
Brazilian Journal of Probability and Statistics
2015, Vol. 29, No. 1, 145–171
DOI: 10.1214/13-BJPS233
© Brazilian Statistical Association, 2015

A gene-by-gene multiple comparison analysis:
A predictive Bayesian approach

Erlandson F. Saraivaa and Francisco Louzadab

aUniversidade Federal de Mato Grosso do Sul
bUniversidade de São Paulo

Abstract. In this paper, we propose a hierarchical Bayesian framework with
a prior Dirichlet process for gene-by-gene multiple comparison analysis. The
comparison among experimental conditions are made using the posterior
probability for hypothesis of equality or inequality. To calculate the posterior
probabilities, we use the Polya urn scheme through latent variables and the
Bayes factor. The performance of the proposed method, as well as a compar-
ison with usual Tukey-test, are evaluated on artificial data and on a shotgun
proteomics data set. The results reveal a better performance of the proposed
methodology in identification of difference of means and/or variance.

1 Introduction

A common interest in gene expression data analysis is to identify genes that present
significant changes in expression levels among biological experimental condition.
The identification of these genes is important because it may allow biologists and
geneticists to study possible relationships among genes, among genes and proteins,
which genes may be involved in the origin and/or evolution of same disease with
genetic origin, or which genes react to a drug stimulus, and so on. For further
discussion and additional references on DNA array technology, see Schena et al.
(1995), DeRisi et al. (1997), Arfin et al. (2000), Lonnstedt and Speed (2001), Wu
(2001), Hatifield et al. (2003). Here, we restrict our discussion to DNA microarray
data sets from oligonucleotide arrays (Irizarry et al., 2003). We assume that data
consists of a set of replicate measurements for each gene.

Under the first level of analysis, where each gene is analyzed separately, the
identification of genes differentially expressed, usually, is made by using a statis-
tic and a cutoff value to separate the genes differentially expressed from the non
differentially expressed ones. The literature on statistical methods to identify genes
differentially expressed is extensive. We can cite the usual two-sample t-test (TT),
the Cyber-t (CT) proposed by Baldi and Long (2001), the Bayesian t-test (BTT)
proposed by Fox and Dimmic (2006) and the predictive Bayes Factor (PBF) pro-
posed by Louzada et al. (2014). The CT and BTT are developed through modifi-
cations of the standard error estimate of the two sample difference present in the
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denominator of the standard t statistics. The PBF compare observed gene expres-
sion level from treatment and control using the posterior probability of the differ-
ence which is calculated using the Bayes factor. A large simulation study revealed
a better performance of the PBF in identification of difference of means and/or
variance in small sized samples, usually present in gene expression data analysis
(Louzada et al., 2014).

The methods presented above can be applied only to compare a treatment with
a control. This can be seen as a drawback to be overcome, since in practice we
often find the need for multiple comparisons. For instance, consider the shotgun
proteomics data set, extracted from the site http://cybert.ics.uci.edu/anova (Baldi
and Long, 2001). The data set is composed by proteins from a control and two
treatment conditions.

In this paper, we extend the Bayesian approach proposed by Louzada et al.
(2014), by making a comparison gene-by-gene in the multiple comparison case,
that is, from a control and more than one treatment experimental condition. The
proposed approach is within a Bayesian framework with a Dirichlet process prior.
The advantage of using the Dirichlet process prior is its discreteness which al-
lows the parameters to be coincident with positive probability. Using this fact,
we develop a multiple comparison approach using the posterior probabilities for
hypothesis of equality or inequality among of experimental conditions. The pos-
terior probabilities are calculated based on the Polya urn scheme (Blackwell and
MacQueen, 1973) using latent variables and the Bayes factor. The advantage of
using the Bayes factor is that it allows for compare the observed expression lev-
els from treatments as well as the distributions associated to different treatment
experimental conditions (Louzada et al., 2014).

The proposed method performance is verified in a generated and in a real
dataset, where also it is compared to an analysis of variance (ANOVA) followed
by a Tukey-test (Cox and Reid, 2000). The ANOVA is applied to identify genes
which show significant difference among experimental conditions. But, it does not
identify which experimental conditions show the difference. Thus, we apply the
Tukey-test to selected genes from the ANOVA in order to identify which exper-
imental conditions show significant difference. The choice of the Tukey-test is
based on the fact that it is a commonly used post hoc test, see for example Pavlids
(2003), Parkitna et al. (2006), Goeman and Bühlmann (2007).

The comparison between methods is made in terms of the true positive rate,
true discovery rate and false discovery rate. The simulation results reveal a better
performance of the proposed method. We also illustrate the performance of the
proposed method using a real data set. The real data set is a shotgun proteomics
experiment extracted from the site http://cybert.ics.uci.edu/anova (Baldi and Long,
2001).

The remainder of the paper is structured as follows. In Section 2, we describe
the Bayesian model for gene expression data analysis and the Polya urn scheme

http://cybert.ics.uci.edu/anova
http://cybert.ics.uci.edu/anova
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using latent variables. In Section 3, we calculate the posterior probabilities for hy-
pothesis of equality or inequality among experimental conditions using the Bayes
factor. The performance of the proposed approach as well as a comparison with
Tukey-test is presented in Section 4. In Section 5, the paper is concluded with final
remarks.

2 Bayesian model for gene expression data analysis

Consider a DNA array experiment with N genes performed for experimental con-
ditions E1, . . . ,EM , where E1 represents the control, E2 represent the first treat-
ment and successively until EM , the last treatment. Assume that each experimental
condition is replicated n times. Denote by xigm the ith observed expression level
(or its logarithm), for gene g, in experimental condition m, for m = 1, . . . ,M , i =
1, . . . , n and g = 1, . . . ,N . Let Xg = {Xg1, . . . ,XgM

} be all observed expression
levels for gene g in M experimental conditions, where Xgm = (x1gm, . . . , xngM

)′ is
a n × 1 vector of conditionally independent observations for gene g on treatment
m, for g = 1, . . . ,N and m ∈ {1, . . . ,M}.

Assume that data have already been preprocessed with appropriate normaliza-
tion. For further discussion and additional references on normalization methods,
see Yang et al. (2002), Huber et al. (2002), Bolstad et al. (2003), Smyth and Speed
(2003), Chen et al. (2004). The real data set used in the paper is normalized ac-
cording to Variance Stabilization and Normalization (VSN) method (Huber et al.,
2002), as described in the site http://cybert.ics.uci.edu/anova from where the data
set was downloaded.

Consider the logarithm of the observed gene expression levels in control and
treatments are generated from normal distributions with mean μgm and variance

σ 2
gm

, Xigm

i.i.d.∼ N (μgm, σ 2
gm

), for i = 1, . . . , n, g = 1, . . . , n and m = 1, . . . ,M .
In order to simplify the notation hereafter we omit the index g in next expres-

sions. Denote parameters by θm = (μm,σ 2
m) and by � = {θ = (θ1, θ2, . . . , θM);

θm ∈ R×R
+} the parametric space, for m = 1, . . . ,M .

The interest here is to verify whether gene g presents different gene expres-
sion levels in different experimental conditions, i.e., if θm = θj or θm �= θj , for all
m ∈ {1, . . . ,M}, j ∈ {1, . . . ,M} and m �= j . This leads to the following multiple
hypotheses testing

H0 :�0 = (θ; θ1 = · · · = θM),

H1 :�1 = (θ; θ1 �= θ2, θ2 = θ3 = · · · = θM),

successively for all combinations of inequality 2 to 2, 3 to 3 (see Apendix A), until
the last one hypothesis, that is,

HT :�T = (θ; θ1 �= · · · �= θM).

http://cybert.ics.uci.edu/anova
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The equality (or not) between θm’s in the hypotheses above, determines parti-
tions on the parameter space, that is, the hypotheses Ht :�t , t = 0,1, . . . , T , are
disjoint and

⋃T
t=0 �t = �. This allow us to develop a hierarchical Bayesian ap-

proach with a prior Dirichlet process on θ1, . . . , θM in order to make simultaneous
comparisons among θm’s (Gopalan and Berry, 1998, Neal, 2000).

2.1 Prior Dirichlet process

Assume that prior distributions for θ1, . . . , θM are sampled from a unknown
distribution G and that G follows a prior Dirichlet process (Ferguson, 1973,
Antoniak, 1974) with baseline distribution G0 and mass parameter α > 0, that
is,

θ1, θ2, . . . , θM |G i.i.d.∼ G,
(1)

G|α,G0 ∼ DP(αG0).

The main advantage of using the prior framework in (1) is the discreteness of
the prior distribution G, given the assumption of a Dirichlet process. Under such
assumption, the parameters θm’s are coincident with positive probability. This fact
is discussed by Blackwell and MacQueen (1973), which show that integrating G

over its prior distribution in (1), θ1, . . . , θM follows a Polya urn scheme, which can
be written as

θ1 ∼ G0,
(2)

θm|θ1, . . . , θm−1 ∼ α

α + m − 1
G0 + 1

α + m − 1

m−1∑
j=1

Iθm(θj ),

where Iθm(θj ) = 1 if θm = θj and Iθm(θj ) = 0 otherwise, for j ∈ {1, . . . ,m − 1}
and m ∈ {2, . . . ,M}.

Note that, at each step of the sample procedure defined in (2), θm may replicate
one of the previous θj ’s, with probability 1

α+m−1
∑m−1

j=1 Iθm(θj ), or may assume
a new value, generated from baseline distribution G0, with probability α

α+m−1 .
Thus, a sample from joint distribution of θ1, . . . , θM yields k groups (1 ≤ k ≤
M) of θm’s with distinct values given by φ1, . . . , φk , generated from the baseline
distribution G0. In the next section, we explore this fact using latent variables in
order to develop the proposed multiple comparison.

2.2 Prior Dirichlet process via latent variables

In order to represent the k groups of θm’s consider the latent variables Z =
(Z1, . . . ,ZM) in a way that Zm is paired with θm and Zm = j indicates that
θm = φj , φj ∼ G0 for m = 1, . . . ,M and j = 1, . . . , k. The configuration of Z de-
fines the groups and the group formed by the subset of index m, so that, Zm = Z1
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define the group of experimental conditions that present no evidence for difference
in relation to the control experimental condition.

Moreover, by introducing the latent variables Z we obtain a partition of all ob-
servations x = (x1, . . . ,xM) in k groups, {D1, . . . ,Dk}, where Dj = {xm;Zm =
j}, with

⋃k
j=1 Dj = x. The set {D1, . . . ,Dk} is paired with the set {φ1, . . . , φk},

i.e., the observations in Dj are modeled by the same distribution F(φj ). The like-
lihood function for Z is given by

L(Z|x) =
k∏

j=1

I(Dj ), (3)

in which

I(Dj ) =
∫ [ ∏

xm∈Dj

f (xm|φj )

]
πG0(φj ) dφj , (4)

where πG0(·) and f (·) represent the densities of the baseline distribution G0 and
of the normal distribution, respectively, for m = 1, . . . ,M and j = 1, . . . , k.

Considering nj the number of observations in Dj given the configuration
Z1, . . . ,Zm−1, the Polya urn scheme in (2) can be replicated by the following
steps:

(i) Initialize Z1 = 1, k = 1, D1 = {x1} and generate φ1 from the baseline distri-
bution, φ1 ∼ G0.

(ii) For m = 2, . . . ,M sample Zm with probabilities given by

P(Zm = j |Z1, . . . ,Zm−1) = nj

α + m − 1
, (5)

P(Zm �= Zj ,∀j < m|Z1, . . . ,Zm−1) = α

α + m − 1
, (6)

for j = 1, . . . , k. For the case in (6) we consider that Zm assumes a new value
j∗ = max(Z1, . . . ,Zm−1) + 1 = k + 1;
(a) If Zm = j for some j ∈ {1, . . . , k}, do Dj = Dj ∪ xm and nj = nj + 1;
(b) If Zm = j∗, does Dj∗ = {xm} and generate φj∗ from the baseline dis-

tribution G0, φj∗ ∼ G0. The number of groups increases by one unit,
k = k + 1.

(iii) Conditional on Z = (Z1, . . . ,ZM), set θm = φj for all Zm = j , j = 1, . . . , k.

2.2.1 Choice of G0. It is now necessary to specify the prior mean G0 of G.
Following, Escobar and West (1995) and Casella et al. (2000) we assume that
under G0

μm|σ 2
m ∼ N

(
μ0,

σ 2
m

λ

)
and σ 2

m ∼ IG
(

τ

2
,
β

2

)
,
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for m = 1,2, . . . ,M , where μ0, λ, τ and β are hyperparameters and IG(·) repre-
sents the inverse gamma distribution with parametrization so that the mean is given
by τ/(β − 2). The choices of the hyperparameters will generally depend upon the
application at hand. At this moment, we leave them unspecified.

Thus, from (4)

I(Dj ) =
[

1

βπ

]nj /2

λ∗�∗
[
1 +

∑
xm∈Dj

x2
m + λμ2

0

β
(7)

− (
∑

xm∈Dj
xm + λμ0)

2

β(nj + λ)

]−((τ+nj )/2)

,

where λ∗ = [ λ
nj+λ

]1/2 and �∗ = �(
τ+nj

2 )/�(τ
2 ), for j = 1, . . . , k.

2.2.2 Choice of α. It is also necessary to either specify a value for α or put a
prior distribution on it. Escobar (1994) and Bhattacharya (2008) assume for α a
Gamma(aα, bα) prior distribution and develop a Gibbs sampler algorithm in order
to estimate a vector of normal means and α. On the other hand, Escobar and West
(1995), Medvedovic and Sivaganesan (2002), Jain and Neal (2004) and Jain and
Neal (2007), fix α equals 1, α = 1. This value of α is a natural choice due to the
way of the Polya urn scheme in (2). Gopalan and Berry (1998) propose a elicitation
procedure to fix a value for α using probabilities P(H0) = α(M − 1)!/∏M

m=1(α +
m−1) and P(HT ) = αM/

∏M
m=1(α +m−1). Thus, setting up P(H0)/P (HT ) = 1

we obtain α = M−1
√

(M − 1)!.
As the proposed procedure does not need MCMC methods to calculate the

posterior probabilities described in Section 3, we opt to follow Escobar (1994),
Medvedovic and Sivaganesan (2002), Jain and Neal (2004, 2007) and Gopalan
and Berry (1998), fixing α = 1 and α = M−1

√
(M − 1)!. In our experience, these

both values of α, worked well. However, it does not restrict the method for being
applicable in cases where the interest also lies in estimation of α, as in approach
of Escobar (1994) and Bhattacharya (2008).

3 Multiple comparison via posterior probability for Z

In this section, we describe the multiple comparison approach using the posterior
probabilities for the latent variables Z.

From Bayes theorem, updating the prior probabilities in (5) and (6) via likeli-
hood function in (3), the conditional posterior probabilities are

P(Zm = j |Z1, . . . ,Zm−1,x) = b
nj

α + m − 1

∫
f (xm|φj )π(φj |Dj)dφj (8)

and

P
(
Zm = j∗|Z1, . . . ,Zm−1,x

) = b
α

α + m − 1

∫
f (xm|φj∗)πG0(φj∗) dφj∗, (9)
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where π(φj |Dj) is the density of the posterior distribution for φj given the set
Dj = {xm′ ;Zm′ = j ∀m′ < m}, j∗ = k + 1 and b is the normalizing constant in
order the probabilities sum up one.

Using (7), the probabilities in (8) and (9) are given by

P(Zm = j |Z1, . . . ,Zm−1,x) = b
nj

α + m − 1

I(Dj ∪ xm)

I(Dj )
(10)

and

P
(
Zm = j∗|Z1, . . . ,Zm−1,x

) = b
α

α + m − 1
I(xm). (11)

We describe bellow the probabilities in (10) and (11) in terms of the Bayes
factor for some particular cases.

3.1 A control and a treatment condition

For this case, m = 1,2 and x = (x1,x2). Initialize with Z1 = 1 and let D1 = {x1}.
Thus, from (10) and (11), respectively,

P(Z2 = 1|Z1 = 1,x) = 1

1 + αB21
and

(12)

P(Z2 = 2|Z1 = 1,x) = αB21

1 + αB21
,

where B21 = I(D1)I(x2)
I(D1∪x2)

is the Bayes factor (Kass and Raftery, 1995) of the model
which assume x1 ∼ F(φ1) and x2 ∼ F(φ2) for φ1 �= φ2 related to a model which
assume x1,x2 ∼ F(φ1). We calculate B21 according to proposal of Louzada et al.
(2014).

For α = 1, probabilities in (12) are the probabilities for models M0 and M1 in
proposal of Louzada et al. (2014). Moreover, following Louzada et al. (2014), if
P(Z2 �= 1|Z1 = 1,x) > P (Z2 = 1|Z1 = 1,x) we set up Z2 = 2. In this case, the
gene presents evidence for difference between treatment and control. Otherwise,
we do Z2 = Z1 = 1. The gene does not have evidence for difference.

3.2 A control and two treatment conditions

For this case, m = 1,2,3 and x = (x1,x2,x3). Initialize by applying the procedure
described in Section 3.1, in order to compare treatment condition 1 with the control
condition.

(a) Given that Z2 = Z1 = 1, do D1 = {x1,x2}. The posterior probabilities for Z3
are given by

P(Z3 = j |Z1 = 1,Z2 = 1,x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2

2 + αB31
, for j = 1,

αB31

2 + αB31
, for j = 2, i.e., j �= 1,
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for B31 = I(D1)I(x3)
I(D1∪x3)

. If P(Z3 �= 1|Z1 = 1,Z2 = 1,x) > P (Z3 = 1|Z1 =
1,Z2 = 1,x) do Z3 = 2. Otherwise, do Z3 = Z2 = Z1 = 1.

(b) Given that Z2 �= Z1, do D1 = {x1} and D2 = {x2}. The posterior probabilities
for Z3 are given by

P(Z3 = j |Z1 = 1,Z2 = 2,x)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

B32

B31 + B32 + αB31B32
, for j = 1,

B31

B31 + B32 + αB31B32
, for j = 2,

αB31B32

B31 + B32 + αB31B32
, for j = 3, i.e., j �= 1,2,

where B3j = I(Dj )I(x3)

I(Dj∪x3)
for j = 1,2. If P(Z3 = j |·) = maxi=1,2,3(P (Z3 = i|·))

do Z3 = j . At this point, another possibility would be randomly generate Z3 =
j with probability P(Z3 = j |·) or, following Shapiro (1977), to consider the
maximum posterior probability, which we therefore prefer.

In the Appendix B, we present the posterior probabilities for the case with a
control and three treatments.

3.3 Algorithm for the general case

For the general case, the probabilities can be calculated by the following steps:

(i) Initialize with Z1 = 1, D1 = {x1} and k = 1;
(ii) for m = 2, . . . ,M do the following:

(a) Calculate I(Dj ), I(Dj ∪ xm) and I(xm) according to (7), for j = 1, . . . , k;

(b) From (10), calculate P(Zm = j |Z1, . . . ,Zm−1,x) ∝ nj

α+m−1
I(Dj∪xm)

I(Dj )
;

(c) From (11), calculate P(Zm = j∗|Z1, . . . ,Zm,x) ∝ α
α+m−1I(xm), for j∗ =

k + 1;
(d) If P(Zj = j |·) = maxj=1,...,k(P (Zm = j |·),P (Zm = j∗|·)), do Dj =

Dj ∪ ym and nj = nj + 1;
(e) If P(Zj = j∗|·) = maxj=1,...,k(P (Zm = j |·),P (Zm = j∗|·)), do Dk+1 =

{ym}, nj∗ = 1 and k = k + 1.

Given Z = (Z1, . . . ,ZM), the set D1 = {xm;Zm = 1} is composite by the treat-
ment conditions which does not have evidence for difference related to the control,
for m ∈ {2, . . . ,M}.

Hereafter, we refer to our approach as Bayesian multiple comparison via Bayes
factor (MCBF).
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4 Data analysis

In this section, the proposed MCBF approach is applied to artificial and a real
datasets. The artificial data sets were generated as a mix of both differentially and
non-differentially expressed genes where the fraction of differentially expressed
genes is small.

To evaluate the performance of the MCBF and to compare with the ANOVA fol-
lowed by a Tukey-test (Tuk), we consider the true positive rate, the true discovery
rate and the false discovery rate.

Following Louzada et al. (2014) to specify the hyperparameters values, we set
up μ0 = [min(x) + max(x)]/2, λ = 10−2, τ = 3 and β = (τ − 2)R, where R =
max(x) − min(x) is the length of the interval of variation of the observed data x.

4.1 Artificial data set

Here we present the performance of MCBF for the case with a control and two
treatment conditions. The five hypothesis written in terms of latent variables are:
H0 :Z1 = Z2 = Z3, H1 :Z1 = Z2 �= Z3, H2 :Z1 = Z3 �= Z2, H3 :Z1 �= Z2 = Z3
and H4 :Z1 �= Z2 �= Z3.

To generate data sets, we follow Louzada et al. (2014) fixing the control param-
eters as μ1 = −14 and σ 2

1 = 0.8. For this case, M = 3, we obtain from Gopalan
and Berry’s (1998) procedure, α = √

2. The sample size n was fixed at n = 5,
based on the real data set discussed in the next section. We also fix N = 1000
and proportions generated from each hypothesis as 0.80 from H0 and 0.05 from
Hj , j = 1, . . . ,4. To verify how the method behaves when treatment parameters
(μj , σj ), j = 2,3, moves away from control parameters (μ1, σ1), we fix parame-
ters values for hypothesis Hj as follows:

– for H1 we fix (μ2, σ2) = (μ1, σ1) and (μ3, σ3) = (μ1 + δσ1, γ σ1);
– for H2 we fix (μ3, σ3) = (μ1, σ1) and (μ2, σ2) = (μ1 + δσ1, γ σ1);
– for H3 we fix (μ2, σ2) = (μ1 + δσ1, γ σ1) and (μ3, σ3) = (μ2, σ2);
– for H4 we fix (μ2, σ2) = (μ1 + δσ1, γ σ1) and (μ3, σ3) = (μ2 + δσ2, γ σ2),

for δ = {0,0.50,1,1.50,2,2.50,3,3.50,4} and γ = {1,2,3}.
Thus, the generation of the simulated data sets is as follows. For g = 1, . . . ,N ,

generate ug from U ∼ U(0,1);

(i) if ug ≤ 0.80, fix parameters values according to H0. Let the index vector
Gg = (1,1,1) to indicate that case g is generated from H0;

(ii) if 0.80 < ug ≤ 0.85, fix parameters values according to H1 and set Gg =
(1,1,2);

(iii) if 0.85 < ug ≤ 0.90, fix parameters values according to H2 and set Gg =
(1,2,1);

(iv) if 0.90 < ug ≤ 0.95, fix parameters values according to H3 and set Gg =
(1,2,2);
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(v) if ug > 0.95, fix parameters values according to H4 and set Gg = (1,2,3);
(vi) fixed parameters according to one the steps above, generate Xj = (Xj1, . . . ,

Xjn) ∼N (μj , σ
2
j ), for j = 1,2,3.

We apply the MCBF and the Tuk (with significance level at 0.05) to the gen-
erated the data sets. To record the configuration obtained by the MCBF and
the Tuk, we consider the index vector Z

method
g , where Z

method
g assume one of

the following configurations: (1,1,1), (1,1,2), (1,2,1), (1,2,2) or (1,2,3), for
method = {MCBF,Tuk}. So, we compare performance of the methods by using
the true positive rate (TPR), the true discovery rate (TDR) and the false discovery
rate (FDR), as presented in the Appendix C.

Moreover, for each pair (δ, γ ) we generate L = 100 different artificial data sets
according to steps (i) to (vi) described above and present the results using the
mean of the TPR, TDR and FDR. For instance, the mean of TPR is given by
TPR = ∑L

l=1 TPR(l)/L, where TPR(l) is the TPR calculated for lth generated data
set.

The plots in Figures 1 and 2 show the performances of both methods, for Tuk
with significance level at 0.05 and MCBF with α = 1 and α = √

2, respectively.
We observe the MCBF performs better than Tuk, by presenting higher TPR and
TDR and smaller FDR. Besides, increasing the variance of the treatment (γ =
{2,3}) better is the performance of MCBF in relation to the Tuk.

The plots in Figures 3 and 4 show the performances of both methods for n = 10.
The MCBF also presents better performance by presenting higher TPR and TDR
and smaller FDR than Tuk.

The plots in Figures 5 and 6 show the performances of both methods, but now
for Tuk with significance level at 0.10. The MCBF also presents better perfor-
mance.

From the biological practical point of view, it indicates the MCBF may identify
gene differences which are not identified by Tuk, specially, genes with differences
in means and variances.

In the Appendix D, one can find the comparison of the performance of methods
for M = 4. For such case, the MCBF also presents higher TPR and TDR and
smaller FDR.

4.2 Real data set

Now recall the shotgun proteomics data set mentioned in the introduction, ex-
tracted from the site cybert.ics.uci.edu/anova/ (Baldi and Long, 2001). The data
set is composed by N = 1088 proteins from a control and two treatment condi-
tions. The sample size from each experimental condition is n = 5.

Results from MCBF are the same for α = 1 and α = √
2. The MCBF identified

12 cases under H1, 70 under H2, 22 under H3 and none under H4. While, the
Tuk identifies 3,60,6 and 27 cases under H1, H2, H3 and H4, respectively. Out of

http://cybert.ics.uci.edu/anova/
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Figure 1 TPR, TDR and FDR by method, M = 3 and n = 5. Tuk with significance level at 0.05
and MCBF with α = 1.
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Figure 2 TPR, TDR and FDR by method, M = 3 and n = 5. Tuk with significance level at 0.05
and MCBF with α = √

2.
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Figure 3 TPR, TDR and FDR by method, M = 3 and n = 10. Tuk with significance level at 0.05
and MCBF with α = 1.
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Figure 4 TPR, TDR and FDR by method, M = 3 and n = 10. Tuk with significance level at 0.05
and MCBF with α = √

2.
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Figure 5 TPR, TDR and FDR by method, M = 3 and n = 5. Tuk with significance level at 0.10
and MCBF with α = 1.
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Figure 6 TPR, TDR and FDR by method, M = 3 and n = 5. Tuk with significance level at 0.10
and MCBF with α = √

2.
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96 rejected null hypothesis by the ANOVA, 71 (73,96%) were also rejected by the
MCBF. Under H1, out of three cases identified by the Tuk, two were also identified
by the MCBF. Under H2, out of the 60 cases identified by the Tuk, 45 were also
identified by the MCBF. Under H3, the six cases identified by the Tuk were also
identified by the MCBF.

Tables 1 and 2 show the ten most significantly cases identified by MCBF and
Tuk, respectively. In these tables, column 1 shows the number of the protein in
the data set; columns 2, 3, 4 and 5, 6, 7 show the sample mean and standard-
deviation (s.d.) from control, treatment 1 and treatment 2, respectively; columns 8
and 9 show the configuration identified; column 10 show the posterior probability
for configuration identified by MCBF and column 11 show the p-value from the
ANOVA.

Table 1 Ten most significantly cases identified by MCBF

Sample mean Sample s.d. Configuration
Posterior

probabilityNumber x1 x2 x3 s1 s2 s3 MCBF Tuk p-value

690 11.603 13.780 13.536 0.742 0.505 0.553 (1,2,2) (1,2,2) 0.920 <0.001
666 11.885 14.087 12.304 0.643 0.617 0.650 (1,2,1) (1,2,3) 0.896 <0.001
932 11.732 14.123 12.259 0.806 0.537 0.839 (1,2,1) (1,2,3) 0.893 <0.001
661 15.975 15.982 15.095 0.020 0.005 1.813 (1,1,2) (1,1,1) 0.842 0.339
847 12.042 13.188 10.087 0.788 0.780 3.411 (1,1,2) (1,1,1) 0.810 0.095
557 8.740 13.114 12.675 5.156 1.384 0.909 (1,2,2) (1,1,1) 0.778 0.090
936 10.942 12.778 11.289 0.449 1.073 0.463 (1,2,1) (1,2,3) 0.773 0.004

1024 12.042 13.896 12.061 0.702 0.805 0.691 (1,2,1) (1,2,3) 0.763 0.002
625 10.898 12.660 11.216 0.558 0.741 0.856 (1,2,1) (1,2,3) 0.745 0.005

1012 11.550 13.185 11.552 0.613 0.578 0.702 (1,2,1) (1,2,3) 0.742 0.002

Table 2 Ten most significantly cases identified by Tuk

Sample mean Sample s.d. Configuration
Posterior

probabilityNumber x1 x2 x3 s1 s2 s3 MCBF Tuk p-value

690 11.603 13.780 13.536 0.742 0.505 0.553 (1,2,2) (1,2,2) 0.920 <0.001
666 11.885 14.087 12.304 0.643 0.617 0.650 (1,2,1) (1,2,3) 0.896 <0.001
932 11.732 14.123 12.259 0.806 0.537 0.839 (1,2,1) (1,2,3) 0.893 <0.001
649 12.152 12.985 11.168 0.623 0.342 0.703 (1,1,2) (1,1,2) 0.557 0.001

1012 11.550 13.185 11.552 0.613 0.578 0.702 (1,2,1) (1,2,3) 0.742 0.002
730 12.095 13.908 11.708 0.800 0.557 0.989 (1,2,1) (1,2,3) 0.725 0.002

1024 12.042 13.896 12.061 0.702 0.805 0.691 (1,2,1) (1,2,3) 0.763 0.002
1020 11.798 13.240 10.899 1.213 0.492 0.643 (1,2,1) (1,2,3) 0.430 0.003

936 10.942 12.778 11.289 0.449 1.073 0.462 (1,2,1) (1,2,3) 0.773 0.004
132 11.574 13.109 11.202 0.673 0.420 1.031 (1,2,1) (1,2,3) 0.531 0.004
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Note from Tables 1 and 2 that cases with variances well apart are not identified
by the Tuk, they are identified by the MCBF. Examples are cases 661 and 847
(see Table 1). In accordance with our simulation results, here the MCBF is capa-
ble of identify differentially expressed cases which are not identified by the Tuk,
specially, genes with differences in means and/or variances.

5 Discussion

In this paper, we propose a hierarchical Bayesian approach via Dirichlet pro-
cess prior to develop a gene-by-gene multiple comparison analysis. The pro-
posed approach is a semi-parametric Bayesian model with priors on the param-
eters θ1, θ2, . . . , θM being non-parametric, sampled from the Dirichlet process.
But, the distribution of Xm given θm = (μm,σ 2

m) has a parametric form, given
by Xm|μm,σ 2

m ∼ N (μm,σ 2
m), for m = 1, . . . ,M .

The comparison among experimental conditions are made by using the posterior
probability for hypothesis, which are calculated through the Polya urn scheme
using latent variables to indicate the equality or inequality among the experimental
conditions. For some particular cases, we described the posterior probabilities in
terms of the Bayes factor.

The performance of the proposed MCBF method as well as its comparison with
the Tuk was verified on an artificial data sets and on a real data set. Results from
the artificial data sets show a better performance of MCBF in relation to Tuk.

From the biological point of view the MCBF may bring to light cases not iden-
tified when Tuk is considered. We can observe this fact comparing the results ob-
tained when both methods are applied to the real data set (please see Tables 1
and 2). Moreover, the MCBF can be easily implemented in usual softwares. The
source code used in data set analysis was implemented in software R (the Com-
prehensive R Archive Network, http://cran.r-project.org) and can be obtained by
email the authors.

In section data set analysis, we apply the MCBF fixing the mass parameters α

equal to 1 and M−1
√

(M − 1)!. Results for these two values of α are similar and
lead to a better performance than Tuk. But, the posterior probabilities can depend
greatly on mass parameter α, so careful assessment of α is important. A further
development is to consider the proposed approach with one more hierarchical level
and to specify a prior distribution on α and its estimation.

Appendix A: Hypothesi with inequality 3 to 3

An way to write the hypothesi with inequality 3 to 3 is

Ht ′′′ :�t ′′′ = (
θ; θ ′

m �= θm′′ �= θm′′′ and θi = θj ,∀i, j ∈ {1, . . . ,M} \ {
m′,m′′,m′′′})

http://cran.r-project.org
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for m′,m′′,m′′′ ∈ {1, . . . ,M} and m′ �= m′′ �= m′′′ and t ′′′ ∈ {((M2
)+1)+1, . . . , T },

where
(M

2

) + 1 is the number of hypothesis with inequality 2 to 2 more the null
hypothesi.

Appendix B: A control and three treatments

In this case, we have m = 1,2,3,4 and x = (x1,x2,x3,x4). We first apply proce-
dures described in Sections 3.1 and 3.2, to compare control and treatments 1 and 2
and then include treatment 3.

The posterior probabilities for Z4 are as follows:

(a) If Z3 = Z2 = Z1 (Z1 = 1,Z2 = 1,Z3 = 1), do

P(Z4 = j |Z1,Z2,Z3,x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

3

3 + αB41
, for j = 1,

αB41

3 + αB41
, for j = 2, i.e., j �= 1,

where B41 = I(D1)I(x4)
I(D1∪x4)

for D1 = {x1,x2,x3};
(b) If (b1) Z3 �= Z2 = Z1 (Z1 = 1,Z2 = 1,Z3 = 2) or (b2) Z2 �= Z3 = Z1 (Z1 =

1,Z2 = 2,Z3 = 1), then

P(Z4 = j |Z1,Z2,Z3,y)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

2B42

B41 + 2B42 + αB41B42
, for j = 1,

B41

B41 + 2B42 + αB41B42
, for j = 2,

αB41B42

B41 + 2B42 + αB41B42
, for j = 3, i.e., j �= 1,2,

where B4j = I(Dj )I(x4)

I(Dj∪x4)
for j = 1,2, and (b1) D1 = {x1,x2} and D2 = {x3};

(b2) D1 = {x1,x3} and D2{x2};
(c) If Z3 = Z2 �= Z1 (Z1 = 1,Z2 = 2,Z3 = 2), then

P(Z4 = j |Z1,Z2,Z3,x)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

B42

2B41 + B42 + αB41B42
, for j = 1,

2B41

2B41 + B42 + αB41B42
, for j = 2,

αB41B42

2B41 + B42 + αB41B42
, for j = 3, i.e., j �= 1,2,

where B4j = I(Dj )I(x4)

I(Dj∪x4)
, for j = 1,2, D1 = {x1} and D2 = {x2,x3};
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(d) If Z3 �= Z2 �= Z1 (Z1 = 1,Z2 = 2,Z3 = 3), then do

P(Z4 = j |Z1,Z2,Z3,x)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B42B43

B41B42 + B41B43 + B42B43 + αB41B42B43
,

for j = 1,

B41B43

B41B42 + B41B43 + B42B43 + αB41B42B43
,

for j = 2,

B41B42

B41B42 + B41B43 + B42B43 + αB41B42B43
,

for j = 3,

αB41B42B43

B41B42 + B41B43 + B42B43 + αB41B42B43
,

for j = 4, i.e., j �= 1,2,3,

where B4j = I(Dj )I(x4)

I(Dj∪x4)
, Dj = {xj } for j = 1,2,3.

Appendix C: TPR, TDR and FDR

(i) The true positive rate (TPR) is given by the number of hypothesis correctly
identified divided by N , i.e.,

TPR =
∑n

g=1 IZmethod
g

(Gg)

N
, (13)

where IZMC
g

(Gg) = 1 if configuration identified by the method is equal to Gg

and IZMC
g

(Gg) = 0 otherwise, for method = {MCBF,Tuk};
(ii) The true discovery rate (TDR) is given by the number of true positives (num-

ber of hypothesis Hj , j = 1,2,3,4, correctly identified) divided by the num-
ber of rejected null hypothesis, i.e.,

TDR =
∑n

g=1 IZmethod
g

(Gg) · (1 − IZmethod
g

(Z0))

N − ∑n
g=1 IZmethod

g
(Z0)

, (14)

where IZmethod
g

(Z0) = 1 if configuration identified is equal to configuration
Z0 of the null hypothesi H0 and IZmethod

g
(Z0) = 0 otherwise, for method =

{MCBF,Tuk};
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(iii) The false discovery rate is given by the number of false positives (number
of null hypothesi incorrectly rejected) divided by the number of rejected null
hypothesi, given by

FDR =
∑n

g=1(1 − IZmethod
g

(Gg)) · IGg
(Z0)

N − ∑n
g=1 IZmethod

g
(Z0)

, (15)

where IGg
(Z0) = 1 if case g (Gg) is generate according to configuration

Z0 of the null hypothesi H0 and IGg
(Z0) = 0 otherwise, for method =

{MCBF,Tuk}.

Appendix D: Results for M = 4

For this case, all 15 hypothesis are described in Table 3.
We fix proportions generated from each hypothesis as 0.30 from H0 and 0.05

from Hj , j = 1, . . . ,14. The data are generate in a similar way as made for
M = 3. For example, if ug ≤ 0.30 we fix parameters according to H0 and we set
up G = (1,1,1,1); if 0.30 < ug ≤ 0.35 we fix parameters according to H1 and
we set up G = (1,1,1,2). So, we generate Xj = (Xj1, . . . ,Xjn) ∼ N (μj , σ

2
j ),

j = 1,2,3,4.
For this case, M = 4, we obtain from Gopalan and Berry’s (1998) elicitation

procedure, α = 3
√

6.
Graphics in Figures 7 and 8 show performance of both methods for n = 5,

for Tuk with significance level at 0.05 and MCBF with α = 1 and α = 3
√

6, re-
spectively. Graphics in Figures 9 and 10 show performance of both methods for
n = 10. As for M = 3, the proposed MCF present higher TPR and TDR and
smaller FDR.

Table 3 Hypothesis for a control and three treatment experimental conditions

Hypothesis Hypothesis Hypothesis

H0 :Z1 = Z2 = Z3 = Z3 H5 :Z1 = Z2 �= Z3 = Z4 H10 :Z1 = Z4 �= Z2 �= Z3

H1 :Z1 = Z2 = Z3 �= Z4 H6 :Z1 = Z3 �= Z2 = Z4 H11 :Z1 �= Z2 = Z3 �= Z4

H2 :Z1 = Z2 = Z4 �= Z3 H7 :Z1 = Z4 �= Z2 = Z3 H12 :Z1 �= Z2 = Z4 �= Z3

H3 :Z1 = Z3 = Z4 �= Z2 H8 :Z1 = Z2 �= Z3 �= Z4 H13 :Z1 �= Z2 �= Z3 = Z4

H4 :Z1 �= Z2 = Z3 = Z4 H9 :Z1 = Z3 �= Z2 �= Z4 H14 :Z1 �= Z2 �= Z3 �= Z4
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Figure 7 TPR, TDR and FDR by method, M = 4 and n = 5. Tuk with significance level at 0.05
and MCBF with α = 1.
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Figure 8 TPR, TDR and FDR by method, M = 4 and n = 5. Tuk with significance level at 0.05
and MCBF with α = 3√6.
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Figure 9 TPR, TDR and FDR by method, M = 4 and n = 10. Tuk with significance level at 0.05
and MCBF with α = 1.
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Figure 10 TPR, TDR and FDR by method, M = 4 and n = 10. Tuk with significance level at 0.05
and MCBF with α = 3√6.
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