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Asymptotic Properties of Bayes Risk for the
Horseshoe Prior

Jyotishka Datta ˚ and Jayanta. K. Ghosh :

Abstract. In this paper, we establish some optimality properties of the multiple
testing rule induced by the horseshoe estimator due to Carvalho, Polson, and Scott
(2010, 2009) from a Bayesian decision theoretic viewpoint. We consider the two-
groups model for the data and an additive loss structure such that the total loss
is equal to the number of misclassified hypotheses. We use the same asymptotic
framework as Bogdan, Chakrabarti, Frommlet, and Ghosh (2011) who introduced
the Bayes oracle in the context of multiple testing and provided conditions under
which the Benjamini-Hochberg and Bonferroni procedures attain the risk of the
Bayes oracle. We prove a similar result for the horseshoe decision rule up to Op1q

with the constant in the horseshoe risk close to the constant in the oracle. We use
the Full Bayes estimate of the tuning parameter τ . It is worth noting that the Full
Bayes estimate cannot be replaced by the Empirical Bayes estimate, which tends
to be too small.

Keywords: Multiple Testing, Horseshoe Decision Rule, Asymptotic Optimality,
Bayes Oracle.

1 Introduction

In the recent past, thanks to microarrays for gene expression as well as examples in
other fields (vide Efron (2008)), multiple independent tests have become very popular.
A popular model is the two-groups normal model, with sparse signals, due to many
people of whom the group at Stanford has become most visible. One of the most
popular models that has come out as work of these different groups is as follows:

Suppose our data is modeled as m independent observations Y1, Y2, . . . , Ym with
each Yi „ N pθi, σ

2
0q, where θi’s are m unknown parameters. Typically m is large so

that we have many tests, each based on a single observation, which is in many cases
the test statistic, suitably transformed to have approximate normal distribution. It is
remarkable that in the completely classical setting of m unknown θi’s of Benjamini and
Hochberg (1995), one can define a test based on p-values such that the false discovery
rate can be controlled at any pre-assigned given value.

It has been realized that since many tests have been performed simultaneously, we
should model the data further such that learning via Empirical Bayes or Full Bayes
methods becomes possible. We proceed to do that now by introducing the two groups
model. We use an indicator νi, i “ 1, . . . ,m such that νi “ 0 indicates θi “ 0 and νi “ 1
indicates θi ‰ 0 and in fact θi „ N p0, ψ2q where ψ2 is a measure of average signal
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magnitude. Unconditionally, θi’s are independently distributed as:

θi „ p1 ´ pqδt0u ` pN p0, ψ2q (1)

where δt0u is the degenerate distribution at zero. The marginal distribution of Yi is then
a mixture of normals, viz.,

Yi „ p1 ´ pqN p0, σ2
0q ` pN p0, σ2

0 ` ψ2q. (2)

We are interested in testing the hypothesis:

H0i : νi “ 0 vs. HAi : νi “ 1. (3)

Equation (2) defines the two-groups model for Yi. The two groups being modeled are
N p0, σ2

0q and N p0, σ2
0 ` ψ2q. Notice that instead of m unknown parameters θi, i “

1, . . . ,m, we have now only three unknown parameters p, σ2
0 , ψ

2, of which σ2
0 is usually

assumed known. Typically, we assume that we have a sparse model, i.e. p, the propor-
tion of non-zero θi’s, is small. In our assumption, p Ñ 0 as m Ñ 8. For more details see
Bogdan, Ghosh, and Tokdar (2008) and Bogdan, Chakrabarti, Frommlet, and Ghosh
(2011).

In this situation, the Empirical Bayes approach has been very popular. Efron (2008,
2004) has shown that the Benjamini-Hochberg rule can be interpreted in the sparse case
as basically an Empirical Bayes rule. Major contributions to Empirical Bayes theory
are Storey (2003, 2007) and Genovese and Wasserman (2004). A Full Bayes treatment
is available in Scott and Berger (2006, 2010). An extension of the Benjamini-Hochberg
approach appears in Sarkar (2006). Bogdan, Chakrabarti, Frommlet, and Ghosh (2011)
introduced the notion of ‘Asymptotic Bayes Optimality under Sparsity’ (ABOS) and
provided conditions under which the Benjamini-Hochberg procedure is ABOS for a two-
groups model. Bogdan et al. (2011) argue that while it is expected that empirical Bayes
multiple tests should also have such optimality properties, estimation of the sparsity
parameter will need special care, see e.g. Scott and Berger (2010) as well as Bogdan,
Ghosh, and Tokdar (2008).

In a series of remarkable papers and technical reports, Carvalho, Polson, and Scott
(2010, 2009); Scott (2011) and Polson and Scott (2012) introduced a one group model
instead of a two-groups model and what they call the horseshoe prior for the one-group
model. The one-group model needs significantly less computational effort than the
two-groups model. Moreover, Carvalho et al. (2010) go on to provide strong numerical
evidence that it attains the oracle up to Op1q with a constant in horseshoe risk close
to the constant in oracle. The one group model and the horseshoe prior is formally
introduced in the next section.

Our goal in this paper is to provide a formal theoretical proof for the result of
Carvalho et al. (2009) assuming either the value of the tuning parameter is known or
it is estimable numerically from the data. We will provide some numerical evidence
that the latter assumption seems to be valid. Such a proof, partly based on numerical
validation, has appeared in a different context, see Sen, Banerjee, and Woodroofe (2010).
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The intuitive reason why the horseshoe prior works so well is that the posterior inclusion
probability of the two groups model is well captured in the shrinkage weight of the
horseshoe prior (vide Figure 4 presented in Section 4 below). We thank Prof. Jim Berger
for suggesting that this might be the case. A similar comparison of the two inclusion
probabilities for the ‘fixed-k’ asymptotic scenario was done by Carvalho et al. (2010)
where the number of signals remains fixed, letting the number of noise observations
grow arbitrarily.

We have compared the new horseshoe with a much older one arising from multidi-
mensional scaling, studied in depth by Diaconis, Goel, and Holmes (2008). While we do
not find any deep link or insight worth sharing, we did find each method can be applied
to the other’s domain, providing some interesting new twists. We hope to return to a
comparison of the two elsewhere.

2 Horseshoe prior

The horseshoe model introduced in Carvalho et al. (2009) is given by

yi „ N pθi, σ
2q

pθi|λi, τq „ N p0, σ2λ2i τ
2q

λi „ C`p0, 1q

where C`p0, 1q is a standard half-Cauchy distribution on positive real numbers. The
posterior distribution of θi is normal with mean and variance given by:

Epθi|yi, λi, τ, σ
2q “ p1 ´

1

1 ` λ2i τ
2

qyi

V pθi|yi, λi, τ, σ
2q “ p1 ´

1

1 ` λ2i τ
2

qσ2.

If we define κi “ 1
1`λ2

i τ
2 , the posterior mean of θi is Epθi|yi, κi, τ, σ

2q “ p1 ´ κiqyi and

hence by Fubini’s theorem

Epθi|yi, τ, σ
2q “ p1 ´ Epκi|yi, τ, σ

2qqyi.

For large ψ2, the posterior mean θ̂i under the two-groups model in (1)-(2) is approx-
imately ωiyi, where ωi is the posterior inclusion probability for θi. The horseshoe
estimator, on the other hand, has the form θ̂i “ p1 ´ κ̂iqyi, which means the shrinkage
weight 1 ´ κ̂i in the horseshoe model, though not a formal posterior quantity, behaves
in the same way as the posterior inclusion probability ωi (vide Figure 4 as well as Sec-
tion 3.4 in Carvalho et al. (2010)). Also, κi can be interpreted as a random shrinkage
coefficient in the sense that the behavior of the posterior density of κi near 0 identifies
the signals and κi « 1 shrinks the noise. The name “horseshoe” was attributed to the
fact that the half-Cauchy prior on λi imposes a horseshoe-shaped Betap1

2 ,
1
2 q prior on

the shrinkage coefficients κi. The similarity of the shrinkage weights 1 ´ κ̂i with the
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posterior inclusion probabilities under the two-groups model leads Carvalho et al. (2010)
to propose the following natural decision rule under a symmetric 0-1 loss function:

Reject H0i if ωi “ 1 ´ Epκi|yi, τ, σ
2q ą

1

2
.

The horseshoe decision rule identifies the signals (resp. the noise) through the simple
thresholding rule 1 ´ κ̂i ą 1

2 (resp. 1 ´ κ̂i ă 1
2 ). Thus, the probabilities for type I and

type II error for the horseshoe decision rule are as follows:

t1i “ PH0ipH0i is rejectedq “ PH0i

ˆ

Epκi|yi, τ, σ
2q ă

1

2

˙

(4)

t2i “ PHAi
pH0i is acceptedq “ PHAi

ˆ

Epκi|yi, τ, σ
2q ą

1

2

˙

. (5)

For the sake of simplicity, we will assume σ2 is known as in Abramovich et al. (2006)
who also provide some discussion on this point. This is a common assumption for
deriving the asymptotic properties for a multiple testing problem and has also been
used in Bogdan et al. (2008, 2011). Under this assumption, the posterior density for
σ “ 1 becomes:

ppκi|yi, τq9p1 ´ κiq
´ 1

2 t1 ´ p1 ´ τ2qκiu
´1 expp´

κiyi
2

2
q κi P p0, 1q.

The parameter τ plays a crucial role in controlling the shrinkage behavior of the esti-
mator. We will show in Section 3 that convergence of both the type I and type II error
probabilities will depend on the rate of convergence of this parameter. It is called the
“global shrinkage parameter” by Carvalho et al. (2010, 2009) as it adjusts to the overall
sparsity in the data. In fact, the posterior mass of τ is concentrated near zero when the
data is very sparse (p Ñ 0) (vide Figure 3 presented later in Section 4) and signals are
identified through smaller values of κ. Polson and Scott (2010) observed that the pos-
terior density of κ has different patterns for different signal strengths when τ is small.
For example, the estimator exhibits strong shrinkage through concentration of posterior
mass near one for small values of τ and relatively smaller y and the “gravitational pull”
of τ is squelched by relatively larger values of y, shifting the mass towards zero (vide
Figure 4 of Polson and Scott (2010)). Moderately large y results in a bimodal posterior
distribution indicating uncertainty about the decision.

We will follow two routes with respect to τ2. In the theoretical part of the paper,
we will take it as a tuning parameter that we are free to choose. Our choice of τ will
depend on the hyper-parameters of the mixture model. In the numerical part, we will
discuss how τ can be estimated using a fully Bayesian approach. We will assume the
following hyper-priors on τ and σ as in Carvalho et al. (2010, 2009) for the full Bayes
treatment:

τ |σ „ C`p0, σq

ppσ2q9
1

σ2
.
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Simulation from the full joint posterior distribution under these prior specifications can
be efficiently done using Markov-chain Monte Carlo updates. A detailed discussion of
this strategy is available in Scott (2011).

2.1 Hypergeometric inverted-beta prior

In a technical report, Polson and Scott (2010) have introduced the four parameter
hypergeometric inverted-beta prior for κ that has the following form:

ppκq “ Cκα´1p1 ´ κqβ´1

"

1

τ2
`

ˆ

1 ´
1

τ2

˙

κ

*´1

expp´sκq; κ P p0, 1q.

Polson and Scott (2010) denote this prior by κ „ HBpα, β, τ, sq. They proved that if
κ „ HBpα, β, τ, sq, the posterior density of κ is proper and it obeys a hypergeometric-

beta distribution, in fact, rκ|ys „ HBpα1 “ α` 1
2 , β, τ, s`

y2

2 q. The effect of these four
parameters is discussed in detail in Polson and Scott (2010). This family encompasses a
few commonly used shrinkage priors, for example, the hypergeometric-beta prior density
yields the horseshoe prior of Carvalho et al. (2010) when a “ b “ 1

2 and s “ 0. The
parameter s can be viewed as a second “global shrinkage parameter” with a different
effect on the posterior density than τ . Polson and Scott (2010) show through simulation
studies that using s has some advantage over τ when the latter converges to zero. We
call the prior density κ „ HBpα “ 1

2 , β “ 1
2 , τ “ 1, sq the “modified horseshoe” and

compare its misclassification probability with other shrinkage priors in Section 4.

2.2 Double Exponential prior

The double exponential prior with λi and τ modeled as

λi „ Expp2τ2q

τ „ Inverse Gammapξ{2, ξd2{2q

is a popular choice in supervised learning and robust Bayesian inference. This implies
an independent Laplacian prior on each θi causing noise observations to shrink to zero.
The role of the double exponential prior in robust Bayesian inference was established
by Pericchi and Smith (1992) before its role as a Bayesian representation of LASSO
(Tibshirani (1996)) was made popular by a series of papers by Park and Casella (2008);
Hans (2009); Li and Goel (2006). We study briefly the shrinkage properties of this prior
in comparison with the original horseshoe and the modified horseshoe.

Now, we will describe the asymptotic framework and show that the simple decision
rule for the horseshoe estimator has optimality properties under sparsity under some
conditions on the “global shrinkage parameter” τ and the non-null variance of θi under
the two-groups model. The “optimality” is achieved in the sense of attaining the optimal
Bayes risk up to Op1q under an additive loss function, with the constant in horseshoe
risk close to the constant in oracle.
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3 Theoretical Results

The theoretical results in this section are presented in the following manner. In Section
3.1 we describe the Bayes oracle for multiple testing and the asymptotic framework
as introduced in Bogdan et al. (2011). The Bayes oracle provides a comparative basis
for different multiple testing procedures considered here. In Section 3.2, we provide
two technical facts which may help us to understand what is going on. We derive the
asymptotic expressions of type I and type II error rates in Sections 3.3 and 3.4 and
show that the Bayes risk for horseshoe decision rule attains the optimal risk up to a
multiplicative constant.

3.1 Bayes Oracle

We consider the two-groups model in equations (1) and (2) and the multiple testing
problem (3). We assume that the type 1 error loss (δ0) and the type 2 error loss (δA)
are both equal to 1 and the total loss is the sum of losses for individual tests. If we
denote by t1 and t2 the probability of type I and type II error respectively, the Bayes
risk for the 0-1 loss will be given by:

BR1,1 “ p1 ´ pqt1 ` pt2.

Note that, under 0 ´ 1 loss, the Bayes risk BR1,1 is equal to the misclassification
probability. The Bayes rule, which minimizes the expected value of the total loss,
rejects the null hypothesis H0i, if

fApYiq

f0pYiq
ě

1 ´ p

p

where fA and f0 are the densities of Yi under the alternative and the null hypotheses,
respectively. Then for known p, ψ2, the optimal rule depends only on the absolute value
of an individual observation |Yi| and the optimal decision rule is

Reject H0i if |Yi| ą C

where

C2 “ C2
ψ,f “

1 ` ψ2

ψ2

`

logpψ2 ` 1q ` 2 log f
˘

where f “
1´p
p . We call this rule the Bayes oracle as the risk for this is the lower bound

of p1{mq times the risk for any multiple testing procedure under the two-groups model
in (1-2). If we reparametrize the parameters as u “ ψ2 and v “ uf2, then the threshold
for the Bayes oracle becomes

C2 “ p1 `
1

u
qplog v ` logp1 `

1

u
qq.

The asymptotic framework in Bogdan et al. (2011) is then naturally defined as follows:
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Assumption 3.1. The sequence of vectors γm “ pψm, pmq satisfies the following con-
ditions:

pm Ñ 0;um
.
“ ψ2

m Ñ 8; vm
.
“ umf

2
m
.
“ ψ2

m

ˆ

1 ´ pm
pm

˙2

Ñ 8

log vm
um

Ñ C P p0,8q as m Ñ 8

Bogdan et al. (2011) provide detailed insight on the threshold C. Very briefly, if
C “ 0 then both the errors are zero and for C “ 8, the inference is essentially no
better than tossing a coin. Under Assumption 3.1, Bogdan et al. (2011) showed that
asymptotically type I and type II error rates of the Bayes oracle take a particularly
simple form as given below (vide lemma 3.1 of Bogdan et al. (2011)).

tBO1 “ e´C{2
b

2
πv log v p1 ` omq (6)

tBO2 “ p2Φp
?
Cq ´ 1qp1 ` omq. (7)

We use the notation om to denote an infinite sequence of terms, indexed by m (the
number of tests), converging to zero as m Ñ 8. Under the framework of the two-
groups model and an additive loss, the Bayes risk for a fixed-threshold multiple testing
rule is given by

R “ m pp1 ´ pqt1 ` pt2q .

It can be easily seen from equations (6)-(7) and Assumption 3.1, that the optimum risk
for the Bayes oracle is given by:

Ropt “ m
`

p1 ´ pqtBO1 ` ptBO2

˘

“ mpp2Φp
?
Cq ´ 1qp1 ` omq. (8)

3.2 Technical facts

We present two concentration inequalities for the posterior distribution of κ to motivate
the derivation of type I and type II error probabilities in the next section.

Theorem 3.1. P pκ ă ϵ|y, τq ď 1
2ϵp1 ´ ϵq´ 3

2 expp
y2

2 qτp1 ` op1qq for any fixed ϵ P p0, 1q

as τ Ñ 0 uniformly in y P R.

An immediate upshot of Theorem 3.1 is the convergence of the posterior distribution
of κ to a degenerate distribution at 1 as τ Ñ 0. We state this result in the following
corollary.

Corollary 3.1. P pκ ą ϵ|y, τq Ñ 1 as τ Ñ 0 for any fixed ϵ P p0, 1q uniformly in y P R.

Proof. (Theorem 3.1) The conditional density of κ, ppκ|y, τq, can be written as the
product of three functions on p0, 1q as follows:

ppκ|y, τq9p1pκqp2pκ|τqp3pκ|yq
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where p1pκq “ p1 ´ κq´ 1
2 , p2pκ|τq “ t1 ´ p1 ´ τ2qκu´1 and p3pκ|yq “ expp´

κy2

2 q. For
the derivation of the bounds to the integral we use the fact that p1p¨q and p2p¨q are
increasing and p3p¨q is decreasing in κ P p0, 1q when τ P p0, 1q. Also, for any τ P p0, 1q,
t1 ´ p1 ´ τ2qκu´1 ď p1 ´ κq´1 for κ P p0, 1q. So, we get

şϵ

0
ppκ|y, τqdκ

ş1

ϵ
ppκ|y, τqdκ

ď

şϵ

0
p1 ´ κq´ 1

2 t1 ´ p1 ´ τ2qκu´1 expp´
κy2

2 qdκ
ş1

ϵ
p1 ´ κq´ 1

2 t1 ´ p1 ´ τ2qκu´1 expp´
κy2

2 qdκ

ď
p1 ´ ϵq´ 3

2 ϵ

expp´
y2

2 q
ş1

ϵ
t1 ´ p1 ´ τ2qκu´ 3

2 dκ

“
ϵp1 ´ ϵq´ 3

2 expp
y2

2 q
2

1´τ2 t 1
τ ´ 1?

1´p1´τ2qϵ
u

ď
1

2
ϵp1 ´ ϵq´ 3

2 expp
y2

2
qτp1 ` op1qq.

The proof follows from the fact that P pκ ă ϵ|y, τq is bounded above by tP pκ ă

ϵ|y, τq{P pκ ą ϵ|y, τqu.

The upper bound in Theorem 3.1 will help us in deriving an asymptotic expression
of type I error as we shall see in the next section.

We present a second concentration inequality on the posterior distribution of κ which
might give some insight on the other side of the spectrum, i.e. the conditions under
which the posterior mass of κ will concentrate near zero.

Theorem 3.2. P pκ ą η|y, τq ď
2p1´ηq

1
2 expp´

ηy2

2 p1´δqq

τ2ηδ for any fixed τ P p0, 1q, any fixed

η P p0, 1q, any fixed δ P p0, 1q and uniformly in y P R.

Theorem 3.2 implies that for any fixed η, τ, δ P p0, 1q, P pκ ą η|y, τq decays at an
exponential rate depending on y. The following corollary formalizes the notion.

Corollary 3.2. P pκ ă η|y, τq Ñ 1 as y Ñ 8, for any fixed τ , any fixed δ and any fixed
η P p0, 1q.

Proof. (Theorem 3.2)

ż η

0

ppκ|y, τqdκ “ cpy, τq

ż η

0

p1 ´ κq´ 1
2 t1 ´ p1 ´ τ2qκu´1 expp´

κy2

2
qdκ

ě cpy, τq

ż ηδ

0

expp´
κy2

2
qdκ for any δ P p0, 1q

ě cpy, τq expp´
ηδy2

2
qηδ
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and

ż 1

η

ppκ|y, τqdκ “ cpy, τq

ż 1

η

p1 ´ κq´ 1
2 t1 ´ p1 ´ τ2qκu´1 expp´

κy2

2
qdκ

ď cpy, τq expp´
ηy2

2
q
1

τ2

ż 1

η

dκ

p1 ´ κq
1
2

“ cpy, τq
1

τ2
expp´

ηy2

2
q2p1 ´ ηq

1
2 .

So, we have the ratio of the two integrals

P pκ ą η|y, τq

P pκ ă η|y, τq
“

ş1

η
ppκ|y, τqdκ

şη

0
ppκ|y, τqdκ

ď
2p1 ´ ηq

1
2 expp´

ηy2

2 p1 ´ δqq

τ2ηδ
.

The proof follows from the fact that P pκ ą η|y, τq is bounded above by tP pκ ą

η|y, τq{P pκ ă η|y, τqu.

3.3 Type I error

By (4) the type I error is given by

t1 “ PH0:Y„N p0,1q

ˆ

Epκ|Y, τq ă
1

2

˙

.

Theorem 3.3. The probability of type I error for the horseshoe decision rule is given
by:

t1 “
2τ

a

lnp1{τq
p1 ` op1qq as τ Ñ 0.

Proof. Since the posterior mass of κ concentrates near 1 when τ is very small and y
is not too large, the posterior mean of κ should be well approximated by taking the
average with respect to the posterior mass near 1. Towards proving this, we first write
the expectation as the sum of two different integrals, one near zero and the other near
1, and show that the sum is dominated by the second term, i.e.

Epκ|y, τq “

ż 1
2

0

κppκ|y, τqdκ`

ż 1

1
2

κppκ|y, τqdκ (9)

“

ż 1

1
2

κppκ|y, τqdκp1 ` op1qq as τ Ñ 0. (10)

To prove (10) we take the ratio of the two integrals in (9) and show that it converges
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to zero as τ converges to zero:

ş 1
2

0
κppκ|y, τqdκ

ş1
1
2
κppκ|y, τqdκ

“

ş 1
2

0
κp1 ´ κq´ 1

2 t1 ´ p1 ´ τ2qκu´1 expp´
κy2

2 qdκ
ş1

1
2
κp1 ´ κq´ 1

2 t1 ´ p1 ´ τ2qκu´1 expp´
κy2

2 qdκ

ď
2´5{2 1

1
2 ` 1

2 τ
2

expp´
y2

2 q
ş1

1
2
κp1 ´ κq´ 1

2 t1 ´ p1 ´ τ2qκu´1dκ

ď
2´3{2

expp´
y2

2 q 1
2

ş1
1
2

t1 ´ p1 ´ τ2qκu´3{2dκ

ď
2´3{2

expp´
y2

2 q 1
1´τ2 p 1

τ ´
?
2?

1`τ2 q
“ 2´ 3

2 e
y2

2 τp1 ` op1qq.

The right hand side of the last equation goes to zero as τ Ñ 0, thus proving the
approximation in (10). Now, we will show that the integral in (10) can be well ap-
proximated by the posterior mass in the same region as the posterior density of κ is
concentrated near 1, i.e. we prove the following:

ż 1

1
2

κppκ|y, τqdκ “

ż 1

1
2

ppκ|y, τqdκp1 ´ op1qq (11)

”

ş1
1
2

p1 ´ κqppκ|y, τqdκ
ş1

1
2
ppκ|y, τqdκ

Ñ 0 as τ Ñ 0. (12)

To prove (11) we note that the numerator in the ratio of the two integrals in (12) remains
bounded whereas the integral in the denominator diverges near κ “ 1 as the integrand
p1 ´ p1 ´ τ2qκq´3{2 behaves like p1 ´ κq´3{2 when τ Ñ 0 . The proof is as follows:

ş1
1
2

p1 ´ κqppκ|y, τqdκ
ş1

1
2
ppκ|y, τqdκ

“

ş1
1
2

p1 ´ κq
1
2 t1 ´ p1 ´ τ2qκu´1 expp´

κy2

2 qdκ
ş1

1
2

p1 ´ κq´ 1
2 t1 ´ p1 ´ τ2qκu´1 expp´

κy2

2 qdκ

ď
expp

y2

4 q
ş1

1
2

p1 ´ κq´ 1
2 dκ

ş1
1
2

t1 ´ p1 ´ τ2qκu´ 3
2 dκ

.

The integral in the denominator will converge to the divergent integral
ş1

1
2

p1 ´ κq´ 3
2 dκ

as τ Ñ 0. Finally, from (10) and (11) we get Epκ|y, τq “
ş1

1
2
ppκ|y, τqdκp1 ´ op1qq.

Therefore, from (4), the type 1 error for the horseshoe estimator can be written as,

t1 “ PH0p
ş1

1
2
ppκ|Y, τqdκ ă 1

2 qp1 ` op1qq

“ PH0p
ş 1

2

0
ppκ|Y, τqdκ ą 1

2 qp1 ` op1qq. (13)



J. Datta and J. K. Ghosh 121

We use Theorem 3.1 with ϵ “ 1
2 to derive a tight upper bound to the integral in (13):

ż 1
2

0

ppκ|y, τqdκ ď
e

y2

2 τ
?
2

p1 ` op1qq uniformly in y P R.

Plugging in this upper bound in (13) we get,

t1 “ PH0

«

ż 1
2

0

ppκ|Y, τqdκ ą
1

2

ff

p1 ` op1qq

“ PH0

«

e
Y2

2 τ
?
2

ą
1

2

ff

p1 ` op1qq

“ PH0

«

|Y | ą

d

2 ln
1

?
2τ

ff

p1 ` op1qq

«

ϕp
b

2 ln 1?
2τ

q
b

2 ln 1?
2τ

p1 ` op1qq “
2τ

a

lnp1{τq
p1 ` op1qq.

We use the well-known normal tail approximation 1´Φpxq

ϕpxq
“ 1

x `Op 1
x3 q for deriving the

final approximation.

3.4 Type II error

By (5) the type II error is given by

t2 “ PY„N p0,1`ψ2qpEpκ|Y, τq ą
1

2
q.

Choice of τ . We choose the free tuning parameter τ to be of the same order of p,
this makes the type II error probability for the horseshoe comparable to the oracle. In
numerical work we do not assume p known and use the Full Bayes estimate of τ , which
seems to adapt to the level of sparsity in the data (vide Figure 3).

For such a choice of τ “ τm “ Oppmq, it can be easily seen from Assumption 3.1 that
logp1{τ2

mq

ψ2
m

Ñ C P p0,8q, τm Ñ 0, ψ2
m Ñ 8 as m Ñ 8, where C is the constant appearing

in Assumption 3.1 and the formula for the Bayes risk for the oracle (vide equation (8)).

Theorem 3.4. If the “global shrinkage parameter” τ of the horseshoe prior is chosen
to be of the same order as the proportion of signals p, then the type II error rate of the
horseshoe decision rule will be given by

t2 “ p2Φp3
?
Cq ´ 1qp1 ` omq.

As before, om denotes a sequence of terms indexed by m, converging to zero as
m Ñ 8. Also, for ease of notation we will suppress the index ‘m’ from the parameters
for the rest of the paper.
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Proof. We prove Theorem 3.4 in three steps as described below:

1. Corollary 3.2 and the posterior density plots in Polson and Scott (2010) suggest
that the posterior distribution of κ converges to a degenerate distribution at zero
as y Ñ 8 for a fixed τ . Thus, using the concentration inequalities in Theorem
3.2, we can find δpy, τq such that,

ż 1
4

0

ppκ|y, τqdκ ě 1 ´ δpy, τq for a fixed y and τ.

2. Now, under HA : Y „ N p0, 1 ` ψ2q, we find υpψ, τq such that

PHApδpY, τq ą 1{4q “ υpψ, τq.

Then we use the inequality

κ ă It
1

4
ď κ ď 1u `

1

4

where Itκ P r 14 , 1su is the indicator function taking value 1 for all values of κ P r 14 , 1s

and 0 otherwise, to deduce that,

Epκ|Y “ y, τq ă δpy, τq `
1

4

ñ PHA
pEpκ|Y, τq ą

1

2
q ď PHA

pδpY, τq ą
1

4
q “ υpψ, τq.

3. Then we show that υpψ, τq “ p2Φp3
?
Cq ´ 1qp1 ` op1qq as logp1{τ2q

ψ2 Ñ C P p0,8q

for our choice of the free tuning parameter τ .

Step 1: Theorem 3.2 for η “ 1
4 and δ “ 1

9 yields an explicit expression for δpy, τq

as follows:

ż 1

1
4

ppκ|y, τqdκ ď
72 expp´

y2

9 q

τ2

ðñ

ż 1
4

0

ppκ|y, τqdκ ě 1 ´
72 expp´

y2

9 q

τ2
. (14)
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Step 2: From (14), δpy, τq “
72 expp´

y2

9 q

τ2 . Then υpψ, τq is immediately obtained as:

PH1pδpY, τq ą
1

4
q “ PHA

«

72 expp´
y2

9 q

τ2
ą

1

4

ff

“ PHA

”

|Y | ă 3
a

ln 288 ` 2 lnp1{τq

ı

“ PHA

«

|Z| ă 3

d

ln 288 ` 2 lnp1{τq

1 ` ψ2

ff

where, Z “ Y?
1`ψ2

„ N p0, 1q

“

«

2Φ

˜

3

d

lnp1{τ2q

ψ2

¸

´ 1

ff

p1 ` op1qq “ υpψ, τq. (15)

Step 3: Proof of step 3 follows immediately from (15) and the fact that under the

choice of τ as τ “ Oppq, logp1{τ2q

ψ2 Ñ C P p0,8q.

3.5 Optimality of the horseshoe decision rule

The Bayes risk for a multiple testing procedure for the two-groups model under an
additive 0-1 loss function is given by

R “ mtp1 ´ pqt1 ` pt2u.

Therefore, under our choice of τ , the type I and type II error probabilities and the Bayes
risk for the horseshoe decision rule (RHS) are given by:

t1 “
2τ

a

lnp1{τq
p1 ` omq

t2 “ p2Φp3
?
Cq ´ 1qp1 ` omq

RHS “ mpp2Φp3
?
Cq ´ 1qp1 ` omq. (16)

Under the asymptotic framework defined by Assumption 3.1, we saw that the constants
for both the horseshoe risk and the Bayes oracle are the same provided the global
shrinkage parameter τ in horseshoe prior is chosen to be of the same order as the
sparsity parameter p in the two-groups model. Also, from equations (8) and (16), the
ratio of the risks for the horseshoe decision rule and the Bayes oracle is given by:

RHS
Ropt

“
p2Φp3

?
Cq ´ 1q

p2Φp
?
Cq ´ 1q

p1 ` omq

RHS “ OpRoptq as m Ñ 8.
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4 Numerical Results

We compared the performance of the decision rule imposed by the horseshoe and the
modified horseshoe prior (vide Section 2.1) with other shrinkage priors, viz. the double
exponential prior (DE) (vide Section 2.2), the Benjamini-Hochberg rule (BH) and the
Bayes oracle (BO) in terms of the misclassification probability (MP). We simulated data
of size m “ 200, ψm “

?
2 logm “ 3.26. This plot corresponds to the misclassification

probability plot given in Figure 1 of Bogdan et al. (2008).

Figure 1 shows the misclassification probabilities (henceforth abbreviated as MP)
for different shrinkage priors considered for ten equispaced values of p P r0.01, 0.5s along
with the oracle and the straight line (MP = p). The oracle serves as the lower bound
and the MP “ p line is basically the misclassification probability for the decision rule
that rejects all the null hypotheses without looking at the data. The right pane of the
figure shows that for both double exponential and normal priors, the MP plot hugs
the MP = p line. The performance of the horseshoe and its modified version is shown
in the left pane, which shows that the horseshoe priors attain an MP inferior to the
oracle, but it is much better than the other candidates we considered, viz. double
exponential and normal. We have also plotted the MP for the Benjamini-Hochberg
rule, for α “ 1{ logm “ 0.1887, along with the one-group shrinkage priors. Our plots
show that the Benjamini-Hochberg rule achieves the same MP as the oracle under this
setting. This is in concordance with the theoretical results for optimality of BH in
Bogdan et al. (2011).

As discussed in Polson and Scott (2010), the modified horseshoe prior with posterior
density of κ as

ppκ|y, sq9p1 ´ κq´ 1
2 expt´ps`

y2

2
qκu κ P p0, 1q

is an alternative to the original horseshoe prior where the “global shrinkage” takes place
through the parameter s instead of τ (vide Section 2.1). In our experiment, the modified
horseshoe performs as well as the original horseshoe for the extremely sparse case and
the original horseshoe has a slight advantage over the modified version for non-sparse
data with moderately large values of p « 0.5.

We used the full Bayes estimates for the hyperparameters for both the horseshoe
prior and the double exponential prior. For estimating τ , we assumed half-Cauchy prior
on τ and Jeffreys prior for the variance ppσ2q9 1

σ2 for deriving the full conditionals using
a Gibbs sampler. As pointed out by Carvalho et al. (2009); Scott and Berger (2006),
the fully Bayesian approach for estimating τ has a few adavantages over its alternatives,
viz. empirical Bayes and cross-validation. In the extremely sparse case, the empirical
Bayes estimate of τ might collapse to 0. This phenomenon is well-known, see Scott and
Berger (2010) and Bogdan et al. (2008). Cross-validation, though free of this problem,
uses plug-in estimates for the signal-to-noise ratio and hence does not take into account
the potential correlation structure between τ and σ. Carvalho et al. (2009) argue that
the plug-in estimates are not necessarily wrong, but caution should be exercised while
using them for extremely sparse problems.
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Figure 1: Misclassification probability plot for the Horseshoe, Laplacian and Normal
shrinkage priors, Benjamini-Hochberg and the Bayes oracle for p P p0.1, 0.5q.

It is worth noticing that the double exponential prior, though a good default candi-
date for shrinkage in the sparse signal situation, has higher MP than any other multiple
testing procedure for the sparse case (vide Figure 1). Carvalho et al. (2009, 2010) pointed
out the inability of the double exponential prior to effectively shrink noise through a
comparison of squared error loss under different estimators. The results in Carvalho
et al. (2010) show that the double exponential prior is consistently outperformed by
the horseshoe in terms of squared error loss. The relatively poor performance by the
double exponential may be attributed to insufficiently heavy exponential tails that tend
to over-shrink the large signals and under-shrink the noisy observations at the same
time. The Epθ|y, τ̂q vs. y plot supports this observation (vide Figure 2). The authors
argue that while the horsehoe density is symmetric and unbounded at both 0 and 1,
the double exponential prior density is bounded at both 0 and 1, implying lack of total
shrinkgae a priori. The horseshoe prior, on the other hand, does not face the same dif-
ficulty as the full Bayes estimate of τ is much smaller under the horseshoe than under
the double exponential prior (vide Figure 3 of Carvalho et al. (2009)), in which case τ
adapts to the sparsity level p, and heavy tails of πpλiq segregate the signals from the
noise.

We show the adaptivity of the global shrinkage parameter τ to the sparsity level
of the data in Figure 3. We plot the posterior samples for τ for both sparse and
non-sparse cases showing that the estimate changes with changing sparsity levels. It
supports the claim of Scott and Berger (2006); Carvalho et al. (2010) that the global
shared parameters control the error rates in multiple testing by estimating the overall
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sparsity level, particularly when the parameters are estimated from the data.

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

Po
ste

rio
r m

ea
n E

(θ |
 Y)

Y

Shrinkage for Horseshoe,Double Exponential and Normal prior

 

 

Horseshoe
Double Exponential
Normal
Flat

Figure 2: Posterior Mean Epθ|yq versus y plot for p “ 0.25.

Finally, we show how well the posterior inclusion probability for the more complex
two groups model can be approximated by the proxy posterior inclusion probability of
the one group horseshoe model for p “ 0.1 and p “ 0.5. We calculated the shrinkage
weights 1 ´ κ̂i, i “ 1, . . . , n for all the observations generated from a two-groups model
with the level of sparsity p “ 0.1 and compared them against the theoretical posterior
inclusion probability for the two-groups model (1-2) given by:

ωi “ P pθi ‰ 0|yiq “

"

p
1 ´ p

p
q
a

1 ` ψ2 expp´
y2i
2

ψ2

1 ` ψ2
q ` 1

*´1

.

The resulting plot in Figure 4 shows that for small p “ 0.1, the theoretical posterior
inclusion probability is well captured by the proxy posterior inclusion probability im-
posed by the horseshoe decision rule and the approximation is not so good for larger
p “ 0.5. This might give some insight to the success of horseshoe priors in achieving
similar risk as a two-groups model in the sparse case.

5 Discussion

We have examined the asymptotic risk properties of the horseshoe estimator due to
Carvalho et al. (2009) from a Bayesian decision theoretic viewpoint. We prove that
under the asymptotic framework of Bogdan et al. (2011), the natural decision rule
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Figure 3: Posterior draws for τ at different levels of the sparsity parameter p.
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Figure 4: Comparison of the theoretical posterior inclusion probability for the two-
groups model and the shrinkage weight p1 ´ κ̂q for the one-group horseshoe model for
different values of Y .
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induced by the horseshoe prior attains the risk of the Bayes oracle up to Op1q with a
constant close to the constant in the oracle if the shrinkage parameter τ is chosen to be
of the same order as the proportion p of signals. We provide numerical evidence that
the optimality holds if we use the full Bayes estimate of τ , which seems to adapt to
the unknown sparsity in the data. Our theoretical results provide some insights into
the asymptotic behavior of the continuous one-group model in the context of multiple
testing. The theoretical as well as the numerical results support the observation of
Carvalho et al. (2010) that the one-group model can closely mimic the results from
Bayesian methods on the two-groups model when the global shrinkage parameter is
suitably tuned to handle the sparsity in the data.

We will briefly discuss why the horseshoe prior doesn’t do as well as the Benjamini-
Hochberg rule. We feel that this is due to the fact that the former is based on an
approximate one group formulation whereas the latter is an optimal procedure in a
two-groups setting. This is why we can prove optimality up to a constant and argue
that the two groups oracle is almost attained by the horseshoe decision rule when the
constant C is moderately large. Here, C is the constant appearing in Assumption 3.1
and also in the formula for horseshoe risk and oracle risk (vide equations (8) and (16)).
We provide a comparison of the misclassification probability for the horseshoe and the
oracle along with their ratio, in Table (1). Based on the numerical study reported in
Section 4, we show that the horseshoe decision rule closely attains the oracle risk for
smaller p and doesn’t perform too badly for moderate p « 0.5. Note that smaller p
implies bigger C, when ψ2, the non-null variance, is held fixed.

Sparsity p Horseshoe MP Bayes oracle MP Horseshoe MP
Oracle MP

logp1{p2q

ψ2 « C

0.01 0.005 0.005 1.00 0.87
0.0644 0.03 0.03 1.00 0.52
0.1189 0.07 0.06 1.17 0.40
0.1733 0.115 0.095 1.21 0.33
0.2278 0.165 0.13 1.27 0.28
0.2822 0.205 0.15 1.37 0.24
0.3367 0.27 0.2 1.35 0.21
0.3911 0.31 0.22 1.41 0.18
0.4456 0.32 0.22 1.45 0.15
0.5 0.35 0.235 1.49 0.13

Table 1: Misclassification probability for the horseshoe and the Bayes oracle for ten
equidistant values of p P r0.01, 0.5s. It shows that in practice the horseshoe decision
rule closely attains the oracle for small p and does reasonably well even for moderate
p « 0.5.

It is indeed true that for many priors a result like Theorem 3.4 will hold, but char-
acterizing these priors may not be easy. We expect that the priors for which such a
theorem holds will be shrinkage prior with similar shrinkage as for the horseshoe. How-
ever, our proof can be applied only if we can prove similar contraction properties of
the posterior densities near 0 and 1. Though the double exponential prior is known to
squelch noise observations to zero (vide Pericchi and Smith (1992); Tibshirani (1996);
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Park and Casella (2008); Hans (2009); Li and Goel (2006)), our method of proof fails to
show any contraction property for the double exponential prior. The misclassification
probability is much higher for the double exponential, in fact it is close to the MP for
the trivial test that rejects all the null hypotheses without looking at the data. This
might be attributed to the over-shrinkage of the large signals by the double exponential
prior, as shown in Figure 2. For the double pareto even the algebra for computing the
posterior given the global parameter τ is too formidable for any theoretical or numerical
computation, at least as far as we could see. So it remains an interesting open question.

We would like to shed some light on the shrinkage profile for the normal prior and
argue that this might be an example of a near non-optimal shrinkage. We put a standard
half-normal prior on λi, i.e.

λi „ N`p0, 1q. (17)

This allows us to work with the same shrinkage coefficent κi “ 1
1`λ2

i τ
2 which gives

Epθi|yi, τ, σ
2q “ p1 ´ Epκi|yi, τ, σ

2qqyi.

For the normal prior, like the horseshoe prior, posterior shrinkage comes through the
quantity κ̂i “ Epκi|yi, τ, σ

2q. The quantity κ̂ can be seen as the posterior shrinkage
towards zero, and a higher value of this near the tails means over-shrinking of the large
coefficients. We show the posterior mean Epθ|Y q vs. Y plots for the horseshoe, the
double exponential and the normal prior (vide Figure 2) for data originating from a
two-groups model with m “ 200 and p “ 0.25. It shows that the normal prior has
the strongest shrinkage and shrinks even the larger signals to zero, unlike the horseshoe
which performs well near the origin as well as away from it.

We have examined the very powerful contraction inequalities obtained in Armagan,
Dunson, Lee, and Bajwa (2011); Pati, Bhattacharya, Pillai, and Dunson (2012); Strawn,
Armagan, Saab, Carin, and Dunson (2012). We believe these results will have many
applications in Bayesian analysis and are indebted to the referees for pointing out these
new articles. However, these do not seem to apply to our setup because the asymptotics
of the contraction are very different. In the case of Strawn et al. (2012), contraction
of the posterior comes by increasing the sample size, though there are other factors
including choice of prior. However, in Bogdan et al. (2011) or the present paper, poste-
rior contraction comes from the hyper-parameter p going to 0 and hyper-parameter ψ2

going to infinity. Note that ψ2 is the non-null variance, which acts like a non-centrality
parameter, measuring the strength of the signal. The asymptotics for the two groups
model is in Bogdan et al. (2011). The asymptotic calculations of the present paper are
different and based on the two results on the concentration of the posterior, but the
framework of asymptotics is the same, coming through p and ψ2. Ours is a modest con-
tribution to asymptotics about multiple testing of means in the one group problem. The
corresponding asymptotic results in the two groups model (vide Bogdan et al. (2011))
have a very different proof.

There is some similarity with Armagan et al. (2011) but their assumptions neither
imply ours, nor are implied by our assumptions. In a rather different direction, Pati et al.
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(2012) have considered similar reults in the case of inference on covariance matrices, but
unlike our problems, the means are assumed to be zero.
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