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Abstract. In this paper, we introduce a first order non-negative integer val-
ued autoregressive process with power series innovations based on the bi-
nomial thinning. This new model contains, as particular cases, several mod-
els such as the Poisson INAR(1) model (Al-Osh and Alzaid (J. Time Series
Anal. 8 (1987) 261–275)), the geometric INAR(1) model (Jazi, Jones and Lai
(J. Iran. Stat. Soc. (JIRSS) 11 (2012) 173–190)) and many others. The main
properties of the model are derived, such as mean, variance and the auto-
correlation function. Yule–Walker, conditional least squares and conditional
maximum likelihood estimators of the model parameters are derived. An ex-
tensive Monte Carlo experiment is conducted to evaluate the performances
of these estimators in finite samples. Special sub-models are studied in some
detail. Applications to two real data sets are given to show the flexibility and
potentiality of the new model.

1 Introduction

In the last three decades, there has been a growing interest in discrete-valued time
series models and several models for stationary processes with discrete marginal
distributions have been proposed. Al-Osh and Alzaid (1987) proposed the first-
order non-negative integer valued autoregressive (INAR(1)) process. Weiß (2009)
proposed new autoregressive models for time series of binomial counts. Zhang
et al. (2010) introduced pth-order integer valued autoregressive processes with a
signed generalized power series thinning operator. Nastić et al. (2012) considered
an integer valued autoregressive model of order p with geometric marginal distri-
butions, using the negative binomial thinning. In a very recent paper, Jazi, Jones
and Lai (2012b) introduce a new stationary first-order integer valued autoregres-
sive process with zero inflated Poisson innovations.

In general, detailed studies have been conducted not only on the formulation of
models but also on properties (Silva and Oliveira, 2004), estimation (Jung, Ron-
ning and Tremayne, 2005), tests (Jung and Tremayne, 2003) and asymptotic dis-
tributions of model estimators (Freeland and McCabe, 2005) for different discrete
marginal distributions.
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Much theoretical work has been concentrated on the use of the Poisson distri-
bution as an integral feature of the model. However, the Poisson distribution is
not always suitable for modelling, since its mean and variance are the same and
this property may be unacceptable for real data. Furthermore, in many real-life
situations there are series which do not contain zeros in a large period of time or
are even permanently positive. In these situations, the Poisson distribution is also
not suitable for modelling. The situation of zero truncation has been considered
by Jazi, Jones and Lai (2012b), who have recently proposed a first-order integer
valued AR model with zero inflated Poisson innovations. This has also been stud-
ied by Zhu (2012), who has recently proposed integer-valued GARCH models that
are based upon the zero inflated Poisson distribution and the zero inflated negative
binomial distribution.

There is, therefore, a need to introduce different integer-valued time series mod-
els to deal with different particular real situations, like overdispersion or zero-
inflation. The idea of considering a distribution for the innovations such that the
marginal distribution of the observations will satisfy a given property has been
extensively discussed in Weiß (2008), where approaches on how to obtain, for ex-
ample, the overdispersed negative binomial or generalized Poisson distribution are
presented.

In this context, the main purpose of this paper is to propose a new first order
non-negative integer valued autoregressive process with power series (PS) innova-
tions based on the binomial thinning operator (Steutel and Van Harn, 1979). The
motivation for such a process arises from its potential in modelling and analyzing
non-negative integer valued time series when there is an indication of equidisper-
sion, overdispersion, underdispersion or truncated distributions. The use of inno-
vations that come from the PS family of distributions has many advantages, that
family of distributions constituting a flexible framework for statistical modelling
of discrete data in several real-life situations (Johnson, Kemp and Kotz, 2005).

We consider a sequence of discrete i.i.d. random variables {εt ; t ∈ Z}, the dis-
tribution of each εt being indexed by a parameter θ and defined by the probability
mass function

Pr(εt = x) = a(x)θx

C(θ)
, x ∈ S, (1.1)

where the support S of εt is a subset of the non-negative integers, a(x) ≥ 0 depends
only on x and there is s > 0 such that C(θ) = ∑∞

x=0 a(x)θx is finite for all θ ∈
(0, s) (s can be ∞). Although we will always consider θ as a value in (0, s), we
will also assume that the power series for C(θ) converges, in fact, to a finite value
for θ ∈ (−s, s). If this is the case, then, C(θ) has derivatives of all orders in (−s, s)

and those derivatives can be obtained by differentiating the power series term to
term. Also, because a(x) ≥ 0 for all x, C(θ) and all its derivatives will be positive
in (0, s). For more details on the PS class of distributions, see Noack (1950).
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Table 1 Some distributions in the family (1)

Distribution a(x) C(θ) s S

1. Bernoulli 1 1 + θ ∞ {0,1}
2. Binomial

(n
x

)
(1 + θ)n ∞ {0,1, . . . , n}

3. Geometric 1 (1 − θ)−1 1 {0,1,2, . . .}
4. Poisson x!−1 eθ ∞ {0,1,2, . . .}
5. Negative Binomial �(r+x)

x!�(r)
(1 − θ)−r 1 {0,1,2, . . .}

6. Logarithmic x−1 − log(1 − θ) 1 {1,2,3, . . .}

Table 1 provides the functions a(x), C(θ) and the parameter θ corresponding
to some special cases of PS distributions such as the Bernoulli, binomial (with n

being the integer number of replicas), geometric, Poisson, negative binomial and
logarithmic distributions. For the negative binomial, there may exist situations for
which we will want r to be integer-valued. In this case, x can be regarded as the
random number of failures until exactly r successes are recorded in a sequence of
independent trials where the probability of failure is θ . When using the binomial
distribution, the value of n may be known in advance or may be estimated; the
same holds for the value of r when using the negative binomial distribution.

The paper is structured as follows. The PSINAR(1) (power series INAR(1))
model is formally defined in Section 2 and some of its basic properties are outlined.
In Section 3, we propose estimation methods for the model parameters. Three spe-
cial cases of the proposed model are studied in Section 4. In Section 5, we present
some simulation results for the estimation methods. In Section 6, we provide ap-
plications to two real data sets. The paper is concluded in Section 7.

2 The PSINAR(1) model

Let Y be a non-negative integer valued random variable and α ∈ [0,1]. According
to Steutel and Van Harn (1979), the binomial thinning operator “◦” is defined as
follows

α ◦ Y =
Y∑

j=1

Zj , (2.1)

where {Zj }Yj=1 are independent and identically distributed (i.i.d.) random vari-

ables, independent of Y , with Pr(Zj = 1) = 1 − Pr(Zj = 0) = α, that is, {Zj }Yj=1
is an i.i.d. Bernoulli random sequence. Given Y , α ◦ Y has a binomial distribution
with parameters (Y,α). For an account of the properties of the binomial thinning
operator, see Silva and Oliveira (2004). With this operator, the first-order non-
negative integer valued autoregressive PS model can be defined. We set

Yt = α ◦ Yt−1 + εt , t ∈ Z, (2.2)
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where {εt }t∈Z is a sequence of independent and identically distributed integer val-
ued random variables with probability mass function satisfying (1.1), εt and yt−i

being independent for all i ≥ 1. Since {εt }t∈Z is an i.i.d. sequence with finite mean
and variance, we conclude that this sequence is a second-order stationary pro-
cess. Consequently, the process {Yt }t∈Z satisfying (2.2) is second-order stationary
if 0 ≤ α < 1 (Du and Li, 1991).

We can view a realization of {Yt }t∈Z as having two components (Freeland and
McCabe, 2004): the survivors of elements of Yt−1, each with probability α of
survival, and the elements which entered the system in the interval (t − 1, t] (the
innovation term {εt }t∈Z).

The question of which distribution to use for the {εt }t∈Z sequence may be rather
subjective and it may depend also on the specific situation we are dealing with.
For example, in Epidemiology, suppose that a researcher is monitoring the number
of individuals in a given population that did not contract a specific disease, that
is, suppose Yt is the number of healthy individuals in the population at time t .
Let α be the probability that a healthy individual remains healthy, that is, does not
contract the disease, in the next instant of time. Suppose also that, with a very small
probability, a sick individual may become cured of this disease, such that, in the
next time, we will have no more than one cured individual in the population. Then,
the evolution of Yt may be described by (2.2), using a Bernoulli distribution for εt .
Suppose now that this same researcher, wishing to observe the evolution of cure
in a very specific group, prescribes a given medicine to n sick individuals of that
group, such that some of the individuals taking that medicine may become cured.
Now the evolution of Yt may be described by (2.2), using a binomial distribution
for εt . When treating a serious disease, we can consider that a given individual
gets cured or that this same individual ultimately dies. Then, a way of monitoring
the efficiency of a given treatment is to observe how many individuals get cured
before an individual dies. The evolution of Yt may then be described by (2.2),
with a geometric distribution for εt . If we observe how many individuals get cured
before m individuals die, then, we can use a negative binomial distribution for εt .

A reasonable choice for the distribution of εt may also follow from statistical
considerations. If it seems reasonable that the mean and variance of the distribu-
tion of the observations are equal, then, a simple Poisson model may be adequate.
If variance seems to be smaller than the mean, we must discard the geometric and
Poisson distributions. A hypothesis test may be used to decide between a geometric
and a negative binomial distribution. Also, it may seem reasonable that the obser-
vations are necessarily positive, which means that a truncated distribution should
be used (see Section 4.3).

From (2.2), it follows that {Yt }t∈Z is a Markov process. The proofs of the next
two propositions can be seen in Appendix A and Appendix B, respectively.
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Proposition 1. For fixed n ∈ Z
+, the transition probabilities of this process are

given by

Pr(Yt = k|Yt−1 = l) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

C(θ)

min(l,k−n)∑
i=0

(
l

i

)
αi(1 − α)l−iθk−ia(k − i),

if S = {n,n + 1, n + 2, . . .},
1

C(θ)

min(l,k)∑
i=max(0,k−n)

(
l

i

)
αi(1 − α)l−iθk−ia(k − i),

if S = {0,1,2, . . . , n},

(2.3)

for all k, l ∈ Z
+, where (·) is the standard combinatorial symbol.

Proposition 2. The Markov process defined by the transition probabilities above
admits a unique stationary distribution.

The marginal probability function of {Yt }t∈Z is given by

Pr(Yt = k) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

C(θ)

∞∑
l=0

min(l,k−n)∑
i=0

(
l

i

)
αi(1 − α)l−iθk−ia(k − i)Pr(Yt−1 = l),

if S = {n,n + 1, n + 2, . . .},
1

C(θ)

∞∑
l=0

min(l,k)∑
i=max(0,k−n)

(
l

i

)
αi(1 − α)l−iθk−ia(k − i)Pr(Yt−1 = l),

if S = {0,1,2, . . . , n},
which is a mixture distribution. It is important to highlight that the support of the
distribution of Yt is not a finite set, even if S is. In fact, it is not difficult to see that,
for all k, l ∈ Z

+, there will exist a positive integer m such that Pr(Ym = k|Y0 =
l) > 0.

Although we know a unique stationary distribution to exist, the obtention of
this stationary distribution from the above equations is in general a difficult task.
Alternatively, if � is the probability generating function for this stationary distri-
bution, �(u) = E[uYt ], it is not difficult to check that � is that function satisfying
C(θ)�(u) = C(uθ)�(αu + (1 − α)), for all u, θ . However, this approach is still
not easy. For that very simple situation where C(θ) = eθ , which corresponds to
the classical Poisson INAR(1) model, we will readily obtain that the stationary
distribution is Poisson, its expected value being θ/(1 − α). On the other hand, the
general problem of obtaining the stationary distribution of the observations, given
a particular C(θ), seems to be, for most situations, quite difficult.

The moments of the random variable {εt }t∈Z can be easily obtained from the
probability generating function �εt (u) = C(uθ)/C(θ). The expected value is
E(εt ) = με = θG′(θ) and the variance is Var(εt ) = σ 2

ε = θ2G′′(θ) + με , where
G(θ) = log[C(θ)], G′(θ) = dG(θ)/dθ and G′′(θ) = d2G(θ)/dθ2. These well-
known results can be found, for example, in Johnson, Kemp and Kotz (2005).
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The mean and variance of the process {Yt }t∈Z as defined in (2.2) are

E(Yt ) = μ = θG′(θ)

1 − α

and

Var(Yt ) = σ 2 = θ

1 − α

[
G′(θ) + θG′′(θ)

1 + α

]
= μ + θ2G′′(θ)

1 − α2 .

Observe that the variance can be smaller or greater than the mean, depending on
the sign of G′′(θ). The dispersion index, which is the variance to mean ratio, will
be given by

σ 2

μ
= 1 + θG′′(θ)

(1 + α)G′(θ)
.

Also, the mean and variance will be equal when G is a linear function, which is
the case of the Poisson distribution.

The expressions for the moments of the conditional and unconditional distribu-
tions of the observations in a general INAR(1) process can be found, for example,
in Rajarshi (2012). For our specific process, we obtain the conditional expectation
as

E(Yt |Yt−1) = αYt−1 + θG′(θ)

and the conditional variance as

Var(Yt |Yt−1) = α(1 − α)Yt−1 + θG′(θ) + θ2G′′(θ).

It is also easy to verify that the autocorrelation function (ACF) at lag k is given by

Corr(Yt , Yt−k) = ρ(k) = αk, k ≥ 1, (2.4)

which obviously is restricted to be positive.
Next, we consider the problem of estimating the parameters.

3 Estimation of the unknown parameters

This section is concerned with the estimation of the two parameters of interest. We
consider three estimation methods, namely, Yule–Walker, conditional least squares
and conditional maximum likelihood.

3.1 Yule–Walker estimation

From a sample Y1, . . . , YT of a stationary process {Yt }t∈Z, the sample autocorrela-
tion function is given by

ρ̂(k) =
∑T −k

t=1 (Yt − Y )(Yt+k − Y)∑n
t=1(Yt − Y)2

,
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where Y = 1/T
∑T

t=1 Yt is the sample mean. The Yule–Walker (YW) estimator
of α, based upon the fact that ρ(k) = αk , as in (2.4), is given by

α̂ = ρ̂(1) =
∑T −1

t=1 (Yt − Y )(Yt+1 − Y)∑T
t=1(Yt − Y)2

. (3.1)

The first moment of {Yt }t∈Z is given by E(Yt ) = με/(1 − α). Using this, the esti-
mator of με is defined as

μ̂ε = (1 − α̂)Y ,

where α̂ is given in (3.1). An estimator of the parameter θ can be obtained as the
solution of the equation θ̂G′(θ̂) = (1 − α̂)Y . The estimator of θ may have closed
form, depending on which distribution is being used.

Du and Li (1991) showed that the usual mean estimator, the autocovariance and
autocorrelation functions, given by Y = 1/T

∑T
t=1 Yt , γ̂ (k) = 1/T

∑T −k
t=1 (Yt −

Y )(Yt−k − Y) and ρ̂(k) = γ̂ (k)/γ̂ (0), 0 ≤ k ≤ T − 1, respectively, are strongly
consistent.

3.2 Conditional least squares estimation

The conditional least squares estimator η̂ = (α̂, μ̂ε)
T of η = (α,με)

T is given by

η̂ = arg min
η

(
ST (η)

)
,

where ST (η) = ∑T
t=2[Yt − g(η, Yt−1)]2 and g(η, Yt−1) = E(Yt |Yt−1). Thus, fol-

lowing Klimko and Nelson (1978), the conditional least squares (CLS) estimators
of α and με can be written in closed form as

α̂ =
∑T

t=2 YtYt−1 − 1/(T − 1)
∑T

t=2 Yt

∑T
t=2 Yt−1∑T

t=2 Y 2
t−1 − 1/(T − 1)(

∑T
t=2 Yt−1)2

(3.2)

and

μ̂ε = 1

T − 1

(
T∑

t=2

Yt − α̂

T∑
t=2

Yt−1

)
,

where α̂ is given in (3.2). As in Section 3.1, the estimator of the parameter θ can
be obtained by solving the equation θ̂G′(θ̂) = μ̂ε . The estimator of θ may have
closed form, depending on which distribution is being used.

3.3 Conditional maximum likelihood estimation

Suppose that y1 is fixed. The conditional log-likelihood function for the
PSINAR(1) model is given by


(α, θ) = log

(
T∏

t=2

Pr(Yt |Yt−1)

)
=

T∑
t=2

log
(
Pr(Yt |Yt−1)

)
, (3.3)

with Pr(Yt |Yt−1) as in (2.3).
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The conditional maximum likelihood (CML) estimators α̂ and θ̂ of α and θ

are defined as the values of α and θ that maximize the conditional log-likelihood
function in (3.3). There will be, in general, no closed form for the CML estimates
and their obtention will need, in practice, numerical methods.

4 Special cases

In this section, we investigate some special cases of the PSINAR(1) model, giving
expressions for mean and variance.

4.1 Geometric INAR(1) model

For S = Z
+ and C(θ) = (1−θ)−1, θ ∈ (0,1) in (1.1), we say that {Yt }t∈Z is a geo-

metric INAR(1) model. Alzaid and Al-Osh (1988) introduced the INAR(1) process
with geometric marginal distribution. Ristić, Bakouch and Nastić (2009) proposed
the first-order integer valued autoregressive process with geometric marginal dis-
tribution based on negative binomial thinning. Jazi, Jones and Lai (2012a) studied
the geometric INAR(1) process.

The transition probabilities of this process are given by

Pr(Yt = k|Yt−1 = l) = (1 − θ)

min(k,l)∑
i=0

(
l

i

)
αi(1 − α)l−iθk−i , 0 < θ < 1.

The mean and variance of {Yt }t∈Z are

E(Yt ) = μ = θ

(1 − α)(1 − θ)
and Var(Yt ) = σ 2 = θ + αθ(1 − θ)

(1 − α2)(1 − θ)2 .

The conditional expectation and the conditional variance are given by

E(Yt |Yt−1) = αYt−1 + θ

1 − θ

and

Var(Yt |Yt−1) = α(1 − α)Yt−1 + θ

(1 − θ)2 .

Observe that μ = (1 − α)−1[(1 − θ)−1 − 1] is an increasing function of α and
θ . Also,

σ 2 = 1

1 − α2 · θ

(1 − θ)2 + α

1 − α2 · θ

1 − θ

is an increasing function of α and θ . Furthermore, we can easily obtain

σ 2

μ
= 1 + θ

(1 + α)(1 − θ)
> 1.
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(a) Geometric INAR(1) (b) Logarithmic INAR(1)

Figure 1 Plot of the variance-to-mean ratio against α and θ .

The geometric INAR(1) process, therefore, may be used as a model for overdis-
persed non-negative integer valued time series. From the above expression, we can
readily conclude that the variance-mean ratio is an increasing function of θ , but a
decreasing function of α.

Figure 1(a) shows how σ 2/μ behaves as a function of α and θ . For more details
about the geometric INAR(1) process, see Jazi, Jones and Lai (2012a).

4.2 Poisson INAR(1) model

For S = Z
+ and C(θ) = eθ in (1.1), we say that {Yt }t∈Z is a Poisson INAR(1)

model. Al-Osh and Alzaid (1987) proposed and studied the Poisson INAR(1) pro-
cess. Many new results on it have been obtained in recent years. For example, Hell-
ström (2001) focused on the testing of a unit root, Freeland and McCabe (2005)
obtained asymptotic properties of CLS estimators, Weiß (2011) proposed several
asymptotic simultaneous confidence regions for the two parameters.

The transition probabilities of this process are given by

Pr(Yt = k|Yt−1 = l) = e−θ
min(k,l)∑

i=0

(
l

i

)
αi(1 − α)l−i θk−i

(k − i)! , θ > 0.

The mean and variance of {Yt }t∈Z are

E(Yt ) = μ = θ

1 − α
and Var(Yt ) = σ 2 = θ

1 − α
.

The mean and variance are equal for this model, increasing both with θ and α. For
more details about the Poisson INAR(1) process, see Al-Osh and Alzaid (1987).

4.3 Truncated models

Truncated Poisson and negative binomial models have been discussed, among oth-
ers, by Creel and Loomis (1990) and Grogger and Carson (1991).
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Table 2 Some distributions truncated at zero in the family (1)

Distribution a(x) C(θ) s S

1. Binomial
(n
x

)
(1 + θ)n − 1 ∞ {1,2, . . . , n}

2. Geometric 1 θ(1 − θ)−1 1 {1,2,3, . . .}
3. Poisson x!−1 eθ − 1 ∞ {1,2,3, . . .}

The PSINAR(1) model defined by (2.1) has the flexibility of modelling data
by a Markovian process for which the state space is some proper subset of the
nonnegative integers. This can be achieved, for example, by considering truncated
distributions for the innovations.

Table 2 provides the functions a(x) and C(θ) corresponding to some special
cases of PS distributions truncated at zero.

The logarithmic INAR(1) can also be a model for a series of counts where zeros
are not observed. For S = {1,2,3, . . .} and C(θ) = − log(1−θ), θ ∈ (0,1) in (1.1),
we define {Yt }t∈Z as the logarithmic INAR(1) model. The transition probabilities
of this process are given by

Pr(Yt = k|Yt−1 = l) = − 1

log(1 − θ)

min(k−1,l)∑
i=0

(
l

i

)
αi(1 − α)l−i θk−i

k − i
.

The mean and variance of {Yt }t∈Z are

E(Yt ) = μ = aθ

(1 − α)(1 − θ)

and

Var(Yt ) = σ 2 = aθ [α(1 − θ) + (1 − aθ)]
(1 − α2)(1 − θ)2 = μ[α(1 − θ) + (1 − aθ)]

(1 + α)(1 − θ)
,

where a = −1/ log(1 − θ). The conditional expectation and the conditional vari-
ance are given by

E(Yt |Yt−1) = αYt−1 + aθ

1 − θ

and

Var(Yt |Yt−1) = α(1 − α)Yt−1 + aθ(1 − aθ)

(1 − θ)2 .

Both mean and variance are increasing functions of α and θ . The variance-mean
ratio can be easily seen to be

σ 2

μ
= 1 + θ(1 − a)

(1 + α)(1 − θ)
;

it follows that this model presents
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• equidispersion when θ = 1 − e−1,
• overdispersion when θ > 1 − e−1,
• underdispersion when θ < 1 − e−1.

Figure 1(b) shows how σ 2/μ behaves as a function of α and θ .

5 Monte Carlo simulation study

The performances of the YW, CLS and CML estimators for a sample size of T

observed values of {Yt } is the motivation of this section. Some numerical results
for different values of the parameters α and θ are presented in Tables 3, 4 and 5.

Table 3 Bias and MSE (in parentheses) of the parameters in geometric INAR(1)

Sample size Parameters CLS YW CML

α = 0.3, θ = 0.3
T = 100 α̂ −0.0216 (0.0120) −0.0245 (0.0119) −0.0097 (0.0078)

θ̂ 0.0044 (0.0023) 0.0054 (0.0023) 0.0013 (0.0019)

T = 200 α̂ −0.0086 (0.0064) −0.0101 (0.0064) −0.0027 (0.0038)
θ̂ 0.0011 (0.0012) 0.0017 (0.0012) −0.0003 (0.0009)

T = 300 α̂ −0.0056 (0.0042) −0.0065 (0.0042) −0.0023 (0.0026)
θ̂ 0.0002 (0.0008) 0.0005 (0.0008) −0.0001 (0.0006)

α = 0.7, θ = 0.3
T = 100 α̂ −0.0362 (0.0079) −0.0435 (0.0085) −0.0065 (0.0025)

θ̂ 0.0166 (0.0042) 0.0215 (0.0043) −0.0009 (0.0020)

T = 200 α̂ −0.0168 (0.0036) −0.0204 (0.0037) −0.0042 (0.0012)
θ̂ 0.0079 (0.0020) 0.0104 (0.0020) 0.0007 (0.0010)

T = 300 α̂ −0.0100 (0.0024) −0.0123 (0.0024) −0.0007 (0.0008)
θ̂ 0.0052 (0.0015) 0.0068 (0.0015) −0.0005 (0.0006)

α = 0.3, θ = 0.7
T = 100 α̂ −0.0232 (0.0097) −0.0262 (0.0097) 0.0003 (0.0027)

θ̂ 0.0024 (0.0013) 0.0033 (0.0013) −0.0027 (0.0008)

T = 200 α̂ −0.0095 (0.0048) −0.0108 (0.0047) 0.0024 (0.0014)
θ̂ −0.0022 (0.0008) −0.0020 (0.0008) −0.0020 (0.0005)

T = 300 α̂ −0.0077 (0.0033) −0.0087 (0.0033) −0.0005 (0.0009)
θ̂ 0.0011 (0.0005) 0.0014 (0.0005) −0.0008 (0.0003)

α = 0.7, θ = 0.7
T = 100 α̂ −0.0335 (0.0070) −0.0411 (0.0076) −0.0016 (0.0009)

θ̂ 0.0121 (0.0030) 0.0169 (0.0029) −0.0024 (0.0010)

T = 200 α̂ −0.0163 (0.0035) −0.0195 (0.0036) −0.0003 (0.0004)
θ̂ 0.0053 (0.0017) 0.0073 (0.0017) −0.0014 (0.0005)

T = 300 α̂ −0.0099 (0.0019) −0.0122 (0.0019) 0.0009 (0.0002)
θ̂ 0.0042 (0.0010) 0.0056 (0.0010) −0.0009 (0.0002)
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Table 4 Bias and MSE (in parentheses) of the parameters in Poisson INAR(1)

Sample size Parameters CLS YW CML

α = 0.3, θ = 1.0
T = 100 α̂ −0.0236 (0.0106) −0.0265 (0.0105) −0.0133 (0.0087)

θ̂ 0.0303 (0.0282) 0.0348 (0.0284) 0.0160 (0.0251)

T = 200 α̂ −0.0094 (0.0052) −0.0109 (0.0052) −0.0061 (0.0043)
θ̂ 0.0119 (0.0146) 0.0143 (0.0145) 0.0072 (0.0128)

T = 300 α̂ −0.0063 (0.0035) −0.0073 (0.0035) −0.0022 (0.0028)
θ̂ 0.0098 (0.0096) 0.0114 (0.0096) 0.0038 (0.0080)

α = 0.7, θ = 1.0
T = 100 α̂ −0.0317 (0.0068) −0.0389 (0.0072) −0.0050 (0.0022)

θ̂ 0.0926 (0.0800) 0.1161 (0.0852) 0.0037 (0.0276)

T = 200 α̂ −0.0155 (0.0033) −0.0189 (0.0034) −0.0024 (0.0011)
θ̂ 0.0502 (0.0367) 0.0613 (0.0378) 0.0070 (0.0136)

T = 300 α̂ −0.0090 (0.0019) −0.0113 (0.0020) −0.0004 (0.0007)
θ̂ 0.0335 (0.0236) 0.0410 (0.0242) 0.0045 (0.0089)

α = 0.3, θ = 2.0
T = 100 α̂ −0.0160 (0.0103) −0.0187 (0.0102) −0.0056 (0.0094)

θ̂ 0.0445 (0.0965) 0.0531 (0.0960) 0.0147 (0.0886)

T = 200 α̂ −0.0074 (0.0049) −0.0088 (0.0049) −0.0028 (0.0041)
θ̂ 0.0194 (0.0482) 0.0236 (0.0481) 0.0065 (0.0418)

T = 300 α̂ −0.0061 (0.0034) −0.0072 (0.0034) −0.0013 (0.0028)
θ̂ 0.0178 (0.0312) 0.0207 (0.0312) 0.0038 (0.0266)

α = 0.7, θ = 2.0
T = 100 α̂ −0.0335 (0.0075) −0.0405 (0.0079) −0.0029 (0.0022)

θ̂ 0.2270 (0.3462) 0.2721 (0.3648) 0.0219 (0.1024)

T = 200 α̂ −0.0164 (0.0033) −0.0199 (0.0034) −0.0026 (0.0011)
θ̂ 0.1064 (0.1516) 0.1299 (0.1569) 0.0149 (0.0533)

T = 300 α̂ −0.0111 (0.0021) −0.0134 (0.0021) −0.0009 (0.0007)
θ̂ 0.0708 (0.0926) 0.0867 (0.0950) 0.0023 (0.0306)

The sample sizes considered were T = 100,200 and 300. The Monte Carlo simu-
lation experiments were performed using the R programming language; see http://
www.r-project.org. The number of Monte Carlo replications was 1000. The CML
estimates of α and θ are obtained by maximizing the conditional log-likelihood
function using the BFGS quasi-Newton nonlinear optimization algorithm with nu-
merical derivatives. For each different situation, we have estimated the bias and the
mean squared error (MSE). The YW and CLS estimates for θ are not obtained di-
rectly for the logarithmic INAR(1) model. In this case, the estimate of θ is obtained
as the value of θ that minimizes g(θ) = {θ/[(1 − θ) log(1 − θ)] − μ̂}2.

http://www.r-project.org
http://www.r-project.org
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Table 5 Bias and MSE (in parentheses) of the parameters in logarithmic INAR(1)

Sample size Parameters CLS YW CML

α = 0.3, θ = 0.3
T = 100 α̂ −0.0171 (0.0112) −0.0198 (0.0111) −0.0007 (0.0026)

θ̂ −0.0211 (0.0562) 0.0147 (0.0537) −0.0105 (0.0075)

T = 200 α̂ −0.0100 (0.0061) −0.0116 (0.0061) −0.0010 (0.0013)
θ̂ −0.0085 (0.0250) −0.0052 (0.0245) −0.0064 (0.0040)

T = 300 α̂ −0.0079 (0.0040) −0.0088 (0.0039) −0.0001 (0.0008)
θ̂ −0.0044 (0.0149) −0.0025 (0.0131) −0.0040 (0.0026)

α = 0.7, θ = 0.3
T = 100 α̂ −0.0340 (0.0076) −0.0408 (0.0081) −0.0002 (0.0008)

θ̂ 0.0169 (0.1167) 0.0466 (0.1039) −0.0126 (0.0072)

T = 200 α̂ −0.0160 (0.0033) −0.0195 (0.0035) −0.0001 (0.0004)
θ̂ 0.0059 (0.0588) 0.0212 (0.0553) −0.0066 (0.0035)

T = 300 α̂ −0.0134 (0.0021) −0.0156 (0.0022) 0.0001 (0.0002)
θ̂ 0.0032 (0.0343) 0.0080 (0.0331) −0.0046 (0.0024)

α = 0.3, θ = 0.7
T = 100 α̂ −0.0219 (0.0113) −0.0251 (0.0113) −0.0006 (0.0021)

θ̂ −0.0149 (0.0154) −0.0119 (0.0171) −0.0091 (0.0029)

T = 200 α̂ −0.0104 (0.0052) −0.0119 (0.0052) 0.0001 (0.0010)
θ̂ −0.0054 (0.0040) −0.0042 (0.0039) −0.0045 (0.0014)

T = 300 α̂ −0.0068 (0.0035) −0.0078 (0.0035) −0.0001 (0.0007)
θ̂ −0.0033 (0.0024) −0.0026 (0.0024) −0.0022 (0.0009)

α = 0.7, θ = 0.7
T = 100 α̂ −0.0354 (0.0081) −0.0433 (0.0088) −0.0004 (0.0006)

θ̂ −0.0276 (0.1968) −0.0103 (0.1397) −0.0072 (0.0028)

T = 200 α̂ −0.0143 (0.0031) −0.0180 (0.0032) −0.0002 (0.0003)
θ̂ −0.0050 (0.0380) 0.0088 (0.0371) −0.0035 (0.0014)

T = 300 α̂ −0.0087 (0.0020) −0.0109 (0.0020) 0.0001 (0.0002)
θ̂ 0.0016 (0.0100) −0.0047 (0.0122) −0.0020 (0.0010)

Tables 3, 4 and 5 present the biases and MSE’s (given in parentheses) of the
different estimators for geometric INAR(1), Poisson INAR(1) and logarithmic
INAR(1) models, respectively. It is noteworthy that the CML estimators of the
parameters α and θ display biases and MSE’s that are much smaller than those of
the corresponding YW and CLS for almost all sample sizes considered in the ex-
periment. Note that as the sample size increases, the bias tends to zero in all three
cases, confirming that the estimators are asymptotically unbiased.

It is expected for the CML estimator to have the best performance, since it uses
the whole information of the distribution. The empirical investigation presented
here suggests that, generally speaking, the CML is, in fact, much better than the
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YW and CLS. Thus, we recommend the use of the CML method to estimate the
model parameters of an INAR(1) process with PS innovation.

6 Applications to real data

We assess the efficiency of the proposed model in an analysis of real data. The
first data set is obtained from the crime data section of the forecasting principles
site (http://www.forecastingprinciples.com). This data series represents the count-
ing of sex offences reported in the 21st police car beat in Pittsburgh, during one
month. The data consist of 144 observations, starting in January 1990 and ending
in December 2001. These data were previously studied by Ristić, Bakouch and
Nastić (2009) and are listed in Table 6. The required numerical evaluations are
implemented using the R software.

Table 7 displays some descriptive statistics. We see that the data set assumes
the value 0. Thus, the logarithmic INAR(1) model is not appropriate. Furthermore,
the sample variance is much larger than the sample mean, hence, the data seem
to be overdispersed. Consequently, a Poisson marginal distribution would not be
appropriate. The series and its sample autocorrelation are displayed in Figure 2.

Analyzing Figure 2 we conclude that first order autoregressive models may be
appropriate for the given data series. The behavior of the series indicates that it may

Table 6 Sex offences

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1990 0 0 1 0 0 0 1 0 0 0 1 0
1991 0 0 0 0 0 1 1 0 0 0 1 0
1992 0 0 0 0 1 1 2 1 0 1 0 0
1993 1 2 0 0 0 0 1 0 2 0 0 0
1994 0 0 0 2 0 2 0 1 0 3 1 0
1995 1 1 1 0 3 1 0 0 1 2 2 0
1996 0 0 0 0 0 1 1 0 0 0 0 0
1997 0 0 0 1 0 0 0 0 1 0 0 0
1998 0 0 0 0 0 1 2 2 0 2 0 0
1999 1 1 0 3 2 0 0 2 0 0 0 0
2000 1 1 6 5 1 1 0 1 0 0 1 0
2001 0 1 1 0 1 0 1 5 0 0 0 0

Table 7 Descriptive statistics

Min. Q1 Q2 Mean ρ̂(1) Q3 Max. Var.

0.0000 0.0000 0.0000 0.5903 0.2348 1.0000 6.0000 1.0268

http://www.forecastingprinciples.com
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(a) Series (b) Sample autocorrelation

Figure 2 Counting of sex offences in Pittsburgh with sample ACF.

Table 8 Estimated parameters (with corresponding standard errors in parentheses), AIC, RMS
and MA

Model CML estimates AIC RMS MA

Geometric INAR(1) α̂ = 0.1143 (0.0754) 302.57 0.9913 0.7270
θ̂ = 0.3449 (0.0364)

Negative Binomial INAR(1) α̂ = 0.2021(0.0660) 102.15 0.9842 0.7237
θ̂ = 0.0794 (0.0103)

r̂ = 5.4993 (0.0001)

NGINAR(1) α̂ = 0.1660 (0.0965) 301.75 0.9862 0.7235
μ̂ = 0.5929 (0.0958)

be a mean stationary time series. We compared the geometric INAR(1) with the
Negative Binomial INAR(1) (corresponding to C(θ) = (1 − θ)−r ) and also with
the geometric first-order integer valued autoregressive (NGINAR(1)) model with
geometric marginal distribution (Ristić, Bakouch and Nastić, 2009). Table 8 pro-
vides the CML estimates (with corresponding standard errors in parentheses) of
the model parameters and three goodness-of-fit statistics: AIC (Akaike informa-
tion criterion), RMS (root mean square of differences between observations and
predicted values) and MA (absolute mean of differences between observations and
predicted values). Since Fisher information matrix is not available, the standard er-
rors are obtained as the square roots of the elements in the diagonal of the inverse
of the negative of the Hessian of the conditional log-likelihood calculated at the
conditional maximum likelihood estimates.

From Table 8, we conclude that the geometric INAR(1) and the NGINAR(1)
models are competitive. Also, we can compare the AIC’s to conclude that the pro-
posed negative binomial INAR(1) model produces much better fits to the data. The
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Figure 3 Sample autocorrelations of the residuals obtained from Negative Binomial INAR(1)
model.

estimated model is

Yt = 0.20 ◦ Yt−1 + εt ,

where εt ∼ Negative Binomial(5.50,0.92). The sample autocorrelations of the
residuals can be seen in Figure 3.

The second data set is given by Bakouch and Ristić (2010) as an applica-
tion of their ZTPINAR(1) model, for which the marginal distribution of the ob-
servations is a zero truncated Poisson. Their original data counts family vio-
lence in the 11th police car beat in Pittsburgh, during one month. The data set
is obtained from the crime data section of the forecasting principles site (http://
www.forecastingprinciples.com). It consists of 144 observations, starting in Jan-
uary 1990 and ending in December 2001. In order to use their zero truncated Pois-
son model, the authors transformed the series, adding 1 to each observation. The
transformed data are listed in Table 9.

Table 10 displays some descriptive statistics. We see that the transformed data
set does not assume the value 0. Thus, the logarithmic INAR(1) and truncated
Poisson INAR(1) may be also appropriate. The transformed series and its sample
autocorrelations are displayed in Figure 4.

Analyzing Figure 4, we conclude that the first order autoregressive models may
be appropriate for the given data series. The behavior of the series indicates that it
may be a mean stationary time series. We compared the logarithmic INAR(1) and
the truncated Poisson INAR(1) (corresponding to C(θ) = eθ − 1) fittings with that
of the ZTPINAR(1).

Table 11 provides the CML estimates (with corresponding standard errors in
parentheses) of the model parameters and goodness of-fit statistics. From this ta-
ble, we observe that the three models are competitive, the first two being only

http://www.forecastingprinciples.com
http://www.forecastingprinciples.com
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Table 9 Family violences

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1990 1 1 2 1 2 1 1 1 1 1 1 1
1991 1 2 1 2 1 2 1 2 2 1 2 1
1992 1 2 1 1 1 1 1 1 1 1 1 1
1993 1 2 2 1 1 1 1 2 1 1 1 1
1994 2 1 1 1 2 1 1 1 2 1 2 1
1995 1 2 1 1 1 2 2 2 3 2 2 2
1996 1 1 1 1 1 1 1 2 2 2 3 3
1997 1 2 1 2 2 1 1 2 1 3 1 1
1998 1 1 1 1 1 1 2 1 1 1 1 1
1999 1 2 1 1 1 1 1 2 1 1 1 2
2000 1 1 2 2 1 1 2 2 3 3 1 1
2001 1 1 1 1 2 1 3 2 1 1 2 4

Table 10 Descriptive statistics

Min. Q1 Q2 Mean ρ̂(1) Q3 Max. Var.

1.0000 1.0000 1.000 1.403 0.1770 2.0000 4.0000 0.3821

(a) Series (b) Sample autocorrelation

Figure 4 The sample path of the second time series and the autocorrelation function.

marginally better. The estimated truncated Poisson INAR(1) model, which is only
marginally better than the other two, is

Yt = 0.21 ◦ Yt−1 + εt ,

where εt ∼ Truncated Poisson(0.24). The sample autocorrelations of the residuals
are shown in Figure 5.
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Table 11 Estimated parameters (with corresponding standard errors in parentheses), AIC, RMS
and MA

Model CML estimates AIC RMS MA

Logarithmic INAR(1) α̂ = 0.2199 (0.0447) 233.21 0.6061 0.5205
θ̂ = 0.1727 (0.0798)

Truncated Poisson INAR(1) α̂ = 0.2045 (0.0569) 232.87 0.6059 0.5214
θ̂ = 0.2356 (0.1378)

ZTPINAR(1) α̂ = 0.4202 (0.0878) 233.46 0.6061 0.5221
λ̂ = 0.7450 (0.1142)

Figure 5 Sample autocorrelations of the residuals obtained from truncated Poisson INAR(1) model.

7 Concluding remarks

In this paper, we introduce first order non-negative integer valued autoregres-
sive processes with power series innovations based on binomial thinning. The
main properties of the model are derived, such as the mean, variance, autocor-
relation function and transition probabilities. Three methods for estimating the
model parameters are considered. Special sub-models (Geometric INAR(1), Pois-
son INAR(1) and Logarithmic INAR(1) models) are studied in some detail. We
observe that the use of innovations that come from a PS distribution has many ad-
vantages, and allows us to create processes for modelling series of counts in several
real-life situations. Indeed, the general Markovian process that is studied in this
paper offers many modelling options to the user depending on the characteristics
of the data. In the simulation study, we compare YW, CLS and CML estimators.
The simulation results show that the YW and CLS methods produce estimators
with similar performances and that CML is much better. Thus, we recommend the
use of the CML method to estimate the model parameters of an INAR(1) process
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with PS innovations. Finally, we fitted PS models to two real data sets to show
the potential of the new proposed model. These applications also demonstrate the
practical relevance of the new model.

Appendix A: Proof of Proposition 1

For the PSINAR(1) process with binomial thinning operation, the conditional dis-
tribution of Yt given Yt−1 is the convolution of the binomial distribution of the
result of the thinning operation, α ◦ Yt−1, with the PS distribution of the innova-
tion process, εt (Sprott, 1983). Thus, let • denote convolution, let

f1(i) =
(
Yt−1

i

)
αi(1 − α)Yt−1−i , i = 0,1,2, . . . , Yt−1 and

f2(i) = θia(i)

C(θ)
, i ∈ S.

Then,

Pr(Yt = k|Yt−1 = l) = f1 • f2 = ∑
i

f1(i)f2(k − i).

If S = {n,n + 1, n + 2, . . .} for fixed n ∈ Z
+, then

0 ≤ i ≤ l and k − i ≥ n ⇒ 0 ≤ i ≤ min(l, k − n),

thus

Pr(Yt = k|Yt−1 = l) =
min(l,k−n)∑

i=0

f1(i)f2(k − i).

If S = {0,1,2, . . . , n} for fixed n ∈ Z
+, then

0 ≤ i ≤ l and 0 ≤ k − i ≤ n ⇒ max(0, k − n) ≤ i ≤ min(l, k),

thus

Pr(Yt = k|Yt−1 = l) =
min(l,k)∑

i=max(0,k−n)

f1(i)f2(k − i).

Appendix B: Proof of Proposition 2

Since Pr(Yt = k|Yt−1 = l) > 0, for all k, l, our process is an irreducible process, in
the sense that every k ∈ S can be reached from every l ∈ S . It also has stationary
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transition probabilities, in the sense that these transition probabilities do not in-
volve t . Let P t(l, k) = Pr(Yt = k|Y0 = l). Following Hoel, Port and Stone (1972),
the existence of a stationary distribution is equivalent to

lim
t→∞

1

t

t∑
m=1

P m(x, x) > 0, x ∈ S.

From Hoel, Port and Stone (1972), if the inequality above is valid for a particular
y ∈ S , it will then, because our process is irreducible, be valid for all x ∈ S . We
will suppose, without loss of generality, that the smallest element of S is zero, in
the sense that a(0) > 0 in the power series expansion of C(θ). Then, we will prove
that

lim
t→∞

1

t

t∑
m=1

P m(0,0) > 0.

This will be proved if we show that limm→∞ P m(0,0) exists and it is positive.
Equivalently, we will show that limm→∞ log(P m(0,0)) exists and is finite.

We begin by showing by induction that

P m(x,0) = a(0)(1 − αm)x

C(θ)m

m−1∏
i=1

C
(
θ
(
1 − αi)).

For m = 1, the above expression is reduced to Pr(Y1 = 0|Y0 = x) = a(0)(1 −
α)x/C(θ), which is trivially true. Suppose it is valid for a given m. Then

P m+1(x,0) =
∞∑

z=0

P 1(x, z)P m(z,0)

= a(0)

C(θ)m+1

(
m−1∏
i=1

C
(
θ
(
1 − αi)))

×
∞∑

z=0

min(x,z)∑
i=0

(
1 − αm)z(x

i

)
αi(1 − α)x−iθz−ia(z − i)

= a(0)

C(θ)m+1

(
m−1∏
i=1

C
(
θ
(
1 − αi)))

×
x∑

i=0

∞∑
z=i

(
1 − αm)z(x

i

)
αi(1 − α)x−iθz−ia(z − i)

= a(0)

C(θ)m+1

(
m−1∏
i=1

C
(
θ
(
1 − αi)))
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×
x∑

i=0

(
1 − αm)i(x

i

)
αi(1 − α)x−i

∞∑
z=i

(
1 − αm)z−i

θz−ia(z − i)

= a(0)

C(θ)m+1

(
m−1∏
i=1

C
(
θ
(
1 − αi)))

× C
(
θ
(
1 − αm)) x∑

i=0

(
1 − αm)i(x

i

)
αi(1 − α)x−i

= a(0)

C(θ)m+1

(
m∏

i=1

C
(
θ
(
1 − αi))) x∑

i=0

(
1 − αm

1 − α

)i
(
x

i

)
αi(1 − α)x

= a(0)(1 − α)x

C(θ)m+1

(
m∏

i=1

C
(
θ
(
1 − αi)))

×
x∑

i=0

(
x

i

)(
1 + α + · · · + αm−1)i

αi

= a(0)(1 − α)x

C(θ)m+1

(
m∏

i=1

C
(
θ
(
1 − αi))) x∑

i=0

(
x

i

)(
α + α2 + · · · + αm)i

= a(0)(1 − α)x

C(θ)m+1

(
m∏

i=1

C
(
θ
(
1 − αi)))(

1 + α + · · · + αm)x
= a(0)(1 − αm+1)x

C(θ)m+1

m∏
i=1

C
(
θ
(
1 − αi)).

Then, we have

P m+1(0,0) =
∞∑

z=0

P 1(0, z)P m(z,0)

= a(0)

C(θ)m+1

(
m−1∏
i=1

C
(
θ
(
1 − αi))) ∞∑

z=0

a(z)θz(1 − αm)z

= a(0)

C(θ)m+1

(
m−1∏
i=1

C
(
θ
(
1 − αi)))C

(
θ
(
1 − αm))

= a(0)

C(θ)m+1

m∏
i=1

C
(
θ
(
1 − αi))

= a(0)

C(θ)

m∏
i=1

(
C(θ(1 − αi))

C(θ)

)
.
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Observe that for m = 0 we get P 1(0,0) = a(0)/C(θ), which is trivially true.
Now, we have

log
(
P m+1(0,0)

) = log
(
a(0)

) − log
(
C(θ)

) −
m∑

i=1

[
log

(
C(θ)

) − log
(
C

(
θ
(
1 − αi)))].

Let G(θ) = log(C(θ)). From the intermediate value theorem, we can, for each i,
obtain a value θi ∈ ((1 − αi)θ, θ) such that G(θ) − G(θ(1 − αi)) = G′(θi)θαi .
Now,

log
(
P m+1(0,0)

) = log
(
a(0)

) − G(θ) − θ

m∑
i=1

G′(θi)α
i.

Because G′ = C′/C is positive, the sum above is a sum of positive terms. It re-
mains, then, to show that the infinite series converges if we let m → ∞. But this is
immediate. Observe that θi ∈ ((1−αi)θ, θ) ⊂ [(1−α)θ, θ ]. Since G′ has a deriva-
tive, G′′ = (C′′/C) − (G′)2, G′ must be continuous. Let M(θ) be the maximum
value of G′ in [(1 − α)θ, θ ]. Then

0 ≤
∞∑
i=1

G′(θi)α
i ≤ M(θ)

∞∑
i=1

αi = αM(θ)

1 − α
< ∞.
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