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Abstract. Species richness is related to various factors, such as mutation,
interaction, competition and the amount of available resources for survival,
among others. Additionally, species richness is related to the size of the habi-
tat area (species-area relationship). A major problem in ecology is to identify
the best function that models this relationship. The main aim of the paper is
to propose a generalized fitting formula for the species-area relationship. The
advantage of our model is that it leads to a unique formulation for species-area
relationships, which takes into account both the effects of the minimal area
and asymptotic behavior of the growth curve for large areas. This approach
provides a unique algorithm for fitting different datasets, and choosing the
best model in light of the data. The applicability of our approach was tested
via a simulation study conducted to determine if two usual selection crite-
ria are suitable to choose the best formulation to be considered to describe
species-area relationships. Real datasets involving a species richness of fish
in 70 lakes was analysed using the proposed methodology.

1 Introduction

The relationship between the number of species (S) and area (A) of a habitat is
one of the fundamental aspects of ecology. This relationship is critical to under-
stand the biological distribution of species richness and is determined by counting
the number of distinct species in different area sizes. Mathematically, this relation-
ship is represented by a function (species-area curve) expressing the number of
species in different area sizes in a given habitat. The species-area (SAR) curve is
an essential tool for creating map biodiversity, predicting losses of species due to
habitat destruction and determining the minimum area requirements for preserving
a specie or species.

The species-area curve can be classified according to the types of habitats
(Scheiner, 2003), continents (counting in contiguous habitats, with quadrats or
areas sampled with gradually increasing sizes) or islands (counting in noncon-
tiguous habitats). Different habitats or characteristics of sampling will result in
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different shapes of species-area curves. Thus, it is advantageous to find theoretical
expressions that describe the various empirical curves.

One of the first proposals of a equation used to describe the species-area re-
lationship was a simple function, known as the Arrhenius power law (Arrhenius,
1921), given by S = β1A

β2 , where S represents the number of species, A is the
area and β1 and β2 are the parameters of the model. Plotkin et al. (2000) incorpo-
rated an upper asymptote parameter into the Arrhenius power law, indicating that
the number of species in a habitat cannot increase infinitely. Ulrich and Buszko
(2003) also proposed an Arrhenius power law extension, including the capability
to represent the effect of the minimal area.

A number of functions used for SAR are presented in Tjørve (2003, 2009),
Dengler (2009). Guilhaumon et al. (2010) presented an R package (see R Devel-
opment Core Team, 2009) used to fit different SARs. Different functions proposed
in the literature have distinct properties (upper asymptote or effect of the mini-
mal area). There is no single function that includes both upper asymptote and the
effect of the minimal area, which are essential properties for a good fit to most
datasets. However, Williams et al. (2009) pointed out three deficiencies observed
in the proposition of different SARs: (a) there is too much emphasis on maximiz-
ing the goodness of fit between species richness and area, ignoring the effects of
other factors; (b) the assumptions about the species richness distribution are often
inadequate and have not been tested; and (c) the existing fitting formulas use co-
efficients of determination (R2) with different error distributions and/or parameter
numbers. An important feature, which is often overlooked in studies that propose
some fitted method for SAR, is the fact that the number of species S is a random
variable that takes only integer and non-negative values. This feature requires spe-
cial assumptions for the probability distribution of this variable.

The main aim of this paper is to present a general SAR model which reduces
to previously proposed formulas. The proposed fitting formula is suitable for ar-
eas of different scales (small, intermediate and large) and allows the inclusion of
other covariates, beyond the area, to explain species-area relationship. Moreover,
our model considers the Poisson probability distribution for the number of species
richness. The advantage of our formulation is that it leads to a unique formula for
representing the SAR, which takes into account both the effects of the minimum
area and asymptotic behavior of the growth curve for large areas. This approach
provides a unique algorithm for fitting different datasets, and gives, by the hy-
potheses test formulation, the opportunity to choose the SAR which best fits the
data.

This paper is structured as follows. Section 2 presents the proposal generalized
species-area relationships (gSAR) and the inferential procedure for calculating the
maximum likelihood estimators and some criteria for selecting the SAR which
best fits the data. Section 3 presents a simulation study, which was conducted to
determine if two usual selection criteria are suitable to choose the best SAR model,
and the analysis of artificial datasets and real datasets in fish species richness in
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70 lakes, using the proposed (gSAR) model. Final discussions are presented in
Section 4.

2 Material and methods

Let S be a random variable that represents the species richness, which has a Pois-
son distribution with parameter μ, such that μ = f (A), where A is the size of the
area. The gSAR is given by

μ = E(S) = β0 + β1 · [
g(A)

]β2 · e−β3A
β4

, (2.1)

where βi is the unknown parameters, i = 0, . . . ,4, such that β0 ≥ 0, β1 > 0,
β2 ∈ (0,1], β3 ≥ 0 and β4 ∈ �; g(A) is a function of the area, given by g(A) = A

or g(A) = log(A). The restrictions imposed on the parameters β0, β1, β2 and β3
are related to particular SARs which will be considered later in this paper. For
g(A) = log(A), β0 represents the initial species richness, in other words, the
species richness for a unit area (A = 1). However, this interpretation does not ap-
ply to g(A) = A. Parameter β1 is the slope of the curve representing the growth
of species richness with an increasing area. Exponent β2 reflects a typical feature
of the power model traditionally fitted for the species-area relationship. Parameter
β3 introduces the flexibility of simultaneously representing the effects of the mini-
mum area and upper asymptote into the model, depending on the sign of parameter
β4. The term e−β3A

β4 , with β3 > 0, represents the persistence function which as-
signs a pattern to the curvature of the relationship that reflects the effect of the
minimum area, if β4 < 0, or the asymptotic effect for large areas, if β4 > 0.

The proposed gSAR has five parameters to be fitted. This can be a problem if
datasets do not have many data points, However, it enables the general formula-
tion including several particular cases together in a unique structure. Besides, with
the amount of five parameters, even if all particular SARs are not adequate to ac-
commodate a particular dataset, the general formulation keeps enough flexibility
to accommodate it. Taking this into account, we carried out a simulation study in
order to verify if it is possible to distinguish the gSAR and its particular cases in
light of datasets. The performed simulation can be seen as a misspecification study
and the main concern was to observe whether it was possible to make a distinc-
tion between the various formulations, even in the presence of small and moderate
sized samples considering two usual statistical criteria (AIC and BIC). We discov-
ered that, considering both statistical criteria, most fitted models indicated that the
best SAR was the one used to generate samples, even with small samples, resulting
in quite satisfactory percentages of choosing the correct model.

2.1 Particular SARs

Various usual SARs can be seen as particular cases of gSAR (2.1). These SARs are
usually fitted by ordinary least squares (OLS) and do not make assumptions about
the probability distribution of S. In this section, we describe five of them.
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2.1.1 SAR Proposed by Arrhenius (1921). In a pioneering study, Arrhenius
(1921) expressed the species-area relationship as a power law given by,

E(S) = β1A
β2, (2.2)

this SAR is called the power law model, where the variable S represents the num-
ber of species in the sampled area A, β1 and β2 correspond, in log–log scale, to
the expected number of species in a unit of area (A = 1) and the linear coefficient,
respectively. Variations in values of β1 and β2 are of interest because they might
indicate that different processes define the species-area relationship at different
spatial scales. The author emphasized that the larger the area, the greater the num-
ber of species. This SAR is widely used by ecologists (not always for biological
causes, usually for convenience) (Tjørve, 2003, Ulrich and Buszko, 2007). Equa-
tion (2.2) is a particular case of the gSAR (2.1) when the function g(A) = A and
parameters β0 = 0 and β3 = 0.

The identification of the power law as a particular case of gSAR facilitates the in-
terpretation of fitted gSAR parameters, allowing for comparison of the fitted gSAR
function with other commonly used functions. In this case, parameters β1 and β2
in the gSAR model have identical interpretation to these same parameters in the
Arrhenius (1921) model.

2.1.2 SAR Proposed by Gleason (1922). Gleason (1922) noticed that the Arrhe-
nius SAR produces extremely high estimates for the number of species in large
areas. To avoid this problem, the author proposed an alternative SAR considering
that the richness of species is a linear function of the logarithm of the area, such
as,

E(S) = β0 + β1 log(A), (2.3)

this formulation is called the logarithmic SAR, which may be more appropriate to
describe the relationship over large areas. Equation (2.3) is a particular case of the
gSAR (2.1) when the function g(A) = log(A) and parameters β2 = 1 and β3 = 0.

2.1.3 SAR Proposed by Connor and McCoy (1979). A simple linear regression
was proposed by Connor and McCoy (1979) to express the number of species S in
function of area A,

E(S) = β0 + β1A, (2.4)

which is called the linear SAR, where β0 represents the intercept parameter and β1
the slope of the regression. This SAR is appropriate to small areas. A limitation
of this SAR is the inconsistency in the estimation of species richness when A = 0.
Equation (2.4) is a particular case of the gSAR (2.1) when function g(A) = A and
parameters β2 = 1 and β3 = 0.
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2.1.4 SAR Proposed by Plotkin et al. (2000). The SAR proposed in Plotkin et al.
(2000) seeks a better fit of the relationship for large areas. This SAR can be seen
as an extension of the Arrhenius SAR, with the addition of a persistence function.
It is given by,

E(S) = β1A
β2e−β3A, (2.5)

which is called the persistence (P1) SAR, where variable S represents the number
of species, A is the sampled area, β1 is a constant, β2 is the log–log linear coeffi-
cient and β3 is a parameter that, when greater than zero, reduces the curvature of
the power function for large areas. Equation (2.5) is a particular case of the gSAR
(2.1) when the function g(A) = A and parameters β0 = 0 and β4 = 1.

The model proposed by Plotkin et al. (2000) provides, in some situation, the
existence of an upper asymptote in the species-area curve which limits the increase
in the number of species in very large areas. However, in this model the parameter
related to the upper asymptote is fixed and always assumes value one. On the other
hand, if the presence of an asymptote is revealed when analyzing a given dataset,
then the gSAR model is able to identify it by fitting the parameter β4. Moreover, the
introduction of this parameter makes the gSAR model more flexible and accurate
in the identification of the asymptote. Parameters β3 and β4 in the gSAR model
are interpreted as these same parameters in the model proposed by Plotkin et al.
(2000).

2.1.5 SAR Proposed by Ulrich and Buszko (2003, 2004). To model the effect
of small areas in the growth of species richness, Ulrich and Buszko (2003, 2004)
proposed a modification of the SAR presented in Plotkin et al. (2000) resulting in
the following expression,

E(S) = β1A
β2e−β3/A, (2.6)

which is called the persistence (P2) SAR, where the parameter β3, if greater than
zero, reflects the need for a minimum area that certain species may need to survive
and reproduce. Equation (2.6) is a particular case of the gSAR (2.1) when function
g(A) = A and parameters β0 = 0 and β4 = −1.

In the model proposed by Ulrich and Buszko (2003, 2004) the effect of small
areas is related to the term A−1, this is equivalent to always assign a fixed value to
parameter β4 = −1, in gSAR model. When parameter β4 assumes a negative value
other than −1, gSAR models comprise the effect of small areas in a more flexible
way.

2.2 Summary of the SAR

Table 1 presents a summary of the five SARs, which are particular cases of the
proposed gSAR (2.1).
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Table 1 Particular cases of the gSAR (2.1) and their characteristics

Function E(S) = f (A) Param. Asymp. Author

Linear β0 + β1A 2 No Connor and McCoy (1979)
Power law β1Aβ2 2 No Arrhenius (1921)
Persistence (P1) β1Aβ2e−β3A 3 Yes Plotkin et al. (2000)
Persistence (P2) β1Aβ2e−β3/A 3 No Ulrich and Buszko (2003, 2004)
Logarithmic β0 + β1 log(A) 2 No Gleason (1922)

Interpretation of the gSAR model parameters is similar to the usual models,
which are particular cases of the gSAR model. One advantage of using gSAR model
is that there is no need to fit various models to completely analyze a dataset. There-
fore, a dataset analysis is carried out by fitting the gSAR model and checking the
significance of its parameters, which enables the identification of small area effect,
or the asymptote with parameter β4. The analysis in then completed by checking
whether the value of the slope parameter β2 is within the normal range found in
different ecological habitats. Section 3.2.2 presents more details on the advantages
of using gSAR model to analyze real datasets.

2.3 Inference

Consider the random variable S denoting the species richness number, which
has a Poisson distribution with parameter μ, such that μ = f (A). Consider
S = {S1, S2, . . . , Sn} the vector of observations of the random variable S associ-
ated with the vector of observations in the size of area A = {A1,A2, . . . ,An}, such
that E(Si) = μi = f (Ai). The log-likelihood function associated with the obser-
vation vector S is given by,

�(S,A;β) =
n∑

i=1

Si logf (Ai) −
n∑

i=1

(
f (Ai)

) −
n∑

i=1

logSi !. (2.7)

For the proposed SAR, f (A) is given by equation (2.1) and the likelihood func-
tion (2.7) can be rewritten as,

�(S,A;β0, β1, β2, β3, β4) =
n∑

i=1

Si log
(
β0 + β1

(
g(Ai)

)β2e−β3A
β4
i

)

−
n∑

i=1

logSi ! −
n∑

i=1

(
β0 + β1

(
g(Ai)

)β2e−β3A
β4
i

)
.

The maximum likelihood estimates (MLEs) are obtained by direct maximiza-
tion of the log-likelihood function (2.7). The advantage of this procedure is that
it runs immediately using existing statistical packages such as R (R Development
Core Team, 2009). We consider software R using the BFGS algorithm (Nocedal
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Table 2 Combinations of H0 hypotheses for the gSAR

H0 g(A) Particular SAR

(ii) & (iii) A Linear
(i) & (iii) A Power law
(i) & (iv) A Persistence (P1)
(i) & (v) A Persistence (P2)
(ii) & (iii) log(A) Logarithimic

and Wright, 2006) to compute the MLEs. As usual, large-sample inferences for the
parameters are based on the MLEs and their estimated standard errors.

There are several criteria for choosing SARs that best fit datasets. We consider
here the BIC (Bayesian information criteria) proposed in Schwarz (1978) and the
AIC (Akaike information criteria) proposed in Akaike (1974). These criteria are
composed of a balance between the maximum log-likelihood function and the
number of parameters of the formulation. The BIC is given by,

BIC = −2�(S,A;β0, β1, β2, β3, β4) + k ln(n), (2.8)

where �(S,A;β0, β1, β2, β3, β4) is the log-likelihood function value, k is the num-
ber of parameters in the formulation and n is the sample size. The AIC is a measure
of the goodness of the formulation fit given by

AIC = −2�(S,A;β0, β1, β2, β3, β4) + 2k. (2.9)

Smaller values of BIC and AIC indicate a better SAR fit, but the BIC is more rigor-
ous, as the formulations with a larger number of parameters have greater penalties.

From a practical standpoint, it may be interesting to test some specific hy-
pothesis about the parameters in order to verify the particular cases of the gSAR
(2.1), that is, to test the following hypotheses: (i) H0 :β0 = 0; (ii) H0 :β2 = 1;
(iii) H0 :β3 = 0; (iv) H0 :β4 = 1; and (v) H0 :β4 = −1. The different combinations
of these situations result in specific cases of the gSAR, as presented in Table 2.

3 Results

3.1 Simulation study

In this section, we present a study which was carried out to observe if it is possible
to distinguish the gSAR and its particular cases, based on datasets and the criterion
described in Section 2.3. We generated samples of sizes n = 20,50,100,200,500
and 1000 from the species richness (S) for area sizes n between 1 and 100, con-
sidering the gSAR—with g(A) = A and g(A) = log(A)—and each of the SARs
described in Table 1. The parameter values considered to generate the data are
presented in Table 3. These values were chosen so that all SARs show a growth
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Table 3 Values of the parameters for each model

Model β0 β1 β2 β3 β4 g(A)

Linear 2 2 1 0 0 A

Power law 0 8 0.75 0 0 A

Persistence (P1) 0 8 0.75 0.005 1 A

Persistence (P2) 0 8 0.75 50 −1 A

Logarithimic 2 100 1 0 0 log(A)

gSAR with g(A) = A 2 20 0.75 50 −0.8 A

gSAR with g(A) = log(A) 8 100 0.75 0.005 0.5 log(A)

Figure 1 SAR scatterplots: (A) without asymptote; - Linear; -·- Power law; · · · Persistence (P2);
– - – Logarithmic; - - - gSAR with g(A) = A. (B) with asymptote; - Persistence (P1); - - - gSAR with
g(A) = log(A).

pattern on the same scale. Figure 1 shows the behavior of the SARs, considering
the parameters in Table 3.

We considered two groups of SARs: the first, in which g(A) = A, and the sec-
ond, where g(A) = log(A). For both groups, we generated a sample of each SAR
and fitted all seven SARs to each sample. This procedure was repeated 1000 times
to verify if the SARs selected by the adopted criteria coincide with the true SARs
used to generate the data. Table 4 shows the percentages of choosing the correct
model of each criterion for different sample sizes In general, it can be stated that
the SAR from which the sample was generated is indicated as the best model. We
observed that most fitted models indicated that the best SAR is the one used to
generate the samples. A relevant point is that, regardless of the sample size, the
use of the AIC and BIC criteria for selecting the true SAR resulted in quite satis-
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Table 4 Percentages of choosing the correct model of each criterion for selecting the true model

g(A) = A g(A) = log(A)

n Criteria Linear Power law Persistence (P1) Persistence (P2) gSAR Logarithmic gSAR

20 AIC 74.5 83.6 69.9 94.3 99.1 90.6 99.9
BIC 75.8 89.5 64.7 98.0 98.9 98.2 99.9

50 AIC 91.2 90.5 85.2 94.4 99.7 85.5 99.9
BIC 92.9 97.4 82.2 98.0 99.7 98.9 99.9

100 AIC 88.5 85.3 93.9 93.2 99.9 82.4 99.9
BIC 90.9 90.0 94.9 99.2 99.9 99.6 99.9

200 AIC 94.5 97.4 63.5 93.2 99.9 75.5 99.9
BIC 95.1 99.4 66.4 97.8 99.9 99.4 99.9

500 AIC 99.4 99.2 99.8 84.6 99.9 82.5 99.9
BIC 99.6 99.7 99.9 99.6 99.9 99.9 99.9

1000 AIC 99.6 99.9 78.3 88.9 99.9 75.3 99.9
BIC 99.6 99.9 80.5 95.6 99.9 99.9 99.9

factory percentages of choosing the correct model. The proposed SAR, with both
structures g(A) = A and g(A) = log(A), obtained the highest percentages.

Table 4 shows the percentages of choosing the correct model of each criterion
for different sample sizes. In general, it can be stated that the SAR from which the
sample was generated is indicated as the best model.

3.2 Application

In this section, we illustrate the flexibility of the proposed gSAR and compare
it with its particular cases in artificial datasets and real datasets of fish species
richness from 70 lakes in the world previously analyzed in Barbour and Brown
(1974) and Stein and Juritz (1988).

3.2.1 Artificial data. In the study with artificial data, a sample size n = 100 was
generated from the gSAR (2.1) with g(A) = log(A), considering areas with sizes
between 1 and 100. Subsequently, all models were fitted in order to find the rela-
tionships that best explains the data behavior. Table 5 shows the selection criteria
values considered for all models. We observed an agreement in the choice of the
best SAR by considering both the AIC and BIC criteria. They indicate that the best
fit is obtained from the SAR in which the data were generated, that is, with the
gSAR one.

The panel (A) of Figure 2 presents the scatterplot of the artificial dataset, the
function curve used to generate the data and the fitted one. It can be seen that the
proposed SAR represents the data behavior well, and it also captures the smooth-
ness of the growth curve for large areas and the minimum area effect. Another
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Table 5 Selection criteria of the SARs fitted for the artificial data

g(A) = A g(A) = log(A)

Criteria Linear Power law Persistence (P1) Persistence (P2) gSAR Logarithmic gSAR

AIC 923.52 789.40 731.38 707.19 707.00 1261.27 696.18
BIC 928.73 794.61 739.19 715.01 720.02 1266.48 709.20

Figure 2 Artificial model and fitted model to the simulated data of gSAR, g(A) = log(A), with
sample size n = 100: (A) area in the original scale (* artificial data; — artificial model; - - - fitted
model) and (B) QQ-plot.

way to check the goodness of fit is to construct the QQ-plot of the estimated
species richness with each fitted SAR. Indicative of goodness fit is the proxim-
ity of points to the 45° line. The panel (B) of Figure 2 shows that the gSAR, with
g(A) = log(A), has a higher adhesiveness to the points.
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Table 6 Estimates of parameters of the fitted SARs

Parameters Criteria

Model β0 β1 β2 β3 β4 AIC BIC

Linear 31.17 4 × 10−4 – – – 2426.49 2430.98
Power law – 8.73 0.20 – – 1900.36 1904.86
Persistence (P1) – 8.00 0.22 5 × 10−7 – 1910.55 1917.29
Persistence (P2) – 8.55 0.20 2 × 10−3 – 1902.38 1909.12
gSAR with g(A) = A 13.50 1.65 0.34 71.88 −18.85 1855.48 1866.73
Logarithmic 6.99 11.91 – – – 2169.36 2173.86
gSAR with g(A) = log(A) 6.98 11.91 1.00 0.01 −15.87 2175.36 2186.60

3.2.2 Real data. We consider the fish species richness dataset presented in
Barbour and Brown (1974). The dataset consists on fish species richness in 70
lakes, whose areas were measured in km2, belonging to the following regions:
Africa, Canada, Great Britain, Guatemala, Italy, Japan, Mexico, Nicaragua, Costa
Rica, Peru, Bolivia, the Soviet Union, the United States, Romania and Yugoslavia.
These data were analyzed by Barbour and Brown (1974), considering the power
law of Arrhenius (1921), and by Stein and Juritz (1988), considering a linear rela-
tionship between the expected value of the number of species and the logarithm of
the area.

We fitted the gSAR and all its particular cases to the data to check which func-
tion best describes the relationship between species richness and area of the lakes.
Table 6 shows the parameter estimates and the selection criteria for each SAR. The
gSAR, with g(A) = A, presents the lowest values for the AIC and BIC, indicating
that it has the best fit among the SARs considered for these data.

Figure 3(A) illustrates the gSAR fitted for the data in fish species richness ac-
cording to the lake areas in logarithmic scale. The proposed SAR adequately fits
the dataset. Comparing the points in this figure, we notice that, for some areas,
there are points with high fish species richness. In contrast, there are overly large
areas where the diversities are not as high as those of a few relatively small areas.
For this reason, we believe these extreme points, hereafter outliers, may have influ-
enced the quality of the adjustments (see Cook, 1986, Paula and Cysneiros, 2010).
These outliers represent the fish species richness in the lakes Malawi, Tanganyika
and Victoria (all in Africa).

For the sake of illustration, we dropped the outliers and fitted the model again.
Table 7 presents the estimates of each parameter and the selection criteria, which
even after dropping the outliers continue indicating the gSAR with g(A) = A as
having the best fit. Figure 3(B) illustrates the gSAR fitted to the fish species rich-
ness data, without outlier points, according to the lake areas on a logarithmic scale.

Barbour and Brown (1974) considered the power law to fit the species-area
curve to this fish richness dataset. The analysis resulted in a low slope to species-
area curve (β1 = 0.16, in Table 7) falling below the usual range reported for islands
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Figure 3 Fitted model for fish species richness data from lakes in the world: (A) complete dataset
and (B) dataset without outlier points.

Table 7 Estimates of parameters of the fitted SARs, without outlier points

Parameters Criteria

Model β0 β1 β2 β3 β4 AIC BIC

Linear 27.65 3 × 10−4 – – – 1413.15 1417.56
Power law – 10.22 0.16 – – 1252.27 1256.68
Persistence (P1) – 10.23 0.16 4 × 10−9 – 1254.48 1261.09
Persistence (P2) – 10.24 0.16 2 × 10−7 – 1254.27 1260.88
gSAR with g(A) = A 15.68 2.63 0.31 1.03 −0.07 1208.93 1219.95
Logarithmic 8.96 8.85 – – – 1371.21 1375.62
gSAR with g(A) = log(A) 18.89 16.42 0.97 14.57 −0.30 1238.49 1249.51

(0.2–0.35), Bell et al. (2005). On the other hand, the slope value estimated for this
same dataset using the gSAR model was β1 = 0.31 (see Table 7 with g(A) = A).
We note that models of persistence (P1) and (P2) fitted to this dataset led to the
same power law slope. Moreover, the low value estimated for parameter β3 in both
(P1) and (P2) persistence models indicate no upper asymptote or small area effect.
However, fitting the gSAR model to the fish richness dataset revealed a small area
effect. We also can note that for the same area variation, the fitted gSAR model
shows an increase in the number of species faster than the Barbour and Brown
model. The power law model fitted by Barbour and Brown (1974) and the fitted
gSAR model are shown in Figure 3(B).

Barbour and Brown (1974) also considered the power law model to separately
analyze two datasets consisting of the number of fish species in 14 lakes in North
America and 14 lakes in Africa. We have also fitted the gSAR model to these two
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Table 8 Estimates of parameters of the fitted Species-Areas curves, for North American and African
lakes

Parameters Criteria

Lakes Model β0 β1 β2 β3 β4 AIC BIC

North Power law – 10.38 0.19 – – 336.71 337.99
American gSAR with g(A) = A 26.15 2.14 0.37 4.23 −0.16 334.44 337.63

African Power law – 0.89 0.47 – – 360.77 362.05
gSAR with g(A) = A 14.59 0.13 0.67 4.27 −2.53 330.87 334.06

Figure 4 Fitted model for fish species richness data from lakes in: (A) 14 North American lakes;
(B) 14 African lakes.

datasets and parameter estimates are given in Table 8. We note that the gSAR model
provided a slope value of β2 = 0.37 (for the lakes in North America) and β2 = 0.67
(for the lakes in Africa), both being greater than the values obtained using the
power law (Barbour and Brown, 1974), which were β2 = 0.19 (for the lakes in
North America) and β2 = 0.47 (for the lakes in Africa). We can also note that, for
both datasets, the parameter β4 assumes a negative value, meaning that there is
effect of small areas. A comparison of the fitted models is shown in Figure 4.

4 Discussion

Many SARs have been proposed in the literature to explain the relationship be-
tween the species richness number and the habitat area. In this paper, we propose
the gSAR (2.1), which takes into account the effect of the small area and also the
behavior pattern of this relationship for large areas. The proposed SAR has vari-
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ous usual formulations used to explained the species-area relationship as particular
cases, which can be properly selected via two different criteria (AIC and BIC). The
results of a simulation study showed that both AIC and BIC selection criteria are
suitable to decide on the best SAR to describe the relationship between the species
richness number and the habitat area in light of a particular data set. The empirical
study based on a real dataset of 70 lakes in the world and two datasets consist-
ing of 14 lakes in North America and 14 in reveals that the proposed extension
outperforms its particular cases to fit these datasets.

It is worth noting that, to analyze these datasets on fish species richness, Barbour
and Brown (1974) considered a multiple linear regression model. That is, the ex-
pected value of species richness number is a linear function of logarithm of the area
and latitude, and a normal distribution is assumed for the species richness number.
However, we believe that this procedure is questionable from a statistical point
of view since the response variable (species richness number) is discrete, and by
using this procedure it is assumed to be continuous. Stein and Juritz (1988) consid-
ered the logarithm of the expected value of the species richness number as a linear
function of the logarithm of the area, assuming a Poisson–Inverse Gaussian error
distribution. The fitted model showed large deviations between the estimated and
observed value of species richness numbers for large areas, resulting in a mean
square error of 70% of the variance of S. As a crude comparison, the proposed
gSAR reduced this error to 58%, a gain of about 17% in a mean square error.

A natural extension of this work may be obtained by considering different prob-
ability distributions for the species richness number. In particular, distributions in-
volving overdispersion and underdispersion. In this context, del Castillo and Pérez-
Casany (2005) may be investigated further.
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