
√

η̄n(X) (1− η̄n(X))

N (Akn(X))
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≤ 1

2

√

1

N (Akn(X))

≤ 1

2

√

1
n

2dkn
− 2

.

The result follows from the condition 2dkn/n→ 0.

Corollary 6.2. Let {kn}n≥1 be a sequence of nonnegative integers such that
2dkn/n → 0, and let P−

kn
be the partition of Rd corresponding to the leaves of

any subtree of Tkn rooted at Rd. For each x ∈ R
d, denote by A−

kn
(x) the cell of

P−
kn

containing x. Then

E

∣

∣

∣

∣

∣

1

N
(

A−
kn
(X)

)

n
∑

i=1

1[Xi∈A−

kn
(X),Yi=1] −

1

µ
(

A−
kn
(X)

)

∫

A−

kn
(X)

η(z)µ(dz)

∣

∣

∣

∣

∣

= O

(
√

2dkn

n

)

and, similarly,

E

∣

∣

∣

∣

∣

1

N
(

A−
kn
(X)

)

n
∑

i=1

1[Xi∈A−

kn
(X),Yi=0] −

1

µ
(

A−
kn
(X)

)

∫

A−

kn
(X)

(1− η(z))µ(dz)

∣

∣

∣

∣

∣

= O

(
√

2dkn

n

)

.

Proof. The proof is similar to that of Proposition 6.2—just note that

N
(

A−
kn
(X)

)

≥ n

2dkn

for all n large enough.

Lemma 6.1. Let {kn}n≥1 be a sequence of nonnegative integers such that
2dkn/n → 0. Then

E

∣

∣

∣L̂n (Akn(X)) − L⋆ (Akn(X))
∣

∣

∣ = O

(
√

2dkn

n

)

.

Proof. Using the definition of L̂n(Akn(X)) and L⋆(Akn(X)), we may write

E

∣

∣

∣L̂n (Akn(X)) − L⋆ (Akn(X))
∣

∣

∣

≤ E

∣

∣

∣

∣

∣

1

N (Akn(X))

n
∑

i=1

1[Xi∈Akn (X),Yi=1] −
1

µ (Akn(X))

∫

Akn (X)

η(z)µ(dz)

∣

∣

∣

∣

∣
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+ E

∣

∣

∣

∣

∣

1

N (Akn(X))

n
∑

i=1

1[Xi∈Akn (X),Yi=0]

− 1

µ (Akn(X))

∫

Akn (X)

(1− η(z)) µ(dz)

∣

∣

∣

∣

∣

.

Each term of the sum goes to 0 by Proposition 6.2.

Lemma 6.2. Let {kn}n≥1 be a sequence of nonnegative integers such that
2dkn/n → 0, and let P−

kn
be the partition of R

d corresponding to the leaves

of any subtree of Tkn rooted at Rd. For each x ∈ R
d, denote by A−

kn
(x) the cell

of P−
kn

containing x. Then

E

∣

∣

∣L̂n

(

A−
kn
(X)

)

− L⋆
(

A−
kn
(X)

)

∣

∣

∣ = O

(
√

2dkn

n

)

.

Proof. The proof is similar to that of Lemma 6.1. It uses Corollary 6.2 instead
of Proposition 6.2.

Lemma 6.3. Let

kn =
⌊

α log2

( n

2dk
⋆
n
+ 1
)⌋

.

Then

E

∣

∣

∣L̂n(Ak⋆
n
(X), kn)− L⋆(Ak⋆

n
(X), kn)

∣

∣

∣ = O





√

(

2dk
⋆
n

n

)1−dα


 .

Proof. We have

E

∣

∣

∣L̂n(Ak⋆
n
(X), kn)− L⋆(Ak⋆

n
(X), kn)

∣

∣

∣

= E





∑

A∈Pk⋆
n

∑

Aj∈Pkn (A)

∣

∣

∣

∣

L̂n(Aj)
N(Aj)

N(A)
− L⋆(Aj)

µ(Aj)

µ(A)

∣

∣

∣

∣

µ(A)





≤ E





∑

A∈Pk⋆
n

∑

Aj∈Pkn (A)

∣

∣

∣

∣

L̂n(Aj)
N(Aj)

N(A)
− L̂n(Aj)

µ(Aj)

µ(A)

∣

∣

∣

∣

µ(A)





+ E





∑

A∈Pk⋆
n

∑

Aj∈Pkn (A)

∣

∣

∣L̂n(Aj)− L⋆(Aj)
∣

∣

∣µ(Aj)





def
= I+ II.

Clearly,

II = E

∣

∣

∣
L̂n

(

Ak⋆
n+kn(X)

)

− L⋆
(

Ak⋆
n+kn(X)

)

∣

∣

∣
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whence, according to Lemma 6.1,

II = O





√

(

2dk
⋆
n

n

)1−dα


 .

On the other hand, since L̂n(Aj) ≤ 1,

I ≤ E





∑

A∈Pk⋆
n

∑

Aj∈Pkn (A)

∣

∣

∣

∣

N(Aj)

N(A)
− µ(Aj)

µ(A)

∣

∣

∣

∣

µ(A)





≤ E





∑

A∈Pk⋆
n

∑

Aj∈Pkn (A)

∣

∣

∣

∣

N(Aj)

N(A)
µ(A)− N(Aj)

n

∣

∣

∣

∣





+ E





∑

A∈Pk⋆
n

∑

Aj∈Pkn (A)

∣

∣

∣

∣

N(Aj)

n
− µ(Aj)

∣

∣

∣

∣



 .

The inequality
∑

Aj∈Pkn (A)

N(Aj) ≤ N(A)

leads to

I ≤ E





∑

A∈Pk⋆
n

∣

∣

∣

∣

µ(A) − N(A)

n

∣

∣

∣

∣



+ E





∑

A∈Pk⋆
n

∑

Aj∈Pkn (A)

∣

∣

∣

∣

N(Aj)

n
− µ(Aj)

∣

∣

∣

∣





= E





∑

A∈Pk⋆
n

∣

∣

∣

∣

µ(A) − N(A)

n

∣

∣

∣

∣



+ E





∑

A∈Pk⋆
n+kn

∣

∣

∣

∣

N(A)

n
− µ(A)

∣

∣

∣

∣



 .

Thus, by Proposition 6.1,

I = O





√

(

2dk
⋆
n

n

)1−dα


 .

Collecting bounds, we obtain

I+ II = O





√

(

2dk
⋆
n

n

)1−dα


 .

Lemma 6.4. Let G−
k⋆
n
be the collection of cells of Gn at level at most k⋆n, and let

kn =
⌊

α log2

(

max
( n

2dk
⋆
n
− 1
)

, 1
)⌋

.
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Then

E







∑

A∈G−

k⋆
n

∣

∣

∣L̂n(A, kn)− L⋆(A, kn)
∣

∣

∣µ(A)






= O





√

(

2dk
⋆
n

n

)1−dα


 .

Proof. Denote by Ḡ−
k⋆
n
the cells of Pk⋆

n
such that the path from the root to the

cell does not cross G−
k⋆
n
. By construction, the subset collection

P−
k⋆
n
= G−

k⋆
n
∪ Ḡ−

k⋆
n

is a partition of Rd represented by a subtree of Tk⋆
n
rooted at R

d. Moreover,
clearly,

E







∑

A∈G−

k⋆
n

∣

∣

∣L̂n(A, kn)− L⋆(A, kn)
∣

∣

∣µ(A)







≤ E







∑

A∈P−

k⋆
n

∣

∣

∣L̂n(A, kn)− L⋆(A, kn)
∣

∣

∣µ(A)






.

Thus, denoting by A−
k⋆
n
(x) the cell of P−

k⋆
n
containing x, we are led to

E







∑

A∈G−

k⋆
n

∣

∣

∣L̂n(A, kn)− L⋆(A, kn)
∣

∣

∣µ(A)







≤ E

∣

∣

∣
L̂n(A

−
k⋆
n
(X), kn)− L⋆(A−

k⋆
n
(X), kn)

∣

∣

∣
.

The end of the proof is similar to the proof of Lemma 6.3. Replace Pk⋆
n
by P−

k⋆
n

and invoke Corollary 6.1 (instead of Proposition 6.1) and Lemma 6.2 (instead
of Lemma 6.1).

Proposition 6.3. Let k+ be defined as in (6.1). Then

E

∣

∣

∣L̂n

(

Ak⋆
n
(X)

)

− L̂n(Ak⋆
n
(X), k+)

∣

∣

∣ ≤ ψ(n, k⋆n) + O





√

(

2dk
⋆
n

n

)1−dα


 ,

where
ψ(n, k) = L⋆

k − L⋆.

Proof. For every cell A of P−
k⋆
n
, one has

max
( n

2dk
⋆
n
− 1, 1

)

≤ N(A) + 1 ≤ n

2dk
⋆
n
+ 1. (6.2)
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Define

k′n =
⌊

α log2

( n

2dk
⋆
n
− 1
)⌋

and kn =
⌊

α log2

( n

2dk
⋆
n
+ 1
)⌋

,

and note that, by inequalities (6.2), for all n large enough,

k′n ≤ k+ ≤ kn.

Thus, by the triangle inequality and Fact 5.1(ii), we may write

E

∣

∣

∣L̂n

(

Ak⋆
n
(X)

)

− L̂n(Ak⋆
n
(X), k+)

∣

∣

∣

≤ E

[

L̂n

(

Ak⋆
n
(X)

)

− L̂n(Ak⋆
n
(X), k+) +

2dk
+

N (A(X))
1[N(A(X))>0]

]

+ E

[

2dk
+

N (A(X))
1[N(A(X))>0]

]

= E

[

L̂n

(

Ak⋆
n
(X)

)

− L̂n(Ak⋆
n
(X), k+)

]

+O

(

(

2dk
⋆
n

n

)1−dα
)

.

Consequently, by Fact 5.1(iii),

E

∣

∣

∣
L̂n

(

Ak⋆
n
(X)

)

− L̂n(Ak⋆
n
(X), k+)

∣

∣

∣

≤ E

[

L̂n

(

Ak⋆
n
(X)

)

− L̂n(Ak⋆
n
(X), kn)

]

+O

(

(

2dk
⋆
n

n

)1−dα
)

. (6.3)

With respect to the first term on the right-hand side, we have

E

[

L̂n

(

Ak⋆
n
(X)

)

− L̂n(Ak⋆
n
(X), kn)

]

≤ E

∣

∣

∣
L̂n

(

Ak⋆
n
(X)

)

− L⋆
(

Ak⋆
n
(X)

)

∣

∣

∣

+ L⋆
k⋆
n
− L⋆

+ L⋆ − E
[

L⋆(Ak⋆
n
(X), kn)

]

+ E

∣

∣

∣L⋆(Ak⋆
n
(X), kn)− L̂n(Ak⋆

n
(X), kn)

∣

∣

∣ .

According to Lemma 6.1, the first of the four terms above is O(
√

2dk
⋆
n/n),

whereas the third one is nonpositive by Fact 5.1(iv). Consequently,

E

[

L̂n

(

Ak⋆
n
(X)

)

− L̂n

(

Ak⋆
n
(X), kn

)

]

≤ ψ(n, k⋆n) + O

(
√

2dk
⋆
n

n

)

+ E

∣

∣

∣L⋆(Ak⋆
n
(X), kn)− L̂n(Ak⋆

n
(X), kn)

∣

∣

∣ .
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Evoking finally Lemma 6.3, we see that

E

[

L̂n

(

Ak⋆
n
(X)

)

− L̂n(Ak⋆
n
(X), kn)

]

≤ ψ(n, k⋆n) + O





√

(

2dk
⋆
n

n

)1−dα


 .

Combining this result with (6.3) leads to the desired statement.

Lemma 6.5. Let k+ be defined as in (6.1). Then

P







∣

∣

∣
L̂n

(

Ak⋆
n
(X)

)

− L̂n(Ak⋆
n
(X), k+)

∣

∣

∣
>

(

1

N
(

Ak⋆
n
(X)

)

+ 1

)β






= O





√

(

2dk
⋆
n

n

)1−dα−2β


 .

Proof. Set

ϕ(A) =

(

1

N(A) + 1

)β

.

Since N(Ak⋆
n
(x)) ≤ n/2dk

⋆
n, one has

P

{∣

∣

∣L̂n

(

Ak⋆
n
(X)

)

− L̂n(Ak⋆
n
(X), k+)

∣

∣

∣ > ϕ
(

Ak⋆
n
(X)

)

}

≤ P

{

∣

∣

∣L̂n

(

Ak⋆
n
(X)

)

− L̂n(Ak⋆
n
(X), k+)

∣

∣

∣ >

(

1

n/2dk
⋆
n + 1

)β
}

.

Therefore, by Markov’s inequality,

P

{∣

∣

∣L̂n

(

Ak⋆
n
(X)

)

− L̂n(Ak⋆
n
(X), k+)

∣

∣

∣ > ϕ
(

Ak⋆
n
(X)

)

}

≤ (n/2dk
⋆
n + 1)β × E

∣

∣

∣L̂n

(

Ak⋆
n
(X)

)

− L̂n(Ak⋆
n
(X), k+)

∣

∣

∣ .

Thus, by Proposition 6.3,

P

{∣

∣

∣L̂n

(

Ak⋆
n
(X)

)

− L̂n(Ak⋆
n
(X), k+)

∣

∣

∣ > ϕ
(

Ak⋆
n
(X)

)

}

≤ (n/2dk
⋆
n + 1)β ×



ψ(n, k⋆n) + O





√

(

2dk
⋆
n

n

)1−dα






 .

But, by definition of k⋆n,

ψ(n, k⋆n) <

√

(

2dk
⋆
n

n

)1−dα

.
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It follows, since n/2dk
⋆
n → ∞, that

P

{∣

∣

∣L̂n

(

Ak⋆
n
(X)

)

− L̂n(Ak⋆
n
(X), k+)

∣

∣

∣ > ϕ(A)
}

= O





√

(

2dk
⋆
n

n

)1−dα−2β


 .

Lemma 6.6. Let G−
k⋆
n
be the collection of cells of Gn at level at most k⋆n. For

x ∈ R
d, denote by A−

k⋆
n
(x) the cell of G−

k⋆
n
containing x, and set N(A−

k⋆
n
(x)) =

∑n
i=1 1[Xi∈A−

k⋆
n
(x)]. Define

η̂n(x) =
1

N
(

A−
k⋆
n
(x)
)

n
∑

i=1

1[Xi∈A−

k⋆
n
(x),Yi=1].

Then

E







∑

A∈G−

k⋆
n

∣

∣

∣

∣

∫

A

η̂n(z)µ(dz)−
∫

A

η(z)µ(dz)

∣

∣

∣

∣






= O

(
√

2dk
⋆
n

n

)

and, similarly,

E







∑

A∈G−

k⋆
n

∣

∣

∣

∣

∫

A

(1− η̂n(z))µ(dz) −
∫

A

(1− η(z))µ(dz)

∣

∣

∣

∣






= O

(
√

2dk
⋆
n

n

)

.

Proof. We only have to prove the first statement. To this aim, observe that

E







∑

A∈G−

k⋆
n

∣

∣

∣

∣

∫

A

η̂n(z)µ(dz)−
∫

A

η(z)µ(dz)

∣

∣

∣

∣







= E







∑

A∈G−

k⋆
n

∣

∣

∣

∣

∣

1

N(A)

n
∑

i=1

1[Xi∈A,Yi=1] −
1

µ(A)

∫

A

η(z)µ(dz)

∣

∣

∣

∣

∣

µ(A)






.

Denote by Ḡ−
k⋆
n
the cells of Pk⋆

n
such that the path from the root to the cell does

not cross G−
k⋆
n
. By construction, the subset collection

P−
k⋆
n
= G−

k⋆
n
∪ Ḡ−

k⋆
n

is a partition of Rd represented by a subtree of Tk⋆
n
rooted at Rd. Now,

E







∑

A∈G−

k⋆
n

∣

∣

∣

∣

∫

A

η̂n(z)µ(dz)−
∫

A

η(z)µ(dz)

∣

∣

∣

∣







≤ E







∑

A∈P−

k⋆
n

∣

∣

∣

∣

∣

1

N(A)

n
∑

i=1

1[Xi∈A,Yi=1] −
1

µ(A)

∫

A

η(z)µ(dz)

∣

∣

∣

∣

∣

µ(A)






.
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But, since P−
k⋆
n
is a partition of Rd, one has

E







∑

A∈P−

k⋆
n

∣

∣

∣

∣

∣

1

N(A)

n
∑

i=1

1[Xi∈A,Yi=1] −
1

µ(A)

∫

A

η(z)µ(dz)

∣

∣

∣

∣

∣

µ(A)







= E

[∣

∣

∣

∣

∣

1

N
(

A−
k⋆
n
(X)

)

n
∑

i=1

1[Xi∈A−

k⋆
n
(X),Yi=1] −

1

µ
(

A−
k⋆
n
(X)

)

∫

A−

k⋆
n
(X)

η(z)µ(dz)

∣

∣

∣

∣

∣

]

.

This term goes to 0 by Corollary 6.2.
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