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A Vine-copula Based Adaptive MCMC Sampler
for Efficient Inference of Dynamical Systems

Daniel Schmidl ˚, Claudia Czado :, Sabine Hug ;, and Fabian J. Theis §

Abstract. Statistical inference in high dimensional dynamical systems is often
hindered by the unknown dependency structure of model parameters. In particu-
lar, the inference of parameterized differential equations (DEs) via Markov chain
Monte Carlo (MCMC) samplers often suffers from high proposal rejection rates
and is exacerbated by strong autocorrelation structures within the Markov chains
leading to poor mixing properties. In this paper, we develop a novel vine-copula
based adaptive MCMC approach for efficient parameter inference in dynamical
systems with strong parameter interdependence. We exploit the concept of a
vine-copula decomposition of distribution densities in order to generate problem-
specific proposals for a hybrid independence/random walk Metropolis-Hastings
(MH) sampler. The key advantage of this approach is that the corresponding MH
proposals generate independent samples from the posterior distribution more effi-
ciently than common competitors. All copula densities can be updated during the
sampling procedure for fine-tuning. The performance of our method is assessed
on two small-scale examples and finally evaluated on a delay DE model for the
JAK2-STAT5 signaling pathway fitted to time-resolved western blot data. We
compare our copula-based approach to an independence sampler, a second-order
moment-based random walk MH algorithm, and an adaptive MH sampler.

Keywords: Parameter inference, Metropolis-Hastings algorithm, independence sam-
pling, adaptive MCMC, vine, copula

1 Introduction

Dynamical systems are present in many scientific disciplines, including physics, engi-
neering, bioinformatics, and many others. Such systems are frequently modeled by
ordinary or delay differential equations and present modeling challenges due to scarce
and noisy data for the typically large and complex models. Extensive research has
been done on the inference of parameter values. As the data and models are generally
very imprecise, determining single parameter values is often inadequate. In the last
few years – especially in the fields of systems and computational biology – fully sta-
tistical Bayesian approaches were considered for parameter estimation in deterministic
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systems (Brown and Sethna (2003); Wilkinson (2006); Lawrence et al. (2010)). These
Bayesian methods provide a way to combine the parameters of interest with the under-
lying data and a priori information, even when dealing with very complex models or
partially unobserved quantities. As analytic computation of the posterior probability
of model parameters quickly becomes intractable, numerical methods such as Markov
chain Monte Carlo (MCMC) methods are typically employed (Brooks (1998); Gamer-
man and Lopes (2006)). Of the MCMC algorithms, one of the most successful and
influential (Beichl and Sullivan (2000); Wilkinson (2007)) was developed by Metropolis
and Hastings (Metropolis et al. (1953); Hastings (1970)).

Fine-tuning the Metropolis-Hastings (MH) algorithm for performing efficient infer-
ence is nevertheless a daunting task. The biggest hurdle in applying Bayesian methods
arises due to their high computational costs (Wilkinson (2007)). Strong parameter de-
pendencies and high dimensional sampling spaces limit MH algorithms to conservative
parameter update schemes. In general, very many MCMC iterations may be required
for vast traversals in the parameter space. Towards this end, a variety of algorithms
have been developed to improve MCMC sampling efficiency (Girolami and Calderhead
(2011); Liu (2008); Haario et al. (2001)). In this contribution we extend the MH algo-
rithm by a novel problem-specific proposal function, which is based on the decomposition
of the posterior distribution by means of a D-vine copula. Updating the proposal copula
during the sampling process leads to an adaptive sampling scheme – an approach that
has of late generated much interest in the MCMC community (Roberts and Rosenthal
(2007); Holden et al. (2009); Rosenthal (2011)). Although copulas are well established
modeling tools in fields like economics, finance, or geology, they have not yet been
applied to tune the MH efficiency. Recently extensive research has been conducted re-
garding copulas and vine-copula decompositions (Kurowicka and Cooke (2006a); Aas
et al. (2009); Kurowicka and Joe (2011)) for modeling systems with asymmetric tail de-
pendencies – a characteristic also inherent to most posterior densities subject to MCMC
sampling.

The paper is organized as follows. In the subsequent section we give a brief review of
the random walk MH, the independence MH, and the Adaptive Metropolis (Haario et al.
(2001)) algorithms. Section 3 reviews the concept of copulas and a D-vine decomposition
of copulas. The main result is then contained in Section 4: we first present a basic
version of our copula-based MH approach and subsequently extend it to an adaptive
sampling scheme. Finally, we analyze the efficiency of our copula-MH approaches in
Sections 5.1 - 5.3 by applying them to the problem of generating samples from a highly
correlated normal distribution, a dynamic differential equation driven toy system, and a
delay differential equation model of the JAK2-STAT5 signaling pathway. Throughout,
we denote vectors/matrices by bold letters, while non-bold letters with subscript indices
denote vector/matrix elements. Markov chains are displayed as sets, such as tθpjquj“0:K ,
where the superscript pjq denotes the jth element. The notation 0 : K abbreviates
0, 1, . . . ,K. We also write pθ1:dqJ for d-dimensional vectors pθ1, . . . , θdqJ.
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2 Monte Carlo methods in dynamical systems

Bayesian inference applied to dynamical systems is concerned with computing the prob-
ability distribution of the d-dimensional random parameter vector θ “ pθ1:dqJ P Rd of
a parameterized system based on given observations y “ py1:nqJ P Rn. More precisely,
in conjunction with a suitable error model, the data likelihood ppy|θq “ Lpθq leads
to computation of the posterior density ppθ|yq “ Lpθqppθq{ppyq (see Bayes and Price
(1763)), where ppyq is the normalizing capacity and ppθq denotes the prior distribution.
In dynamical systems parameters are often constrained to be non-negative. Sampling
a Markov chain tθpjquj“0:K from ppθ|yq9Lpθqppθq can be done by the MH algorithm,

which, starting at some initial θp0q, proposes for j “ 1 : K a sample θ̃pjq according
to some transition density qpθ|θpj´1qq. The proposal θ̃pjq is then accepted with proba-

bility αpθ̃pjq|θpj´1qq “ min
!´

ppθ̃pjq|yqqpθpj´1q|θ̃pjqq

¯

{

´

ppθpj´1q|yqqpθ̃pjq|θpj´1qq

¯

, 1
)

(see Robert and Casella (2004) for details). A very popular choice for the proposal
density qpθ|θpj´1qq is the d-dimensional normal distribution Ndpθpj´1q,Σq with mean
θpj´1q and some fixed covariance matrix Σ. We refer to this scheme as the random walk
Metropolis-Hastings (RWMH) algorithm. If the proposal function is independent of all
preceding samples the sampling scheme is called an independence Metropolis-Hastings
(IMH) algorithm. The proposal function q is very crucial for the performance of the algo-
rithm: an efficient MH algorithm yields high acceptance rates for the proposed samples
with simultaneous low autocorrelation in the generated Markov chains, i.e. the chain is
mixing well. This is especially hard to attain in high dimensions because small update
step sizes result in high acceptance rates, but also in highly correlated Markov chain
samples and vice versa. Towards this end, Haario et al. (2001) proposed an adaptive
MH algorithm that gradually adjusts the RWMH proposal function during the sampling
process: in this Adaptive Metropolis algorithm (AM) the RWMH proposal covariance
matrix Σ for step pjq is defined by

Σpjq “

#

Σp0q, j ď j0

sdcovpθp0q, . . . ,θpj´1qq ` sdεId, j ą j0,
(1)

for some initial covariance matrix Σp0q P Rdˆd, the update initialization limit j0 ą 0,
scaling constants sd ą 0 and ε ą 0, and the d-dimensional identity matrix Id P Rdˆd.

3 Vine-copula decompositions

We now introduce the basic copula proposal function (for a thorough introduction on
copulas and applications see Joe (1997) and Nelsen (2006)). A d-dimensional copula, C,
is a multivariate distribution C : r0, 1sd ÝÑ r0, 1s with uniform marginal distributions
on r0, 1s. According to Sklar’s theorem (Sklar (1959)) there exists for any continuous
multivariate cumulative distribution function (cdf) F pxq with x “ px1:dqJ and u “

pu1:dqJ a unique copula Cpuq such that for the marginal cdf’s Fipxiq, i “ 1 : d,

F pxq “ CpF1px1q, F2px2q, ...., Fdpxdqq. (2)
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A random vector U „ C can hence be transformed to the random vector X „ F
via xi “ F´1puiq for i “ 1 : d. We consider only absolutely continuous distributions
F pxq with joint density functions fpxq and marginal density functions fipxiq for i “

1 : d. Then relationship (2) implies fpxq “ cpF1px1q, . . . , Fdpxdqq ¨ f1px1q ¨ . . . ¨ fdpxdq,
where cpuq is the density function corresponding to Cpuq, i.e. fpxq can be decomposed
into the product of its marginals and the function cpuq. Here, cpuq contains the full
dependency structure of the random vector X „ F . For d ą 2, there exist only very
few copula distributions that allow for efficient sample generation. However, this class
of multivariate copulas has recently been greatly extended by pair-copula based vine-
copulas. Here, cpuq is decomposed into the product of bivariate copulas as proposed
by Joe (1996). Bedford and Cooke (2001), Bedford and Cooke (2002), and Kurowicka
and Cooke (2006b) organized this a priori non-unique decomposition using a collection
of linked trees, called vines. A special class of vines, the so-called D-vines, can be
constructed as follows (Czado (2010)): The starting point is a recursive decomposition
of a multivariate density into products of conditional densities. Let X :“ pX1:dqJ be a
set of variables with joint distribution function F and density function f . Consider the
decomposition

fpxq “ r

n
ź

t“2

fpxt|x1:pt´1qqs ¨ fpx1q. (3)

Here F p¨|¨q and later fp¨|¨q denote conditional cdf’s and density functions, respectively.
Using Sklar’s theorem for dimension d “ 2, we can express the conditional density of
X1 given X2 “ x2 as

fpx1|x2q “ c12pF1px1q, F2px2qq ¨ f1px1q, (4)

where c12p¨, ¨q is an arbitrary bivariate copula density function. For distinct indices
i, j, i1 : ik with i ă j, i1 ă ¨ ¨ ¨ ă ik we set ci,j|i1:ik :“ ci,j|i1:ikpF pxi|xi1:ikq, F pxj |xi1:ikqq.
Applying (4) to the conditional distribution of pX1, Xtq given X2:pt´1q we can express

fpxt|x1:pt´1qq recursively as fpxt|x1:pt´1qq “ r
śt´2

s“1 cs,t|ps`1q:pt´1qs ¨ cpt´1q,t ¨ ftpxtq. In
combination with (3) and s “ i, t “ i ` j it follows that

fpxq “ r

d´1
ź

j“1

d´j
ź

i“1

ci,pi`jq|pi`1q:pi`j´1qs ¨ r

d
ź

k“1

fkpxkqs. (5)

Note that the decomposition (5) of the joint density consists of pair-copula densities
ci,j|i1:ikp¨, ¨q evaluated at conditional distribution functions F pxi|xi1:ikq and F pxj |xi1:ikq

for specified indices i, j, i1 : ik and marginal densities fk. This pair-copula decomposition
was named a D-vine distribution by Bedford and Cooke. In general, the conditional pair-
copula densities in (5) might depend on the conditioning values xi1:ik . Here, however,
we assume the restriction that ci,j|i1:ikp¨, ¨q does not depend on xi1:ik for any i, j. This
means that the decomposition (5) captures the dependency on the conditioning values
solely through the arguments F pxi|xi1:ikq and F pxj |xi1:ikq. Hobæk Haff et al. (2010)
showed that this restriction is not severe. Aas et al. (2009) were the first to consider
standard estimation methods for parameters of vine-copulas. These include stepwise
and maximum likelihood estimation (MLE) – see Czado (2010) and Kurowicka and Joe
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(2011) for current developments in this active area. Since the number of parameters
grows quadratically in the dimension d, it is useful to consider a stepwise estimation
approach, where we estimate the parameters from pair-copulas with no conditioning
variables to the ones with d´ 2 conditioning variables. For the copula parameters with
a single conditioning value, we transform the data with the appropriate conditional cdf’s
using the estimated parameters of the pair-copulas without conditioning to determine
pseudo realizations needed in the pair-copulas with a single conditioning variable. We
proceed as before until all parameters have been estimated. These so-called sequential
estimates have been shown to be consistent and asymptotically normally distributed
(Hobæk Haff (2013)). They are then used as starting values for numerically determining
the maximum likelihood estimates. When several bivariate copula families for a pair-
copula term are available, the family is chosen according to the Akaike information
criterion (AIC). Brechmann (2010) showed that the AIC performs well with regard
to several alternatives. Bayesian analyses of D-vines using MCMC are also available
(Min and Czado (2010)). Additionally, model selection methods are implemented using
indicator variables (Smith et al. (2010)) and reversible jump MCMC (Min and Czado
(2011)). The R package CDVine of Brechmann and Schepsmeier (2013) applies the
maximum likelihood/AIC approach described above.

4 Copula-based independence MH approach

We now want to introduce the basic version of our hybrid copula-based independence/ran-
dom walk Metropolis-Hastings approach (CIMH), which essentially constitutes an inde-
pendence-sampling algorithm with a proposal function similar to the limiting distribu-
tion, resulting in high sampling efficiency. The copula proposal function is extended by
two additional proposal functions, the first of which is a random walk density and the
second a heavy-tailed independence density. Here, the latter is essential to safeguard
convergence. Overall, we end up with a hybrid copula-based random walk transition
density. The sampling scheme consists of four steps: (i) a prerun, (ii) a uniformization
step of the prerun samples, (iii) a D-vine copula decomposition of the prerun samples,
and (iv) the generation of a Markov chain by means of the hybrid copula-based indepen-
dence/random walk sampler. We assume throughout that the sampling space Ω Ă Rd

is Borel measurable with measure µ.

4.1 The general sampling approach

(i) Prerun: Our goal is to construct a Markov chain tθpjquj“0:K that has the posterior
ppθ|yq as its unique stationary and limiting distribution via an independence MH algo-

rithm. For this, we first generate an initial Markov chain tθ̆pjquj“0:K1 for some K 1 ą 2,
the so-called prerun samples, using e.g. RWMH or any other sampling algorithm.

(ii) Uniformization: Based on tθ̆pjquj , we fit an η-parameterized D-vine copula c1:dpu|ηq

in step (iii). As seen in Section 3 copulas are defined on r0, 1sd. Hence, each prerun

sample θ̆pjq needs to be transformed to r0, 1sd. Depending on the shape of the histograms
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of the d sample marginals θ̆i :“ pθ̆
p1q
i , . . . , θ̆

pK1q
i qJ we fit for i “ 1 : d γi-parameterized

continuous cdf’s Gipθ|γiq to the respective sample marginal. Note that for all i the
support of Gipθ|γiq needs to cover the respective dimension of the sample space. Each

θ̆pjq is then transformed to ŭpjq :“ pG1pθ̆
pjq
1 |γ̂1q, . . . , Gdpθ̆

pjq

d |γ̂dqqJ P r0, 1sd based on
the estimates γ̂i of γi. In the following we refer to ŭpjq as copula data. Let us consider
a simple example: say, for instance, d “ 2 and the sample marginals of tθ̆pjquj are
normally distributed. Based on the estimated sample means µ̂1, µ̂2 and sample variances

σ̂2
1 , σ̂

2
2 of tθ̆pjquj we transform ŭ

pjq
1 “ Φ

´

pθ̆
pjq
1 ´ µ̂1q{σ̂1

¯

and ŭ
pjq
2 “ Φ

´

pθ̆
pjq
2 ´ µ̂2q{σ̂2

¯

,

where Φp¨q is the cdf of a standard normal random variable. Step (ii) does not change

the dependency structure inherent to the prerun samples tθ̆pjquj , which is exclusively
modeled by the D-vine copula (see Aas et al. (2009)). This implies that the estimated

Kendall’s τ ’s of tθ̆pjquj are identical to the estimated Kendall’s τ ’s of tŭpjquj .

(iii) Copula decomposition: Based on tŭpjquj reorder the dimensions 1 : d by means
of a permutation function ι : t1 : du ÝÑ t1 : du, i ÞÑ ιpiq such that for i “ 1 :
pd´1q the pair puιpiq, uιpiq`1q exhibits the highest pairwise absolute Kendall’s τ . Hence,

each prerun sample ŭpjq “ pŭ
pjq

1:dqJ is transformed to ũpjq :“ pŭ
pjq

ιp1q
, . . . , ŭ

pjq

ιpdq
qJ. While

this step is not essential, it is known from parameter estimation in copulas that when
unconditioned pair-copulas cover the strongest pairwise dependencies the estimation
error can be reduced. Using tũpjquj we fit an η-parameterized D-vine copula density

c1:dpu|ηq “

d´1
ź

j“1

d´j
ź

i“1

cj,j`i|j`1:j`i´1pF puj |uj`1:j`i´1,ηq, F puj`i|uj`1:j`i´1,ηq|ηq, (6)

where F puℓ|uD,ηq is the η-parameterized conditional cdf of Uℓ given UD “ uD and
uD is a set of r0, 1s-valued variables. Here, the order of the variables in (6) corresponds
to the reordering by ι. In our notation the parameter η “ tηi,j`i|pj`1q:pj`i´1qu for
j “ 1 : pd´1q and i “ 1 : pd´ jq contains the copula parameters and types. The D-vine
copula can be fitted using the maximum likelihood/AIC approach of Section 3. Note
that since the number of copula-parameters grows quadratically in the dimension d, as
mentioned above, the algorithm scales by Opd2q.

(iv) Generation of the Markov chain: The copula proposal function is defined as fol-
lows: for generating d-dimensional copula proposals θ̃ P Ω, we sample ũ „ c1:dpu|η̂q

from the estimated copula c1:dpu|η̂q. The sample ũ is then transformed by θ̃i :“
G´1

ι´1piq
pũι´1piq|γ̂ι´1piqq to yield θ̃ “ pθ̃1:dqJ. In the setting of the example above ι is

the identity function. The corresponding samples θ̃ on R2 are then for i “ 1, 2 given by
θ̃i “ G´1

ι´1piq
pũι´1piq|µ̂ι´1piq, σ̂

2
ι´1piqq “ Φ´1pũiqσ̂i ` µ̂i. Thus, all copula proposals θ̃ are

generated according to the joint density function

q1pθ|γ̂, η̂q :“ c1:dpG1pθ1|γ̂1q, . . . , Gdpθd|γ̂dq|η̂q ¨

d
ź

i“1

gipθi|γ̂iq, (7)

where gipθ|γ̂iq are the density functions corresponding to Gipθ|γ̂iq. Now, let q2pθ|θ1q

be a random Metropolis-Hastings transition density of choice and q3pθq a (compared



D. Schmidl and C. Czado and S. Hug and F. J. Theis 7

to the posterior density ppθ|yq) heavy-tailed independence transition density. For fixed
constants r1 P r0, 1q and r2 P r0, 1q with r1 ` r2 ă 1 we define the copula-based hybrid
independence/random walk transition density for CIMH via the density function

qcoppθ|θ1, γ̂, η̂q :“ r1q1pθ|γ̂, η̂q ` r2q2pθ|θ1q ` p1 ´ r1 ´ r2qq3pθq. (8)

With respect to readability we simply write qcoppθ|θ1q instead of qcoppθ|θ1, γ̂, η̂q. For
proving convergence of the proposed sampling scheme we make use of the strong Doe-
blin condition, which requires that there exist an integer s ą 0 and a constant as P

p0, 1s such that pqcopqspθ,θ1q ě asppθ|yq for all θ,θ1 P Ω. Here, pqcopqs is the s-step
transition density for θ implicitly defined for the density after j iterations, P j , by
P i`spθq “

ş

Ω
pqcopqspθ1|θqP ipθ1q dµpθ1q with pqcopq1 “ qcop (compare Holden (2000)).

The transition density q3 guarantees that the proposal distribution qcop has uniformly
heavier tails than the posterior distribution ppθ|yq. It follows that the strong Doeblin
condition holds (see Holden et al. (2009)). As the MH acceptance probability satisfies
the detailed balance condition, Holden (2000) showed that the strong Doeblin condition
implies convergence of the Markov chain. The constants r1 and r2 are generally chosen
such that r1 ` r2 is close to one in order to “waste” as few samples as possible.

4.2 Adaptive copula-sampling scheme

Short preruns might cause insufficient sampling from the posterior’s marginals’ tails
in order to fit an efficient proposal copula. To avoid setting r1 ` r2 ! 1 and thus
generating ineffective proposals, we propose an extension of the basic CIMH approach
by sequentially updating the copula functions based on preceding Markov chain samples.
This changes the proposal function during the sampling process and leads to an adaptive
MCMC scheme: for integers R,S ą 0 we set the copula update-probability for the jth

MCMC step, P pjq, to

P pjq “

#

1, if j mod R “ 0 and j ă R ¨ S,

0, otherwise.
(9)

That is, the estimated copula parameters γ̂ and η̂ become dependent on the proposal
step j, resulting in a step-dependent proposal function qcoppθ|θpjq, γ̂pjq, η̂pjqq, where
γ̂pjq and η̂pjq are updated based on the concatenated prerun samples and the samples
generated up to step j according to the copula update-probability. By construction the
support of each qcoppθ|θpjq, γ̂pjq, η̂pjqq covers Ω. It follows that the associated transition
kernel of the Metropolis-Hastings algorithm is ergodic. The copula proposal function is
updated at most S times. Proposition 3 in Roberts and Rosenthal (2007) then ensures
that this finite adaption scheme preserves ergodicity and therefore yields a valid adaptive
MCMC sampler. We refer to this hybrid adaptive copula-update independence/random
walk MH approach as ACIMH. The pseudo code for ACIMH is shown in Algorithm 1.
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Algorithm 1: The ACIMH algorithm

(i) Input: RWMH prerun samples tθ̆pjquj“0:K1 with θ̆pjq “ pθ̆
pjq
1 , . . . , θ̆

pjq

d qJ, update and
sampling parameters R, S, r1, and r2, chain length K, starting value θ0, and
transition densities q2 and q3.

Output: Markov chain tθpjquj“0:K .

Initialize s Ð 0 and set θp0q Ð θ0.
Infer dimension permutation function ι.
for j Ð 0 to K do

if j mod R “ 0 and j ă R ¨ S then
Update s Ð s ` 1.

(ii) for i Ð 1 to d do

Fit γ̂
psq
i of parameterized cdf Gip¨|γiq based on tθ̆

pkq
i uk“0:pK1`jq.

for k Ð 0 to K 1 ` j do

Set ŭ
pkq
i Ð Gipθ̆

pkq
i |γ̂

psq
i q.

(iii) Fit η̂psq of D-vine copula c1:dpu1, . . . , ud|ηq on tpŭ
pkq

ιp1q
, . . . , ŭ

pkq

ιpdq
qJuk“0:pK1`jq.

(iv) if j ą 0 then

According to r2, 1 ´ r1 ´ r2, and r1 sample θ̃ „ q2pθ|θpj´1qq, θ̃ „ q3pθq, or
pũ1, . . . , ũdqJ „ c1:dpu1, . . . , ud|η̂psqq, respectively. In the latter case
for i Ð 1 to d do

transform θ̃i Ð G´1
ιpiq

pũι´1piq|γ̂
psq

ιpiq
q

and define θ̃ “ pθ̃1, . . . , θ̃dqJ. Set

θpjq
Ð

#

θ̃ with prob. αcoppθ̃|θpj´1qq “ min
!

ppθ̃|yqqcoppθpj´1q|θ̃q

ppθpj´1q|yqqcoppθ̃|θpj´1qq
, 1

)

,

θpj´1q with prob. 1 ´ αcoppθ̃|θpj´1qq.

Set θ̆pK1`j`1q Ð θpjq.

5 Performance and results

For benchmarking CIMH and ACIMH the algorithms were tested on three examples.
First, we draw samples from a strongly correlated bivariate normal distribution. This
system serves as a simple proof-of-concept of an analytically tractable system. Subse-
quently, we turn to dynamical systems defined by differential equations (DEs). More
precisely, Example 2 examines the performance for ordinary non-linear parameter de-
pendencies and parameter distributions with non-symmetric tail dependencies. Finally,
we apply our sampling approaches to a delay differential equation (DDE) model of
the JAK2-STAT5 signaling pathway as published by Swameye et al. (2003). Here, a
sophisticated proposal generation is crucial as there exists no closed form solution of
the DDE system, calling for a computationally very expensive numerical solution for
every evaluation of the likelihood. Moreover, the seven parameters involved show high
interdependency, which additionally complicates the inference.

We evaluated the following performance indices: (I1) the quotient of acceptance rate
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and estimated inefficiency factor (INEFF) and (I2) the estimated effective sample size

(ESS) per second. Here, ESS “ maxi“1:d

!

pK ` 1q{

´

1 ` 2
řKi

c
τ“1p1 ´ τ

K`1 qρ̂ipτq

¯)

for

the MCMC sampling length K and the estimated autocorrelation functions ρ̂ipτq “
1

σ̂2pK`1´τq

řK
j“τ pθ

pjq
i ´ µ̂iqpθ

pj´τq
i ´ µ̂iq of lag τ and dimension i of a Markov chain

tθpjquj“0:K “ tpθ
pjq
i qi“1:duj“0:K (Hoffman and Gelman (2011), Appendix A). The esti-

mates µ̂i and σ̂2 of the mean and variance of dimension i are computed from a separate
very long (1,000,000 sample) MCMC run in order to avoid underestimation of the au-
tocorrelation function. Since ρ̂ipτq becomes noisy for large τ , the sum is truncated
at Ki

c “ argmintρ̂ipτqu, such that ρ̂ipτq ă 0.05. The ESS assesses the mixing prop-
erty of the Markov chain (He et al. (2007)). Conversely, the INEFF is simply given by
INEFF=pK`1q{ESS. It is equal to the average number of Markov chain states that two
samples need to be separated in order to be considered independent. For our applica-
tions pI1q was motivated by the trade-off between high acceptance rates and low INEFFs
for Markov chains with small proposal variances, and the rejection of a large fraction
of proposed moves for the MH algorithm when variance is too high (see Roberts et al.
(1997); Liu (2008); Girolami and Calderhead (2011)). Clearly pI1q P r0, 1s, with higher
values being superior. As all algorithms were implemented in MATLAB (R2012a) using
the same underlying MH code, (I2) is a well justified measure for the mixing speed of an
algorithm. Time here denotes the CPU-time on a single core of a 24 core AMD Opteron
6234 (2.4 GHz) machine.

The performances of CIMH and ACIMH were compared to (a) an RWMH algorithm,
(b) an IMH algorithm, and (c) the AM algorithm using (I1) and (I2). We applied a joint
parameter update scheme in each proposal function. In order to set up the proposal
functions of RWMH, IMH, CIMH, and ACIMH, we ran another random walk MH
algorithm to generate so-called prerun samples. The latter used an N pθc,Σq proposal
function, where θc denotes the current Markov chain sample and Σ is a fixed covariance
matrix defined as follows: we determined the maximum a posteriori estimates for all d
parameters using a simulated annealing algorithm (Kirkpatrick et al. (1983)); denoting
these estimates by si the ith diagonal element of Σ was set to kp ¨ si, where kp was
adjusted in each example to yield an acceptance rate of approximately 23% as suggested
in Roberts et al. (1997) – our exact limits were set to 10% and 36%. Two major issues
of the prerun sampler are (P1) a rather strong autocorrelation between subsequent
MCMC iterations and (P2) its failure to incorporate any information about the limiting
distribution when proposing new samples. To address (P1) we set up the IMH whose
proposals are generated independently of the current Markov chain state: as for the
copula-based algorithms we fitted one-dimensional parameterized cdf’s Gipθ|γiq to each
of the d empirical marginal parameter distributions sampled in the prerun. In fact,

these were identical for IMH, CIMH, and ACIMH. The IMH proposals θ̃
pjq
i were jointly

generated by sampling d ¨ pK ` 1q independent samples u
pjq
i „ Ur0, 1s (i “ 1 : d,

j “ 0 : K), which are subsequently transformed to θ̃
pjq
i “ G´1

i pu
pjq
i |γ̂iq. In other words,

IMH generates proposals assuming an independent parameter structure. Rather than
directly reducing the autocorrelation in the Markov chain, RWMH exploits the expected
covariance matrix Ĉ of the prerun and addresses (P2): the RWMH proposal function is
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given by N pθc, kRW ¨ Ĉq. Again, kRW was chosen to yield an approximate acceptance
rate of 23%. In order to save the sampling time of the prerun AM is addressing pP2q

by gradually updating the proposal covariance matrix during the sampling process.
For our applications we set Σp0q “ Id, ε “ 1 ¨ 10´7, and sd to yield an approximate
acceptance rate of 23% (determined by an additional independent MCMC run). The
update initialization limit j0 was set to coincide with the first accepted Markov chain
sample different from θp0q. While IMH and RWMH can in some sense be seen as
antagonistic approaches w.r.t. (P1) and (P2), CIMH and ACIMH address both issues
at once. For performance assessment CIMH and ACIMH were applied as introduced
in Section 4. Throughout, the Metropolis-Hastings transition density q2 was taken to
be identical with the one of RWMH, reusing the tuning parameter kRW ; q3 and the
proposal probabilities r1 and r2 were adjusted individually (see Sections 5.1 - 5.3). For
thorough performance evaluation, the first two examples were each run 100 times for
50,000 MCMC iterations, the last one 10 times for 50,000 MCMC iterations. The same
set-up was applied for prerun sampling. In all examples the copula update parameters
for ACIMH were set to R “ 10,000 and S “ 4. While the copulas were fitted on 1,000
equally spaced prerun samples in the first two examples, we used 3,000 samples for the
JAK2-STAT5 inference, owing to the complexity of the system. The time for the prerun
was added to the sampling times of IMH, RWMH, CIMH, and ACIMH. For copula fitting
and sample generation the CDVine R-package (Brechmann and Schepsmeier (2013)) was
used.

5.1 Sampling from a strongly correlated 2-dim. normal distribution

In our first example we draw samples from a strongly correlated bivariate normal dis-
tribution N2 pµ,Σq with respective mean and covariance matrix

µ “

ˆ

µ1

µ2

˙

“

ˆ

0
0

˙

and Σ “

ˆ

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

˙

“

ˆ

1 0.95 ¨
?
3

0.95 ¨
?
3 3

˙

.

Here, ρ “ 0.95. We chose this example as it is illustrative as well as analytically
tractable. Canonically, the cdf’s of N p0, 1q and N p0, 3q were used to transform the
prerun samples to r0, 1s2. The independence proposal density q3 was taken to be a
bivariate Student-t distribution with location parameter p0, 1qJ and identity scale ma-
trix. Furthermore, we set r1 “ 0.99 and r2 “ 0. All samplers were started at the
origin and approximated the two-dimensional normal distribution with negligible er-
rors. In fact, the residual differences between the estimated and true parameter values
of µ1, µ2, σ1, σ2, and ρ were on average less than 8.2 ¨ 10´2 throughout all approaches
during the 100 runs. Although the sampling times for IMH (16.9 ˘ 1 ¨ 10´2 sec.) were
on average slightly faster than the ones of RWMH (21.3˘ 5 ¨ 10´3 sec.), RWMH turned
out to be superior w.r.t. pI1q and pI2q as can be seen from Figure 1(a) and 1(b). Here,
missing information about the correlation structure in the proposal function is clearly
hampering the performance of IMH. While CIMH and ACIMH outperformed all other
algorithms on pI1q, ACIMH and AM attained only comparable pI2q-values. Due to the
simplicity of the example and the prerun- (9.6 ˘ 2 ¨ 10´3 sec.) and copula-fitting time



D. Schmidl and C. Czado and S. Hug and F. J. Theis 11

(a) (b)

 

 

0  0.5 1  

ŭ2
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Figure 1: Results for the two-dimensional normal distribution. Figure (a): Quotient
of acceptance rate and INEFF, (I1). Figure (b): ESS per second, (I2). Error bars show
the estimated standard errors based on 100 runs. Figure (c): Marginal copula data (c.f.
Section 4.1 (ii)) used to fit the CIMH and ACIMH copula of the first run. The diago-
nal displays the histograms of the MCMC sample marginals and τe the corresponding
empirical Kendall’s τ .

(31.2 ˘ 0.3 sec.) saved by AM the latter result is not astonishing. Copula refitting did
not decrease the INEFF (INEFF CIMH: 1.1˘ 1 ¨ 10´2; INEFF ACIMH: 1.1˘ 1 ¨ 10´2).
Hence, saving the additional time needed for copula refitting, CIMH turned out to be
the most efficient algorithm w.r.t. pI2q, outperforming all other algorithms by far. We
have to point out that (I1) is very close to one for CIMH and ACIMH. This means that
in almost every MCMC iteration an independent sample was generated. At first sight
this might almost seem too good of a result, but clearly, due to the simplicity of the
problem, the copula was fitted almost perfectly (c.f. Figure 1(c)) leading to an inde-
pendent proposal function qcoppθ|θ1q “ qcoppθq that was very close to the true sampling
distribution N2 pµ,Σq. This pushed the MH acceptance probability close to one. pI1q

can hence be seen as a combined goodness-of-fit index for the fitted marginal cdf’s and
vine-copula decomposition. The copula families for ACIMH did not change in any of
the 100 runs, meaning that the dependency structure was already well covered by the
preruns. The bivariate copula c1,2pu1, u2|ηq of the first of the 100 runs was fitted to
be Gaussian with an estimated parameter value of η̂ “ 0.953. This is very close to
the actual correlation value of ρ “ 0.95. The corresponding Kendall’s τ for the copula
parameters was estimated to be τ̂m “ 0.805, which coincides with the Kendall’s τ esti-
mated for the prerun (c.f. Figure 1(c)). All other runs showed similar outcomes (results
not shown). A nice connection between RWMH, AM and the copula-based algorithms
is given by the fact that all four were using a Gaussian copula for proposal generation.
However, as RWMH and AM were applying it only for locally proposing new samples,
the (I1) indices were low compared to the ones of CIMH and ACIMH.
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5.2 Inference of a small compartmental model

We will now consider posterior inference in dynamical systems. We focus on the issue
of parameter inference in DEs, a topic very prominent e.g. in the field of computa-
tional systems biology. Here, the DE parameters represent rate constants controlling
the turn-over of biochemical substances. Despite the arrival of new, high-throughput
measurement techniques, compared to model complexity most systems in this field suf-
fer from very low observation numbers and noisy measurements. The current example is
motivated by a model for the biokinetic behavior of zirconium (Zr) in the human body.
Compartmentalizing major organs, Li et al. (2011) analyzed the circulation of Zr after
ingestion. The paper compares transfer rates of two competing models w.r.t. sensitivity
and predictability in order to establish a new model for radiation risk analysis. Both
models are structurally identical as far as the interaction of “small intestine” and the
“transfer compartment” is concerned, which is what our toy model is based on: after
ingestion Zr passes through “small intestine”. Subsequently it is either excreted directly
or via the “transfer compartment” as depicted in (Figure 2(a)). Since taking accurate
measurements of Zr in the “small intestine” compartment is technically not possible, we
chose to generate data for the “transfer compartment” only. The differential equations
underlying the data are

dc1ptq

dt
“ ´k2c1ptq ´ k3c1ptq and

dc2ptq

dt
“ k2c1ptq ´ k1c2ptq, (10)

making our model in parts similar to the ones proposed in Li et al. (2011). The
dependency of ciptq on k1, k2, and k3 is omitted for readability. We generated our
data for k1 “ 1, k2 “ 1, and k3 “ 20 at the time points ti “ 0, 0.1, 0.2, . . . 1.0 as

yi “ c2ptiq ` εi with εi
i.i.d.
„ N p0, 12q for i “ 1 : 11. Here, c1p0q “ 100 and c2p0q “ 0 is

assumed to be known and the prior distributions were set to k1, k2 „ Nr0,1000sp1, 1
2q, and

k3 „ Nr0,1000sp20, 20
2q, where Nra,bspµ, σ

2q denotes the ra, bs-truncated normal distribu-
tion. We started all algorithms at the true k1-, k2-, and k3-values which made a burn-in
phase unnecessary. The MCMC sample-based solutions to equation (10) nicely approx-
imated the data. Figure 2(b) depicts the data as well as the posterior median solution
with corresponding 95% credible interval for the first ACIMH run, i.e. at time point t
equation (10) was solved numerically for all ACIMH MCMC samples; subsequently the
point-wise median over all solutions – called the posterior median solution – and its 95%
credible interval were computed. Note that neither the posterior median solution, nor
the credible interval boundaries need to solve equation (10). As independence proposal
density q3 we chose a uniform distribution on r0, 1000s3 and set r1 “ 0.99 and r2 “ 0.
There is an interesting dependency structure between the parameters k1, k2, and k3
inherent to the system. Recalling that the dependency structure between the ki’s and
the ŭi’s is identical, k2 and k3 show strong positive non-symmetric lower tail depen-
dency, while k1 is almost independent of k2 and k3 (Figure 2(c)). This strong lower tail
dependence was covered by a rotated 180˝ BB6 copula c2,3 with estimated parameters
η̂2,3 “ p1.22, 3.08q and corresponding estimated Kendall’s τ̂ “ 0.71 (see Brechmann and
Schepsmeier (2013) for a definition of this copula type). The estimated Kendall’s τ ’s
of ĉ2,3 nicely coincided with the estimated Kendall’s τ ’s of the copula-samples (Figure
2(c)) which indicates a good parameter dependency coverage by ĉ2,3.
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Figure 2: (a) Schematic representation of the small compartmental model. The con-
centration of the shaded “transfer compartment” is measured at eleven time points
ti “ 0, 0.1, . . . , 1.0. The rates k1 and k3 lead to unobserved downstream compartments
and are therefore considered as degradation rates. (b) Depicted are the true underlying
concentration c2ptq of the “transfer compartment” (solid line), the posterior median so-
lution (dashed line) as well as its 95% credible interval (shaded area) of the first ACIMH
run. The dots depict noisy data yi including the 95% confidence intervals of the nor-
mal error model placed on the observed data points (vertical lines). The unobserved
concentration c1ptq of the “small intestine” compartment is shown as a dashed-dotted
line. (c) Copula data (c.f. Section 4.1 (ii)) of the first run used to fit the CIMH cop-
ula. For uniformization of k1, k2, and k3 the cdf’s of N p1.25, 0.432q, N p1.54, 0.572q,
and N p27.37, 11.102q were applied. The diagonal displays the histograms of the MCMC
sample marginals and τe the respective empirical Kendall’s τ .

(a) (b)

Figure 3: Results for the compartmental model. Figure (a): Quotient of acceptance
rate and INEFF. Figure (b): ESS per second. Error bars show the estimated standard
errors based on 100 runs.

As in our first example, compared to AM, CIMH, and ACIMH, RWMH and IMH
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Sampler IMH RWMH AM CIMH ACIMH

M rk1|ys 1.17 1.16 1.18 1.19 1.18
CIrk1|ys (0.61;1.97) (0.61;1.98) (0.61;1.98) (0.61;1.97) (0.61;1.97)

M rk2|ys 1.26 1.33 1.35 1.29 1.27
CIrk2|ys (0.74;2.56) (0.73;2.57) (0.73;2.56) (0.73;2.57) (0.73;2.58)

M rk3|ys 23.84 22.14 21.70 23.99 22.62
CIrk3|ys (11.76;46.91) (11.61;47.05) (11.63;46.91) (11.66;47.10) (11.65;47.19)

Table 1: Small compartmental model. Estimated marginal posterior modes M r¨|ys

(MAP estimates) and 90% posterior quantile-based credible intervals CIr¨|ys for k1, k2,
and k3 for the concatenated data of 100 runs.

ran into problems generating adequate proposals for the this time non-linear parameter
dependency (compare Figures 3(a) and 3(b)). Although on average three times faster
than ACIMH, AM performed equally well w.r.t. pI2q. Moreover, although taking on
average more than 1.3 times as long as any non copula-based sampler, CIMH nicely
detected the parameter dependency structure and yielded the best results. The aver-
age ESS increased slightly when updating the copulas (ESS CIMH: 1.0126 ˘ 440; ESS
ACIMH: 10284 ˘ 360). This means that the copula structure is recursively adjusted to
better fit the true underlying dependency structure of k1, k2, and k3. Again, compared
to CIMH the additional time for refitting the copula lowered the efficiency of ACIMH
w.r.t. pI2q. For the inference of the marginal maximum a posteriori (MAP) estimates,
we applied a kernel density estimator to the respective sampled Markov chains. The
posterior mean and mode estimates including 90% credible intervals are given in Table
1. All predicted modes slightly overestimated the true values k1 “ k2 “ 1 and k3 “ 20.

5.3 Inference of the JAK2-STAT5 signaling pathway

We now apply our sampling schemes to the JAK2-STAT5 signaling pathway. Cellular
signaling pathways are processing and transmitting intercellular signals in order to con-
trol processes such as cell cycle or immunoresponses (Cooper and Hausman (1997)). The
mechanism is generally based on a number of phosphorylation and dephosphorylation
steps within a complex protein interaction network. A graphical representation of the
JAK2-STAT5 pathway is shown in Figure 4(c). It plays a key role in gene regulation
(Subramaniam et al. (2001)) and is scientifically of major interest as malfunctioning
results in diseases like leukemia or bronchial asthma (Igaz et al. (2001)).
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(a) (b) (c)

Figure 4: (a) Time courses for the numerical solution of phosphorylated STAT5 in the
cytoplasm (y1ptq). Depicted are the posterior median solution (dashed line) and the
corresponding 95% credible interval (shaded area) of the first ACIMH run. The dots
represent given measurements yi including 95% confidence intervals (vertical lines). (b)
Similarly to (a), the results for the numerical solution of total STAT5 in the cyto-
plasm (y2ptq). (c) Graphical representation of the JAK2-STAT5 pathway: Erythropoi-
etin (Epo) binds to the transmembrane receptor. Monomeric STAT5 (x1) is tyrosine
phosphorylated (x2) by the activated JAK2/receptor complex in the cytoplasm. After
dimerizing the phosphorylated JAK5-homodimer (x3) enters the nucleus and binds to
the promoter target gene region. It is then dephosphorylated and released back into the
cytoplasm.

Our analysis is based on the data and DDE model of Swameye et al. (2003):

dx1ptq

dt
“ ´k1x1ptqEpoptq ` 2k4x3pt ` τq

dx2ptq

dt
“ ´k2x

2
2ptq ` k1x1ptqEpoptq

dx3ptq

dt
“ ´k3x3ptq `

1

2
k2x

2
2ptq

dx4ptq

dt
“ ´k4x3pt ` τq ` k3x3ptq,

(11)

with x1p0q “ 1 and x2p0q “ x2p0q “ x4p0q “ 0, where Epoptq denotes the time-
dependent Epo stimulation function, τ the time-lag between STAT5 entering the nu-
cleus and dephosphorylated cytoplasmic release, and x4ptq the concentration of STAT5
in the nucleus. Due to the law of mass conservation, we need to claim k3 ě k4. The
data we used for inference was provided by J.Timmer at http://webber.physik.uni-
freiburg.de/„jeti/PNAS Swameye Data/. It contains (including 95% confidence inter-
vals) the amount of phosphorylated STAT5, yε1ptiq “ k5px2ptiq`2x3ptiq`ε1ptiqq, and the
total concentration of cytoplasmic STAT5, yε2ptiq “ k6px1ptiq`x2ptiq`2x3ptiq`ε2ptiqq,
at 16 time points t1, . . . , t16 (in minutes) in the interval r0, 60s. Here, k5 and k6 are in-
troduced since all measurements are relative. The errors εjptiq are measurement errors
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Figure 5: Results for the JAK2-STAT5 model. Figure (a): Quotient of acceptance
rate and INEFF. Figure (b): ESS per second. Error bars show the estimated standard
errors based on 10 runs. (c) Density plot of the pŭ2, ŭ7q copula data-pair corresponding
to pk2, k6q of the first ACIMH run. Darker contour lines depict higher, lighter ones
lower density values.

included in the data, which are assumed to be N p0, σ2
i,jq distributed, where σ2

i,j was

estimated from various experiments. All seven parameters θ “ pk1, k2, k3, k4, τ, k5, k6qJ

are time-independent. Again, for readability the dependence of the solutions xiptq to
(11) on θ is omitted. A picture of the data can be seen in Figure 4(a) and 4(b). Simi-
larly to Swameye et al. (2003) we reparameterized the DDE system in order to resolve
structural parameter identifiability issues. For more details on the reparameterization
see the supporting text to Swameye et al. (2003). A discussion on the structural pa-
rameter identifiability issues of the particular system can be found in Timmer et al.
(2004) and Raue et al. (2009). Due to the lack of knowledge we chose the independent

prior distributions k1, k2, k3, k4, τ, k5, k6
i.i.d.
„ Ur0, 50s. The lower limit 0 was canoni-

cally introduced by the non-negativity constraint for reaction rates. Since there is no
analytical solution to (11), we applied MATLAB’s dde23 solver to numerically derive
the solutions xiptq for i “ 1 : 4. As dde23 is quite time consuming, generating good
proposals is essential for efficient sampling from the highly dependent seven-dimensional
parameter distribution.

We started the inference by choosing the independence proposal density q3 to be
uniform on r0, 50s7 and setting r1 “ 0.7 and r2 “ 0.25. All algorithms were initialized
on the outcome of a simulated annealing run, making the correction for a burn-in phase
unnecessary. A look at the copula data revealed that fitting standard pair-copulas to the
data is rather involved: the density plot of the pŭ2, ŭ7q-pair of the first run (c.f. Figure
5(c)), for instance, has a non-standard bent ridge shape with a very dense region at high
ŭ7 and low ŭ2 values. Here, pŭ2, ŭ7q corresponds to pk2, k6q. This fitting issue results
in rather low acceptance rates for CIMH (1.5% ˘ 0.2%) and ACIMH (1.7% ˘ 0.1%).
Moreover, the estimated Kendall’s τ ’s of the pairs pk2, k5q, pk2, k6q, pk3, k4q, and pk5, k6q,
computed to very high values of τ̂2,5 “ ´0.87, τ̂2,6 “ ´0.92, τ̂3,4 “ 0.97, and τ̂5,6 “ 0.89,
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Sampler IMH RWMH AM CIMH ACIMH

M rk1|ys 0.03 0.03 0.03 0.03 0.03
CIrk1|ys (0.02;0.03) (0.03;0.04) (0.02;0.04) (0.03;0.04) (0.03;0.04)

M rk2|ys 1.88 1.03 2.44 1.24 1.06
CIrk2|ys (1.84;2.48) (0.95;2.96) (1.43;4.39) (1.14; 4.40) (0.78; 4.74)

M rk3|ys 0.14 0.16 0.17 0.14 0.24
CIrk3|ys (0.13;0.17) (0.13;0.38) (0.12;0.25) (0.13;0.24) (0.14;0.33)

M rk4|ys 0.14 0.16 0.17 0.14 0.24
CIrk4|ys (0.13;0.17) (0.13;0.38) (0.12;0.25) (0.13;0.24) (0.14;0.32)

M rτ |ys 4.80 3.74 3.85 3.68 3.95
CIrτ |ys (3.64;5.61) (2.63;4.94) (2.85;5.41) (2.89;4.91) (2.70;4.54)

M rk5|ys 37.45 35.62 36.65 36.66 35.43
CIrk5|ys (33.77;37.60) (33.50;39.13) (33.74;38.93) (33.51;38.45) (34.10;39.14)

M rk6|ys 0.93 0.94 0.96 0.95 0.94
CIrk6|ys (0.91;0.99) (0.90;0.98) (0.91;0.99) (0.91;0.98) (0.91;0.99)

Table 2: JAK-STAT5 pathway model. Estimated marginal posterior modes M r¨|ys

(MAP estimates) and 90% posterior quantile-based credible intervals CIr¨|ys for the
parameters k1, k2, k3, k4, τ, k5 and k6 for the concatenated data of 10 runs.

respectively. This strong parameter-dependency structure hampers MCMC inference
severely and led to very low pI1q-values for all algorithms (Figure 5(a)). Nevertheless,
CIMH and ACIMH outperformed IMH, RWMH, and AM w.r.t. pI2q (Figure 5(b)).
Especially ACIMH exceeded all non-copula based sampling schemes by an average of
more than 3-fold w.r.t. pI2q. The prerun samples were transformed to r0, 1s7 using
fitted normal densities for the margins of k1, k2, k3, k4, τ , and k5 and a fitted lognormal
density for the margin of k6. Owing to the complexity of the system, we used 3,000
samples to fit all copulas involved. By sequential adjustment of the proposal function
during the sampling process ACIMH could increase pI1q and pI2q compared to CIMH.
The average number of pair-copula family updates in every ACIMH run was 47%, i.e.
almost every second pair-copula was fit to have different copula types compared to
the fit before. Table 2 shows the marginal posterior modes (MAP estimates) and 90%
posterior quantile-based credible intervals for the concatenated data of all 10 runs. The
estimates of the time τ a STAT5 molecule remains in the nucleus is « 4 minutes. This
means that the cytoplasmic release turns out to be a bit faster than the value of « 6.4
minutes computed by Swameye et al. (2003). Nevertheless τ « 4 minutes is contained
in their confidence interval of p3.8; 6.9q minutes. Although all other results coincide
well, longer MCMC chains are necessary to obtain more reliable estimates. Overall,
the system represents a challenging example for MH algorithms and is thus a good
performance benchmark.

5.4 Sensitivity to the choice of copula and prerun transformation

Two very crucial factors for the performance of CIMH and ACIMH are the goodness-of-
fit of (i) the pair-copula decomposition and (ii) the cdf’s for prerun transformation. We
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already inferred the effect of applying oversimplified copula decompositions: as the In-
dependence copula is defined by C : r0, 1sd ÝÑ r0, 1s, pu1, . . . , udq ÞÑ

śd
i“1 ui, the IMH

essentially constitutes a CIMH algorithm with an Independence-copula based proposal
function. The JAK2-STAT5 example showed that we can run into serious problems in
fitting an appropriate decomposition. More involved techniques such as fitting mixtures
of pair-copulas as well as non- or semi-parametric copula density estimation and sample
generation (Hu (2006)) are therefore needed in future applications. To assess the mis-
specification effect, we re-sampled the example of Section 5.2 using fitted exponential
distribution functions for CIMH. The ESS per second dropped by a factor of 2.9, while
the index (I1) even decreased by a factor of 10.1. In order to improve the misspecification
issue while avoiding the need for manual definition of the marginal distribution types we
propose to apply a Gaussian mixture model (Singh and Dattatreya (2006)) for prerun

uniformization in future applications. Here, the marginal prerun samples tθ̆
pkq
i uk“0:K1 of

dimension i could be used to define the marginal pdf gipxq for uniformization along di-

mension i as gipxq “
řK1

k“0
1

K1`1φpθ̆
pkq
i ,σ2q

pxq for some user-defined bandwidth σ, where

φpµ,σ2qpxq denotes the univariate pdf to N pµ, σ2q. The corresponding cdf is then for the

error function erf given by Gipxq “ 1
2 ` 1

2

řK1

k“0
1

K1`1erf
´

px ´ θ̆
pkq
i q{σ

?
2
¯

, while G´1
ιpiqpuq

might be obtained by inverse interpolation. This approach would lower the need for ex-
ploratory data analysis and human interaction considerably. The uniformization results
are moreover expected to be more stable. However, the efficiency of these Gaussian
mixture models requires more thorough analysis. As mentioned above, pI1q can here be
taken as a goodness-of-fit index.

6 Conclusions

We have introduced a vine-copula based hybrid independence/random walk MH sam-
pling scheme and tested its performance on two toy examples as well as a model of
the JAK2-STAT5 signaling pathway. The basic algorithm was extended by a sequen-
tial copula updating scheme leading to an adaptive MCMC approach. Both algorithms
were evaluated on the basis of the quotient of acceptance rate and inefficiency factor
and the effective sampling size per second. As competing samplers a random walk MH,
an independence sampler, as well as an adaptive Metropolis algorithm were chosen. Our
copula-based approach generally covered the dependency structure of the posterior very
well and outperformed all other sampling schemes in every example. It turned out that
the basic hybrid algorithm performs best on simple systems as it does not lose time
on extra copula updates. However, in very complex situations, such as the inference
in the JAK2-STAT5 pathway, copula updates were needed to fine-tune the proposal
distribution and thereby improve the performance. We primarily focused on parameter
inference in dynamical systems. However, the field of application is not limited to this
scenario. Both algorithms can be applied to any MCMC inference problem. They are ex-
pected to work well on highly dependent posterior distributions, but also very efficiently
in simple systems. Further research is needed to improve the algorithms for sampling
from highly complex posterior distributions. The JAK2-STAT5 pathway indicated that
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non-standard copula and marginal distributions might be needed to guarantee efficient
sampling. Gaussian mixture models for prerun sample transformation as well as non-
parametric pair-copula distributions would be a first step to improve performance. In
addition to an automated choice of univariate margins, first sequential selection meth-
ods of the vine structure, its pair copula families and corresponding parameters have
been suggested in Dißmann et al. (2013) and implemented in the R package VineCopula
(Schepsmeier et al. (2012)). These automated methods are able to handle parameter
dimensions between 20 and 30, but their performance is subject to future research.
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Smith, M., Min, A., Almeida, C., and Czado, C. (2010). “Modeling longitudinal data
using a pair-copula construction decomposition of serial dependence.” Journal of the
American Statistical Association, 105: 1467–1479. 5

Subramaniam, P., Torres, B., and Johnson, H. (2001). “So many ligands, so few tran-
scription factors: a new paradigm for signaling through the STAT transcription fac-
tors.” Cytokine, 15(4): 175–187. 14

Swameye, I., Müller, T., Timmer, J., Sandra, O., and Klingmüller, U. (2003). “Iden-
tification of nucleocytoplasmic cycling as a remote sensor in cellular signaling by
databased modeling.” Proceedings of the National Academy of Sciences of the United
States of America, 100(3): 1028–1033. 8, 15, 16, 17

Timmer, J., Müller, T., Swameye, I., Sandra, O., and Klingmüller, U. (2004). “Modeling
the nonlinear dynamics of cellular signal transduction.” International Journal of
Bifurcation and Chaos, 14(6): 2069–2079. 16

Wilkinson, D. (2006). Stochastic Modelling for Systems Biology . Boca Raton: Chapman
& Hall/CRC. 2

— (2007). “Bayesian methods in bioinformatics and computational systems biology.”
Briefings in Bioinformatics, 8(2): 109–116. 2

Acknowledgments

This work was supported by the Federal Ministry of Education and Research (BMBF) in its

MedSys initiative (project SysMBO), and the European Union within the ERC grant Latent-

Causes. The authors wish to thank Eike Brechmann and Ulf Schepsmeier for their support

and adjustments regarding the CDVine R-package. We are very grateful to Christiane Fuchs

for helpful discussions and Justin Feigelman and Kary Myers for carefully proof reading the

manuscript. Furthermore, we would like to thank Professor Herbie Lee as well as the anony-

mous reviewer and associate editor for improving the manuscript considerably. A special thank

you to Professor Marina Vannucci for the opportunity to present this paper as an invited dis-

cussion article.

http://cran.r-project.org/web/packages/VineCopula/index.html

