
Electronic Journal of Statistics

Vol. 7 (2013) 1607–1631
ISSN: 1935-7524
DOI: 10.1214/13-EJS818

Sign-constrained least squares

estimation for high-dimensional

regression

Nicolai Meinshausen

Department of Statistics,
University of Oxford, UK

e-mail: meinshausen@stats.ox.ac.uk

Abstract: Many regularization schemes for high-dimensional regression
have been put forward. Most require the choice of a tuning parameter,
using model selection criteria or cross-validation. We show that a sim-
ple sign-constrained least squares estimation is a very simple and effective
regularization technique for a certain class of high-dimensional regression
problems. The sign constraint has to be derived via prior knowledge or
an initial estimator. The success depends on conditions that are easy to
check in practice. A sufficient condition for our results is that most vari-
ables with the same sign constraint are positively correlated. For a sparse
optimal predictor, a non-asymptotic bound on the ℓ1-error of the regression
coefficients is then proven. Without using any further regularization, the
regression vector can be estimated consistently as long as s2 log(p)/n → 0
for n → ∞, where s is the sparsity of the optimal regression vector, p the
number of variables and n sample size. The bounds are almost as tight as
similar bounds for the Lasso for strongly correlated design despite the fact
that the method does not have a tuning parameter and does not require
cross-validation. Network tomography is shown to be an application where
the necessary conditions for success of sign-constrained least squares are
naturally fulfilled and empirical results confirm the effectiveness of the sign
constraint for sparse recovery if predictor variables are strongly correlated.
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1. Introduction

High-dimensional regression problems are characterized by a large number of
predictor variables in relation to sample size. Regularization (in a broad sense)
is of critical importance for high-dimensional problems and much attention has
been paid to various schemes and their properties in recent years, including the
Ridge estimator (Hoerl and Kennard, 1970), non-negative Garrotte (Breiman,
1995), the Lasso (Tibshirani, 1996) and various variations of the latter, including
the group Lasso (Yuan and Lin, 2006), adaptive Lasso (Zou, 2006) and the more
recent square-root Lasso (Belloni et al., 2011; Bunea et al., 2013). Datasets
with very low signal-to-noise ratio offer similar challenges to high-dimensional
problems even if the notional sample size is quite high.

Sign-constraints on the regression coefficients are a simpler regularization and
have been first advocated by I.J. Good, as covered in the book Lawson and Han-
son (1995). There is a wide range of problems where the sign of the regression
coefficients can either be estimated by an initial estimator or where it is known
a priori, such as in image processing and spectral analysis (Waterman, 1977;
Bellavia et al., 2006; Donoho et al., 1992; Chen and Plemmons, 2009; Guo and
Berman, 2012). Sign-constraints have also been implemented for matrix factor-
izations, specifically the non-negative Matrix factorization (Lee et al., 1999; Lee
and Seung, 2001; Ding et al., 2010) and non-negative least squares regression can
be a useful tool for this factorization (Kim and Park, 2007). We study the per-
formance of non-negative least squares type problems under a so-called Positive
Eigenvalue Condition, which can be checked for any given dataset by solving a
quadratic programming problem. A sufficient condition uses only the minimum
of all entries in the design matrix. It is shown that non-negative (or, in general,
sign-constrained) least squares is a surprisingly effective regularization technique
for high-dimensional regression problems under these conditions. If the Positive
Eigenvalue Condition is not fulfilled, the sign constraint is still a good ingredient
in a regularization framework. The non-negative Garrote (Breiman, 1995) is, for
example, making use of a sign-constraint, where the signs are derived from an
initial estimator as is the positive Lasso (Efron et al., 2004).

The data are assumed to be given by a n×1-vector of real-valued observations
Y and a n×p-dimensional matrixX, where column k ofX contains all n samples
of the k-th predictor variable for k = 1, . . . , p. The non-negative least squares
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(NNLS) regression estimator is defined as

β̂ := argminβ ‖Y −Xβ‖2
2

such that min
k

βk ≥ 0. (1)

We will work with a positivity constraint without limitation of generality since
variables that are constrained to be negative can be replaced by their nega-
tive counterpart and the problem can thus always be framed as a non-negative
least squares optimisation. Problem (1) is a convex optimization problem and
can be solved with general quadratic programming problem solvers, including
active set (Lawson and Hanson, 1995), iterative (Kim et al., 2006) and interior-
point approaches (Bellavia et al., 2006). A tailor-made fast approximate algo-
rithm based on random projections has recently been proposed in Boutsidis and
Drineas (2009). The uniqueness of the solution has been studied in Bruckstein
et al. (2008).

Note that the non-negative least squares estimator (1) does not require the
choice of a tuning parameter beyond choosing the sign of the coefficients. Im-
posing a sign-constraint might seem like a very weak regularization but it will
be shown that the estimator is remarkably different from the un-regularized
least squares estimator. It can cope with high-dimensional problems where the
number of predictor variables vastly exceeds sample size. It will be shown to
be a consistent estimator as long as the underlying optimal predictor set is
sufficiently sparse and the so-called Positive Eigenvalue Condition is fulfilled.

The recent manuscript Slawski et al. (2011) contains independent work on the
behaviour of NNLS in high-dimensions, albeit from a slightly different viewpoint.
Using the same Positive Eigenvalue Condition (which is called self-regularizing
design condition), a bound on the prediction error of NNLS and a sparse recovery
property after hard thresholding are shown in Slawski et al. (2011). While our
main focus is on sparse recovery in the ℓ1-sense (which is not covered in Slawski
et al. (2011)) the bounds on prediction error are also of different nature since the
assumptions are different. The compatibility condition is not used in the work
(Slawski et al., 2011) and the prediction error bound is thus an order

√
n larger

than in our results. A more recent manuscript of the same authors (Slawski and
Hein, 2012) studies the thresholded NNLS estimator in more detail, while also
referring to the recovery results in the current manuscript. As with nearly all
sparse recovery results in the ℓ1-penalized estimation literature (Van De Geer
and Bühlmann, 2009), our main result, the ℓ1-bound in Theorem 1 depends
critically on a compatibility condition, and we show that the same convergence
rates as for Lasso estimation can be achieved with NNLS even though no penalty
parameter has been used.

We stress that the achieved bounds on the ℓ1-error can be achieved with
Lasso-type estimators (e.g. Bickel et al., 2009) under similar if slightly weaker
assumptions. The advantage of NNLS in practice is the lack of a tuning parame-
ter. Cross-validation is not necessary for the NNLS estimator, whereas it would
be hard to argue that one can dispense with it for practical Lasso applications.
In this sense, it is interesting to see that NNLS can achieve similar bounds on
the ℓ1-error despite its simplicity.
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The manuscript is organized as follows. The notation and the main two as-
sumptions, the compatibility and Positive Eigenvalue Condition, are introduced
in Section 2. Our main result, a ℓ1-bound on the difference between the NNLS
estimator and the optimal regression coefficients is shown in Section 3, along
with a bound on the prediction error.

2. Notation and assumptions

We assume that the n samples Y ∈ R
n are drawn from Xβ∗ + ε for some p-

dimensional vector β∗ with mink β
∗
k ≥ 0 and ε ∼ N (0, σ2) for some σ > 0.

Let S be the set of non-zero entries of the optimal solutions, S = {k : β∗
k 6=

0} and N = Sc be the complement of S. We could also let β∗ be the best
approximation to the data-generating model under positivity constraints but
will refrain from doing so for notational simplicity. We assume that the columns
of X are standardized to ℓ2-norm of n. Despite not necessarily assuming that
the columns are mean-centered, we call Σ̂ = n−1XTX the covariance matrix
throughout.

We make two major assumptions for the main result, a standard condition
about sparse eigenvalues and another one about so-called positive eigenvalues.

2.1. Compatibility condition

There has been much recent work on the properties of the Lasso (Tibshirani,
1996). Many similar conditions for success of the Lasso penalization schemes
have been derived (for example Zhang and Huang, 2008; Meinshausen and Yu,
2009; Wainwright, 2009; Bunea et al., 2007a,b; Van De Geer, 2008; Bickel et al.,
2009). A good overview of all conditions and their relations is given in Van
De Geer and Bühlmann (2009). The weakest condition is based on the notion of
(L, S) restricted ℓ1-eigenvalues. We first define the standard minimal eigenvalue
of a matrix A as

φ2

min(A) = min{βTAβ : ‖β‖22 ≤ 1} (2)

In a high-dimensional setting with p > n, this minimal eigenvalue will be 0 for
the empirical covariance matrix Σ̂, although it will be bounded from below in
general if we restrictA to small sub-matrices of the empirical covariance matrix.

The (L, S) restricted ℓ1-eigenvalue of matrix A is defined as:

φ2

compatible(L, S,A) := min
{

s
βTAβ

‖β‖2
1

: β ∈ R(L, S)
}

, (3)

where R(L, S) = {β : ‖βN‖1 ≤ L‖βS‖1}, N = Sc and s = |S|.
A lower bound on this restricted eigenvalue is necessary for success of the

Lasso, either in a prediction loss or coefficient recovery sense and was called the
compatibility condition in Van De Geer and Bühlmann (2009). It was shown to
be weaker than all similar conditions such as the Restricted Isometry Property
(Candes and Tao, 2007).

We make the following assumption.
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Assumption 1 (Compatibility Condition). There exists some φ > 0 such that

the (L, S)-restricted ℓ1-eigenvalue φ2

compatible(L, S, Σ̂) ≥ φ.

The value of L will be specified in Theorem 1.
The assumption is formulated for the empirical covariance matrix Σ̂ but can

also easily be reformulated on the population covariance matrix Σ for random
design. Assume that the maximal difference between the population and em-
pirical covariance matrix is bounded by δ > 0, that is ‖Σ̂ − Σ‖∞ ≤ δ. This
assumption is fulfilled with high probability for many data sets with larger
sample size. If the predictors have for example a multivariate normal distri-
bution (which will not be assumed elsewhere), then the condition is fulfilled
with probability 1 − 2 exp(−t) for δ ≥ √

u + u with u = (4t + 8 log(p))/n, see
(10.1) in Van De Geer and Bühlmann (2009). If δ ≤ φ2/(4(L + 1)2s), then

φ2

compatible(L, S,Σ) ≥ φ implies φ2

compatible(L, S, Σ̂) ≥ φ/2. The proof follows

from the inequality φ2

compatible(L, S, Σ̂) ≥ φ2

compatible(L, S,Σ) − (L + 1)
√
δs in

Corrolary 10.1 in Van De Geer and Bühlmann (2009). The Compatibility Con-
dition could thus be imposed on the population covariance matrix instead of
the empirical covariance matrix.

2.2. Positive eigenvalue condition

The following Positive Eigenvalue Condition is the central assumption for the
main result.

The positively constrained minimal ℓ1- eigenvalue of matrix A is defined as

φ2

pos(A) := min
{βTAβ

‖β‖2
1

: min
k

βk ≥ 0
}

, (4)

A lower bound on this restricted eigenvalue will be a sufficient condition for
sparse recovery success of NNLS.

Assumption 2 (Positive Eigenvalue Condition). There exists some ν > 0 such

that φ2
pos(Σ̂) ≥ ν.

A lower bound on this eigenvalue seems to be a strong condition. However,
the Positive Eigenvalue Condition is restricted to positive coefficients. There
are thus some immediate examples where it is fulfilled, which we discuss below.

Example I: strictly positive covariance matrix. The Positive Eigenvalue
Condition is fulfilled if mini,j Σ̂i,j ≥ ν > 0, that is all entries in the covariance
matrix are strictly positive. Again, this condition could also be formulated for
the population covariance matrix, using a bound on ‖Σ− Σ̂‖∞.

We also remark on the case of general sign-constraints (some variables con-
strained to be positive, some negative). The condition applies then to the dataset
where all variables with a negativity constraint have been replaced with their
negative counterparts. The constraint on the original covariance matrix is thus
that it forms two blocks. The variables in the first block are the variables with
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a positivity constraint and the second block is formed by all variables with a
negativity constraint. Correlations are required to be positive within a block
and negative between blocks.

A generalization of Example I is the following.

Example II: only few negative entries. LetA := {i : Σ̂ij < 0 for some 1 ≤
j ≤ p} be the minimal set such that Σ̂ij < 0 implies {i, j} ⊆ A for all
1 ≤ i, j ≤ p. The Positive Eigenvalue Condition is fulfilled if both of the condi-
tions below are fulfilled for some ν > 0.

1. All entries of the covariance matrix are strictly positive on Ac, that is
Σ̂ij ≥ 2ν if {i, j} ⊆ Ac for all 1 ≤ i, j ≤ n.

2. A restricted eigenvalue condition holds on the set A, ie

min
{βT Σ̂β

‖β‖2
1

: min
k

βk ≥ 0 and βk = 0 for all k ∈ Ac
}

> 2ν.

If the set A is very small, in particular much smaller than n, the latter re-
stricted ℓ1-eigenvalue condition is in general not very restrictive. The important
criterion is thus whether the set A is small compared to the sample size.

Example III: block matrix. For a p×p-matrix A and a set K ⊆ {1, . . . , p},
let AKK be the |K| × |K|-submatrix formed by all elements in set K. Suppose

1. Entries of the covariance matrix can be negative but fulfil Σ̂ij ≥ −ρ/p2

for all 1 ≤ i, j ≤ n and some ρ > 0.
2. The set of variables {1, . . . , p} can be partitioned into B ≥ 1 blocks Bj ⊆

{1, . . . , p} such that φ2

pos(Σ̂BjBj
) ≥ (ν + ρ)B for all j = 1, . . . , B.

A more specific example is thus: all entries in Σ̂ are larger than −ρ/p2 for some

ρ > 0 and Σ̂ij ≥ (ν + ρ)B if both i, j are within the same block.
The positive aspect of the condition is that it is very easy to check in practice

whether it applies (at least approximately) and whether one would thus expect
the bounds shown below to apply to a given dataset.

3. Main results

It will be shown that non-negative least squares leads to a good recovery of
the optimal sparse regression vector for high-dimensional data. We study the
ℓ1-error in the regression vector, which also yields a bound on the ℓ2-error and
prediction loss.

Theorem 1. Assume that the Positive Eigenvalue Condition holds with ν > 0.
Choose any 0 < η < 1/5. Assume that the compatibility condition holds with
φν > 0 for Lν = 3/

√
ν and the compatibility condition holds with φ∞ ≥ φν for

L∞ = 0. Set

K2 := 2 log
( p√

2πη

)

.



Sign-constrained estimation 1613

It then holds with probability at least 1− η that

‖β̂ − β∗‖1 ≤ 2Ksσ√
φ∞n

(

1 + max{ 3s
φν

,
12

ν
}
)

.

If, additionally, the minimal eigenvalue φ2

min(Σ̂SS) is greater than or equal to
some τ > 0 and mink∈S βk > Kσ/

√
nτ , with probability at least 1− η,

‖β̂ − β∗‖1 ≤ 2Ksσ√
φ∞n

(

1 + max{
√
φ∞
φν

,
4
√
φ∞
sν

}
)

.

A proof is given in the appendix.
The result might be surprising since it implies (for sufficiently large positive

coefficients) that non-negative least squares is succeeding in recovering the re-
gression coefficients in an ℓ1-sense if s2 log(p)/n → 0 for n → ∞ if keeping all
other variables constant, a scaling that requires for general design a lot more
regularization in the form of Lasso penalties (or similar). Some comments:

1. The NNLS estimator can thus attain good estimation accuracy for high-
dimensional data in the absence of a strong regularization like ℓ1-constraints
on the coefficient vector. An intuitive explanation is that the positiv-
ity constraint acts comparable to a ℓ1-constraint if the minimal positive
eigenvalue is bounded away from 0. To take a simple example, use the
previous Example III of a block matrix where all entries in Σ̂ are greater
than ρ ∈ (0, 1). Then ‖Xβ‖2

2
is for every non-negative vector β at least

ρ‖β‖21. A bound on the ℓ2-norm of the prediction ‖Xβ‖22 acts thus also
as a constraint on the ℓ1-norm of β1 and might help to illustrate (for this
particular example) why NNLS can achieve similar estimation accuracy
as Lasso estimation.

2. The assumption made for the second part of the theorem bounds the
smallest positive regression coefficient away from 0. This assumption leads
to an equivalence of the oracle and restricted least-squares estimator and
allows tighter bounds but consistent estimation is also possible in the
absence of this assumption, as shown by the first part of Theorem 1.

3. The constant Lν = 3/
√
ν in the required compatibility condition can get

large for small values of the minimal positive eigenvalue ν. In general,
NNLS will cease to be an interesting procedure for ν → 0, as also shown
in the section with numerical results. As an extreme case, imagine for
every column in X there exists also the negative of it as a column, which
puts the positive eigenvalue ν to 0. NNLS is identical to OLS estimation in
this setting and will in general not succeed in a high-dimensional setting.
On the other hand, as long as ν is bounded away from 0 (as in Examples
I-III), the constant Lν = 3/

√
ν can be of a reasonable size but will even

then be larger than the standard value of 3 in the case of ℓ1-constrained
estimation.

4. A similar result will be shown in Section 3.3, where the assumption on
the minimal positive eigenvalue will be replaced by a slightly strength-
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ened assumption. Under the strengthened assumption, the compatibility
condition only needs to hold for L = 0 instead of Lν = 3/

√
ν.

We will first show two implications of Theorem 1 on sign recovery and prediction
error.

3.1. Sign recovery

The result does not imply exact sign recovery in the sense that the non-zero
coefficients equal exactly the set S (and indeed this will in general not be the
case), but it implies that the s largest coefficients correspond to the variables
in the set S.

Corollary 1. If all conditions in Theorem 1 are fulfilled and the stronger as-
sumption that the minimum over all non-zero coefficients is bounded from below
by the maximum of Kσ/

√
nτ and

min
k∈S

βk ≥ 2Ksσ√
φ∞n

(

1 + max{
√
φ∞
φν

,
4
√
φ∞
sν

}
)

,

it holds with probability at least 1 − η that the indices of the s largest absolute
coefficients in β̂ are identical to the set S.

This follows immediately from Theorem 1 since the ℓ1-bound on the difference
between β̂ and β∗ implies the same bound in the supremum-norm.

3.2. Prediction error

The bound in Theorem 1 also implies a bound on the prediction error. Let
N = {1, . . . , p}\S be the set of noise variables with exactly vanishing coefficient

β∗
N ≡ 0 and define the oracle estimator β̂oracle for a set of noise variables N as

β̂oracle := argminβ‖Y −Xβ‖22 such that min
k

βk ≥ 0 and βN ≡ 0. (5)

The prediction error can then be bounded as follows.

Theorem 2. If all conditions in Theorem 1 are fulfilled, with probability at least
1− η for any 0 < η < 1/5,

‖X(β̂oracle − β̂)‖2
2
≤ 2K2σ2

n
max{ 2s

φν
,
8

ν
}.

A proof is given in the appendix. The mean squared error, introduced by
using NNLS instead of the oracle estimator is thus bounded by log(p)s/n under
the stronger assumption on the minimal non-zero regression value.

It is interesting to note what happens under model misspecification, that is if
some variables are assigned a sign constraint that is opposite to the sign of the
optimal regression vector. Let β̃ be the optimal regression vector in a population
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sense such that all imposed sign constraints are satisfied for β̃. Note that the
predictive accuracy of β̃ is at least as good as when using β′, which is defined to
be equal to β∗ for all correctly specified variables and equal to 0 for all variables
with a misspecified sign. If we let the oracle estimator be defined as in (5) but
with the set of noise variables N now defined as the set of zero coefficients
of β̃ instead of the set of zero coefficients of β∗, then we will find the same
result as in Theorem 2 for this misspecified vector. If a set of variables have
thus misspecified sign, we effectively lose the contribution of the misspecified
variables and the predictive accuracy will then be identical to the case where
the misspecified variables would not have appeared in the original dataset.

3.3. Alternative assumption

We can replace the compatibility condition (3) with a potentially larger value of
L and the assumption on the mimimal positive eigenvalue (4) by an assumption
on the minimal positive compatible eigenvalue, defined as

φ2

pos,S(A) := min
{βTAβ

‖β‖2
1

: min
k∈N

βk ≥ 0
}

. (6)

In contrast to the minimal positive eigenvalue (4), the coefficients of β are only
constrained to be positive outside of S := {k : βk 6= 0}. The assumption of a
bound on (6) is thus stronger than a bound on the minimal positive eigenvalue
(4) but allows to assume L = 0 in the compatibility condition.

Theorem 3. Assume the compatibility condition holds for L∞ = 0 for some
φ∞ > 0, that is φ2

compatible(0, S, Σ̂) ≥ φ∞. Assume that φ2

pos,S(Σ̂) ≥ κ for some

κ > 0. Set K2 again equal to 2 log{p/(
√
2πη)} for some 0 < η < 1/5. With

probability at least 1− η,

‖β̂ − β∗‖1 ≤ 8Ksσ

κ
√
φ∞n

.

A proof is given in the appendix.
A lower bound on the minimal positive compatible eigenvalue seems rea-

sonable under some scenarios. To give the simplest, consider the setting where
there exists a set A ⊆ {1, . . . , p} such that S ⊆ A and (a) the minimal positive
eigenvalue (4) is greater or equal than some ν > 0, (b) the minimal eigenvalue

φ2

min
(Σ̂AA) is greater or equal to some κ > 0 and (c) all variables in A are

orthogonal to variables in Ac. The positive compatible eigenvalue (6) is then at
least min{µ, κ}. Theorem 3 thus shows that the large constant Lν > L∞ in the
compatibility condition is not necessary in all scenarios. In general, however,
it will be more difficult to verify a bound on the minimal positive compatible
eigenvalue (6) than on the minimal positive eigenvalue (4) as used in Theo-
rem 1. We will thus mainly work with (4) and Theorem 1 which states that
NNLS will be competitive with ℓ1-constrained estimation if the value ν in the
original minimal positive eigenvalue assumption (4) is not very small. If ν is



1616 N. Meinshausen

indeed well bounded away from 0 (but it will always be less than 1 by the nor-
malization), the required constant Lν = 3/

√
ν in the compatibility condition

will then just be a small factor larger than for the standard Lasso estimator
and the stronger structural assumption of a bound on (6) will not be necessary.
The following section with numerical results will illuminate some of these issues
from an empirical point of view.

4. Numerical results

4.1. Toeplitz design

The theoretical results indicate that NNLS will be more competitive with ℓ1-
constrained estimation if the correlation between variables is very strong, as
this will raise the minimal positive eigenvalue φpos as defined in (4) and in
turn also weaken the required compatibility condition. Looking at the simplest
possible example, we use a Toeplitz design for the population covariance matrix
by setting Σkk′ = ρ|k−k′|/p for k, k′ ∈ {1, . . . , p} and some value ρ ≥ 0. For
ρ = 0, all variables are sampled independently and we would expect NNLS to
be less competitive with ℓ1-constrained estimation than for large values ρ. We
simulate Y = Xβ + ε, where β is identically zero, except for s ≥ 1 randomly
chosen coefficients that are all set to 1 for s ∈ {3, 10, 20}. We also add two
simulations where the optimal regression vector is not sparse in an ℓ0-sense. In
the first, the coefficient of β∗ are distributed iid exp(µ) for some value of µ (the
results will be independent of the scaling µ and we chose µ = 1). In the second
we sample the coefficients β∗

k as the absolute value of independent samples from
a Cauchy-distribution. The standard deviation of the normally distributed noise
is set to σ2 times the standard deviation of the signal contribution Xβ.

Results are shown in Figure 1. We plot the ratio of the ℓ1-approximation
error between the NNLS estimator and Lasso estimator with a cross-validated
choice of the penalty parameter λ. There are two main observations:

(a) The relative estimation error of the NNLS estimator (when compared to
the cross-validated Lasso estimator) is smaller when the signal-to-noise
ratio is high (low values of σ). This is to be expected as the coefficients of
NNLS-selected variables are estimated with least squares estimation. The
additional shrinkage Lasso applies to selected coefficients can be detrimen-
tal if the signal-to-noise ratio is high and a re-estimation of the selected
model would be preferable. Many such two-stage procedure exist for Lasso-
type estimation (Zou, 2006; Meinshausen, 2007; Candes and Tao, 2007).
No such re-estimation is necessary for the Lasso for high signal-to-noise
ratio data. On the other hand, the NNLS results can suffer from a higher
variance for low signal-to-noise ratio data (high σ).

(b) For low correlation ρ between variables in the Toeplitz design, Lasso typ-
ically outperforms NNLS estimation. This is expected from the theory as
the conditions get more stringent if the minimal positive eigenvalue is get-
ting very close to 0. The minimal positive eigenvalue for the population
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Fig 1. For various values of p and σ, the logarithm of the ratio ‖β̂ − β∗‖1/‖β̂λ − β∗‖1 is

shown as a function of ρ ∈ [0, 1) in a Toeplitz design, where β̂ is the NNLS estimator and β̂λ

a Lasso-estimator with a cross-validated choice of λ. The five lines correspond to sparsities
s = 3 (red), s = 10 (green), s = 20 (blue), exponentially- (light gray) and Cauchy- (dark
grey) distributed regression coefficients. Values above 0 indicate that the ℓ1-loss of the Lasso
estimation is smaller than the corresponding loss of the NNLS estimator and vice versa. A
low signal-to-noise ratio (high σ) favours the Lasso and a high signal-to-noise ratio (low
σ) favours NNLS, as the selected coefficients are identical to least squares estimates with the
latter while additional shrinkage is applied when using the Lasso. The NNLS estimator is very
competitive for heavily correlated design (large values of ρ) and suffers for smaller values of
nearest-neighbour correlation ρ, as expected from the theory where stronger assumptions are
necessary for the NNLS estimation error for smaller values of ρ.

covariance matrix is bounded for Toeplitz design from below by ρ. On
the other hand, for large values of ρ, the minimal positive eigenvalue be-
comes bounded well away from 0 and NNLS typically performs similarly
as cross-validated Lasso estimation, even for rather low signal-to-noise ra-
tio settings despite its simplicity. For values of p around the sample size,
NNLS can even substantially outperform cross-validated Lasso estimation.

We look next at block design and show thereafter the network tomography
example.
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Fig 2. Analogous plot to Figure 1 for block design with five independent blocks of predictor
variables. For various values of p and σ, the logarithm of the ratio ‖β̂ − β∗‖1/‖β̂λ − β∗‖1 is
shown as a function of ρ, where ρ ∈ [0, 1) is the correlation between all predictors in the same
block. The NNLS estimator is again very competitive for high correlation (large values of ρ),
where the ℓ1-approximation error is very close to the Lasso error, corresponding to values
around 0 in the graph.

4.2. Block design

We repeat the simulation of the previous section for a block design. The popu-
lation covariance matrix is set to 0, except for five blocks of equal size along the
diagonal, where off-diagonal elements are set to ρ ∈ [0, 1). Diagonal elements of
the population covariance matrix are set to 1. The regression vector and noise
is chosen as in the previous section. This design is a specific case of the previous
Example III and the positive eigenvalue condition holds true for ν = ρ/5.

Results are shown in Figure 2. As for Toeplitz design, a high correlation
between variables makes the NNLS estimator competitive with a cross-validated
Lasso estimator. The relative error can be smaller than Lasso estimation for
moderate to low-signal-to-noise ratios or very high values of the correlation. For
ρ = 0, all variables are independent and NNLS in generally has a ℓ1-error that
is inflated by a potentially large factor when compared to cross-validated Lasso
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estimation. For ρ ≥ 0.5 and σ ≤ 1, NNLS has typically a very similar ℓ1-loss
compared with Lasso estimation. For values of p around the sample size n = 100,
NNLS can have a much better accuracy. The implication is again that NNLS
is a suitable procedure for high-dimensional estimation for strongly correlated
design with moderate to high signal-to-noise ratios.

4.3. Network tomography

The results above imply that NNLS can be very effective if (a) the sign of re-
gression coefficients is known or can easily be estimated and (b) the Positive
Eigenvalue Condition holds. Network tomography is a good example. For others,
including image analysis and applications in signal processing, see Slawski et al.
(2011). There are different aspects of network tomography, including origin-
destination matrix estimation and link-level network tomography; see Castro
et al. (2004) for a good overview of the statistical aspects and Xi et al. (2006)
and Lawrence et al. (2006) for a discussion of active tomography in the context
of link-level analysis. We will focus on the aspect of the link-level network to-
mography. The network consists of nodes arranged in a directed acyclic graph
(or sometimes as a special case a tree) and measurements can be taken at the
leaf nodes. These measurements are used to infer the state of all the nodes in
the network. In a communication network, the measurements can be the delay
or loss rate of packages. In a transport network (such as water distributions net-
works), it can be the shortfall of the flow rate compared to the expected rate.
Since the network topology is assumed to be known, the measurements consist
typically of noise plus a linear combination of the internal and unobservable
states of the nodes in the network. If a node in the network has a loss (be it in
the form of delaying packages or loss of water flow), it will have a linear effect
on all leaf nodes that are descendants of the node in the directed acyclic graph.

Figure 3 shows a toy example. Imagining a flow passing through the tree
from the internal nodes to the leaf nodes, the entry Xi,j is the proportion of
flow in node j that reaches leaf node i if flow is divided equally among all
outgoing edges in each node of the tree. Three internal nodes have loss rates
(β1, β2, β3) = (10, 10, 0). The loss rates Y = (Y1, Y2, Y3) at the three leaf nodes
are then given by Y = Xβ + ε for some i.i.d. noise ε and

X =





0.3 0.5 0
0.3 0 0.5
0.4 0.5 0.5



 .

A positivity constraint on the coefficient vectors is clearly appropriate since
there will in general not be a negative loss at internal nodes (for example no
unexpected gain of water in a distribution network). In the noiseless case, the
NNLS solution recovers exactly the internal states (10, 10, 0) and thus identifies
correctly the first two nodes as responsible for the loss of the flow rate in all
three leaf nodes. In this simple example, the number of leaf nodes is equal to
the number of internal nodes and ordinary least squares would also work in
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Fig 3. Left: A network with three internal nodes and three leaf nodes. The (unobservable)
losses at the internal nodes are (10,10,0), meaning that the first two nodes lead to a loss rate
of 10 and the third node is not leading to any losses. The observations of the loss rates at
the leaf nodes are then (8,3,9). Using the observations at the leaf nodes and knowledge of
the topology, NNLS can correctly identify the two first nodes as responsible for the losses.
Right: A network with 78 internal nodes and 22 leaf nodes. Two of the internal nodes have a
positive loss (marked with a dot) and the observations at the leaf nodes are again sufficient
to pinpoint the (unknown) location of the two nodes using NNLS estimation.

the noiseless case. Least squares clearly ceases to be useful once the number
of internal nodes exceeds the number of leaf nodes. Note that, contrary to the
previous literature (for example Castro et al. (2004); Lawrence et al. (2006))
we do not attempt to fit a stochastic model to the observations. We are merely
trying to directly estimate the current internal state β of the nodes in the
network as accurately as possible.

The theory suggests that a non-negativity constraint can already be very
powerful under certain constraints on the design matrix. The main condition is
the Positive Eigenvalue Condition. In our simple network tomography example,
it is obvious that all entries in X are non-negative and the same is hence true for
Σ̂ = n−1XTX. Entries in X correspond to the amount of loss (delay of packages
or reduction in flow rate) in a leaf node caused by a specific loss at an internal
node and is non-zero if and only if there is a connection between the internal
and the leaf node. Suppose that all non-zero entries in X have entries at least as
large as δ for some δ > 0. Suppose further that we can group all internal nodes
into B blocks such that the internal nodes within a block share at least one
leaf node to which they all connect. The Positive Eigenvalue Condition is then
fulfilled with value δ2/B; see Example III in the discussion of the condition.

The theory seems to show that under these conditions the NNLS-regularization
is effective. To test this, we examine the effect of placing an additional ℓ1-
constraint on the coefficient by computing

βλ := argminβ ‖Y −Xβ‖2
2

such that min
k

βk ≥ 0 and ‖β‖1 ≤ λ. (7)

Let β̂ be again the NNLS-solution defined in (1). It is obvious that βλ ≡ β̂ for

all λ ≥ λmax for λmax := ‖β̂‖1.
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Fig 4. The average number of correctly identified internal nodes with a positive loss under
1000 different scenarios with an additional ℓ1-constraint as in (7). The NNLS solution cor-
responds to λ = λmax and is seen to be in general superior to the solutions under additional
shrinkage.

We generate networks of similar type as the ones shown in Figure 3. The
number N of total nodes is chosen for each of 1000 simulations uniformly out the
set {25, 50, 100, 200, 400}. Nodes are distributed uniformly on the area [−1, 1]2

and numbered in order of their Euclidean distance from the origin. Starting
with the first node k = 1 closest to the origin, edges are drawn between it and
its K nearest neighbours with a larger ordering number (where K is drawn
uniformly from the set {5, 10, 20}). When drawing edges at node k = 1, . . . , N−
1, they are deleted with probability κ (where κ is drawn uniformly from the
set {.2, .4, .6, .8, 1}) or when the edge would cross a previously drawn edge.
Imagining again a flow passing through the tree from the internal nodes to
the leaf nodes, the entry Xi,j is the proportion of flow in node j that reaches
leaf node i if flow is divided equally among all outgoing edges in each node
of the tree. For each of the 1000 simulations, we draw a single graph from
the parameters as described above and also draw the noise variance uniformly
from the set {0, 0.125, 0.25, 0.5, 1, 2, 4} and a number s of non-zero entries in β
(corresponding to nodes with a delay or loss), where s is drawn uniformly from
the set {2, 5, 10}. The s non-zero entries from β are generated independently as
the absolute value of a standard-normal random variable. For each such setting,
we simulate 50 times the vectorY and reconstruct with β̂λ as in (7) for an evenly
spaced grid of 20 points between λ = 0 and λ = λmax, the NNLS solution. Nodes
are put in decreasing order of the reconstructed value β̂λ. We record the first
entry in the re-ordered vector β̂λ that corresponds to a false positive (a zero
entry in the equally re-ordered vector β) and call the number of true positives

the number of values of β̂λ with larger value than the first false positive.

Figure 4 shows the average number of true positives as a function of λ. Each
line corresponds to the average value over all 50 simulations in a given scenario.



1622 N. Meinshausen

For nearly all scenarios there is no benefit in placing an additional ℓ1-penalty
on the coefficients. The NNLS solution is thus a very good and simple estimator
in these settings, as expected from theory. Additional regularization by an ℓ1-
penalty does not seem to improve results.

5. Discussion

We have shown that non-negative (or sign-constrained) least squares can be an
effective regularization technique for sparse high-dimensional data under two
conditions: (a) the data fulfil the so-called Positive Eigenvalue Condition, which
is easy to check for a given dataset and (b) the sign of the coefficients is known
or can easily be estimated.

If the conditions hold, NNLS can recover the correct sparsity pattern in the
absence of any further regularization, as long as s2log(p)/n → 0 for n → ∞,
where p is the number of variables, s the number of non-zero variables in the
optimal regression vector and n is sample size. The standard Compatibility Con-
dition is required for the results with a potentially large value of the constant.
We have shown that the assumption just has to hold with a value L = 0 if the
Positive Eigenvalue Condition is strengthened appropriately.

We have shown network tomography as an example where the sign of re-
gression coefficients is known a priori and the design condition is fulfilled auto-
matically, at least approximately. In other examples the sign can be estimated
by an initial estimator. Estimation of the signs can be based for example on a
tuning-parameter free method such as marginal regression or a Basis Pursuit.
An attractive feature of NNLS is that it does not require any tuning parameter
beyond the choice of the signs of the individual regression coefficients. Despite
its simplicity, it can be remarkably accurate for high-dimensional regression,
especially for strongly correlated design and moderate to high signal-to-noise
ratios.

6. Appendix: Proofs

6.1. Proof of Theorem 1

First, for any C > 0, 1 − Φ(C) ≤ (2π)−1/2C−1 exp(−C2/2), where Φ(·) is the
cumulative distribution function of the standard normal distribution. Choosing
C2 = K2 = 2 log( p√

2πη
), it follows with η < 1/5 and hence C ≥ 1 that 1 −

Φ(C) ≤ η/p. Thus 1 − p(1 − Φ(C)) ≥ 1 − η and the results follow hence from
Lemma 1.

6.2. Proof of Theorem 2

Define the oracle non-negative least squares as in (5) and let δβ = β̂ − β̂oracle .
Let M be the set M := {k : δβk < 0}. Using Equation (15) in the proof of
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Lemma 1, it follows that, with probability at least 1− p(1−Φ(C)) (where Φ(·)
is the cumulative distribution function of the standard normal distribution),

‖X(β̂oracle − β̂)‖22 = δβT Σ̂δβ ≤ 2
Cσγ√

n
‖δβMc‖1,

where γ = 1 if the bound on the minimal non-zero regression values is fulfilled
and γ = 3s/

√
φ∞ otherwise. Using ‖δβMc‖1 ≤ ‖δβ‖1 and the bounds in (11)

and (12) for the latter quantity, it holds with probability at least 1−p(1−Φ(C))
that

‖δβ‖1 ≤ 2Cσγ√
n

max{ s

φν
,
4

ν
}.

Hence

‖X(β̂oracle − β̂)‖22 = δβT Σ̂δβ ≤ 2
(Cσγ)2

n
max{ 2s

φν
,
8

ν
}.

Using again C2 = K2 = 2 log( p√
2πη

), the claim follows.

6.3. Proof of Theorem 3

Proof. The proof follows from equation (15) in the proof of Lemma 1, which is

making use of the assumption that φ2

compatible(0, S, Σ̂) ≥ φ∞. For any C > 0,
with probability 1− p(1− Φ(C)),

δβT Σ̂δβ ≤ 6
Csσ√
φ∞n

‖δβMc‖1. (8)

The vector δβ has by definition positive entries δβk for all k ∈ N as the oracle
estimator (5) has identically 0 entries for k ∈ N . Now using the assumption

φ2

pos,S(Σ̂) ≥ κ > 0, the lhs in (8) is greater than or equal to κ‖δβ‖21. Using
‖δβMc‖1 ≤ ‖δβ‖1 on the rhs, it follows that with probability 1− p(1− Φ(C)),

‖δβ‖1 ≤ 6
Csσ

κ
√
φ∞n

.

Hence, as in the proof of Lemma 1, it follows with Lemma 4 that ‖β̂ − β∗‖1 ≤
‖β̂oracle − β∗‖1 + ‖δβ‖1 and hence, with probability 1− p(1−Φ(C)), using the
same union bound argument as in Lemma 1,

‖β̂ − β∗‖1 ≤ (
6

κ
+ 2)

Csσ√
φ∞n

≤ 8Csσ

κ
√
φ∞n

.

Using the same choice of C as in Theorem 1, the proof is complete.
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6.4. Lemmata

Lemma 1. Assume that the Positive Eigenvalue Condition holds with ν > 0.
Choose any C > 0. Assume that the compatibility condition holds with φν > 0
for Lν = 3/

√
ν and with φ∞ ≥ φν for L∞ = 0. It then holds with probability at

least 1− p(1− Φ(C)), where Φ(·) is the cumulative distribution function of the
standard normal distribution,

‖β̂ − β∗‖1 ≤ 2Csσ√
φ∞n

(

1 + max{ 3s
φν

,
12

ν
}
)

.

If, additionally, the minimal eigenvalue φ2

min(Σ̂SS) is greater than or equal to
some τ > 0 and mink∈S βk > Cσ/

√
nτ , then with probability at least 1 − p(1 −

Φ(C)),

‖β̂ − β∗‖1 ≤ 2Csσ√
φ∞n

(

1 + max{
√
φ∞
φν

,
4
√
φ∞
sν

}
)

.

Proof. By definition (1) of β̂, definition (5) of β̂oracle and for δβ = β̂ − β̂oracle

we have

δβ = argminγ ‖Y −Xβ̂oracle −Xγ‖22 such that

γk ≥ −β̂oracle
k for all k = 1, . . . , p. (9)

The bound for ‖β̂ − β∗‖1 follows as ‖β̂ − β∗‖1 = ‖δβ + (β̂oracle − β∗)‖1 ≤
‖β̂oracle − β∗‖1 + ‖δβ‖1. Using Lemma 4, it holds with probability exceeding
1− 2(1− Φ(C)),

‖β̂oracle − β∗‖1 ≤ 2Csσ√
φ∞n

, (10)

and it thus remains to be shown that, if (10) is fulfilled, it holds with probability
at least 1− p(1− Φ(C)) that

‖δβ‖1 ≤ 2Csσ√
φ∞n

max{ 3s
φν

,
12

ν
}. (11)

Note that the union bound needs a factor p instead of p + 2 when combining
(10) and (11) as the event (10) was already used in the union bound of (11). If
the condition on the minimal non-zero coefficient is fulfilled, the inequality (11)
has to hold as

‖δβ‖1 ≤ 2Cσ√
n

max{ s

φν
,
4

ν
}. (12)

Let R = Y −Xβ̂oracle . Since δβ ≡ 0 is a feasible solution in (9),

δβTXTXδβ − 2RTXδβ ≤ 0.

and

δβT Σ̂δβ ≤ 2

n
RTXδβ. (13)
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Let
M := {k : δβk < 0} (14)

By definition M ⊆ S and N ⊆ M c. The conditions for Lemma 2 are fulfilled,
and we thus have with probability at least 1− p(1− Φ(C)) that

1

n
RTXδβ ≤ 3Cσs√

nφ∞
‖δβN‖1 ≤ 3Cσs√

nφ∞
‖δβMc‖1.

If additionally the bound on the minimal positive coefficient holds, we get from
Lemma 3 that we have instead a bound

1

n
RTXδβ ≤ Cσ√

n
‖δβMc‖1.

In either case,

δβT Σ̂δβ ≤ 2
Cσγ√

n
‖δβMc‖1, (15)

where γ = 1 if the bound on the minimal non-zero regression values is fulfilled
and γ = 3s/

√
φ∞ otherwise. Let a = (δβMcΣ̂δβMc)1/2 and b = (δβMΣ̂δβM )1/2.

Then

δβT Σ̂δβ ≥ a2 + b2 − 2ab

≥ a2 − 2‖δβM‖1a (16)

having used the normalization of all columns of X (which bounds the absolute

values of all entries in Σ̂ by 1) for a bound b ≤ ‖δβM‖1. It follows with the
Positive Eigenvalue Condition for the first term in the last inequality, together
with the fact that mink∈Mc δβk ≥ 0 by definition of M in (14), that a2 ≥
ν‖δβMc‖2

1
for some 0 < ν ≤ 1.

Evidently ‖δβMc‖1 > (3/
√
ν)‖δβM‖1 is either true or not. If it is true, the

rhs in (16) is then greater than ν‖δβMc‖21 − 2(
√
ν/3)‖δβMc‖1(

√
ν‖δβMc‖1) and

hence greater than (ν/3)‖δβMc‖1. Using this bound on the lhs of (15) and
dividing by ‖δβMc‖1 yields that, with probability at least 1− p(1− Φ(C)),

‖δβMc‖1 ≤ 6

ν

Cσγ√
n

(17)

Together with the assumption for this case that ‖δβMc‖1 > (3/
√
ν)‖δβM‖1 and

ν < 1, it holds that ‖δβM‖1 is bounded by (2/
√
ν)Cσγ/

√
n. Combining with

(17) and ν ≤ 1,

‖δβ‖1 ≤ 8

ν

Cσγ√
n
, (18)

which satisfies the bounds in (11) and (12).
Assume now the second case, ‖δβMc‖1 ≤ (3/

√
ν)‖δβM‖1. We have then

‖δβMc‖1 ≤ Lν‖δβM‖1 for Lν = 3/
√
ν and thus, using N ⊆ M c, also ‖δβN‖1 ≤
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Lν‖δβS‖1. The vector δβ is then in R(Lν , S). Using the compatibility condition,

it follows that δβT Σ̂δβ is greater than or equal to (φν/s)‖δβ‖21. Using this on
the lhs of (15),

φν

s
‖δβ‖2

1
≤ 2

Cσγ√
n
‖δβMc‖1. (19)

Since ‖δβMc‖1 = ‖δβ‖1 − ‖δβM‖1 ≤ ‖δβ‖1, it follows that

‖δβ‖1 ≤ 2s

φν

Cσγ√
n
, (20)

which also satisfies the bounds in (11) and (12) . Hence, the bounds (11) and
(12) hold under both possible scenarios (‖δβMc‖1 > (3/

√
ν)‖δβM‖1 true or

false) and the proof is complete.

Lemma 2. Let δβ = β̂ − β̂oracle and R = Y − Xβ̂oracle with β̂oracle defined
as in (5). Assume that φ2

compatible(0, S, Σ̂) ≥ φ∞ > 0, With probability at least
1− p(1− Φ(C)),

RTXδβ ≤ 3Cσs

√

n

φ∞
‖δβN‖1.

Proof. First, we can write

RTXδβ =
∑

k∈S

(RTXk)δβk +
∑

k∈N

(RTXk)δβk (21)

By definition of β̂oracle and using the KKT conditions, we have for all k ∈ S
that either (a) β̂oracle

k > 0 and RTXk = 0 or (b) β̂oracle
k = 0 and RTXk ≤ 0.

The contribution from all (a) cases vanishes in (21). For k ∈ S that fall into

category (b), it follows by β̂k ≥ 0 and β̂oracle
k = 0 that δβk ≥ 0 and hence

(RTXk)δβk ≤ 0. We are left with contributions from k ∈ N in (21),

RTXδβ ≤
∑

k∈N

(RTXk)δβk ≤ max
k∈N

(RTXk)‖δβN‖1 (22)

It thus remains to be shown that, with probability at least 1− p(1− Φ(C)),

max
k∈N

(RTXk) ≤ 3Cσs
√

n/φ∞ (23)

To show this, write R = Y −Xβ̂oracle = ε+X(β∗ − β̂oracle). Then

max
k∈N

RTXk ≤ max
k∈N

εTXk + ‖β∗ − β̂oracle‖1 max
k′∈S,k∈N

XT
k′Xk. (24)

Taking a union bound yields that, with probability at least 1−(p−2)(1−Φ(C)),
εTXk ≤ σ

√
n for all k ∈ N (as |N | ≤ p− 2), having used the normalisations of

the columns in X. Using the same normalisation, the second term on the rhs in
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(24) is bounded by n‖β∗ − β̂oracle‖1. This contribution is bounded with proba-
bility 1− 2(1−Φ(C)) by 2Csσ/

√
nφ∞ with Lemma 4. Hence, with probability

at least 1− p(1− Φ(C)),

max
k∈N

RTXk ≤ σ
√
n+ 2σsC

√

n/φ∞ = σ
√
n(1 + 2sC/

√

φ∞) ≤ 3Cσs
√

n/φ∞,

(25)
which shows (23) and hence completes the proof.

Lemma 3. Let δβ = β̂ − β̂oracle and R = Y−Xβ̂oracle with β̂oracle defined as
in (5). If the minimal eigenvalue φ2

min(Σ̂SS) is greater than or equal to some
τ > 0 and mink∈S βk > Cσ/

√
nτ , with probability at least 1− p(1− Φ(C)),

RTXδβ ≤ Cσ
√
n‖δβN‖1.

Proof. The proof is analogous to the proof of Lemma 2 in the beginning and we
are again left with contributions from k ∈ N in (21),

RTXδβ ≤
∑

k∈N

(RTXk)δβk ≤ max
k∈N

(RTXk)‖δβN‖1 (26)

It thus remains to be shown that, with probability at least 1− p(1− Φ(C)),

max
k∈N

(RTXk) ≤ Cσ
√
n (27)

and this follows from Lemma 6, which completes the proof.

Lemma 4. If φ2

compatible(0, S, Σ̂) ≥ φ∞, with probability at least 1−2(1−Φ(C)),

‖β∗ − β̂oracle‖1 ≤ 2Cσ
s√
nφ∞

.

Proof. Let PS be the projection into the space spannend by the columns in XS .
By definition of β̂oracle , the vector β∗ is a feasible solution in the optimization
problem of β̂oracle . As β∗

k = β̂oracle
k = 0 for all k ∈ N = Sc,

‖PSY −Xβ∗‖22 ≥ ‖PSY −Xβ̂oracle‖22.

Furthermore,

‖PSY −Xβ̂oracle‖2
2
≥

(

‖Xβ∗ −Xβ̂oracle‖2 − ‖PSY −Xβ∗‖2
)2

.

Putting the last two equations together,

‖X(β∗ − β̂oracle)‖2 ≤ 2‖PSY −Xβ∗‖2 (28)

Since β∗ − β̂oracle vanishes identically in N = Sc, the vector is in R(0, S) and

the lhs in (28) is larger than
√

φ∞n/s‖β∗ − β̂oracle‖1. On the rhs, σ−2‖PSY −
Xβ∗‖2

2
= σ−2‖PSε‖22 has a χ2

s-distribution. Then σ−2‖PSY−Xβ∗‖2
2
> sC with
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probability at most 2Φ̃(C) for all s, where Φ̃(·) = 1− Φ(·). Together, it follows
that with probability at least 1− 2(1− Φ(C)),

‖β∗ − β̂oracle‖1 ≤ 2Cσ
s√
nφ∞

,

which completes the proof.

Lemma 5. Let β̂ols be the least squares estimator restricted to S:

β̂ols = argminβ ‖Y −Xβ‖22 such that βN ≡ 0.

If the minimal eigenvalue φ2

min(Σ̂SS) is greater than or equal to some τ > 0

and mink∈S βk > Cσ/
√
nτ , it holds that P (β̂ols ≡ β̂oracle) ≥ 1− s(1− Φ(C)).

With at least the same probability 1− s(1− Φ(C)),

‖β∗ − β̂oracle‖∞ ≤ Cσ/
√
nτ

Proof. It is only necessary to show that mink∈S β̂ols
k ≥ 0 with probability at

least 1− s(1− Φ(C)).
The error term has, under the made assumptions, a normal distribution,

β̂ols
k − β∗ ∼ N (0, σ2(nΣ̂SS)

−1

k ) for all k ∈ S. The minimal eigenvalue of Σ̂SS is

bounded from below by τ by the made assumption and the variance of β̂ols
k is

thus bounded from above by σ2/(nτ) for all k ∈ S. It follows with Bonferroni’s
inequality that, with probability at least 1− s(1− Φ(C)),

‖β∗ − β̂ols‖∞ ≤ Cσ/
√
nτ. (29)

If mink∈S β∗
k ≥ Cσ/

√
nτ , then (29) implies that mink∈S β̂ols

k ≥ 0 and thus

β̂oracle ≡ β̂ols and thus also

‖β∗ − β̂oracle‖∞ ≤ Cσ/
√
nτ,

which completes the proof.

Lemma 6. If the minimal eigenvalue φ2

min(Σ̂SS) is greater than or equal to
some τ > 0 and mink∈S βk > Cσ/

√
nτ , with probability at least 1−p(1−Φ(C)),

max
k∈N

(Y −Xβ̂oracle)TXk ≤ Cσ
√
n.

Proof. We condition on the event β̂oracle ≡ β̂ols, which happens according to
Lemma 5 with probability at least 1 − s(1 − Φ(C)). Then Y − Xβ̂oracle =

Y −Xβ̂ols = PS⊥Y, where PS⊥Z is the projection of a vector Z ∈ R
n into the

space orthogonal to XS . Now, PS⊥Y = PS⊥(Xβ∗+ε) = PS⊥ε. The distribution
of (PS⊥ε)TXk is, for every k ∈ N , normal with mean 0 and variance at most
σ2n, and thus P ((PS⊥ε)TXk ≥ Cσ

√
n) ≤ 1 − Φ(C) for all k ∈ N and, using

a Bonferroni bound, P (maxk∈N (PS⊥ε)TXk ≥ Cσ
√
n) ≤ |N |(1 − Φ(C)). The

unconditional probability of maxk∈N (PS⊥ε)TXk ≥ Cσ
√
n is thus at least 1 −

s(1−Φ(C))−|N |(1−Φ(C)) = 1− (s+ |N |)(1−Φ(C)) = 1−p(1−Φ(C)), which
completes the proof.
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