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Inference in Two-Piece Location-Scale Models
with Jeffreys Priors

Francisco J. Rubio ∗ and Mark F. J. Steel †

Abstract. This paper addresses the use of Jeffreys priors in the context of uni-
variate three-parameter location-scale models, where skewness is introduced by
differing scale parameters either side of the location. We focus on various com-
monly used parameterizations for these models. Jeffreys priors are shown to lead
to improper posteriors in the wide and practically relevant class of distributions
obtained by skewing scale mixtures of normals. Easily checked conditions under
which independence Jeffreys priors can be used for valid inference are derived.
We also investigate two alternative priors, one of which is shown to lead to valid
Bayesian inference for all practically interesting parameterizations of these models
and is our recommendation to practitioners. We illustrate some of these models
using real data.

Keywords: Bayesian inference, noninformative prior, posterior existence, scale
mixtures of normals, skewness.

1 Introduction

The use of skewed distributions is an attractive option for modeling data presenting
departures from symmetry. Several mechanisms to obtain skewed distributions by ap-
propriately modifying symmetric distributions have been presented in the literature
(Azzalini 1985; Fernández and Steel 1998; Mudholkar and Hutson 2000).

We focus on the simple univariate location-scale model where we induce skewness by
the use of different scales on both sides of the mode and only distinguish three scalar
parameters. We investigate Bayesian inference using Jeffreys priors in this simple set-
ting. Despite the simplicity of these models they often fit observed data quite well, and
have been used recently in a wide variety of applied contexts, such as genetics, biol-
ogy, hydrology, economics, finance, medicine, agriculture and marketing (Purdom and
Holmes 2005; Trindade et al. 2010; Rubio and Steel 2011; Punathumparambath et al.
2012). For example, they are used for the widely discussed probability forecasts of gross
domestic product and inflation produced by the Bank of England and the Sveriges Riks-
bank (Wallis 2004; Galbraith and van Norden 2012). The availability of a “benchmark”
Bayesian analysis is thus of particular importance for practitioners.

Firstly, we consider univariate (continuous) two-piece distributions with different scales
on both sides of the location parameter. Then, we focus on the family of reparameteri-
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zations defined in Arellano-Valle et al. (2005), where the scales are reparameterized in
terms of a common scale and a skewness parameter. Whereas we discuss orthogonality
of parameterizations, which is of direct interest for likelihood-based frequentist infer-
ence, we will mostly focus on Bayesian inference in this paper. A commonly used prior
structure to reflect an absence of prior information is the Jeffreys (or “Jeffreys-rule”)
prior, which is the reference prior (Berger et al. 2009) in the case of a scalar parame-
ter under asymptotic posterior normality. Under these conditions, Clarke and Barron
(1994) showed that this prior asymptotically maximizes the expected information from
repeated sampling. The Jeffreys prior is an interesting choice because no subjective
parameters have to be elicited and it is invariant under reparameterizations (Jeffreys
1941; Ibrahim and Laud 1991).

However, in our two-piece location-scale framework (and its reparameterizations), we
show that Jeffreys prior does not lead to a proper posterior in the wide and empiri-
cally interesting class of distributions obtained by skewing scale mixtures of normals.
In addition, we consider the independence Jeffreys prior (constructed as the product of
the Jeffreys priors for each parameter while considering the other parameters are fixed),
which is shown to lead to a proper posterior under some parameterizations. Simple con-
ditions regarding posterior existence with the independence Jeffreys prior are derived.
We propose an alternative prior structure, which is partly subjective, but which is easily
elicited and leads to valid Bayesian inference in a wide and practically relevant class of
parameterizations of two-piece models.

The structure of this document is as follows: in Section 2 we present the two-piece
location-scale model and the family of parameterizations defined in Arellano-Valle et al.
(2005). We derive the Fisher information matrix for these models as well as the Jeffreys
and independence Jeffreys priors. In Section 3 we examine posterior existence with
these priors in the context of a scale mixture of normals for the underlying symmetric
distribution. We also propose two alternative prior structures, one of which is our rec-
ommended prior choice for users of these models. In Section 4 we present an application
of the Bayesian models studied here on a real data set. The final section contains con-
cluding remarks. Proofs of all theorems as well as a numerical coverage analysis of the
95% credible intervals for various models are given in the supplementary material.

2 Sampling Models and Jeffreys priors

2.1 Two-piece location-scale models

Let f(y|µ, σ) be an absolutely continuous density with support on R, location parameter
µ ∈ R and scale parameter σ ∈ R+, and denote f

(
y−µ
σ |0, 1

)
= f

(
y−µ
σ

)
. Consider

the following “two-piece” density constructed of f
(

y−µ
σ1

)
truncated to (−∞, µ) and

f
(

y−µ
σ2

)
truncated to [µ,∞):

g(y|µ, σ1, σ2, ε) =
2ε

σ1
f

(
y − µ

σ1

)
I(−∞,µ)(y) +

2(1− ε)

σ2
f

(
y − µ

σ2

)
I[µ,∞)(y), (1)
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where σ1 ∈ R+ and σ2 ∈ R+ are separate scale parameters and 0 < ε < 1. To get a
continuous density, we need to choose ε = σ1/(σ1 + σ2), so that

s(y|µ, σ1, σ2) =
2

σ1 + σ2

[
f

(
y − µ

σ1

)
I(−∞,µ)(y) + f

(
y − µ

σ2

)
I[µ,∞)(y)

]
. (2)

Typically, f will be a symmetric density function. In this paper, we will assume f to be
symmetric with a single mode at zero, which means that µ is the mode of the density
in (2). If we choose f to be a normal or a Student t density, the distribution in (2)
corresponds to split-normal and split-t distributions, respectively, as defined in Geweke
(1989). In earlier work, the case with normal f was termed joined half-Gaussian by
Gibbons and Mylroie (1973) and two-piece normal by John (1982). A historical account
of the many guises of this distribution is provided in Wallis (2013). In line with most
of the recent literature (Jones 2006; Jones and Anaya-Izquierdo 2011; Wallis 2013), we
shall denote the model in (2) as the two-piece model. Since∫ µ

−∞
s(y|µ, σ1, σ2) dy =

σ1
σ1 + σ2

, (3)

s is skewed about µ if σ1 ̸= σ2 and the ratio σ1/σ2 controls the allocation of mass to
each side of µ.

We are mainly interested in the inferential properties of these skewed distributions
under the popular Jeffreys priors, but will also briefly discuss orthogonality of their
parameters. Cox and Reid (1987) define two parameters, θ1 and θ2, to be orthogonal
if the corresponding off-diagonal entry of the Fisher information matrix is zero. If θ1 is
orthogonal to θ2, we will denote this as θ1 ⊥ θ2.

We first calculate the Fisher information matrix and characterize, through the symmet-
ric density f , the cases where this matrix is well defined:
Theorem 1. Let s(y|µ, σ1, σ2) be as in (2) and suppose that the following conditions
hold

(i)
∫∞
0

[
f ′(t)
f(t)

]2
f(t) dt <∞,

(ii)
∫∞
0
t2
[
f ′(t)
f(t)

]2
f(t) dt <∞,

(iii) limt→∞ tf(t) = 0 or
∫∞
0
tf ′(t)dt = −1

2 , which means that f(t) is o
(
1
t

)
.

Then the Fisher information matrix I(µ, σ1, σ2) is
2α1

σ1σ2
− 2α3

σ1(σ1+σ2)
2α3

σ2(σ1+σ2)

− 2α3

σ1(σ1+σ2)
α2

σ1(σ1+σ2)
+ σ2

σ1(σ1+σ2)2
− 1

(σ1+σ2)2
2α3

σ2(σ1+σ2)
− 1

(σ1+σ2)2
α2

σ2(σ1+σ2)
+ σ1

σ2(σ1+σ2)2

 , (4)



4 Inference in Two-Piece Models with Jeffreys Priors

where

α1 =

∫ ∞

0

[
f ′(t)

f(t)

]2
f(t) dt,

α2 = 2

∫ ∞

0

[
1 + t

f ′(t)

f(t)

]2
f(t) dt = −1 + 2

∫ ∞

0

t2
[
f ′(t)

f(t)

]2
f(t) dt,

α3 =

∫ ∞

0

t

[
f ′(t)

f(t)

]2
f(t) dt.

Conditions (i) and (ii) are required for the existence of the expression in (4) and are
satisfied under regularity conditions (Lehmann and Casella 1998; p. 126). Condition
(iii) is useful to simplify some expressions and is satisfied by many models of interest.
As examples, normal, Student t, logistic, Cauchy, Laplace and exponential power distri-
butions (Box and Tiao 1973; p. 157) all satisfy (i)− (iii). Given that α1, α2 and α3 are
positive as long as f ′(t) ̸= 0 everywhere, none of the entries of the Fisher information
matrix are zero. Therefore, this is a non-orthogonal parameterization.

The Jeffreys prior, proposed by Jeffreys (1941), is defined as the square root of the
determinant of the Fisher information matrix. In contrast, the independence Jeffreys
prior is defined as the product of the Jeffreys priors for each parameter independently,
while treating the other parameters as fixed.
Corollary 1. If the Fisher information matrix in (4) is non-singular, then the Jeffreys
prior for the parameters in (2) is

πJ(µ, σ1, σ2) ∝ 1

σ1σ2(σ1 + σ2)
. (5)

The independence Jeffreys prior is

πI(µ, σ1, σ2) ∝
√
[σ1 + α2(σ1 + σ2)][σ2 + α2(σ1 + σ2)]√

σ1σ2(σ1 + σ2)2
. (6)

The Jeffreys prior is defined only in the cases when the Fisher information matrix is
non-singular. The determinant of the Fisher information matrix can be factored into
two terms, one dependent on the parameters and the other dependent on the constants
(α1, α2, α3). The former is always positive. The following result gives conditions on the
density f that ensure that the second factor does not vanish and the Fisher information
matrix is thus non-singular.
Theorem 2. If the conditions of Theorem 1 are satisfied and f ′(t) ̸= 0 a.e., then the
Fisher information matrix is non-singular.

In particular, the Fisher information matrix (4) is non-singular if f corresponds to a
normal, Laplace, exponential power, logistic, Cauchy or Student t distribution. The
structure of the independence Jeffreys prior in (6) assumes that α2 > 0, which will
always be the case (see the proof of Theorem 2 in the supplementary material).
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2.2 Reparameterizations of the two-piece model

To link the two-piece model in (2) with the family defined in Arellano-Valle et al. (2005),
we use the following reparameterization (one-to-one transformation)

(µ, σ1, σ2) ↔ (µ, σ, γ), (7)

µ = µ,

σ1 = σb(γ),

σ2 = σa(γ),

where γ ∈ Γ, σ > 0 and a(γ) > 0 and b(γ) > 0 are differentiable functions such that

0 < |λ(γ)| <∞,withλ(γ) ≡ d

dγ
log

[
a(γ)

b(γ)

]
. (8)

The condition in (8) implies that (7) is a non-singular mapping and is thus necessary
for it to be a one-to-one transformation. Then we get the following reparameterized
density from (2):

s(y|µ, σ, γ) = 2

σ[a(γ) + b(γ)]

[
f

(
y − µ

σb(γ)

)
I(−∞,µ)(y) + f

(
y − µ

σa(γ)

)
I[µ,∞)(y)

]
. (9)

This expression was presented by Arellano-Valle et al. (2005) as a general class of asym-
metric distributions, which includes various skewed distributions presented in the liter-
ature. Like Jones (2006), we view (9) with a given choice of f not as a class of densities
but as a class of reparameterizations of the same density.

Two parameterizations using the functions {a(γ), b(γ)} have been widely studied: the in-
verse scale factors (ISF) model (Fernández and Steel 1998), corresponding to {a(γ), b(γ)} =
{γ, 1/γ} for γ ∈ R+ and the ϵ-skew model (Mudholkar and Hutson 2000), which chooses
{a(γ), b(γ)} = {1 + γ, 1− γ} for γ ∈ (−1, 1).

The Fisher information matrix for the reparameterized model in (9) is as follows:
Theorem 3. Let f(y|µ, σ) be as in Theorem 1. Then the Fisher information matrix
I(µ, σ, γ) for model (9) is

2α1

a(γ)b(γ)σ2 0 2α3

σ[a(γ)+b(γ)]A(γ)

0 α2

σ2
α2

σ B(γ)
2α3

σ[a(γ)+b(γ)]A(γ)
α2

σ B(γ) α2+1
a(γ)+b(γ)

[
b′(γ)2

b(γ) + a′(γ)2

a(γ)

]
−B(γ)2

 ,

where A(γ) =
a′(γ)

a(γ)
− b′(γ)

b(γ)
and B(γ) =

a′(γ) + b′(γ)

a(γ) + b(γ)
.

The fact that the elements I12 and I21 are zero indicates that this reparameterization
is interesting because it induces orthogonality between the parameters µ and σ for any
choice of {a(γ), b(γ)}. In addition, by appropriately choosing the pair of functions
{a(γ), b(γ)} we can generate more zero entries in the Fisher information matrix, as
shown in the following corollary.
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Corollary 2. If d
dγ log [a(γ) + b(γ)] = 0, then I23 = I32 = 0. In particular if a(γ)+b(γ)

is constant, then I23 = I32 = 0.

If α3 > 0, then I13 = I31 = 0 only if a(γ) ∝ b(γ) which does not satisfy (8). Jones and
Anaya-Izquierdo (2011) analysed the zeroes of the expectation of the Hessian matrix of
(µ, σ, γ) in model (9) augmented with an extra parameter to model the properties of f .
They also found that µ ⊥ σ and if a(γ) + b(γ) is constant then σ ⊥ γ as in Corollary 2.

The corresponding Jeffreys prior and independence Jeffreys prior for the parameteriza-
tion (µ, σ, γ) are given in the following result.
Corollary 3. If the Fisher information matrix is non-singular, then the Jeffreys prior
for the parameters in (9) is

πJ (µ, σ, γ) ∝
|a′(γ)b(γ)− a(γ)b′(γ)|
σ2a(γ)b(γ)[a(γ) + b(γ)]

=
|λ(γ)|

σ2[a(γ) + b(γ)]
, (10)

where λ(γ) was defined in (8). The independence Jeffreys prior is

πI(µ, σ, γ) ∝ 1

σ

√
α2 + 1

a(γ) + b(γ)

[
b′(γ)2

b(γ)
+
a′(γ)2

a(γ)

]
−
[
a′(γ) + b′(γ)

a(γ) + b(γ)

]2
. (11)

Conditions to ensure non-singularity of the Fisher information matrix for the parame-
terization in (9) are similar to those obtained for the two-piece model (2) in Theorem 2.
The only difference is that in this case we have to choose a pair of functions {a(γ), b(γ)}
such that (7) corresponds to a non-singular transformation:
Corollary 4. If the conditions of Theorem 1 are satisfied, f ′(t) ̸= 0 a.e., and (8) holds,
then the Fisher information matrix corresponding to model (9) is non-singular.

Due to the invariance property of the Jeffreys prior there is a one-to-one relationship
between (5) and (10). On the other hand, the independence Jeffreys prior is not invariant
under reparameterizations, so the properties of this prior are dependent on the choice
of {a(γ), b(γ)}.

Now we will briefly discuss the inverse scale factors and ϵ-skew models.

Inverse scale factors model

The ISF model corresponds to choosing {a(γ) = γ, b(γ) = 1/γ}, γ ∈ R+ in (9), so that
from Theorem 3 the Fisher information matrix of the parameters (µ, σ, γ) is

I(µ, σ, γ) =


2α1

σ2 0 4α3

σ(γ2+1)

0 α2

σ2

α2(γ2−1)
σ(γ3+γ)

4α3

σ(γ2+1)

α2(γ2−1)
σ(γ3+γ)

α2

γ2 + 4
(γ2+1)2

 . (12)

If the Fisher information matrix in (12) is non-singular, then the Jeffreys prior for the
ISF model is

πJ(µ, σ, γ) ∝ 1

σ2 (1 + γ2)
, (13)
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which has a finite integral over γ ∈ R+, but is improper in µ and σ. The independence
Jeffreys prior is

πI(µ, σ, γ) ∝ 1

σ

√
α2

γ2
+

4

(γ2 + 1)
2 , (14)

which is not integrable in any of the parameters.

ϵ-skew model

For the ϵ-skew model we choose {a(γ) = 1− γ, b(γ) = 1 + γ} in (9), where γ ∈ (−1, 1),
leading to the Fisher information matrix

I(µ, σ, γ) =

 2α1

σ2(1−γ2) 0 − 2α3

σ(1−γ2)

0 α2

σ2 0
− 2α3

σ(1−γ2) 0 α2+1
1−γ2

 . (15)

The ϵ-skew parameterization satisfies the condition in Corollary 2 and thus its Fisher
information matrix has four zeroes. The presence of zero entries often simplifies classical
inference (Jones and Anaya-Izquierdo 2011). For example, in the cases where f is normal
or Laplace, the corresponding ϵ-skew model leads to maximum likelihood estimators in
closed form (Mudholkar and Hutson 2000; Arellano-Valle et al. 2005).

Provided the Fisher information matrix in (15) is non-singular, the Jeffreys prior for
the ϵ-skew model is

πJ(µ, σ, γ) ∝ 1

σ2(1− γ2)
, (16)

which is not integrable in any of the parameters. The independence Jeffreys prior is

πI(µ, σ, γ) ∝ 1

σ
√
1− γ2

, (17)

which has a finite integral over γ ∈ (−1, 1), but does not integrate in µ and σ. For this
model the independence Jeffreys prior does not depend on f (through α2), in contrast
with the priors for the two-piece model in (6) and the ISF model in (14).

In the different models mentioned above, the skewness parameter γ does not have the
same interpretation. This makes it particularly difficult to compare models and priors
on γ. However, they can be compared by using a skewness measure that has the same
interpretation across parameterizations. Here we use the skewness measure with respect
to the mode from Arnold and Groeneveld (1995), defined as
Definition 1. The Arnold-Groeneveld measure of skewness for a distribution function
S corresponding to a unimodal density with the mode at M is defined as 1 minus twice
the probability mass to the left of the mode:

AG = 1− 2S(M).
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The AG measure takes values in (−1, 1) and can be interpreted as the difference between
the mass to the right and the mass to the left of the mode. Positive values of AG indicate
right skewness while negative values indicate left skewness. From (3) it is immediate
that for the two-piece model AG = (σ2 −σ1)/(σ1 +σ2), which only depends on the two
scales and not on the properties of f . Similarly, for the parameterization in Arellano-
Valle et al. (2005) in (9) the AG skewness measure has a closed form which only depends
on γ:

AG(γ) =
a(γ)− b(γ)

a(γ) + b(γ)
.

For the special case of the ISF model in Subsection 2.2, this reduces to

AG(γ) =
γ2 − 1

γ2 + 1
,

while for the ϵ-skew model in Subsection 2.2 we obtain AG(γ) = −γ.

In both examples above, the AG skewness measure is a monotonic function of γ, so we
can meaningfully interpret γ as a skewness parameter. In general, we will be mostly
interested in parameterizations where AG is a monotonic function of γ, which can be
characterized as follows:
Theorem 4. Let s, a(γ) and b(γ) be as in (9), then for any unimodal density f

� AG(γ) is increasing if and only if λ(γ) > 0.

� AG(γ) is decreasing if and only if λ(γ) < 0.

3 Inference

In this section we will present necessary and/or sufficient conditions for the properness
of the posterior distribution of the parameters of the two-piece models considered when
using the priors presented in the previous section, as well as two alternative priors to be
introduced later in Subsection 3.4. Throughout this section we will assume that we have
observed a sample of n independent replications from either (2) or (9). Although those
models are equivalent up to a reparameterization, we will show that the existence of the
posterior distribution can depend on the parameterization, if the prior is not invariant
under reparameterization. We separately deal with samples where all the observations
are different and samples which contain repeated observations. Most of the results in
this section are for the case where the underlying symmetric distribution (with density
f) belongs to the wide class of scale mixtures of normals. Of course, a meaningful
use of the results in Subsections 3.1 and 3.2 implies a nonsingular information matrix
(see Theorem 2 and Corollary 4) so that the Jeffreys prior exists or implies that the
independence Jeffreys prior is well-defined. However, most cases of practical interest
will correspond to an f that allows for these priors to be well-defined.
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Recall that a density f corresponds to a scale mixture of normals if it can be written as

f(x) =

∫ ∞

0

τ1/2ϕ(τ1/2x)dPτ ,

where ϕ is the standard normal density and Pτ is a mixing distribution on R+. The class
of scale mixtures of normals is quite a rich class of symmetric and unimodal continuous
distributions and contains many popular distributions, such as the normal, Student t,
logistic, Laplace, Cauchy and the exponential power family with power 1 ≤ q < 2 (see
Fernández and Steel, 2000 for more details). This class does not cover distributions
with tails thinner than normal tails.

3.1 Independence Jeffreys prior

The independence Jeffreys prior is not invariant under reparameterizations. Therefore
if we consider one-to-one transformations as in (7), we need to analyse the properness
of the posterior distribution of (µ, σ, γ) for each specific choice of {a(γ), b(γ)}. Thus,
we examine the models in (2) and (9) separately.
Theorem 5. Let y = (y1, . . . , yn) be an independent sample from the model in (2),
where f is a scale mixture of normals. Then,

(i) The posterior distribution of (µ, σ1, σ2) using the independence Jeffreys prior (6)
is proper if n ≥ 2 and all the observations are different.

(ii) Suppose that the sample y contains repeated observations. Let k be the largest
number of observations with the same value in y. If 1 < k < n, then the posterior
of (µ, σ1, σ2) is proper if and only if the mixing distribution of f satisfies∫

0<τ1≤...≤τn<∞
τ
−(n−2)/2
n−k

∏
i ̸=n−k,n

τ
1/2
i dP(τ1,...,τn) <∞, (18)

where dP(τ1,...,τn) denotes the distribution of the n mixing parameters τj, j =
1, . . . , n, associated with the n observations. In the case of the two-piece normal
sampling model (i.e. normal f), it suffices to have two different observations.

Thus, for a wide and practically important class of distributions f , the two-piece model
in (2) with the independence Jeffreys prior leads to valid inference in (almost) any sample
of two or more observations. Equation (18) establishes a condition on the tails of the
mixing distribution that leads to a proper posterior distribution using the independence
Jeffreys prior. We refer the reader to Fernández and Steel (1999) for more details on
this condition.

For the model in (9), we can derive useful existence results within a class of prior
distributions:
Theorem 6. Let y = (y1, . . . , yn) be an independent sample from the model in (9),
where f is a scale mixture of normals. Consider a prior distribution of the form
π(µ, σ, γ) ∝ σ−1π(γ), for some π(γ). Then:
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(i) a necessary condition for the properness of the posterior distribution of (µ, σ, γ) is∫
Γ

[
a(γ)

a(γ) + b(γ)

]n
π(γ) dγ <∞. (19)

(ii) the posterior distribution of (µ, σ, γ) is proper if n ≥ 2, all the observations are
different, and π(γ) is proper.

(iii) Suppose that the sample y contains repeated observations and π(γ) is proper. Let
k be the largest number of observations with the same value in y. If 1 < k < n,
then the posterior of (µ, σ, γ) is proper if and only if the mixing distribution of f
satisfies (18). In the case of the two-piece normal sampling model (i.e. normal f),
it suffices to have two different observations.

This theorem implies that a posterior will exist for the ϵ-skew model under the inde-
pendence Jeffreys prior in (17), as this prior is a member of the class in Theorem 6 with
proper π(γ).

However, for the ISF model the independence Jeffreys prior does not integrate in γ and
we can show that the necessary condition (19) is violated, so that a posterior does not
exist in this case:
Corollary 5. If f is a scale mixture of normals in (9) and {a(γ), b(γ)} are as in the
inverse scale factors model, then the posterior distribution of (µ, σ, γ) is improper under
the independence Jeffreys prior (14).

Theorem 6 emphasizes the relevance of the choice of the functions {a(γ), b(γ)} for the
properness of the posterior distribution of (µ, σ, γ) when using the independence Jeffreys
prior. In particular, condition (19) can be used to detect parameterizations {a(γ), b(γ)}
that produce improper posteriors. The fact that the ISF model does not allow for
inference with the independence Jeffreys prior is rather surprising since this prior almost
always leads to proper posteriors, and the ISF model is quite a straightforward extension
of the usual location-scale model. Subsection 3.3 will shed more light on this.

3.2 Jeffreys prior

We now examine the properness of the posterior distribution of the parameters (µ, σ, γ)
under the Jeffreys prior. An important feature of this prior is the invariance under
one-to-one reparameterizations. Therefore, the results regarding the properness of the
posterior of (µ, σ, γ) for any choice of {a(γ), b(γ)} in model (9) that corresponds to a
one-to-one transformation in (7) are the same and also applicable to the posterior of
(µ, σ1, σ2) in model (2).
Theorem 7. Let s be as in (9), assume that f is a scale mixture of normals and
consider the Jeffreys prior (10) for the parameters of this model. Then, for n ≥ 2, a
necessary condition for the properness of the posterior distribution of (µ, σ, γ) is∫

Γ

[
a(γ)

a(γ) + b(γ)

]n+1

|λ(γ)| dγ <∞, (20)
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with λ(γ) defined as in (8).
Corollary 6. Consider sampling from (9) with f a scale mixture of normals and
{a(γ), b(γ)} as in the inverse scale factors model, then the posterior distribution of
(µ, σ, γ) is improper using the Jeffreys prior (10). As a consequence, for any pair of
functions {a(γ), b(γ)} such that the mapping (µ, σ1, σ2) ↔ (µ, σ, γ) is one-to-one, the
posterior distribution of (µ, σ, γ) is improper using the Jeffreys prior (10).

Proof. We can verify that the necessary condition (20) is not satisfied for these func-
tions.

This corollary implies that we can not conduct Bayesian inference for the parameters of
this type of skewed distributions using the Jeffreys prior. It is rather rare to find that the
Jeffreys prior does not lead to a proper posterior, and it is somewhat surprising to find
that we can not use this prior in these rather simple classes of two-piece distributions
with only three parameters.

Because the Jeffreys prior is invariant to reparameterization, its use is thus prohibited
in any one-to-one reparameterization of the two-piece models in (2) or (9). However,
one way to get around this problem is to choose functions {a(γ), b(γ)} such that the
mapping (µ, σ, γ) 7→ (µ, σ1, σ2) is not one-to-one, but hopefully still of some interest
for modelling. Another way to produce a proper posterior distribution when using the
Jeffreys prior is to restrict Γ such that λ(γ) is absolutely integrable.
Theorem 8. Let s be as in (9) where f is normal or Laplace. Consider the Jeffreys prior
(10) for the parameters of this model. Let {a(γ), b(γ)} be continuously differentiable
functions for γ ∈ Γ such that

0 <

∫
Γ

|λ(γ)| dγ <∞. (21)

Then we have the following results

(i) The posterior distribution of (µ, σ, γ) is proper when n ≥ 2 and there are at least
two different observations.

(ii) The mapping (µ, σ, γ) 7→ (µ, σ1, σ2) is not one-to-one.

(iii) If Γ is an interval (not necessarily bounded) and AG(γ) is monotonic, then AG(γ)
is not surjective.

First, we considered forcing existence of the posterior through the choice of the functions
{a(γ), b(γ)}, in particular such that the ratio a(γ)/b(γ) is bounded, which excludes a
one-to-one reparameterization in (7). However, the examples we generated in this way
did not lead to implied priors on AG that could be of interest to practitioners.

It is actually easier to generate examples of practical relevance if we restrict the param-
eter space of γ in the context of functions {a(γ), b(γ)} that would not lead to a proper
posterior with unrestricted γ. The following is such an example.
Example 1 (Logistic AG). Consider a(γ) = 1 + exp(2γ), b(γ) = 1 + exp(−2γ) for
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γ ∈ R, then

AG(γ) = tanh(γ),

λ(γ) = 2,

πJ(µ, σ, γ) ∝ 1

σ2
sech(γ)2, (22)

where tanh(·) and sech(·) denote the hyperbolic tangent and the hyperbolic secant func-
tions. In addition, the functions a(γ), b(γ) and AG(γ) are monotonic ∀ γ ∈ R, the
Jeffreys prior in (22) implies that AG ∼ Unif(−1, 1) and AG : R 7→ (−1, 1). Clearly,
λ(γ) is not integrable on R, but if we restrict γ ∈ [−B,B] for some 0 < B < ∞,
then we can use the Jeffreys prior (22) for making inference on (µ, σ, γ) for normal or
Laplace f and AG : R 7→ [tanh(−B), tanh(B)]. Figure 1 presents the functions a(γ),
b(γ) and AG(γ) for B = 3. The induced prior on AG is a Uniform over the range
[tanh(−B), tanh(B)] = [−0.995, 0.995].

We will call the model in Example 1 the “logistic AG model” as AG(γ) is a logistic
function of γ transformed to take values in the interval (-1,1) for γ ∈ R. The choice
of a(γ) and b(γ) does lead to a one-to-one transformation in (7) when γ ∈ R, but not
if γ is restricted to a bounded interval: then the ratio a(γ)/b(γ) is also bounded and
this precludes a one-to-one mapping. a(γ) and b(γ) satisfy the condition a(γ) + b(γ) =
a(γ)b(γ), which induces a uniform prior on the skewness measure AG(γ). This might
be an attractive prior for practitioners to use in the absence of strong prior information.

-3 -2 -1 0 1 2 3
0

50

100

Γ

-3 -2 -1 0 1 2 3
-1

0

1

Γ

AGHΓL

(a) (b)

Figure 1: (a) a(γ) (solid line) and b(γ) (dashed line); (b) AG(γ).

3.3 Intuitive explanation

The lack of existence of a posterior distribution under a commonly used prior in what
is essentially a very simple generalisation of a standard location-scale model can be
considered surprising. Thus, we offer a few explanatory comments in this subsection.
These are not meant to be formal proofs (they can be found in the supplementary
material), but merely intuitive ideas that help us understand what drives the main
results we have found in the previous subsections.
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In the context of the two-piece model in (2), it is easy to see that as σ1 tends to zero, the
sampling density tends to the half density on [µ,∞) with scale σ2. Thus, the likelihood
will be constant in σ1 in the neighbourhood of zero. This means the prior needs to
integrate in that neighbourhood for a posterior to exist. If we consider the independent

Jeffreys prior in (6) it behaves like σ
−1/2
1 for small σ1 and this integrates close to zero.

Indeed, we have a posterior in this case. However, the Jeffreys prior in (5) behaves like
1/σ1 for small σ1 and this does not integrate, thus precluding a posterior. Of course,
similar arguments hold for small σ2.

In the case of the reparameterized model in (9), we have a potential problem if one of
the scales, say, σa(γ) goes to zero. If then the ratio b(γ)/a(γ) has an upper bound,
this will necessarily imply that both scales tend to zero, so the model behaves like a
standard location-scale model which leads to a proper posterior under the Jeffreys prior.
This is the case explored in Theorem 8 and Example 1. If, however, the ratio between
the functions a(γ) and b(γ) is not bounded and (7) defines a one-to-one mapping, we
will have no posterior with the Jeffreys prior due to the invariance of this prior under
reparameterization, and it depends on the particular choice of functions {a(γ), b(γ)}
whether the independence Jeffreys prior will lead to a posterior. It is helpful to transform
the parameters back to those of the two-piece model in (2). Then, for the ϵ-skew model

the independence Jeffreys prior in (17) can be shown to behave like σ
−1/2
i for small

σi, i = 1, 2, which is integrable close to zero, and the posterior is well-defined. On the
other hand, the independence Jeffreys prior for the ISF model in (14) behaves like 1/σi
for small σi, i = 1, 2, which does not integrate in a neighbourhood of zero and precludes
posterior existence.

3.4 Alternative priors

We now introduce two alternative priors for the sampling model in (9): one is a mod-
ification of the Jeffreys prior and the other is a non-objective prior with an elicitation
strategy through an easily interpretable quantity and the possibility to use vague priors.
Both prior structures will be of the form

π(µ, σ, γ) ∝ σ−1π(γ). (23)

Modified Jeffreys prior

The first choice for π(γ) in (23) consists of the factor dependent on γ of the Jeffreys
prior (10), which implies

πM (γ) ∝ |a′(γ)b(γ)− a(γ)b′(γ)|
a(γ)b(γ)[a(γ) + b(γ)]

(24)

=
1

a(γ) + b(γ)

∣∣∣∣ ddγ log

[
a(γ)

b(γ)

]∣∣∣∣ .
The resulting modified Jeffreys prior can also be interpreted as the independence Jeffreys
prior with the independence applied to the two blocks µ and (σ, γ), rather than the three
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parameters separately (see Fonseca et al. 2008 for a similar prior in the context of a
Student-t regression model with unknown degrees of freedom).

AG beta prior

The second alternative prior πβ(γ) is such that δ = (AG+ 1)/2, the AG skewness
measure rescaled to the unit interval, has a Beta(α0, β0) distribution. Thus, this prior
is not obtained through a formal rule and can be elicited on the basis of AG, which has
a clear interpretation as the difference between the mass to the right and the mass to
the left of the mode (see Definition 1). In practice, this prior is perhaps most useful for
values of α0 and β0 relatively close to one, reflecting vague prior information on the AG
measure of skewness. For γ it corresponds to

πβ(γ) ∝
|a′(γ)b(γ)− a(γ)b′(γ)|
[a(γ) + b(γ)]α0+β0

a(γ)α0−1b(γ)β0−1. (25)

Despite being motivated in rather different ways, both alternative priors coincide in
certain special cases. In particular, prior (24) implies that δ ∼ Beta(1/2, 1/2) if
a(γ)b(γ) = c. This is the case of the Inverse Scale Factors parameterization. In addition,
the prior distributions (24) and (25) coincide if α0 = β0 = 1 and a(γ)+b(γ) = a(γ)b(γ),
as already remarked in the context of the logistic AG model in Example 1.

The alternative priors of (µ, σ, γ) for the Inverse Scale Factors model are respectively

πM (µ, σ, γ) ∝ 1

σ (1 + γ2)
, (26)

πβ(µ, σ, γ) ∝ γ2α0−1

σ (1 + γ2)
α0+β0

, (27)

for γ ∈ R+. Indeed both priors coincide when α0 = β0 = 1/2.

In the case of the ϵ-skew model the alternative priors are

πM (µ, σ, γ) ∝ 1

σ(1− γ2)
, (28)

πβ(µ, σ, γ) ∝ (1− γ)β0−1(1 + γ)α0−1

σ
, (29)

for γ ∈ (−1, 1). The modified Jeffreys prior does not integrate in γ (like the Jeffreys
prior), and only coincides with the AG beta prior in the limit as both α0 and β0 tend
to zero. This could be argued to be a rather counterintuitive prior on AG, putting lots
of mass at the extremes.

The alternative priors for the logistic AG parameterization of Example 1 are

πM (µ, σ, γ) ∝ 1

σ
sech(γ)2, (30)

πβ(µ, σ, γ) ∝ 1

σ

(
1 + e2γ

)α0
(
1 + e−2γ

)β0

[1 + cosh(2γ)]α0+β0
, (31)
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for γ ∈ R. As mentioned above, for α0 = β0 = 1 both priors coincide. Figure 2 shows the
graph of the density πβ(γ) corresponding to three parameterizations with α0 = β0 = 1.

Since the modified Jeffreys prior πM (·) is not the Jeffreys prior, the parameterization
matters. Whenever the two alternative priors coincide in the examples above, πM (·)
corresponds to a symmetric prior in AG, which could be considered “vague” in a rather
intuitive sense except for the ϵ-skew case, where the modified Jeffreys prior implies a
rather extreme prior when viewed in terms of AG.
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Figure 2: Densities πβ(γ) with α0 = β0 = 1 and: (a) Inverse scale factors parameterization
(γ ∈ R+); (b) ϵ−skew parameterization (γ ∈ (−1, 1)); and (c) Logistic AG parameterization
(γ ∈ R).

Inference

Since the alternative prior structures are of the form (23), Theorem 6 presents necessary
and sufficient conditions for the properness of the posterior distribution of (µ, σ, γ).
Corollary 7. Consider sampling from (9) where f is a scale mixture of normals. For
the Inverse Scale Factors and the logistic AG models the posterior distribution of (µ, σ, γ)
using the modified Jeffreys priors (26) and (30), respectively, is proper if n ≥ 2 and all
the observations are different. If k > 1 is the largest number of repeated observations
in the sample, we have a proper posterior if the mixing distribution of f also satisfies
(18).

Proof. Follows from Theorem 6(ii) and (iii) given that these priors imply a proper
π(γ).
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The following corollary illustrates that when using the modified Jeffreys prior, the choice
of the functions {a(γ), b(γ)} is critical.
Corollary 8. The posterior distribution under the modified Jeffreys prior (28) in the
sampling model (9) with f a scale mixture of normals is improper for the ϵ-skew model.

Proof. In this case, the necessary condition (19) is not satisfied.

However, for the AG beta prior all three model specifications considered here lead
to proper posteriors. In fact, posterior existence is guaranteed within a large class of
parameterizations {a(γ), b(γ)}, namely all parameterizations for which γ is a one-to-one
transformation of AG.
Theorem 9. Let y = {y1, ..., yn} be a sample from (9) where f is a scale mixture of
normals. Consider the AG beta prior in (23) and (25) with α0, β0 > 0. Then, for any
choice {a(γ), b(γ)} such that λ(γ) defined in (8) does not change sign over γ ∈ Γ the
posterior distribution of (µ, σ, γ) is proper if n ≥ 2 and all the observations are different.
If k > 1 is the largest number of repeated observations in the sample, we have a proper
posterior if the mixing distribution of f also satisfies (18).

This result means that for all parameterizations for which γ can be considered a skewness
parameter (i.e. all choices of {a(γ), b(γ)} of practical modelling interest), we will be able
to conduct Bayesian inference with the AG beta prior.

4 Example

Consider the problem of estimating θ = P (X < Y ). The case when X and Y are in-
dependent normal or exponential distributions has been recently studied, using Jeffreys
priors, by Ventura and Racugno (2011). Now, suppose that X and Y are indepen-
dent variables from univariate two-piece location-scale models as in (9) with parameters
(µx, σx, γx) and (µy, σy, γy) respectively. We use the data presented in Heinz et al.
(2003). This data set contains the body mass index (BMI) of 260 women and 247 men,
who are physically active with ages ranging in the twenties and early thirties. Figure
3 shows the histograms of females and males separately. The shape of the histograms
suggests the presence of skewness. Therefore, we model these observations with (9),
using a normal f .

It has been noted that BMI presents a sexual dimorphism and that men tend to have
larger BMI than women. Here, we explore this idea through the posterior distribution
of θ. We use the following six models: Model 1 consists of the two-piece model (2) and
the independence Jeffreys prior (6). Model 2 corresponds to (9) using {a(γ), b(γ)} of the
ϵ-skew model under the independence Jeffreys prior. Model 3 is the logistic AG model
of Example 1 for γ ∈ [−B,B] with the Jeffreys prior in (22). Model 4 is the ISF model
with the modified Jeffreys prior in (26). Model 5 is the ϵ-skew model in combination
with the AG beta prior in (29) and α0 = β0 = 1, which corresponds to a uniform prior
on the quantity of interest AG (the posterior distribution of θ is very similar for this
model if the hyperparameters are scaled by a factor of 5 or 1/5). Finally, Model 6 is
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Figure 3: Histograms of body mass index data: (a) females; (b) males.

the skew-normal model of Azzalini (1985), given by

s(y|µ, σ, λ) = 2

σ
ϕ

(
y − µ

σ

)
Φ

(
λ
y − µ

σ

)
,

using the prior

π(µ, σ, λ) ∝ σ−1π(λ). (32)

The structure of this prior, using the Jeffreys prior of λ derived in the model without
location and scale parameters for π(λ), was proposed in Liseo and Loperfido (2006),
who also prove existence of the posterior under this prior. Bayes and Branco (2007)
show that the Jeffreys prior of λ can be approximated by a Student t distribution with
1/2 degrees of freedom, which is what was used for our calculations.

Using a Markov chain Monte Carlo algorithm, a sample of size 10, 000 was recorded
from the posterior distribution after a burn-in period of 50, 000 draws with a thinning
of 100 draws for all models. Figure 4 presents the posterior distributions of θ.

Clearly, inference with all these different models is very similar, with only the Azzalini
model (Model 6) leading to slightly different results. None of the 95% posterior credible
intervals include the value θ = 0.5 (in fact the 2.5th percentile is 0.68 for all models),
which is in line with the idea that men tend to have larger BMI than women.
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Figure 4: Posterior distributions of θ: Models 1 and 2 (continuous lines); Model 3 with B = 3,
B = 10 and B = 30 (dotted lines); Models 4 and 5 (dashed lines); Model 6 (bold line).

5 Concluding Remarks

We consider the class of univariate continuous two-piece distributions, which are often
used as modifications of the symmetric location-scale model to allow for skewness, and
its reparameterized versions as presented in Arellano-Valle et al. (2005), where we can
identify a location, a scale and a skewness parameter. A number of well-known models
(the inverse scale factor or ISF model and the ϵ-skew model) correspond to particular
choices of this parameterization. In particular, we focus on Bayesian inference in these
models using Jeffreys or the independence Jeffreys prior. We prove that these models do
not lead to valid posterior inference under Jeffreys prior for any underlying symmetric
distribution in the class of scale mixture of normals. As an ad-hoc fix, we show that
modifying Jeffreys prior by truncating the support of the skewness parameter can lead
to posterior existence. A more fundamental solution is to use the independence Jeffreys
prior instead, which is shown to lead to a valid posterior for some parameterizations of
these sampling models. However, this is not the case for the ISF model. Two alternative
priors are proposed. A modified Jeffreys prior does lead to a posterior for the ISF model,
but not for the ϵ-skew model. A second alternative prior is induced by a Beta prior
on the AG skewness measure, and is shown to lead to valid inference in a wide class of
parameterizations of these models, including the ISF and ϵ-skew models and arguably
all models of practical importance. We apply the models, as well as an alternative
skewed distribution due to Azzalini (1985), to some real data. For a number of models
that lead to valid inference, we compute empirical coverage probabilities of the posterior
credible intervals (see the Supplementary material). This indicates a mostly satisfactory
behaviour.

It is important to stress that the three-parameter sampling models examined here are
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quite simple modifications of the standard location-scale model, and that the Jeffreys
prior is a very commonly used prior in the absence of subjective prior information.
The fact that the combination of these sampling models with a Jeffreys prior does not
lead to a proper posterior is somewhat surprising and definitely relevant for statistical
practice, as these models seem attractive options to deal with skewed data, and are
used frequently in a wide variety of applied contexts. The better properties of the
independence Jeffreys prior are in line with statistical folklore: Jeffreys (1961, p. 182)
himself preferred this prior for location-scale problems, and in the univariate normal
case the independence Jeffreys is a matching prior (Berger and Sun 2008). Even with
this prior, however, problems of posterior existence can occur, depending on which
parameterization we choose. Two alternative priors are examined, and we recommend
the AG beta prior for use with two-piece distributions as it ensures posterior inference
for any parameterization of practical interest and avoids inducing extreme prior beliefs
on the easily interpreted AG skewness measure. Using this prior structure we can induce
vague or flat priors on the AG measure of skewness, which is a key function of interest
of the model parameters in this context (see Seaman III et al., 2012 for a more general
discussion of this principle). The AG beta prior is not an objectively obtained prior
(even though it has such an interpretation in special cases), but is easily elicited in
practice on the basis of a readily interpretable skewness measure.
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