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Abstract: In linear mixed effects models, the covariance matrix of the
response is modeled as the sum of two matrices: the product of the covari-
ance matrix of the random effects with the associated design matrix, and
the covariance matrix of the residual error. Building a linear mixed model
usually involves selection of the parametrized covariance matrix structures
for the random effects and the residual error. However, even if the covari-
ance matrix of the response is not over-parametrized, some specifications
of covariance structures can result in the non-identifiability of parameters.
When fitting such models, software may or may not indicate a problem with
model identifiability. Consequently, it is useful to have a way to check if a
model is identifiable which does not rely on the software output. We derive
conditions for identifiability of the covariance parameters of the response
and study commonly used covariance structures. The derived conditions
only rely on the covariance structures being used and properties of the
design matrix associated with the random effects and are easy to check.
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1. Introduction

Study designs in a variety of disciplines such as agriculture, biology, medicine,
physics, and social sciences may lead to data sets of a clustered structure, or
a longitudinal or repeated-measures structure. A linear mixed effects model
(LME) may be well suited for the analysis of these types of data. LME has been
developed, studied and applied extensively by many researchers, for example,
[2, 5, 6, 7, 8, 12, 15, 17].

In LME, the response is modeled as a sum of three terms: the design matrix
associated with the fixed effects right multiplied by an unknown coefficient vec-
tor, the random effects left multiplied by the associated design matrix, and a
residual error. The mean of the response is parameterized as the first term in
the above sum as the random effects and the residual error are usually assumed
mean zero. So long as that design matrix is of full column rank, there is no
other coefficient vector giving the same mean. The covariance of the response is
determined through the covariances of the random effects and of the residual er-
ror. Both the random effects and the residual error are assumed to have certain
distributions with covariance matrix structures to be specified. The associated
unknown parameters are usually constrained in certain spaces and are to be
estimated. For a comprehensive list of available structures and the expressions,
see for instance [13, 19].

The most commonly used types of structures include unstructured (UN),
compound symmetry (CS), variance components (VC), multiple of a known co-
variance matrix (MK) or multiple of the identity matrix (MI), and one deriving
from time series such as MA(1). For instance, [11] consider models where random
effects are MI structured. [14] consider a variety of combination of structures,
including UN random effects and UN error. [19] provides a comprehensive com-
parison of various combinations of structures. Choices of the various covariance
structures are implemented in statistical software such as R, SAS, SPSS and
STATA. Detailed documentation has been provided by [10, 13, 16].

Building an LME often involves selection of covariance structures for the
random effects and the error (see for instance [1, 18, 19]). The covariance of
the response is then modeled as a sum involving the two covariance matrices.
In the modeling, some choices of covariance structures can lead to parameters
not identifiable even if the response covariance is not over-parametrized. For
instance, suppose the design matrix associated with the random effects has the
form Z =

(

1 1

1 −1

)

. Let I2 be a 2×2 identity matrix. Suppose one specifies an MI
structure for both the random effects and the residual error as σ2

uI2 and σ2I2
respectively. Elements of the parameter vector (σ2

u, σ
2) are both positive and

are to be estimated. Let y be the response vector with covariance matrix Σy.
Then ∀ σ2

u > 0 and σ2 > 0, there exists a distinct parameter vector (σ∗
u
2, σ∗2)

producing the same Σy. Let r be a real number such that 0 < r < 1 + 2σ2

u/σ
2

and r 6= 1. Define σ∗2 = rσ2 and σ∗
u
2 = σ2

u + (1 − r)σ2/2. It is clear σ∗
u
2 6=

σ2

u, σ∗
u
2 > 0, and σ∗2 6= σ2, σ∗2 > 0, but Σy = (2σ2

u + σ2)I2 = (2σ∗
u
2 + σ∗2)I2.

If the research interest relates to the covariance parameters, say the BLUP, we
see that the BLUP can either be σ2

uZΣ
−1

y (y − Ey) or σ∗
u
2ZΣ−1

y (y − Ey).
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In principle, when a model is specified, its identifiability shall be checked
before fitting [18]. Identifiability may also be viewed as a necessary property
for the adequacy of a statistical model [2], and is closely related to parame-
ter estimability [3]. Non-identifiability has been noticed for the LME’s in [9]
(revisited in Example 5.1), [18] (revisited in Example 5.3), and [13] where
one of the random effects terms is totally confounded with the residual er-
ror. [9] observe non-identifiability by calculating the covariance matrix elements
of the response directly. Direct calculation may provide a way to detect non-
identifiability if the model is not overly complicated. The models in [14] and
[19] (revisited in Example 5.2) are very similar to those in [9] and are, in fact,
identifiable. When fitting non-identifiable models, software may produce error
messages of non-convergence or failure of constructing confidence intervals on
the parameters [18]. Another possible indication of non-identifiability is unrea-
sonably wide confidence intervals of the standard deviations [13], or zero or
abnormally large estimated standard errors of the parameters [18]. However, in
Section 3, the simulations of fitting different non-identifiable models, we found
about half of the times the software output did not look unreasonable. Conse-
quently, it is useful to have a way of checking if a model is identifiable before
fitting.

In this article, we study identifiability of the covariance parameters in LME,
focusing on those models that are not over-parametrized. We derive conditions
of identifiability and study commonly used covariance structures. The results do
not rely on any distribution assumptions of the random effects or the residual
error. One condition also generalizes a known result of checking identifiability
of an LME in [2]. The rest of the article is organized as follows. In Section 2,
we give the notation and setup of the study. Simulation studies are presented
in Section 3. The derived conditions are presented in Section 4. In Section 5, we
show identifiability or non-identifiability of models in [9, 14, 18, 19] using the
results in Section 4. At last, we discuss applicability of the obtained results to
verify identifiability for models with more than two random components. Proofs
are presented in the appendix.

2. Notation and setup

Given a parametrized distribution, identifiability requires that identical parame-
ter vectors produce the same distribution (or distinct parameter vectors produce
different distributions) [2, 3]. As noted in [2], non-identifiability of the covari-
ance parameters is a sufficient condition of distribution non-identifiability. If a
random variable is normally distributed, identifiability of parameters in its first
two moments is then equivalent to identifiability of the distribution. An LME
explicitly formulates the distribution of the response. As noticed, in an LME,
identifiability of the mean parameters just requires the design matrix associ-
ated with the fixed effects to be of full column rank. If the fixed effects design
is not of full column rank, one can estimate functions of the parameters that
are identifiable, or reparameterize the fixed effects to induce identifiability. For
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simplicity, we always refer distribution parameters to those in the covariance
matrices unless otherwise specified, and we do not distinguish identifiability of
covariance parameters and identifiability of model parameters and use the two
terms interchangeably.

Usually in an LME, covariance structures are specified with the constrained
unknown parameters in a space to be estimated. The study of non-identifiability
aims for any unknown covariance parameter values in the space. Given any
parameter vector, we show existence of a distinct parameter vector in the same
space producing the same model. Below the non-identifiability definition is in a
form closely related to our discussion, followed by a review of the LME setup.

Definition 2.1. Let Σ(θ) be a matrix parametrized by a vector θ in a space
Θ = {θ : Σ(θ) is symmetric and positive definite}. The matrix Σ(θ) is not
identifiable with respect to θ on Θ if ∀ θ ∈ Θ, ∃ θ∗ ∈ Θ, with θ∗ 6= θ, such
that Σ(θ∗) = Σ(θ).

Let y be a response vector of length n and letX and Z be known, non-random
design matrices where Z is of dimension n× q, n ≥ q. The linear mixed model
is written as

y = Xβ + Zu+ ǫ,

u ∼ (0,Σu), ǫ ∼ (0,Σǫ), u independent of ǫ. (1)

LetΣu andΣǫ be parametrized by θu ∈ Θu and θǫ ∈ Θǫ respectively. Unknown
parameters in the model are then (β, θu, θǫ), We study the parametrized co-
variance matrix of y, Σy(θu, θǫ) = ZΣu(θu)Z

′ +Σǫ(θǫ).

Since Σy(θu, θǫ) is symmetric, the number of distinct elements is less than
or equal to n(n + 1)/2. If the total number of parameters in (θu, θǫ) exceeds
n(n+ 1)/2, Σy(θu, θǫ) is then over-parameterized and most likely not identifi-
able. Throughout the article, we make the following assumptions unless other-
wise specified: parameter vectors β, θu and θǫ do not share common elements,
Σu(θu) and Σǫ(θǫ) are each identifiable with respect to its parameters, Z has
full column rank. By the second assumption, Σu(θ

∗
u) = Σu(θu) if and only if

θ∗
u = θu and similar relationship between Σǫ(θǫ) and θǫ holds. To save nota-

tion, we suppress the parameters in the parenthesis and in the following, we
write Σ∗

u for Σu(θ
∗
u) and similarly for other parameterized matrices.

Suppose the model is not identifiable. Then ∀ (θu, θǫ), there exists (θ
∗
u, θ

∗
ǫ ) 6=

(θu, θǫ), such that ZΣuZ
′ +Σǫ = ZΣ∗

uZ
′ +Σ∗

ǫ or equivalently

Z [Σ∗
u −Σu]Z

′ = Σǫ −Σ∗
ǫ . (2)

Below we show by contradiction that (θ∗
u, θ

∗
ǫ ) 6= (θu, θǫ) is equivalent to θ

∗
u 6= θu

and θ∗
ǫ 6= θǫ. Suppose the model is not identifiable and either {θ∗

u = θu, θ
∗
ǫ 6=

θǫ} or {θ∗
u 6= θu, θ

∗
ǫ = θǫ} holds. Then by assumption, either {Σ∗

u = Σu,Σ
∗
ǫ 6=

Σǫ} or {Σ∗
u 6= Σu,Σ

∗
ǫ = Σǫ} holds. By (2) and the full rank assumption of

Z, either Σ∗
u = Σu or Σ∗

ǫ = Σǫ will give us {Σ∗
u = Σu,Σ

∗
ǫ = Σǫ}, and thus

contradicts Σ∗
ǫ 6= Σǫ or Σ

∗
u 6= Σu.
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In practice, usually there is more than one response vector and the i-th
response vector is modeled as in (1)

yi = Xiβ + Ziui + ǫi, i = 1, . . . , N,

ui ∼ (0,Σu), ǫi ∼ (0,Σǫi),

u1, . . . ,uN , ǫ1, . . . , ǫN are mutually independent. (3)

The yi’s can come from an unbalanced design and the covariance matrices Σǫi’s
are not necessarily equal. We call the model of all yi’s, (3), the joint model.
Parameters in this model are then (θu, θǫi, i = 1, . . . , N). Although (3) can be
expressed in the form (1) by stacking the yi’s into a column vector, here we make
the distinction and call (1) an individual model. Model (1) is our target model
for studying identifiability. We will investigate the identifiability relationship
between an individual model and the joint model in Section 4.5, where we show
the joint model is identifiable if and only if at least one individual model is
identifiable.

In the following, we let 1 be a vector with each element being one and let
J be a matrix of ones, i.e. J = 11′. We let I be an identity matrix. Sometimes
we put a subscript indicating the dimension. We let ⊗ denote the Kronecker
product. Compound symmetry (CS) is one important covariance structure we
will consider. In our study, we adopt the formulation that a matrix Σ has the
CS structure if Σ = σ2 [(1− ρ)I+ ρJ], for some σ2 > 0 and −1/(n−1) < ρ < 1.
The restrictions on σ2 and ρ guarantee positive definiteness of Σ by [4]. See also
Lemma A.1 in the proof of Corollary 4.1.

3. Simulations

SAS and R are widely used statistical software for data analysis and comput-
ing. The MIXED procedure of SAS and the function “lme” of R are usually
used to fit an LME under normality assumption of distributions. Restricted
maximum likelihood estimates (REML) are produced by default. Throughout
this section, we assume all random variables are normally distributed. When
fitting the model in Example 5.3, zero or extremely large standard error was
observed in SAS output, and construction of confidence intervals failed using
R [18]. When fitting a model where one of the random effects terms is totally
confounded with the residual error, an extremely wide confidence interval was
observed for the residual error [13].

We conducted a simulation study to examine the frequency of non-convergence,
zero or extremely large standard errors, failure of confidence interval construc-
tion and unreasonably wide confidence interval bounds in non-identifiable mod-
els. In the settings we tried, which will be described in detail below, most of the
times the fitting algorithms converged and about half of the times the output
did not look unreasonable. We use PROC MIXED of SAS (Version 9.2) and the
“lme” function of the package nlme in a 2.10.1 R environment on a Windows
Vista platform to fit the models. We then use the R “intervals” function to
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obtain the 95% confidence intervals for the standard deviation of the covariance
parameters.

We simulate data from three non-identifiable models, two of which are similar
to the model in [18] (revisited in Example 5.3) with a generalized design ma-
trix associated with the random effects. Non-identifiability is justified by Corol-
lary 4.1, (a) and (b) of Theorems 4.3 respectively, together with Theorem 4.5.
In the form of (3), the response vector yi is of length 2 and the matrix Xi is
( 1 0

1 1
) for all i. The fixed effects take value β = (1, 0.5)′ and we have Σǫi = Σǫ

for all i. In Model A, we have an MI structured Σu and a CS structured Σǫ. In
Model B, Σu is VC structured and Σǫ has a MI structure. In Model C, both
Σu and Σǫ are MI structured. Specifically, the models have the following form.

Model A: Zi = 12,Σu = σ2

u,Σǫ = σ2

(

1 ρ
ρ 1

)

,

where σ2

u = 1, σ2 = 0.5, ρ = 0.5;

Model B: Zi =

(

1 1.5
1 −1.5

)

,Σu =

(

σ2

u1 0
0 σ2

u2

)

,Σǫ = σ2I2,

where σ2

u1 = 1, σ2

u2 = 0.8, σ2 = 0.5;

Model C: Zi =

(

1 1
1 −1

)

,Σu = σ2

uI2,Σǫ = σ2I2,

where σ2

u = 1, σ2 = 0.5.

We consider two sample sizes N = 500 and N = 1000, and conduct 1000 sim-
ulations for each sample size and model. In the following, we show the results
from the REML estimates. The estimates from the maximum likelihood method
are very similar and are summarized in Tables 1-3 and Figures 7-12 of the sup-
plementary material. Table 1 shows how many times the model fitting algorithm
converges among the 1000 simulations. In the table, we see the majority con-
verges. Table 1 also shows how many successes of constructing the confidence
intervals. We see more confidence intervals are obtained for larger sample size,
except for Model A. Usually intervals are obtained for more than half of the
times. In particular, we get 958 intervals from Model C when N = 1000.

To study the scale of the standard errors of each covariance parameter, we
look at the quantiles of the standard errors and summarize them in Table 2. In

Table 1

Number of convergence and the number of successfully constructed confidence intervals out

of 1000 simulations from REML method

Software N Model A Model B Model C
SAS # of Convergence 500 1000 1000 1000

1000 1000 1000 1000
R # of Convergence 500 1000 933 1000

1000 1000 984 997
# of Intervals Constructed 500 574 505 439

1000 481 625 958
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the table, we see when N = 500, parameters ρ in Model A, σ2 in Model B and
σ2 in Model C have identically zero standard errors. However, for bigger sample
size N = 1000, there is only a tiny proportion of zero standard errors for them.
Though about 50% of the standard errors of σ2

u1 and σ2

u are zero in Model B
and C respectively, the rest of the other 50% are not of a large scale with the
maximum being 2.538 and 2.002. We observe extremely large standard errors
for σ2

u and ρ in Model A when N = 1000, but the proportion of them is no more
than 1%. Histograms for each estimated parameters are provided in Figures 1, 3
and 5 of the supplementary material. In the plots, we do not observe large scale
estimates but sometimes zero estimates where the standard errors are also zero.

To check the length of the 95% confidence intervals on the covariance param-
eters, we summarize the quantiles of the lengths in Table 3. In the table, we
observe smaller lengths for bigger sample size N = 1000. In Model A, when N =
500, 90% of the intervals are shorter than 4 with the widest being 3.989 for σ.
When N = 1000, the proportion increases to 95% by the same cutoff 4. In Model
B, we don’t observe very wide intervals for σu1 and σu2 when N = 1000 and 99%
of the intervals are not wide with the widest being 3.845 when N = 500. For σ,
80% of the intervals are shorter than 3.18 when N = 500 and 95% of them are
shorter than 1.917 when N = 1000. In Model C, for σu, 95% of the intervals are
shorter than 1.435 when N = 500 while all the intervals are shorter than 2.757
whenN = 1000. For σ, 60% of the intervals are shorter than 3.405 whenN = 500
and 95% are shorter than 1.671 when N = 1000. Histograms for each estimated
parameters are provided in Figures 2, 4 and 6 of the supplementary material.

In summary, for the non-identifiable models considered in the simulation
study, the fact that they were non-identifiable could often not be easily detected,
and it would be useful to have another way to check identifiability. We will
provide an easy to use analytic method in the next Section.

4. Main results

In this section, we present conditions of identifiability and study commonly used
covariance structures. In Sections 4.1-4.4, our study focuses on the individual
model (1). In Section 4.5, we investigate the relationship of identifiability be-
tween the individual model (1) and the joint model (3), and generalize a known
result in [2].

The obtained results in Sections 4.1-4.4 are organized as follows. Theorem 4.1
gives a necessary and sufficient condition for the existence of (θ∗

u, θ
∗
ǫ ) 6= (θu, θǫ),

satisfying (2). The condition relies mainly on the design matrix Z via HZ =
Z(Z′Z)−1Z′. A sufficient condition of identifiability is then provided in Theo-
rem 4.2. Necessary and sufficient conditions of non-identifiability under a UNΣu

and a CS or VC Σǫ are derived from Theorem 4.1 and presented in Section 4.2.
In Section 4.3, identifiability conditions under an MK or MA(1) Σǫ are derived
from Theorem 4.2. In Section 4.4, we derive conditions of non-identifiability un-
der a VC or MI Σu and Σǫ from Theorem 4.1, where Z has a more general form
than in Example 5.3.
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4.1. General conditions

Theorem 4.1. ∀(θu, θǫ), ∃ (θ∗
u, θ

∗
ǫ ) 6= (θu, θǫ) such that (2) holds if and only

if ∀θǫ, ∃ θ∗
ǫ 6= θǫ, such that Z′ΣǫZ 6= Z′Σ∗

ǫZ,

HZ [Σǫ −Σ∗
ǫ ] = Σǫ −Σ∗

ǫ , (4)

and
Σ∗

u = Σu + (Z′Z)−1Z′ [Σǫ −Σ∗
ǫ ]Z(Z

′Z)−1. (5)

We note that θ∗
u 6= θu is implied by the first condition and (5). Theorem 4.1

serves as a necessary condition for model non-identifiability. When the model
is not identifiable, (5) also gives the form of Σ∗

u. Usually parameters in Σu and
Σǫ are unknown, and the existence of θ∗

ǫ remains uncertain. However, (4) or
(5) can be verifiable irrespective of the unknowns. If any of the conditions fails,
the model is then identifiable. In Example 5.2, we see (4) fails where Σǫ has
a block diagonal form. If one finds a θ∗

ǫ satisfying the conditions, the model is
then not identifiable if θ∗

ǫ ∈ Θǫ and θ∗
u ∈ Θu. The results in Sections 4.2 and

4.4 are then derived from this perspective where we find a θ∗
ǫ deviating from θǫ

by one or more elements. Once the structures are specified, non-identifiability
only relies on whether certain properties of Z are satisfied or not.

Suppose ∀θǫ, ∃ θ∗
ǫ 6= θǫ satisfying (4). Since the rank of HZ is q, the rank

of HZ(Σǫ −Σ∗
ǫ ) is at most q. In order for (4) to hold, the rank of Σǫ −Σ∗

ǫ has
to be less than or equal to q. If for any θ∗

ǫ 6= θǫ which are both in Θǫ, we have
rank(Σǫ −Σ∗

ǫ ) > q, (4) then fails.

Theorem 4.2. Suppose n > q. Model (1) is identifiable if rank(Σǫ −Σ∗
ǫ ) > q

for any θ∗
ǫ 6= θǫ which are both in Θǫ.

4.2. UN+CS/VC

We derive if and only if conditions of non-identifiability under a UN Σu and a
CS or VC Σǫ.

Corollary 4.1. Suppose Σu and Σǫ have the UN and the CS structures re-
spectively. Suppose the matrix Z satisfies 1′Z 6= 0 and rank(Z) = q with
1 ≤ q < n− 1. Model (1) is non-identifiable if and only if HZ1 = 1.

The condition HZ1 = 1 amounts to checking if the sum of the elements of
each row of HZ is equal to one. For the case q = 1, Σu is a scalar and Z is a
column vector (z1, . . . , zn)

′ with

HZ =









z2

1

s2z

z1z2
s2z

· · · z1zn
s2z

...
...

znz1
s2z

znz2
s2z

· · ·
z2

n

s2z









, s2z =
∑

z2i .

Thus, for q = 1, the model is non-identifiable if and only if Z is a non-zero
constant vector.
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Suppose that Σǫ have a VC structure as

Σǫ = diag{σ2

1
In1

, σ2

2
In2

, σ2

kInk
},

k
∑

j=1

nj = n, σ2

j > 0, j = 1, . . . , k,

σ2

i 6= σ2

j , if i 6= j. (6)

Corresponding to the dimension nj of each component σ2

j , we first partition the
matrix Z into sub-matrices Zj with dimensions nj × q, j = 1, . . . , k, i.e. Z′ =
(Z′

1
, . . . ,Z′

k). Similarly, we partition diagonal elements of HZ into vectors, hj ’s,
where the length of hj is nj , 1 ≤ j ≤ k. That is, diag(HZ) = (h′

1
, . . . ,h′

k)
′.

Corollary 4.2. Suppose Σu and Σǫ are UN and VC structured respectively.
Model (1) is not identifiable if and only if for at least one j, Z′

jZj 6= 0 and
hj = 1, 1 ≤ j ≤ k.

4.3. MK/MA(1)

We will see the model is often identifiable as the conditions imposed on the
dimension of Z are very mild, irrespective to the Σu structure. We consider
the MK Σǫ as Σǫ = σ2R, where R is a known covariance matrix. Clearly for
any σ∗2 6= σ2, Σǫ − Σ∗

ǫ = (σ2 − σ∗2)R is invertible, and so is of rank n. By
Theorem 4.2, we get the following result.

Corollary 4.3. Suppose n > q. Model (1) is identifiable if Σǫ = σ2R, where
σ2 > 0 and R is a known covariance matrix.

Let T be an n×n Toeplitz matrix with ones on the two parallel subdiagonals
and zeroes elsewhere. An MA(1) structured Σǫ has the form σ2(I+ ρT), σ2 >
0, |ρ| < 1/2. We have the following result.

Corollary 4.4. Suppose n − 1 > q. Model (1) is identifiable under an MA(1)
structured Σǫ.

4.4. Conditions under a generalized Z

We consider a more general design matrix

Z =

(

1 v
1 z

)

, z 6= v, (7)

than ( 1 3

1 6
) in Example 5.3. We derive conditions under which the model is not

identifiable where Σu or Σǫ is MI or VC structured. We note that under these
structures Σy is not over-parametrized as the total number of parameters does
not exceed 3.

Theorem 4.3. Given Z in (7), the model is not identifiable in each of the
following cases: (a) z = −v, Σu has a VC structure and Σǫ has an MI structure;
(b) z = −v, z2 = 1, both Σu and Σǫ have MI structures; (c) zv = −1, Σu is
MI structured and Σǫ has a VC structure.



Identifiability of LME 255

4.5. Conditions of the joint model

Statistical inference is normally based on the joint model (3) of all the individ-
uals. Intuitively, if we are able to identify Σu from one individual model, then
we can identify all of the Σǫi’s. Theorem 4.4 summaries this observation for an
individual model and will be used in the proof of Theorem 4.5.

Theorem 4.4. The model (1) is identifiable under any of the following con-
ditions: (a) Σu is known; (b) Σǫ is known; (c) ZΣuZ

′Σǫ
−1 = K, where K is

known and K+ I is of full column rank.

The conditions are analogous to those in measurement error models where
measurement variance or ratio of measurement variances is assumed known [3]
(p. 14, 30, 103).

Theorem 4.5. The joint model (3) is identifiable if and only if at least one
individual model is identifiable.

Theorem 4.5 reduces identifiability verification of a joint model to the ver-
ification of individual models. For instance, if an i-th individual model has a
ni× q Zi of full rank and Σǫi = σ2Ini

, where ni > q, then this individual model
is identifiable by Corollary 4.3 and so is the joint model. Note that the other
individual models can still have their Zj ’s not of full rank.

[2] studies identifiability of the joint model assuming Σǫi = σ2Ini
and Σu =

σ2E, where E is an unknown covariance matrix. The author shows that the joint
model is identifiable if at least one matrix Zi is of full rank and

∑N

i=1
(ni−q) > 0.

This setup in which covariance matrices Σǫi and Σu share a common parameter
σ2 is different from ours. We observe that the condition

∑N

i=1
(ni−q) > 0 implies

ni > q for at least one i while the reverse is not necessarily true. Our result can
also be applied to study Σǫi’s of other structures.

5. Examples

We verify non-identifiability or identifiability of models in literature using the
results in Section 4. For simplicity, we only give brief descriptions, and omit the
fixed effects part in the models and only write the random effects and the error
part, indicated by

r
=. For details of the studies, please refer to the corresponding

literature.

Example 5.1.

[9] analyzed data from an experiment that investigated effects of several sup-
plemental sources of dietary Mg (Magnesium) on urinary Mg excretion in lambs.
Lambs were assigned to each treatment and urinary Mg was measured for each
lamb on consecutive days. Let yijk denote the response at time k from lamb j
in treatment group i. Let uij denote the random effect of lamb j in treatment
group i and let ǫijk denote the error. The model used for the repeated measures
experiment is

yijk
r
= uij + ǫijk, k = 1, . . . , t,
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uij ∼ N(0, σ2

u), ǫij = (ǫij1, . . . , ǫijt)
′ ∼ N(0,Σǫ),

. . . , uij , . . . , ǫij , . . . , are mutually independent.

Let yij = (yij1, . . . , yijt)
′. We write the model as

yij
r
= 1tuij + ǫij .

UN and CS Σǫ were considered in the model. We notice that a UN Σǫ with an
additional σ2

u over-parameterizes the covariance matrix of yij . Although there
is no over-parameterization under the CS structure, non-identifiability of an
individual model follows from Corollary 4.1 and its following observation. By
Theorem 4.5, the joint model of all yij ’s is not identifiable either.

Example 5.2.

[14] and [19] studied the effect of different lead treatments on the growths
of American Kestrel nestlings. The American Kestrel nestlings, in each of ten
nests, are orally dosed with a treatment and the birds of each nest were weighed
every day. The experiment followed a randomized block design with nests as the
blocking factor. Let yijk denote the log(body weight) of the jth bird (j = 1, 2, 3)
in the ith nest (i = 1, . . . , 10) on the kth day (k = 1, . . . , 5). The model is

yijk
r
= uik + ǫijk, k = 1, . . . , 5,

ui = (ui1, . . . , ui5)
′ ∼ N(0,Σu), ǫij = (ǫij1, . . . , ǫij5)

′ ∼ N(0,Σǫ),

. . . ,ui, . . . , ǫij , . . . are mutually independent.

This model is the same as the model in Example 5.1 except that the random
effect uik relies on the index k of the repeated measures instead of on the index
j of the individuals.

Let yij = (yij1, . . . , yij5)
′
and let yi = (y′

i1, . . . ,y
′
i3)

′
. We write

yi
r
= (13 ⊗ I5)ui + ǫi,

ǫi = (ǫ′i1, . . . , ǫ
′
i3)

′ ∼ N(0, I3 ⊗Σǫ).

For this model, we have Z = 13 ⊗ I5, Z
′Z = 3I5, and HZ = Z(Z′Z)−1Z′ =

(J3/3) ⊗ I5. The left hand side of (4) in Theorem 4.1 is equal to HZ[I3 ⊗
(Σǫ −Σ∗

ǫ )] = (J3/3)⊗ (Σǫ −Σ∗
ǫ ). In order for this to equal the right hand side

I3 ⊗ (Σǫ −Σ∗
ǫ ), we must have θǫ = θ∗

ǫ . The condition (4) is not satisfied and
thus the model of a yi is identifiable. By Theorem 4.5, the joint model of all
yi’s is also identifiable.

Example 5.3.

[18] analyzed a Dental Veneer data set where the response, gingival crevicular
fluid (GCF), was measured at two post-treatment time points (t1 = 3 and t2 = 6
months) for each tooth, with teeth nested within patients. Let yijk denote an
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individual GCF response at visit k (k = 1, 2, corresponding to months 3 and 6)
on tooth j nested within patient i. The model is

yijk
r
= (1 tk)vi + uij + ǫijk, k = 1, 2,

vi = (vi1, vi2)
′
∼ N(0,Σv), uij ∼ N(0, σ2

u), ǫij = (ǫij1, ǫij2)
′ ∼ N(0,Σǫ),

. . . ,vi, . . . , uij , . . . , ǫij , . . . , are mutually independent.

Let yij = (yij1, yij2) and Zv = ( 1 3

1 6
). We write

yij
r
= Zvvi + 12uij + ǫij ,

and get Σyij
= ZvΣvZ

′
v +Σij , where Σij = σ2

uJ2 +Σǫ.
Let yi = (yi1, . . . ,yini

). We further write

yi
r
= (1ni

⊗ Zv)vi + (Ini
⊗ 12)ui + ǫi,

ui = (ui1, . . . , uini
)′ ∼ N(0, σ2

uIni
), ǫi = (ǫ′i1, . . . , ǫ

′
ini

)′ ∼ N(0, Ini
⊗Σǫ).

UN and CS Σǫ were considered and we show non-identifiability of the models.
We consider the random part of yi leaving out the term involving vi, and get
Cov((Ini

⊗ 12)ui + ǫi) = Ini
⊗ σ2

u(121
′
2
) + Ini

⊗ Σǫ = Ini
⊗ Σij . Similarly as

in Example 5.1, Σij is not identifiable under a UN or CS Σǫ, and so is the
covariance matrix of yi.

6. Summary and discussion

We derive conditions of identifiability for the covariance parameters in an LME
and study commonly used covariance structures. Theorem 4.1 serves as a neces-
sary condition of non-identifiability. The conditions can be verifiable irrespective
of the structures specified. If any of the conditions fails, the model is identifiable.
If the conditions are satisfied, identifiability depends on the structures used and
if certain properties of the design matrix associated with the random effects, Z,
are satisfied or not. Theorem 4.2 presents a sufficient condition of identifiability.
To check identifiability of the joint model, it reduces to checking if at least one
individual model is identifiable.

Our study is based on model (1) with two random components, u and ǫ.
In some models, there may be three random components as in Example 5.3 or
more. The results may still be applicable to study identifiability of these models.
For instance, suppose there are two random effects and using similar notation,
we have

y
r
= Z1u1 + Z2u2 + ǫ,

u1 ∼ (0,Σu1), u2 ∼ (0,Σu2).

If u1 and u2 are independent, we can group one of them with the error, and study
identifiability of the grouped term alone and identifiability with the grouped
term and the remaining random effects included.
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On the other hand, the model can be written in the form of (1) with

Z = (Z1 Z2) , u =

(

u1

u2

)

, Σu =

(

Σu1 Σu1,u2

Σu2,u1 Σu2

)

.

If Σu1,u2 6= 0, Σu is UN structured and the conditions under a CS or VC Σǫ

can be verifiable. If Σu1,u2 = 0, Σu then has a block diagonal structure. The
conditions under an MK or MA(1) Σǫ can still be checked as only the dimension
of Z is involved. Other conditions may be derived from Theorem 4.1 for specific
Z and structures.

Supplementary Material

Supplementary materials for identifiability of linear mixed effects

models

(doi: 10.1214/13-EJS770SUPP; .pdf). Tables and figures referenced in Section 3
are provided in the supplementary material.
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Appendix

Theorem 4.1

Proof. Suppose the model is not identifiable. We premultiply (2) by Z′, post-
multiply it by Z and then pre- and postmultiply by (Z′Z)−1 to get

Σ∗
u −Σu = (Z′Z)−1Z′ [Σǫ −Σ∗

ǫ ]Z(Z
′Z)−1, (8)

which gives (5). Given Σ∗
u 6= Σu, we have Z′ [Σǫ −Σ∗

ǫ ]Z 6= 0. To derive (4),
premultiply (8) by Z, postmultiply (8) by Z′ to get

Z(Σ∗
u −Σu)Z

′ = HZ [Σǫ −Σ∗
ǫ ]HZ (9)

which, by (2), is the same as

Σǫ −Σ∗
ǫ = HZ [Σǫ −Σ∗

ǫ ]HZ. (10)

Premultiplying (10) by the idempotent matrix HZ gives

HZ [Σǫ −Σ∗
ǫ ] = HZ [Σǫ −Σ∗

ǫ ]HZ.

Substituting (10) into the right side of the above yields (4).

http://dx.doi.org/10.1214/13-EJS770SUPP
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To prove the converse, we want to show that (4) and (5) lead to (2). It is
clear from (5) that (9) holds. The conditions Σǫ 6= Σ∗

ǫ and Z′ΣǫZ 6= Z′Σ∗
ǫZ

ensure Σu 6= Σ∗
u. It remains to show that (10) holds since substituting (10) into

the right side of (9) yields (2). To show (10), from (4) and the symmetry of
Σǫ −Σ∗

ǫ , we see that

HZ[Σǫ −Σ∗
ǫ ] = [Σǫ −Σ∗

ǫ ]HZ.

Premultiplying the above identity by the idempotent matrix HZ gives HZ[Σǫ−
Σ∗

ǫ ] = HZ[Σǫ − Σ∗
ǫ ]HZ. Substituting (4) for the left side of the equation

gives (10).

Corollary 4.1

Proof. To prove the corollary, we use the following result in [4].

Lemma A.1. Given two scalars a and b, the characteristic equation of the
matrix C = (a− b)I+ bJ in λ is

(a+ (n− 1)b− λ) (a− b− λ)n−1,

and hence n− 1 characteristic roots are equal to a− b and one root is equal to
a+ (n− 1)b.

Suppose HZ1 = 1. Given an arbitrary Σǫ, let s > 1, σ∗2 = sσ2 and ρ∗ =
(ρ− 1)/s+ 1. We get −1/(n− 1) < ρ∗ < 1. Define Σ∗

ǫ = σ∗2 [(1− ρ∗)I+ ρ∗J].
Then Σǫ−Σ∗

ǫ = (σ2−σ∗2)J and, since HZ1 = 1, it is clear that (4) is satisfied.
By assumption 1′Z 6= 0, it holds Z′(Σǫ − Σ∗

ǫ )Z 6= 0. We now show that, for
any Σu of UN structure, there exists s∗ > 1 so that Σ∗

u defined as in (5) is also
UN structured whenever 1 < s < s∗. Plugging Σǫ −Σ∗

ǫ = (σ2 − σ∗2)J into (5)
yields

Σ∗
u = Σu + σ2(1− s)(Z′Z)−1Z′JZ(Z′Z)−1. (11)

By assumption 1′Z 6= 0 and Z is of full column rank, the matrix (Z′Z)−1Z′JZ(Z′Z)−1

is non-negative definite and of rank one since J = 11′. Let λ be its non-zero
and thus the largest eigenvalue of (Z′Z)−1Z′JZ(Z′Z)−1. Let λm be the smallest
eigenvalue of the matrix Σu, and let s∗ = λm/(λσ2) + 1.

Σ∗
u = Σu + σ2(1 − s)(Z′Z)−1Z′JZ(Z′Z)−1

≥ λmI+ σ2(1− s)λI

> 0,

whenever 1 < s < s∗.
Now suppose that the model is not identifiable. Then, by Theorem 4.1, ∀ Σǫ,

there exists θ∗
ǫ 6= θǫ satisfying (4) and, since the rank of HZ is q, the rank of

Σǫ −Σ∗
ǫ is at most q. We have

Σǫ −Σ∗
ǫ =

[

(σ2 − σ∗2)− (σ2ρ− σ∗2ρ∗)
]

I+ (σ2ρ− σ∗2ρ∗)J.
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By Lemma A.1, the eigenvalues of Σǫ − Σ∗
ǫ are (σ2 − σ∗2) − (σ2ρ − σ∗2ρ∗),

of multiplicity n − 1 and (σ2 − σ∗2) + (n − 1)(σ2ρ − σ∗2ρ∗), of multiplicity 1.
Since Σǫ − Σ∗

ǫ is not a zero matrix, all of the eigenvalues cannot be equal to
0: we must either have no eigenvalues equal to 0, one eigenvalue equal to 0, or
n − 1 eigenvalues equal to 0. In order to have rank(Σǫ − Σ∗

ǫ ) ≤ q, the n − 1
multiple eigenvalues have to be zero since 1 ≤ q < n − 1 by assumption. That
is, σ2 − σ∗2 = σ2ρ − σ∗2ρ∗ and so Σǫ −Σ∗

ǫ = (σ2 − σ∗2)J. Plugging this into
(4) yields HZJ = J which further gives HZ1 = 1.

Corollary 4.2

Proof. We first note a fact about the matrix HZ. Since HZ is symmetric and
idempotent,

HZ[k, k] =
∑

l

(HZ[k, l])
2
= (HZ[k, k])

2
+
∑

l 6=k

(HZ[k, l])
2
.

Thus, if HZ[k, k] = 1, then HZ[k, l] = HZ[l, k] = 0 for all l 6= k. To prove the
corollary, without loss of generality, we consider the case j = 1.

Suppose h1 = 1. That is, HZ[i, i] = 1 for all 1 ≤ i ≤ n1. Then by the observa-
tion above, HZ[i, j] = HZ[j, i] = 0 for all j 6= i. Given an arbitrary Σǫ as in (6),
we choose σ∗

1

2 where 0 < σ∗
1

2 < σ2

1
, and define Σ∗

ǫ = diag{σ∗
1

2In1
, σ2

2
In2

, . . . ,
σ2

kInk
}. Then Σǫ −Σ∗

ǫ = diag{(σ2

1
− σ∗

1

2)In1
, 0, . . . , 0}. As such, (4) is satisfied.

Since (σ2

1
− σ∗

1

2) > 0 and Z′
1
Z1 6= 0, Z′(Σǫ −Σ∗

ǫ )Z = (σ2

1
− σ∗

1

2)Z′
1
Z1 is semi-

positive definite. Thus, Σ∗
u defined in (5) also has a UN structure. Therefore,

the model is not identifiable by Theorem 4.1.
Suppose that the model is not identifiable. Then by Theorem 4.1, ∀ Σǫ, there

exists Σ∗
ǫ 6= Σǫ satisfying (4). That is, at least one of the (σ2

j − σ∗
j
2)Inj

is not

zero. Without loss of generality, we assume that σ2

1
6= σ∗

1

2. By (4), the 1st to
n1th diagonal elements of HZ must be one. That is, h1 = 1. Since Σ∗

u 6= Σu

which is implied by model non-identifiability, we have from (5) Z′(Σǫ−Σ∗
ǫ )Z =

Z′diag{(σ2

1
− σ∗

1

2)In1
, 0, . . . , 0}Z 6= 0. That is, Z′

1
Z1 6= 0.

Corollary 4.4

Proof. To prove the corollary, we use the following lemma which is a result in [4]

Lemma A.2. Let T be an n× n Toeplitz matrix with ones on the two parallel
subdiagonals and zeroes elsewhere. Given two scalars a0 and a1, the eigenvalues
of the n× n matrix C = a0I+ a1T are

λi = a0 + 2|a1| cos
iπ

n+ 1
, i = 1, . . . , n.

By Lemma A.2, the eigenvalues of the difference matrix Σǫ − Σ∗
ǫ = (σ2 −

σ∗2)I+ (σ2ρ− σ∗2ρ∗)T are

λi = (σ2 − σ∗2) + 2
∣

∣

∣σ2ρ− σ∗2ρ∗
∣

∣

∣ cos
iπ

n+ 1
, i = 1, . . . , n.
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Given any (σ2, ρ) and (σ∗2, ρ∗), with (σ2, ρ) 6= (σ∗2, ρ∗), the number of zero λi’s
is at most one. Hence, the rank of the difference matrix is greater than or equal
to n− 1. Model identifiability then follows from Theorem 4.2.

Theorem 4.3

Proof. Let GZ = Z(Z′Z)−1 and let D ≡ Σǫ−Σ∗
ǫ =

(

d1 d2

d2 d3

)

. Direct calculation
yields

G′
Z
DGZ =

1

(z − v)2

(

z2d1 − 2vzd2 + v2d3 −zd1 + (z + v)d2 − vd3
−zd1 + (z + v)d2 − vd3 d1 − 2d2 + d3

)

.

(12)

We define a VC structured Σu and Σǫ as diag{σ2

u1, σ
2

u2} and diag{σ2

1
, σ2

2
}

respectively. We define elements of MI structured Σu and Σǫ as σ2

u and σ2

respectively.

The VC or MI structure of Σǫ implies d2 = 0, and so (12) simplifies to

1

(z − v)2

(

z2d1 + v2d3 −zd1 − vd3
−zd1 − vd3 d1 + d3

)

. (13)

To prove (a) or (b), we notice that a MI structured Σǫ has d1 = d3. If z = −v,
(13) further simplifies to

1

2z2

(

z2d1 0
0 d1

)

.

Given σ2, we define σ∗2 = rσ2. To prove (a), we let 0 < r < 1. It follows d1 > 0
and Σ∗

u is VC structured. To prove (b), we further require z2 = 1 and it follows
that Σ∗

u is MI structured.

To prove (c), we first define σ∗
1

2 = rσ2

1
. We then define σ∗

2

2 = sσ2

2
, where

s = (zσ2

1
)(1 − r)/(vσ2

2
) + 1. We will show at last the existence of r such that

σ∗
1

2 and σ∗
2

2 are positive. By this definition, we have zd1+ vd3 = 0 and thus the
off-diagonal elements of (13) are zero. Then (13) further simplifies to

1

(z − v)2

(

z(z − v)d1 0
0 1

v
(v − z)d1

)

.

In order for Σ∗
u to have a MI structure, we require z(z− v) = (v− z)/v which is

equivalent to zv = −1. As a result, the diagonal elements of the above matrix
are (z2 + 1)d1/(z − v)2. Clearly if r < 1, Σ∗

u then is MI structured. We let
max{0, 1− σ2

2
/(z2σ2

1
)} < r < 1 which ensures that d1 > 0 and s > 0.

Theorem 4.4

Proof. To prove (a), we notice if Σu is known, then ZΣuZ
′ is known, and so, by

examination of (2), Σǫ is completely determined. Similarly, to prove (b), if Σǫ is
known, then Σ∗

ǫ = Σǫ and it follows that ZΣuZ
′ = ZΣ∗

uZ
′. We have Σu = Σ∗

u

since Z is of full column rank.
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By assumption, we have ZΣuZ
′ = KΣǫ and ZΣ∗

uZ
′ = KΣ∗

ǫ . Substituting
these expressions into (2) yields

K(Σ∗
ǫ −Σǫ) = Σǫ −Σ∗

ǫ ,

that is,

(K+ I)(Σ∗
ǫ −Σǫ) = 0.

Since K+ I is of full rank, we must have Σ∗
ǫ = Σǫ which is condition (a).

Theorem 4.5

Proof. We notice each individual model (1) shares a common parameter Σu. If
one individual model uniquely determines Σu and its Σǫi, the identified Σu will
then help to identify Σǫj for each other j-th individual model by Theorem 4.4.
Therefore, the joint model is identifiable. On the other hand, if the joint model
is identifiable, then clearly each individual model is identifiable.
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