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A domain S ⊂ Rd is said to fulfill the Poincaré cone property if any point
in the boundary of S is the vertex of a (finite) cone which does not otherwise
intersects the closure S̄. For more than a century, this condition has played a
relevant role in the theory of partial differential equations, as a shape assump-
tion aimed to ensure the existence of a solution for the classical Dirichlet
problem on S. In a completely different setting, this paper is devoted to ana-
lyze some statistical applications of the Poincaré cone property (when defined
in a slightly stronger version). First, we show that this condition can be seen
as a sort of generalized convexity: while it is considerably less restrictive than
convexity, it still retains some “convex flavour.” In particular, when imposed
to a probability support S, this property allows the estimation of S from a
random sample of points, using the “hull principle” much in the same way as
a convex support is estimated using the convex hull of the sample points. The
statistical properties of such hull estimator (consistency, convergence rates,
boundary estimation) are considered in detail. Second, it is shown that the
class of sets fulfilling the Poincaré property is a P -Glivenko–Cantelli class
for any absolutely continuous distribution P on R

d . This has some indepen-
dent interest in the theory of empirical processes, since it extends the classical
analogous result, established for convex sets, to a much larger class. Third,
an algorithm to approximate the cone-convex hull of a finite sample of points
is proposed and some practical illustrations are given.

1. Introduction. The Poincaré cone property (PCP) is a regularity condition
for sets in the Euclidean space. It has been used in mathematics (in partial differ-
ential equations and Brownian motion theory) since more than a century. We are
concerned here with some new applications of this property in statistics and proba-
bility. Let us begin by formally establishing this condition, as well as other related
notions we will use.

1.1. The Poincaré property: Some history. The standard version of PCP, which
can be found in many books dealing with potential theory or Brownian motion is
as follows; see, for example, Mörters and Peres [26], page 68:
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DEFINITION 1. A domain S ⊂ R
d satisfies the Poincaré cone property at x ∈

∂S if there exist a cone C(x) with vertex at x and a number h > 0 such that

C(x) ∩ B(x,h) ⊂ Sc,(1.1)

where B(x,h) denotes the open ball with center x and radius h.

The interest of this property is mainly associated with the so-called Dirichlet
problem which consist of finding a function u, harmonic on S (i.e., ∇2u = 0 on S)
such that the restriction of u to the boundary ∂S coincides with a given continuous
function f . This problem was posed by Gauss in 1840. During some years, it was
believed (from a conjecture due to Gauss himself) that the problem had always
a solution; however, this is not the case, unless some regularity assumptions are
imposed on S. In 1899, Poincaré showed that a solution does exist whenever every
point in ∂S lies on the surface of a sphere which does not otherwise intersects the
closure S̄. In 1911, Zaremba showed that this “outer sphere condition” proposed
by Poincaré could be weakened by replacing the sphere with a cone, as indicated
in Definition 1. For this reason, condition (1.1) is sometimes also called Poincaré–
Zaremba property (e.g., Gilbarg and Trudinger [20]) or just Zaremba’s condition
(Karatzas and Shreve [23], page 250).

Further details on the use of this classical property, its history and its beautiful
connections with the theory of Brownian motion can be found, for example, in
Kellogg [24], Gilbarg and Trudinger [20], Karatzas and Shreve [23] and Mörters
and Peres [26].

The intuitive meaning of Definition 1 is quite clear: if, for a point x ∈ ∂S, we
can always construct a “finite outside cone” C(x) ∩ B(x,h) with vertex x, then
we are typically ruling out the existence of a sharp inward peak at x. A classical
example of a set not fulfilling this condition is the so-called Lebesgue Thorn, which
is expressively described as follows in Kellogg [24], page 285: Suppose we take
a sphere with a deformable surface and at one of its points push in a very sharp
spine (. . . ). This set was first proposed by Lebesgue in 1913 as a counterexample
to show that the Dirichlet problem is not always solvable.

1.2. From the Poincaré property to cone-convexity: Our main definitions. As
established in Definition 1, the Poincaré cone property is pointwise in the sense
that the opening angle ρ of the cone C and the radius h of the ball B(x,h) in the
“x-cornet” C(x)∩B(x,h) of condition (1.1) might depend on x. For our statistical
applications, we will need the condition (1.1) to hold uniformly in x. Also, we will
not be restricted to assume that S is a domain (i.e., an open connected set) since we
are interested in using the Poincaré property for support of probability measures
which, by definition, are closed sets.

So, in summary, the basic concepts we are going to handle arise as the following
strengthened versions of Definition 1.
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DEFINITION 2. We will say that the set S ⊂ R
d is ρ-cone-convex (ρ-cc), for

some ρ ∈ (0, π], if there exists h > 0 such that for all x ∈ ∂S there is an open cone
Cρ(x) with opening angle ρ and vertex x such that the condition

Cρ(x) ∩ B(x,h) ⊂ Sc,(1.2)

holds. When the above condition is satisfied for a specified h > 0 we will also say
that S is ρ,h-cone-convex.

In informal terms, we could compare this definition with the standard charac-
terization of convex sets in terms of supporting hyperplanes: if the (closed) set S is
convex, then for each x ∈ ∂S there is a supporting hyperplane H = H(x) passing
through x. Conversely, if S is closed with nonempty interior, the existence of a
supporting hyperplane for each x ∈ ∂S implies that S is convex. In Definition 2,
we have replaced the supporting hyperplanes with “supporting cones” of the form
Cρ,h(x) = Cρ(x) ∩ B(x,h). Thus, for ρ = π and h = ∞, we would get as a par-
ticular case the hyperplane supporting property for convex sets. Observe, however,
that ρ-cone convexity is a much more general condition than convexity as it al-
lows the set S to have holes and inward peaks, as long as they are not too sharp
(the “sharpness” being limited by the angle ρ).

1.3. Applications to set estimation. We will explore here the applicability of
Poincaré cone property from a completely different point of view, mostly related
with the problem of set estimation which basically deals with the reconstruction of
a set S from a random sample points. See, for example, Cuevas and Fraiman [9] for
an overview. Typically, in set estimation very little can be said about the target set
S (beyond some simple results of consistency) on the basis of the available sample
information, unless some relatively strong shape restrictions are imposed on S. Of
course such assumptions entail some loss in generality but, in return, a wealth of
valuable results (estimation of the boundary and the boundary measure, rates of
convergence, etc.) are typically obtained.

The convex case and the “hull mechanism.” The use we will make of the
Poincaré condition, via ρ-cone-convexity, is better explained from the perspective
of other more popular related properties. The most obvious one is convexity. If the
support S is assumed to be convex, then the natural estimator of S from a sample
X1, . . . ,Xn is the convex hull Sn(X1, . . . ,Xn), that is the minimal convex set in-
cluding the sample points. The study of the convex hull itself (even not considering
its properties as an estimator of S) seems to be an inexhaustible subject of research
in geometric probability: increasingly sophisticated results on the distributions of
several random variables (number of vertices, area, perimeter, probability content,
number of sides, etc.) associated with Sn have been considered in the last fifty
years. The survey paper by Reitzner [31] provides an excellent up-to-date account
of these topics.
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The properties of the convex hull Sn as an estimator of the support S, and in
particular the convergence rates for the Hausdorff distance dH (Sn, S), are studied
by Dümbgen and Walther [14] among others.

Thus, convexity is the prototypical example where the hull mechanism (that is
to define our estimator as the “minimal one including the sample and fulfilling a
desired shape property”) can be successfully used. It is natural to ask whether in
other cases, under more general assumptions than convexity, the hull mechanism
could also work.

From r-convexity to ρ-cone convexity. The so-called r-convexity property pro-
vides an interesting example: a closed set S is said to be r-convex if it can be ex-
pressed as the intersection of a family of complements of balls with radius r > 0.
More precisely, S is r-convex if and only if

S = ⋂
{y:B(y,r)∩S=∅}

B(y, r)c.(1.3)

It is easy to check that any convex set is also r-convex for all r > 0 but, clearly,
r-convexity is a much milder restriction. In particular, it allows for smooth or
“round gulfs,” and even holes, in the set.

The study of this property dates back to Perkal [30]; see also Walther [41] for
further statistical insights on this concept. From a statistical viewpoint, the interest-
ing fact is that, if a set S is assumed to be r-convex, then it can be (asymptotically)
recovered from a random sample by just considering the r-convex hull of the data
points as a natural estimator.

The effective calculation of this r-convex hull is much more involved than that
of the ordinary convex hull. The R-package alphahull provides a practical im-
plementation for the case d = 2; see Pateiro-López and Rodríguez-Casal [28].
Whereas the ordinary convex hull of a sample in the plane is always a polygon, the
boundary of the r-convex hull is made of arcs of r-circumferences plus, perhaps,
some isolated points; see Figure 4 in Section 7 for an example. More informa-
tion on statistical properties, examples and applications of the r-convex hull can
be found in Rodríguez-Casal [33], Pateiro-López and Rodríguez-Casal [27] and
Berrendero, Cuevas and Pateiro-López [4]. Cuevas, Fraiman and Pateiro-López
[10] provide further results on the estimation of an r-convex support as well as also
some insights regarding the comparison of r-convexity with other better known
properties such as positive reach (Federer [17]) and the above mentioned (uniform)
outer r-sphere property. In particular, r-convexity is shown to be slightly stronger
than the “rolling” outer r-sphere property: for every point in the boundary of S

there exists a ball touching that point whose interior is included in Sc.
In this paper, we replace the outer balls by “outer cones” (in the spirit of

Poincaré’s definition). This led us in a natural way to the cone-convexity notion
introduced in Definition 2. In a similar vein, expression (1.3) suggests the follow-
ing cone-based analogue notion.
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FIG. 1. A general ρ-cone-convex set with inward peaks and holes.

DEFINITION 3. A closed set S ⊂ R
d is said to be cone-convex by complement

with parameters ρ ∈ (0, π], h > 0 (ρ,h-ccc) if and only if

S = ⋂
{y:Cρ,h(y)∩S=∅}

(
Cρ,h(y)

)c
,(1.4)

where Cρ,h(y) denotes a finite cone with vertex y, of type Cρ,h(y) = Cρ(y) ∩
B(y,h).

In informal terms, one could say that a closed set S is convex by complement
(with parameters ρ, h) if any point x /∈ S can be separated from S by a finite cone
Cρ,h(y), with opening angle ρ and height h, which contains x.

Thus, in summary, the ρ-cone-convexity properties considered in this paper are
two generalizations of the notion of r-convexity where the balls are replaced by fi-
nite cones; see Figure 1. These generalizations allow us to consider much more
general sets with rougher boundaries. To be more precise, the cone convexity
by complement is a direct extension of the notion of r-convexity, by replacing
the balls of radius r with the ρ,h-cones. Likewise, the ρ,h-cone-convexity is a
generalization of the “outer rolling property” commented above (i.e., any bound-
ary point of S has a touching ball whose interior is included in Sc; see Cuevas,
Fraiman and Pateiro-López [10] for details). However, whereas the r-convexity
implies the outer rolling ball property (see Proposition 2 in Cuevas, Fraiman and
Pateiro-López [10]), the analogous implication does not hold for the cone-convex
case: see Proposition 1 below.

We will show that, in spite of this gain in generality, the “hull principle” still
works for the ρ-cone-convex properties, so that it can be also employed for esti-
mation purposes. This means that a ρ-cc (or a ρ-ccc) support S can be estimated,
from a random sample drawn on S, just using the corresponding ρ-cone-convex
hull of the sample points.

In addition, a relevant property (see Theorem 3) is also shown for the class of
ρ-cone convex sets: whereas this class is considerably broader than that of convex
sets, it is still a Glivenko–Cantelli class. This represents a generalization of the
recent similar result proved by Cuevas, Fraiman and Pateiro-López [10] for the
case of r-convex sets. An application is given in Theorem 4.
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1.4. Some notation. The organization of this paper. With some notational
abuse, a “cornet” obtained by intersecting an infinite cone with a ball centered
at its vertex is called itself as a (finite) cone. A set of this type is thus defined by
the vertex x, a unit vector ξ indicating the axis of the cone, an angle ρ ∈ (0, π]
indicating the opening angle and a positive number h > 0 corresponding to the
radius of the intersecting ball.

Thus, in precise terms, an infinite cone is defined by

Cρ(x) =
{
z ∈ R

d, z �= x :
〈
ξ,

z − x

‖z − x‖
〉
> cos(ρ/2)

}
,

and, for h > 0, we will denote Cρ,ξ,h(x) = B(x,h) ∩ Cρ(x). The subindices, es-
pecially ξ , will be omitted when convenient, so the notation Cρ,h(x) is often used
for finite cones.

The class of nonempty compact sets S ⊂ R
d satisfying, for a given h > 0, the

ρ-cone-convex condition (1.2) established in Definition 2 will be denoted by Cρ,h.
Also, the class of nonempty compact sets S ⊂ R

d satisfying, for a given h > 0,
the ρ-ccc condition established in Definition 3 will be denoted by C̃ρ,h. If x ∈ R

d

and S ⊂ R
d , S �=∅, the distance from x to S is d(x,S) = inf{‖x − s‖ : s ∈ S}. The

Lebesgue measure on R
d will be denoted by μ. Given a bounded set A ⊂ R

d and
ε > 0, B(A, ε) will denote the parallel set B(A, ε) = {x ∈ R

d :d(x,A) ≤ ε}. Note
that, according to this notation, B({x}, ε) coincides with the closed ball centered
at x with radius ε, not with the open ball B(x, ε).

Given two compact nonempty sets A,B ⊂ R
d , the Hausdorff distance or

Hausdorff–Pompein distance between A and C is defined by

dH (A,C) = inf
{
ε > 0 : such that A ⊂ B(C, ε) and C ⊂ B(A, ε)

}
.(1.5)

The class M of compact nonempty sets of R
d , endowed with the distance dH

is known to be a complete separable metric space; see, for example, Rockafellar
and Wets [32], Chapter 4. Moreover, any class of uniformly bounded subsets in
such space is relatively compact with respect to dH . So, any bounded sequence of
compact nonempty subsets of Rd has a convergent subsequence. For a given Borel
measure ν, define also the pseudometric dν(A,C) = ν(A \ C) + ν(C \ A).

The rest of this paper is organized as follows. In Section 2, we analyze the no-
tions of “convex hulls” associated with the concepts of cone-convexity introduced
above. Some general properties of convergence for sequences of cone-convex sets
are obtained in Section 3. Section 4 is devoted to show that the class of cone-
convex sets is a Glivenko–Cantelli class. This has some independent interest in
the theory of empirical processes, since it extends the classical analogous result,
established for convex sets, to a much larger class. The estimation (consistency
and convergence rates) of cone-convex sets using the corresponding cone-convex
hull of the sample is considered in Section 5. A stochastic algorithm to approxi-
mate the cone-convex hull by complement of a sample is provided in Section 6.
The behavior of this algorithm is illustrated with some examples and simulations
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in Section 7. Some final comments and suggestions for further work are given in
Section 8.

2. The notion of cone-convex hull. We now define the concept of cone-
convex hull corresponding to the notion we have introduced of cone-convexity.
In fact, we will need to distinguish between the “cone convex hull” and the “cone
convex hull by complement” which, unlike the classical convex case, do not coin-
cide in general for cone-convexity. Let S ⊂ R

d be a bounded set.

DEFINITION 4. (a) The ρ,h-cone-convex hull (ρ,h-cc) of S or, just, the cone-
convex hull of S, is defined by

Cρ,h(S) = ⋂
S⊂Bt ,Bt∈Cρ,h

Bt .(2.1)

(b) The ρ,h-cone-convex hull by complement (ρ,h-ccc) of S, is defined as the
intersection of the complements of those (open, finite) cones Cρ,ξ,h which do not
intersect S. We will denote it by C̃ρ,h(S). Note that C̃ρ,h(S) can be also expressed
as

C̃ρ,h(S) = ⋂
S⊂Bt ,Bt∈C̃ρ,h

Bt .(2.2)

PROPOSITION 1. Given ρ ∈ (0, π] and h > 0, we have the following relations
between the two classes Cρ,h and C̃ρ,h of cone-convex sets, introduced in Sec-
tion 1.4, and the corresponding cone-convex hulls Cρ,h(S) and C̃ρ,h(S) defined
for any bounded S ⊂ R

d .

(a) Neither of the classes Cρ,h and C̃ρ,h is included in the other.
(b) Cρ,h(S) ∈ Cρ,h and C̃ρ,h(S) ∈ C̃ρ,h.
(c) If ρ′ ≤ ρ and h′ ≤ h, then Cρ,h ⊂ Cρ′,h′ and C̃ρ,h ⊂ C̃ρ′,h′ . Also, Cρ′,h′(S) =

S for all S ∈ Cρ,h and C̃ρ′,h′(S) = S, for all S ∈ C̃ρ,h.
(d) Let S ⊂ R

d be bounded. For all ρ ∈ (0, π] and h > 0, let us define h′ =
h/2 sin(ρ/2), ρ′ = (π − ρ)/2 if ρ > π/3 and ρ ′ = ρ if ρ ≤ π/3. Then C̃ρ,h(S) ∈
Cρ′,h′ . As a consequence, if S is ρ,h-ccc, then it is also ρ ′, h′-cc.

PROOF. (a) Let S denote the closed unit ball in R
2 and let C be any (open)

cone with vertex at the origin (0,0), opening angle ρ ∈ (0, π/2] and height h <

1/2. Then it is readily seen that the set S \ C belongs to C̃ρ,h but not to Cρ,h since
condition (1.2) fails for all x ∈ ∂C, x �= (0,0).

Also, the set E = E1 ∪E2 ⊂ R
2 where E1 is the graph of the function f (t) = t2

on t ∈ [0,1] and E2 = {(t,0) : 0 ≤ t ≤ 1} belongs to Cρ,h for all ρ ∈ (0, π/2], h > 0
but E /∈ C̃ρ,h for any ρ.

There are also counterexamples of sets S with nonempty interior such that S ∈
Cρ,h \ C̃ρ,h: let S be union of the triangle T with vertices (1,0), (1 + s, s) and



262 A. CHOLAQUIDIS, A. CUEVAS AND R. FRAIMAN

FIG. 2. An example for which the envelopes Cπ/4,3(S) and C̃π/4,3(S) do not coincide.

(1 + s,−s), where s = (
√

2 − 1)/2, plus the seven congruent triangles obtained
from T by applying a rotation around (0,0) with angle π/4; see Figure 2.

This set is π/4, h-cone-convex for any h. However, the origin cannot be sepa-
rated from S by any cone Cπ/4,3(y) since any such cone should contain at least
one of the vertices of the congruent triangles of S.

(b) By definition, we have

Cρ,h(S) = ⋂
S⊂Bt ,Bt∈Cρ,h

Bt .

Given x ∈ ∂Cρ,h(S) we want to find a Cρ,h(x) with Cρ,h(x) ⊂ Cρ,h(S)c. We
have B(x,1/n) ∩ Bt �= ∅ for all Bt such that S ⊂ Bt and Bt ∈ Cρ,h. More-
over, B(x,1/n) ∩ Bc

n �= ∅ for some Bn with S ⊂ Bn and Bn ∈ Cρ,h. Given
zn ∈ B(x,1/n)∩ ∂Bn, we have zn → x. Since zn ∈ ∂Bn and Bn ∈ Cρ,h, there must
exist a cone Cρ,ξn,h(zn) ⊂ Bc

n. Since ‖ξn‖ = 1 there exists ξ = limn ξn (for some
subsequence ξn) and also zn → x. We thus have that Cρ,ξn,h(zn) converges in the
Hausdorff metric to Cρ,ξ,h(x). We only must check Cρ,ξ,h(x) ∩ S = ∅. Indeed,
otherwise we would have some s ∈ S ∩ Cρ,ξ,h(x) with 〈 s−x

‖s−x‖ , ξ〉 = cos(ρ/2) + δ,

for some δ > 0. Then 〈 s−zn‖s−zn‖ , ξn〉 > cos(ρ/2), for n large enough, which contra-
dicts Cρ,ξ,h(zn) ∩ S =∅.

The second statement follows directly from the expression (2.2).
(c) This is a direct consequence of the definitions of the classes and the respec-

tive hulls.
(d) We want to find ρ ′, h′ such that for any z ∈ ∂C̃ρ,h(S) we have a cone

Cρ′,h′(z) with Cρ′,h′(z) ⊂ C̃ρ,h(S)c. Now, take a sequence zn → z with zn ∈
C̃ρ,h(S)c. Using the definition of C̃ρ,h(S), there is a sequence of cones Cρ,h(un),
disjoint with C̃ρ,h(S), such that zn ∈ Cρ,h(un). Take a further subsequence such
that the cones Cρ,h(un) are convergent, that is, Cρ,h(un) → Cρ,h(u). By construc-
tion, we have that z ∈ ∂Cρ,h(u) and Cρ,h(u) ∩ C̃ρ,h(S) = ∅. It only remains to
show that Cρ′,h′(z) ⊂ Cρ,h(u). This is readily seen for the given values of ρ′ and
h′; see Figure 3. Indeed, the result is immediate for any z at a distance h/2 from the
vertex x. For the remaining z ∈ ∂Cρ,h(z) simple translations of this cone, perhaps
combined with a rotation of the cone axis provide the required Cρ′,h′(z). �



ON POINCARÉ CONE PROPERTY 263

FIG. 3. For any z ∈ ∂Cρ,h(u) there is a cone Cρ′,h′ (z) ⊂ Cρ,h(u).

Practical consequences in estimation problems. As a conclusion of the above
result, we have two ways of estimating a cone-convex set S from a sample ℵn =
{X1, . . . ,Xn} drawn from a distribution whose support is S. If we assume that S

is ρ,h-cone-convex, then the natural estimator of S would be Cρ,h(ℵn). When S

is assumed to be ρ,h-cone-convex by complement, then C̃ρ,h(ℵn) would be the
natural estimator of S.

The difference between both notions of cone-convexity is mainly technical. In
fact, there is a considerable overlapping between the classes C̃ρ,h and Cρ,h: most
sets found in practice fulfilling one of these conditions will also satisfy the other
one. For example, as pointed out above, if S is r-convex (i.e., it can be expressed as
the intersection of the complements of a family of r-balls), then S fulfils both Def-
initions 2 and 3 of ρ, r-cone-convexity. In those cases, both envelopes Cρ,h(ℵn)

and C̃ρ,h(ℵn) can be used.
We will analyze the asymptotic properties of both estimators, but the envelope

C̃ρ,h(ℵn) is easier to approximate via an stochastic algorithm; see Section 6.
In practice, the correct choice of the parameters ρ, h will depend on prior as-

sumptions on the nature of the sets under study. Note, however, that result (c)
in Proposition 1 guarantees that an exact knowledge of the “optimal” (maximal)
values of these parameters is not needed, in the sense that a conservative (small)
choice of ρ and h would do the job.

2.1. Lighthouses. A particular case of Definition 2 deserves attention as it rep-
resents a much more direct extension of the convexity notion: if condition (1.2)
holds for all h > 0 then, for each point in ∂S we can find an infinite supporting
cone on x. In this case, for ρ = π condition (1.2) amounts to the supporting hy-
perplane condition. The formal definition would be as follows.

DEFINITION 5. We will say that S is a ρ-lighthouse set when condition (1.2)
holds for all h > 0 or, equivalently, when for all x ∈ ∂S there is an open cone
Cρ(x) based on x with opening angle ρ such that

Cρ(x) ⊂ Sc.(2.3)

It is clear that the class Cρ of compact sets in R
d fulfilling condition (2.3) is

much broader than the class C of compact convex sets but, definitely, much smaller



264 A. CHOLAQUIDIS, A. CUEVAS AND R. FRAIMAN

than any family Cρ,h of ρ,h-cone-convex sets since condition (2.3) would typi-
cally exclude the presence of holes in S [provided that S = int(S)]. In graphical
terms, (2.3) imposes the possibility of illuminating the space around S with a full
beam of light from any boundary point x in S. This accounts for the term “light-
house.”

Likewise, the cone-convex hull notions introduced in Definition 4 can be readily
adapted to the lighthouse sets just replacing the finite cones in both (2.1) and (2.2)
by infinite (unbounded) cones.

In the next three sections, we will focus on the general case of ρ,h-cone-convex
sets (for a finite h) but our results might be translated to the case of ρ-lighthouses.
Apart from the simplicity and intuitive appeal of the lighthouse condition, the in-
ference on the parameter ρ is expected to be much easier in this case. However,
this topic is not considered here.

3. Convergence properties. Let us start with a simple regularity property of
cone-convex sets.

PROPOSITION 2. If S ∈ Cρ,h, then μ(∂S) = 0.

PROOF. First note that ∂S is a Borel set since S is closed. Now let us recall
that a point x ∈ S is said to have metric density 1 (see, e.g., Erdös [16]) if for
all ε > 0 there is some δ > 0 such that μ(S ∩ B(x, r)) > (1 − ε)μ(B(x, r)) for
all r < δ. From Corollary 2.9 in Morgan [25], every set with positive (Lebesgue)
measure has at least a point with metric density 1. This implies that we must have
μ(∂S) = 0 since for all x ∈ ∂S there exists an open cone Cρ,h(x) ⊂ Sc. Therefore,
for all r < h, we have some kρ,h < 1 such that

μ
(
∂S ∩ B(x, r)

) ≤ μ
(
S ∩ B(x, r)

) = μ
(
S ∩ Cρ,h(x)c ∩ B(x, r)

)
≤ kρ,hμ

(
B(x, r)

)
. �

We now establish that the convergence of a sequence of ρ-cone-convex sets
entails the convergence of their respective boundaries. This is an important reg-
ularity property. It essentially says that we cannot have ρ-cone convex sets very
close together if the respective boundaries are far away from each other. A simi-
lar property has been recently proved for sets fulfilling the rolling condition [i.e.,
property (1.1)] where C(x)∩B(x,h) is replaced by an open ball B(x, r) of a given
radius r , whose boundary contains x (see Theorem 3(a) in Cuevas, Fraiman and
Pateiro-López [10]; see also Baíllo and Cuevas [3] for related results for the case
of star-shaped sets). Our Theorem 1 below can be seen as a considerable extension
of this result (since ρ,h-cone convexity is a much less restrictive than the rolling
property).
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THEOREM 1. Let {Sn} ⊂ Cρ,h (or {Sn} ⊂ C̃ρ,h) and let S ⊂ R
d be a compact

set such that dH (Sn, S) → 0. Then dH (∂Sn, ∂S) → 0.

PROOF. By contradiction, let us assume that dH (∂Sn, ∂S) � 0. Then we
should have either (i) or (ii):

(i) There exists ε > 0 such that for some subsequence xn ∈ ∂S we have
d(xn, ∂Sn) > ε.

(ii) There exists ε > 0 such that for some subsequence xn ∈ ∂Sn we have
d(xn, ∂S) > ε.

Suppose that we have a sequence xn fulfilling (i). Since S is compact, there
exists a convergent subsequence, denoted again xn. Let x be the limit of such
subsequence. Since dH (Sn, S) → 0, we have that, for n large enough, d(x,Sn) ≤
ε/2. Moreover, taking the infimum on y ∈ ∂Sn in ‖xn − y‖ ≤ ‖xn − x‖+‖x − y‖,
we have that, eventually, d(x, ∂Sn) ≥ d(xn, ∂Sn) − ‖x − xn‖ > ε/2.

On the other hand, since d(x,Sn) ≤ ε/2 and d(x, ∂Sn) > ε/2 we have x ∈
int(Sn) and B(x, ε/2) ∩ Sc

n = ∅. Since x ∈ ∂S and S is compact, we may take
y ∈ Sc such that ‖x − y‖ < ε/2 and d(y,S) > 0. But dH (Sn, S) → 0 and
d(y,S) > 0 entail d(y,Sn) > 0 eventually, so y ∈ B(x, ε/2) ∩ Sc

n, in contradic-
tion with B(x, ε/2) ∩ Sc

n = ∅.
Let us now assume that we have (ii). Since dH (Sn, S) → 0, we must have

d(xn, S) < ε eventually which, together with d(xn, ∂S) > ε, yields [by a sim-
ilar reasoning to that in (i)] xn ∈ int(S) eventually. Take now a convergent
subsequence of xn (denoted again xn) with xn → x ∈ S and d(x, ∂S) > ε/2,
that is, B(x, ε/2) ⊂ S. Since xn ∈ ∂Sn and Sn ∈ Cρ,h, there exist finite cones
Cρ,h(xn) with Cρ,h(xn) ∩ Sn = ∅. Take cn ∈ Sc

n, in the axis of Cρ,h(xn), with
0 < ‖xn − cn‖ = min{h/2, ε/4} = k. We may assume (taking, if necessary, a
further suitable subsequence) cn → c and ‖c − x‖ ≤ ε/4. Note that, by con-
struction, d(cn, Sn) ≥ k sin(ρ/2). Hence, d(c, Sn) > k′ eventually, for some con-
stant k′ > 0. Since dH (Sn, S) → 0, we must have c ∈ Sc, in contradiction with
c ∈ B(x, ε/2) ⊂ S.

For the case {Sn} ⊂ C̃ρ,h, the result follows as a consequence of the previous
case together with Proposition 1(d). �

The following result shows that the class Cρ,h is topologically closed.

THEOREM 2. Let {Sn} ⊂ Cρ,h and let S ⊂ R
d be a compact set such that

dH (Sn, S) → 0. Then, S ∈ Cρ,h.

PROOF. Given x ∈ ∂S, we want to find a finite cone Cρ,h(x) ⊂ Sc. From The-
orem 1, we know that dH (∂Sn, ∂S) → 0. Therefore, there is a sequence xn ∈ ∂Sn

such that xn → x.
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Now the reasoning to find a cone Cρ,h(x) is similar to that of Proposition 1.
By considering, if necessary, a suitable subsequence of xn, we may find again a
sequence of finite closed cones {Cρ,ξn,h(xn)}, with Cρ,ξn,h(xn) ⊂ Sc

n, converging
in the Hausdorff metric to the closed cone Cρ,ξ,h(x) for some direction ξ with
‖ξ‖ = 1. We now check that this is the cone we are looking for, that is, Cρ,ξ,h(x)∩
S = ∅.

Suppose, by contradiction, that there is z ∈ Cρ,ξ,h(x) ∩ S. Since ξn → ξ and
xn → x, we may take ε > 0 such that for n large enough B(z, ε) ⊂ Cρ,ξ,h(xn).
This entails d(z, Sn) ≥ ε infinitely often, which contradicts dH (Sn, S) → 0. �

4. The Glivenko–Cantelli property and the Poincaré condition. Let X1,

. . . ,Xn, . . . be a sequence of i.i.d., Rd -valued random variables defined on a prob-
ability space (	,F,P). Denote by P the common distribution of the Xi’s on R

d

and by Pn the empirical distribution associated with the first n sample observations
X1, . . . ,Xn.

The main result of this section will be established in Section 4.2 below. In order
to view this result from an appropriate perspective, we next summarize some basic
facts on the Glivenko–Cantelli (GC) property.

4.1. The Glivenko–Cantelli property: Some background. A class A of Borel
subsets of Rd is said to be a P -Glivenko–Cantelli class whenever

sup
A∈A

∣∣Pn(A) − P(A)
∣∣ → 0 a.s.(4.1)

These classes are named after the classical Glivenko–Cantelli theorem that estab-
lishes (4.1) for the case d = 1 when A is the class of half-lines of type (−∞, x],
with x ∈ R.

In informal terms, a class A of sets is a GC-class if it is small enough as to
ensure the uniform validity of the strong law of large numbers on A. The study
of GC-classes is a classical topic in the theory of empirical processes. See, for
example, Shorack and Wellner [36] and van der Vaart [40], Chapter 19, for de-
tailed accounts of this theory and its statistical applications. For example, The-
orems 19.4 and 19.13 in van der Vaart [40] provide sufficient conditions for a
class being P -Glivenko–Cantelli. These conditions are expressed in terms of en-
tropy conditions which, in some sense, quantify the “size” of the class A. Chap-
ters 12 and 13 in the book Devroye, Györfi and Lugosi [12] provide an insightful
presentation of the Vapnik–Cervonenkis approach to the study of GC-classes. In
that approach, the GC-property is obtained through an exponential bound for the
probability P{supA∈A |Pn(A) − P(A)| > ε}. If the series (in n) of these bounds is
convergent, then the classical Borel–Cantelli lemma, leads to (4.1). However, this
approach fails for some important classes A as it requires the finiteness of the so-
called Vapnik–Cervonenkis (VC) dimension of A (see Definition 12.2 in Devroye,
Györfi and Lugosi [12]). A different approach, which can be used in fact for the
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study of GC-classes of functions is given by Talagrand [39]. That approach can
be used to establish the GC-property in some situations where the VC-dimension
of A is infinite. Thus, it can be proved (as a consequence of Theorem 5 in Tala-
grand [39]) that, given a probability P in R

d , the class C of closed convex sets in
R

d such that P(∂C) = 0 is a P -GC-class.
We shall use here a different, older approach to the GC-problem due to Billings-

ley and Topsøe [5]. Billingsley–Topsøe approach can be used to prove a property
called P -uniformity, which is in fact more general than the Glivenko–Cantelli con-
dition, as it applies to general sequences of probability measures (not necessarily
empirical measures). A class of sets A is said to be a P -uniformity class if

sup
A∈A

∣∣Pn(A) − P(A)
∣∣ → 0(4.2)

holds for every sequence Pn of probability measures converging weakly to P (this
is denoted Pn

w→ P ) in the sense that Pn(B) → P(B) for every Borel set B such
that P(∂B) = 0 [which of course happens, a.s. for Pn = Pn; therefore, (4.2) im-
plies (4.1)].

We will use a result in Billingsley and Topsøe [5], Theorem 4, according to
which if A is a P -continuity class of Borel sets in R

d [i.e., P(∂A) = 0 for every
A ∈ A] then the compactness of the class {∂A :A ∈ A}, in the Hausdorff topology,
is a sufficient condition for A to be a P -uniformity class.

In Theorem 5 of Cuevas, Fraiman and Pateiro-López [10], it is proved, using this
result, that any class A of nonempty closed sets A ⊂ R

d , uniformly bounded (i.e.,
all of them included in some common compact K) and fulfilling reach(A) ≥ r ,
for some given r > 0, is a P -uniformity class whenever P is a absolutely continu-
ous with respect to the Lebesgue measure. Here, reach(A) denotes the supremum
(possibly) of those values s such that any point x whose distance to A is smaller
than s has just one closest point in A. The condition reach(A) > 0, introduced by
Federer [17] is a cornerstone in the geometric measure theory. This condition is
a considerable generalization of the notion of convexity [as the convexity of A is
equivalent to reach(A) = ∞ but a set with reach(A) > 0 can be highly nonconvex].

4.2. A Glivenko–Cantelli result for cone-convex sets. We will next establish
a GC-result for the class Cρ,h of nonempty compact sets fulfilling the ρ,h-cone-
convex condition (1.2). In fact, we will establish the result for the larger class CU

ρ,h

of closed ρ,h-cone-convex sets (thus we may drop the boundedness condition).
Since any closed convex set is in CU

ρ,h we thus have an extension of the well-
known GC-type result for the class of closed convex sets (see, e.g., Talagrand [39]).
Also, the following result provides a strict generalization of Theorem 5 in Cuevas,
Fraiman and Pateiro-López [10] about the GC-property for sets with reach ≥ h:
indeed, note that, as established in that paper (Propositions 1 and 2), if a set fulfils
reach ≥ h then the outer h-rolling property holds and hence the set belongs to the
class Cρ,h for ρ < π/2. Moreover, the boundedness assumption is dropped here.
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Similar comments and conclusions also hold for the class C̃U
ρ,h of closed sets in

R
d fulfilling the condition (1.4) of cone-convexity by complements. All this is

summarized in the following result which will have some usefulness in the next
section.

THEOREM 3. Let ρ ∈ (0, π) and h > 0. Let P be a probability measure abso-
lutely continuous with respect to the Lebesgue measure μ. Then

(a) The class CU
ρ,h of nonempty closed sets fulfilling the ρ,h-cone-convex con-

dition (1.2) is a P -uniformity class (and in particular a P -Glivenko–Cantelli-
class).

(b) The same conclusion holds for the class C̃U
ρ,h of closed sets fulfilling the

condition (1.4) of cone-convexity by complements.

PROOF. (a) Let us first establish the result for the subclass A ⊂ Cρ,h of
sets in Cρ,h included in a common compact set K . From Proposition 2, both
Cρ,h and A are P -continuous families. Given a sequence {An} ⊂ A there exist
(since A is relatively compact in the space of compact sets endowed with the
Hausdorff metric) a subsequence {Ank

} and a compact nonempty set A such that
dH (Ank

,A) → 0. From Theorem 2, A ∈ Cρ,h and hence A ∈ A. From Theorem 1,
dH (∂Ank

, ∂A) → 0. Therefore, the class ∂A = {∂A :A ∈ A} is compact in M, thus
fulfilling the above mentioned sufficient condition in Billingsley and Topsøe [5],
Theorem 4. This entails the P -uniformity property for the class A.

Finally, given ε > 0 take a large enough R such that P(B(0,R)c) < ε/8. Let
K = B(0,R). If the weak convergence Pn

w−→ P holds we have, for large enough
n, Pn(K

c) < ε/4. Then, denoting CU
ρ,h =D,

sup
A∈D

∣∣Pn(A) − P(A)
∣∣ ≤ sup

A∈D
∣∣Pn(A ∩ K) − P(A ∩ K)

∣∣

+ sup
A∈D

∣∣Pn

(
A ∩ Kc) − P

(
A ∩ Kc)∣∣

≤ sup
A∈D

∣∣Pn(A ∩ K) − P(A ∩ K)
∣∣ + Pn

(
Kc) + P

(
Kc) < ε

for n large enough, since A ∩ K belongs to the class A.
(b) The result follows directly from (a) and from Proposition 1(d), which estab-

lishes that C̃ρ,h ⊂ Cρ′,h′ for suitable values of ρ′, h′. Note also that, from Proposi-
tions 1(d) and 2, C̃ρ,h is also a P -continuity class. �

5. Estimation of cone-convex sets. This section is devoted to the study of the
asymptotic properties of the two notions of cone-convex hull (when applied to a
sample ℵn) given in Definition 4.

First, we obtain consistency and convergence rates for the ρ,h-cc estima-
tor Cρ,h(ℵn). Second, we give convergence rates for the ρ,h-ccc convex hull
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C̃ρ,h(ℵn). Some key elements in the proof of the ρ,h-ccc case are the notion
of unavoidable families (as in Pateiro-López and Rodríguez-Casal [27]) and some
results on volume functions in Stachó [38].

5.1. Consistency and rates for the cone-convex hull. The following consis-
tency result is a direct consequence of our GC-result (Theorem 3).

THEOREM 4. Let P be a probability measure on R
d , absolutely continuous

with respect to the Lebesgue measure μ. Assume that P has a compact support S.
Let X1, . . . ,Xn be a sample drawn from P . Denote ℵn = {X1, . . . ,Xn}.

(a) If S is ρ,h-cone convex, then the sequence Cρ,h(ℵn) of ρ,h-cone-convex
hulls of ℵn fulfills

dH

(
Cρ,h(ℵn), S

) → 0 a.s. and dν

(
Cρ,h(ℵn), S

) → 0 a.s.(5.1)

for any measure ν, finite on compact sets, whose restriction to S is absolutely
continuous with respect to P .

(b) A similar result holds for the sequence C̃ρ,h(ℵn) of ρ,h-cone-convex hulls
by complement, if we assume that S ∈ C̃ρ,h.

PROOF. (a) The first result, dH (Cρ,h(ℵn), S) → 0, a.s. is obvious since
dH (ℵn, S) → 0 a.s. and ℵn ⊂ Cρ,h(ℵn) ⊂ S.

As for the second result, note that dν(Cρ,h(ℵn), S) = ν(Cρ,h(ℵn) \ S) + ν(S \
Cρ,h(ℵn)). The first term in the right-hand side is 0 a.s. As for the second one, since
ν is absolutely continuous with respect to P on S and S is the support of P , we only
need to prove (from the well-known ε–δ characterization of absolute continuity,
when ν is finite) that P(S \Cρ,h(ℵn)) → 0, a.s. Indeed,

P
(
S \Cρ,h(ℵn)

) = P(S) − P
(
Cρ,h(ℵn)

)
(5.2)

≤ ∣∣P(S) − Pn

(
Cρ,h(ℵn)

)∣∣
(5.3)

+ ∣∣Pn

(
Cρ,h(ℵn)

) − P
(
Cρ,h(ℵn)

)∣∣.
The first term is identically 0 a.s. The second one converges to 0 a.s. from Theo-
rem 3(a).

(b) The proof of (b) is completely analogous using Theorem 3(b). �

REMARK 1. A similar dν -consistency result can be obtained by combining
Theorem 1 above with Theorem 2 in Cuevas, Fraiman and Pateiro-López [10].
However, Theorem 4 provides a more direct proof with an additional advantage:
let us assume that S belongs to a suitable subclass A ⊂ Cρ,h, and the estimator Sn

is chosen in that class. If the convergence rate of supA∈A |Pn(A)−P(A)| is known,
then from (5.3), the same convergence rate would immediately apply to Sn.
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The following theorem provides convergence rates in the Hausdorff metric. Let
us first recall (e.g., Cuevas and Fraiman [8]) that (taking the Lebesgue measure μ

as a reference) a set S ⊂ R
d is said to be standard with respect to a Borel measure ν

if there exist λ > 0, δ > 0 such that

ν
(
B(x, ε) ∩ S

) ≥ δμ
(
B(x, ε)

)
for all x ∈ S,0 < ε ≤ λ.(5.4)

THEOREM 5. Assume that X1,X2, . . . ,Xn, . . . are i.i.d. observations drawn
from a distribution PX with support S. Assume also that S is compact and standard
with respect to PX . Denote ℵn = {X1,X2, . . . ,Xn}. Then

(a) if S ∈ Cρ,h then dH (Cρ,h(ℵn), S) = O((
logn

n
)1/d) a.s.

(b) The same conclusion holds for the estimator C̃ρ,h(ℵn) whenever the as-
sumption S ∈ Cρ,h is replaced with S ∈ C̃ρ,h.

PROOF. (a) Let us first consider the case S ∈ Cρ,h. Since ℵn ⊂ Cρ,h(ℵn) ⊂
Cρ,h(S) = S, the result follows directly from the following theorem given in
Cuevas and Rodríguez-Casal [11], Theorem 3.

THEOREM. Let X1,X2, . . . be a sequence of i.i.d. observations drawn from a
distribution PX on R

d . Assume that the support S of PX is compact and standard
with respect to PX . Then

lim sup
n→∞

(
n

logn

)1/d

dH (ℵn, S) ≤
(

2

δωd

)1/d

a.s.,

where ωd is the Lebesgue measure of the unit ball in R
d and δ is the standardness

constant in (5.4) for ν = PX .

(b) The proof for the case S ∈ C̃ρ,h is identical. �

We will now study the rates of convergence for dμ(Cρ,h(ℵn), S), with S ∈ Cρ,h.
We will need an assumption established in terms of the so-called t-inner paral-

lel set of S, defined as S � tB(0,1) = {x ∈ S :B(x, t) ⊂ S}. The inner parallel set
appears as the result of applying the erosion operator � defined in the mathemati-
cal theory of image analysis; see Serra [35]. Also, the inner parallel set has received
some attention in differential geometry, on account of the regularity properties of
its boundary; see Fu [18] and Remark 3 below.

THEOREM 6. Let S ⊂ R
d fulfilling the assumptions of Theorem 5. Moreover,

let us assume that

PX

(
S \ S � tB(0,1)

) = O(t).(5.5)

Then,
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(a) if S ∈ Cρ,h, dPX
(Cρ,h(ℵn), S) =O((

logn
n

)1/d) a.s.

(b) The same conclusion holds for the estimator C̃ρ,h(ℵn) if we assume S ∈
C̃ρ,h.

PROOF. (a) Since dPX
(Cρ,h(ℵn), S) = PX(S \ Cρ,h(ℵn)), it suffices to show

that if εn = dH (ℵn, S), then there exists k ∈ R such that, with probability one, for n

large enough,

S � kεnB(0,1) ⊂Cρ,h(ℵn).(5.6)

Indeed, in this case we would have (using again Cuevas and Rodríguez-Casal [11],
Theorem 3)

PX

(
S \Cρ,h(ℵn)

) ≤ PX

(
S \ (

S � kεnB(0,1)
))

= O(kεn) =O

((
logn

n

)1/d)
a.s.

More precisely, we will show that (5.6) holds for k = 3 + 2/ sin(ρ/2). Choose
n0 = n0(ω) such that for n > n0, 2εn/ sin(ρ/2) < h/2. Now, by contradiction if
there exists a sequence xn ∈ S � kεnB(0,1) with xn /∈ Cρ,h(ℵn), we can find a
sequence Bn ∈ Cρ,h with ℵn ⊂ Bn and xn /∈ Bn.

Since εn = dH (ℵn, S), there exists Xi ∈ B(xn, εn), but since ℵn ⊂ Bn we also
have B(xn, εn) ∩ Bn �= ∅ and B(xn, εn) ∩ Bc

n �= ∅. This entails the existence
of zn ∈ ∂Bn, zn ∈ B(xn, εn). Since Bn ∈ Cρ,h, we may choose a unit vector ξn

with Cρ,ξn,h(zn) ⊂ Bc
n which implies Cρ,ξn,h(zn) ∩ ℵn = ∅. Let us now consider

yn = zn + 2εn

sin(ρ/2)
ξn. If we prove B(yn,2εn) ⊂ S, we have got a contradiction with

dH (S,ℵn) = εn; indeed, from the definition of yn it is easy to see that B(yn,2εn) ⊂
Cρ,ξn,h(zn) ⊂ Bc

n so, as ℵn ⊂ Bn, one would have B(yn,2εn) ∩ ℵn = ∅. Now, in
order to prove B(yn,2εn) ⊂ S recall that B(xn, kεn) ⊂ S, so it suffices to check
B(yn,2εn) ⊂ B(xn, kεn), but if t ∈ B(yn,2εn), ‖t −xn‖ ≤ ‖t −yn‖+‖yn − zn‖+
‖zn − xn‖ ≤ 2εn + 2εn/ sin(ρ/2) + εn = εn(3 + 2/ sin(ρ/2)).

(b) The result follows from the above conclusion (a) and Proposition 1(d), since
according to this result C̃ρ,h(ℵn) ∈ Cρ′,h′ so that

Cρ′,h′(ℵn) ⊂ C̃ρ,h(ℵn). �

REMARK 2. The convergence order obtained in Theorem 6 is the same found
in Dümbgen and Walther [14] for the case in which the ordinary notion of con-
vexity for S (and the convex hull for the estimator) are used, instead of the much
more general concept of cone-convexity considered here. The same behavior is
found in Rodríguez-Casal [33] for the intermediate case in which r-convexity is
assumed.
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REMARK 3. Note that S \ S � tB(0,1) is the set of points in S within a
distance from ∂S smaller than t . Thus, condition (5.5) has a clear intuitive in-
terpretation, connected with some key concepts in Geometric Measure Theory.
To begin with, let us recall that the erosion operator � provides (as well as the
dual dilation operator ⊕) a well-known standard “smoothing” procedure in the
mathematical theory of image analysis. Now, to give a more precise interpreta-
tion of condition (5.5) let us assume that PX is uniform, that is, proportional
to the Lebesgue measure μ (similar conclusions can be drawn when PX fulfils
c1μ ≤ PX ≤ c2μ for some constants c1, c2 > 0). Note that, if we denote T = Sc,
we have S \ S � tB(0,1) ⊂ B(T , t) \ T . We thus have that (5.5) will hold when-
ever μ(B(T , t) \T ) = O(t). A sufficient condition for this would be the celebrated
Federer’s positive reach condition, a geometric smoothness notion introduced at
the end of Section 4.1 above. More specifically, it is proved in Federer [17], Theo-
rem 5.6, that if reach(T̄ ) = R, then μ(B(T , t)\T ) is a polynomial in t , of degree d ,
for t ∈ [0,R); in particular, (5.5) holds. Also, the finiteness of the outer Minkowski
content of T (defined by L1 = limt→0 μ(B(T , t) \ T )/t ; see Ambrosio, Colesanti
and Villa [1]) is a sufficient condition for (5.5).

The following result shows that the boundary of S can be estimated as well,
with rates of the same order, under our cone-convexity assumption.

COROLLARY 1. Under the assumptions of Theorem 6(a), we have that, with
probability one, for n large enough, dH (∂S, ∂Cρ,h(ℵn)) ≤ kdH (S,ℵn), where
k = (3 + 2/ sin(ρ/2)). A similar result holds for the ρ,h-ccc-hull C̃ρ,h(ℵn) if we
assume the conditions of Theorem 6(b). In this case, the constant k is replaced
with k′ = (3 + 2/ sin(ρ′/2)), where ρ′ is the angle defined in Proposition 1(d).

PROOF. In the case (a), the result follows from the content relation (5.6) to-
gether with ∂Cρ,h(ℵn) ⊂ S \ int(S � kεnB(0,1)) ⊂ B(∂S, kεn) and the fact that,
for any x ∈ ∂S there is a sample point Xi such that ‖x − Xi‖ ≤ εn. Then, in the
segment joining x and Xi there must be necessarily a point of ∂Cρ,h(ℵn). In the
case (b), we use again Cρ′,h′(ℵn) ⊂ C̃ρ,h(ℵn) and Proposition 1(d). �

5.2. Convergence rates in mean. Unavoidable families. We now focus on the
convergence rates for the “mean error in measure” EdPX

(C̃ρ,h(ℵn), S) where PX

denotes the distribution of X. As we will see, the corresponding proof will involve
some interesting methodological differences with the techniques used so far. In
particular, relying on some ideas in Pateiro-López and Rodríguez-Casal [29], we
will use the auxiliary notion of unavoidable families of sets which is next intro-
duced and analyzed. Under suitable conditions ensuring Cρ,h ⊂ C̃ρ′,h′ , it should
be possible also to obtain an analogous result for the cc-hull estimator Cρ,h(ℵn).
However, this technical issue will not be considered here.
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Unavoidable families of sets. Given a ∈ (0, π) and b > 0, denote Ga,b the family
of all cones with opening angle a and height b, that is, Ga,b = {Ca,ξ,b(x) :x ∈
R

d,‖ξ‖ = 1}.
DEFINITION 6. A family of nonempty sets U is said to be unavoidable for

another family of sets � if for each L ∈ � there exists U ∈ U with U ⊂ L.

The reason for using this notion here is as follows. Let �ρ,h(x) = {C ∈
Gρ,h :x ∈ C}, that is, �ρ,h(x) is the family of ρ,h-cones which include the
point x. Assume that we are able to find for each x ∈ S a suitable finite family
Ux,ρ,h, unavoidable for �ρ,h(x). Assume also that X has a density f satisfying
0 < k1 ≤ f (x) ≤ k2 < ∞ for almost all x in S. We would then have

P
(
x ∈ S \ C̃ρ,h(ℵn)

) = P
(∃C ∈ �ρ,h(x) :C ∩ ℵn = ∅

)
≤ ∑

U∈Ux,ρ,h

P(U ∩ ℵn = ∅) and

E
(
dPX

(
S, C̃ρ,h(ℵn)

)) = E

∫
S
I{x∈S\C̃ρ,h(ℵn)}f (x) dx

(5.7)
=

∫
S
P

(
x ∈ S \ C̃ρ,h(ℵn)

)
f (x) dx

≤ k2

∫
S

∑
U∈Ux,ρ,h

P(U ∩ ℵn = ∅) dx

≤ k2

∫
S

∑
U∈Ux,ρ,h

(
1 − k1μ(U ∩ S)

)n
dx,

where in the last inequality we have also used that f is bounded from below.
So, in order to find rates of convergence for E(dPX

(S, C̃ρ,h(ℵn))) the problem
can be reduced to find, for each x ∈ S, a finite unavoidable family Ux,ρ,h such
that k1μ(U ∩ S) is large enough. Such families are described in the following
proposition whose proof is given in the Appendix.

PROPOSITION 3. Let γ = ρ if ρ ≤ π/3 and γ = (π − ρ)/2 otherwise. Take
h1 = h

2 sin(
ρ
2 ). Given x ∈ S, consider a minimal covering of the closed ball

B(x,h1) with closed cones of angle γ /2, axis ξj and height h1, {Cγ/2,ξj ,h1(x),

‖ξj‖ = 1, j = 1, . . . , k}. Then the family

Ux,ρ,h = {
Cγ/2,ξj ,h1(x),‖ξj‖ = 1, j = 1, . . . k

}
,

is unavoidable for �ρ,h(x). Moreover, the cardinality of Ux,ρ,h does not depend
on x.

We now establish the main result of this section. Again the proof is given in the
Appendix.
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THEOREM 7. Let S ⊂ R
d , S ∈ C̃ρ,h and, for z ≥ 0, F(z) = μ({x ∈ S :

d(x, ∂S) ≤ z}). Assume that F ′ is bounded in a neighborhood of 0, and X1,X2, . . .

are i.i.d. drawn from a distribution PX with support S. Let us suppose that PX

is absolutely continuous with μ-density f such that 0 < k1 ≤ f (x) ≤ k2 < ∞
for some constants k1, k2 and for almost all x ∈ S. Then E(dPX

(S, C̃ρ,h(ℵn))) =
O(n−1/d).

REMARK 4. (a) Note that for any given compact set S ⊂ R
d with μ(∂S) = 0,

F ′(0) the outer Minkowski content of Sc (defined by limε→0
μ(B(Sc,ε)\Sc)

ε
). See

Ambrosio, Colesanti and Villa [1] for a deep study on this notion.
(b) The rate of convergence we have obtained is slower (when d = 2) than the

one obtained in Pateiro-López and Rodríguez-Casal [29] (Theorem 1) for r-convex
sets in R

2, fulfilling a double rolling condition. In return, the class of cone-convex
sets we are considering is much larger and we have no restriction on the dimension.

6. A stochastic algorithm for ccc-hulls. We offer here a relatively simple
stochastic algorithm to approximately calculate the cone-convex hull by comple-
ment, C̃ρ,h(ℵn) for a given random sample ℵn = {X1, . . . ,Xn}.

As explained in Section 1.3, C̃ρ,h(ℵn) is a close analogue of the r-convex hull
previously considered in the literature,

r conv(ℵn) = ⋂
{y:B(y,r)∩ℵn=∅}

B(y, r)c.(6.1)

An exact algorithm for the calculation of (6.1) for samples in R
2 can be found in

the R-package alphahull, described in Pateiro-López and Rodríguez-Casal [28].
The numerical treatment of the ccc-hull C̃ρ,h(ℵn) is a bit harder. This is essen-

tially due to the lack of rotational symmetry of the “primary blocks” used in the
construction of C̃ρ,h(ℵn), which are finite cones, instead of the balls of (6.1).

Our algorithm is based on the insightful heuristic description of (6.1) given in
Edelsbrunner and Mücke [15]: “Think of R3 filled with styrofoam and the points
in ℵn made of more solid material such as rock. Now imagine a spherical eraser
with radius r . It is omnipresent in the sense that it carves out styrofoam at all
positions where it does not enclose any of the sprinkled rocks, that is, points of ℵn.
The resulting object will be called the r-hull.”

In our case, the “eraser element” is a finite cone Cρ,h,ξ (x) instead of a ball
B(x, r). So, in order to move the eraser we should in fact vary two parameters: the
vertex x and the axis direction ξ (since the angle ρ and the height h remain fixed).

Our proposal is essentially based on the idea of choosing these two parameters
with an “oriented random procedure”: we pick up randomly the vertex x and then
we erase as much styrofoam as possible by rotating the cone Cρ,h,ξ (x) for all
directions ξ with Cρ,h,ξ (x) ∩ ℵn = ∅. For θ ∈ [0, π/2], let us denote Rx

θ (u) the
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clockwise rotation of angle θ with center in x of the vector u, (if θ ∈ [−π/2,0)

we take the counter clockwise rotation). Then our algorithm is, in R
2, as follows:

INPUT: A sample ℵn = {X1, . . . ,Xn} ⊂R
2, the cone parameters ρ ∈ (0, π] and

h > 0, a rectangle E = [a, b] × [c, d] with ℵn ⊂ E, N a large positive integer
indicating the number of full iterations of steps 1–3 below.
STEP 1. Generating random cones: Choose at random a cone vertex x ∈ E and
a cone axis ξ with ‖ξ‖ = 1 and consider the cone Cρ,h,ξ (x).
STEP 2. Checking for an empty cone: If Cρ,h,ξ (x) ∩ ℵn �= ∅ go back to step 1.
STEP 3. Erasing a maximal cone: If Cρ,h,ξ (x) ∩ ℵn = ∅ erase the maximal
cone with vertex x not containing any sample point. That is, find

θ0 = max
θ∈[0,π/2]

{
θ :Cθ/2,h,Rx

θ/2(ξ)(x) ∩ ℵn = ∅
}
,

θ1 = min
θ∈[−π/2,0)

{
θ :Cθ/2,h,Rx

θ/2(ξ)(x) ∩ ℵn = ∅
}
.

Then erase the h-cone C with vertex x and sides of length h along the directions
Rx

θ1
(ξ) and Rx

θ0
(ξ). That is, replace E with E \ C and go back to step 1.

OUTPUT: The set E resulting after step 3 has been performed N times. So, N

is the number of erasing cones during the iteration process.

Some comments on the algorithm.

1. The R code of this algorithm (including detailed comments) can be down-
loaded from http://www.uam.es/antonio.cuevas/exp/ccc-algorithm.txt.

2. The accuracy of the algorithm could be improved with some simple changes.
For example, we might choose the vertices in step 1 with a probability measure
whose density is inversely proportional to a kernel density estimator of the under-
lying distribution of the sample. Of course, the idea is to increase the probability of
selecting vertices in “empty areas.” We might also improve the efficiency by using
the convex hull (or the h-convex hull) of the sample as the initial “frame” E to
draw the cones. However, we have omitted such modifications in order to present
the idea in the most simplest way.

3. Finding exact (nonstochastic) algorithms to calculate both C̃ρ,h(ℵn) and
Cρ,h(ℵn) is a much harder problem, far beyond the scope of this paper. The ex-
act calculation of Cρ,h(ℵn) seems particularly difficult. The trouble lies in the
fact that the cc-property, similarly to the analogous “outer sphere” or “rolling-ball
property,” does not seem to provide a “canonical way” to construct a small enough
set including the sample points and fulfilling the cc-property. On the contrary, the
definition of the ccc-property implicitly includes a mechanism to construct the
ccc-hull.

http://www.uam.es/antonio.cuevas/exp/ccc-algorithm.txt
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4. We present here the algorithm for the two-dimensional case d = 2 since this
is, by far, the most important case in the usual applications and the presentation
becomes a bit simpler. However, the algorithm can be extended, with no essential
change, to d = 3 and, in fact, the basic idea would also work for d > 3.

5. To give just an approximate idea of the execution time of our algorithm, let
us point out that the mean execution time over 1000 runs (with n = 500, N = 300
cones h = 1/4, ρ = π/4) was 36.453 seconds for the set in the first example of
Section 7.1 below. The corresponding standard desviation was 3.362 seconds. We
have used a processor Intel i7-2620M.

7. Some numerical results.

7.1. Three examples. Just in order to gain some insight on the behavior of our
ccc-estimator we show here three examples. In all of them, we have compared the
ccc-hull with the above commented r-convex hull (see, e.g., Pateiro-López and
Rodríguez-Casal [28] and references therein) which appears to be the most direct
competitor, as a generalization of the ordinary convex hull.

The first example (left-hand and central panel of Figure 4) illustrates the es-
timation (from n = 500 uniform points) of the π/4-cone convex set S = [0,1] ×
[0, t +1/2] \T where t = 1

2 tan(3π/8), T being the isosceles triangle with vertices
(0, t + 1/2), (1, t + 1/2), (1/2,1/2). For the ccc-hull (the shaded area in the fig-
ures), we have used ρ = π/4 and h = 1/2 with N = 200 cones. For the r-convex
hull (whose boundary is marked in continuous lines as a union of r-circumference
arcs), we took r = 1/2 (left-hand panel) and r = 1/4 (central panel). The whole
point of choosing this set is to show that, even in very simple cases, the presence
of an inward nonsmooth peak can lead to a situation for which the r-convex hull

FIG. 4. Comparison of the ccc-hull (shaded area) and the r-convex hull (boundary made of r-arcs).
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provides an “oversmoothed” estimation since the estimator just cannot “go inside”
the sharp “gulf” in the set. This is not the case of the ccc-hull which is designed to
deal with such unsmooth situations. Of course, we might improve things by choos-
ing a smaller value of r but, in any case, the r-convex is inconsistent for any r and,
at the end, it will we outperformed by the ρ,h-ccc hull, provided that a suitable
value of ρ (≤ π/4 in this case) is chosen.

The second example (right-hand panel of Figure 4) shows the behavior of our
estimator (with ρ = π/3, h = 1/8) when compared with the r-convex hull (the cir-
cumference arcs in continuous lines) with r = 1/10 for a sample of points that rep-
resent the locations (x, y) of bramble canes in a field of 9 square meters, rescaled
to the unit square. This data set can be found in the R-library spatstat; see [21] and
[13] for further details; we have ignored the labels identifying different classes of
plants, according to their ages. Of course, in this example there is no “true” set
to give an objective comparison. We can see, however, how both estimators give
a quite different estimation of the “habitat” of these plants and the ccc-hull seems
better adapted to detect the absence of canes in some areas. Finally, the third ex-
ample shows the estimation of a quite irregular set: the hypograph of the trajectory
of a Brownian motion on the unit interval. We define the hypograph of a positive
function f defined on [a, b] by H(f ) = {(x, y) :x ∈ [a, b],0 ≤ y ≤ f (x)}. In our
example, the Brownian trajectory has been shifted vertically in order to take all
values above zero. The estimation of hypographs is a major aim in the problem of
efficient boundary, a relevant topic in econometrics; see, for example, Simar and
Wilson [37]. An additional interest of this example is to show how our ccc-hull can
be adapted to incorporate the information that our target set is an hypograph; this
can be made by just choosing vertical cones and restricting their rotation angle in
the algorithm. In this case, we have taken n = 500, ρ = π/6, h = 1, with N = 300
cones but the rotation angles in the algorithm have been restricted between 5π/12
and 7π/12 in order the keep the structure of an hypograph; see Figure 5. The pa-
rameters for the r-convex estimator are r = 1/8 (left panel in Figure 5), and 1/16
(right panel); note that there is no way to adapt the r-convex hull to the hypograph
shape. In this case, the ccc-hull, with the hypograph information incorporated,
clearly outperforms the r-convex hull.

7.2. Simulation outputs. We have carried out a small simulation study to com-
pare the performance of the ccc-hull with that of the r-convex hull for different
sample sizes and values of the parameters. The target set S1 = [0,1]2 \ ⋃4

i=1 Ti

where the Ti are triangles with vertices (0,1), (1/2,1/2), (1,1); (0,0), (1/2,1/2),
(1,0); (0,1/3), (1/2,1/2), (0,2/3) and (1,1/3), (1/2,1/2), (1,2/3). This set
is ρ0 = 2 arctan(1/3)-cone convex. Figure 6 corresponds to the case ρ = π/5,
h = 1/2, N = 1000 and r = 1/6 for the r-convex hull with n = 1200 uniform
points.
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FIG. 5. Hypograph of a trajectory of a Brownian motion: the shaded area is the ccc-hull; contin-
uous lines made of r-arcs correspond to the boundaries of the r-convex hull for r = 1/8 (left) and
r = 1/16 (right).

Table 1 shows the expected values, over 500 runs (and their standard de-
viations in parenthesis) for the errors in measure [d1 = dμ(S,Cρ,h(ℵn)), d2 =
dμ(S,Cr(ℵn))] of both estimators (the ccc-hull and the r-convex hull), with dif-
ferent values of the parameters ρ, r and h. For small sample sizes (200 in Table 1)
the r-convex hull has a smaller error in measure. However, as the sample size in-
creases, (from 400 on the ccc-hull outperforms the r-convex hull. We have taken
N = 200 cones for the simulation, and the distances were calculated by the Monte
Carlo method using 4000 uniform random observations.

FIG. 6. Ccc-hull (shaded area) and r-convex hull (boundary made of r-arcs) constructed from
1200 points of S1. Here, ρ = π/5, h = 1/2, r = 1/6.
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TABLE 1
Average errors (and standard deviations) over 500 runs for the ccc-hull (d1) and the r-convex hull

(d2) in the estimation of S1

d1 d2 d1 d2

n ρ = ρ0,h = 1/3 r = 1/4 ρ = π/5,h = 1/2 r = 1/6

200 0.204 (0.011) 0.191 (0.009) 0.197 (0.011) 0.161 (0.010)
400 0.138 (0.009) 0.180 (0.008) 0.134 (0.010) 0.140 (0.008)
600 0.107 (0.008) 0.174 (0.007) 0.105 (0.008) 0.132 (0.007)
800 0.090 (0.007) 0.172 (0.007) 0.089 (0.007) 0.127 (0.007)

1000 0.080 (0.007) 0.170 (0.007) 0.078 (0.007) 0.124 (0.006)
1200 0.070 (0.006) 0.169 (0.006) 0.070 (0.006) 0.122 (0.006)

8. Final remarks: Some suggestions for further work. In our view, the
study of the following topics might be of interest in connection with the notion
of cone-convexity introduced in this paper.

Applications to home-range estimation. As commented above, our cone-convex
hulls are in fact a considerable generalization of the simpler classical notion of
convex-hull. Such generalizations (the r-convex hull is another example of them)
are relevant in those application fields where more flexible set estimators are
needed. An example arises in zoology and ecology, in the problem of home range
estimation. A commonly cited definition of animal’s home range is that of Burt [7]:
“that area traversed by the individual in its normal activities of food gathering,
mating and caring for young.” The problem of estimating the home range from
“sightings” or GPS records of animal positions has received a considerable at-
tention (see, e.g., Anderson [2] for an introduction). As pointed out by Burgman
and Fox [6], “Minimum convex polygons (convex hulls) are an internationally ac-
cepted, standard method for estimating species’ ranges, particularly in circum-
stances in which presence-only data are the only kind of spatially explicit data
available”. These authors also discuss the obvious drawbacks of the convex hull,
and analyze in some detail the so called α-hulls (conceptually related with the r-
convex hulls discussed above) as a useful more flexible alternative. In fact, the idea
of considering different nonparametric estimators in home range estimation is far
from new. Many highly cited papers (Worton [42], Getz and Wilmers [19], etc.)
have considered this topic. Some of them, in particular, Worton [42], analyze the
use of auxiliary density estimators to construct home range estimators. We believe
that our proposal here, based on the cone-convex hull, could be seen as a further
step in this advance toward flexibility and generality from the classical approach
based on the “hull principle.” The reason is that our estimator could be suitable
for those problems where highly irregular shapes, including central holes of sharp
inward peaks, are to be expected, due to existence of geographic obstacles lead-
ing to irregular habitats. For example, Getz and Wilmers [19] have suggested (in
a nonmathematical journal) an interesting class of estimators based on the union
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of convex hulls of the nearest neighbours of every sample point. These authors
convincingly motivate their proposal on the basis of detailed examples. Again, the
point is the need of flexible, general estimators for home range studies and related
problems. However, to the best of our knowledge, the theoretical properties of that
class of estimators have not been analyzed so far. In a way, our proposal in this
paper, aims at same goals having still in mind the idea of extending the classical
convex hull. While the detailed analysis of such practical applications is beyond
the scope of this paper, we hope that the real-data example (not in zoology but in
botany) outlined in the previous section could give a hint on the possible advan-
tages of our estimators.

Inference on the parameter ρ. In our cone-convexity definitions, the parameter
ρ has an obvious intuitive interpretation (in terms of the sharpest inward peak
in the domain), even more direct than that of the parameter r in the r-convexity
property. So, given a domain S, the inference on the largest value of ρ fulfilling the
cone-convexity property (for a given h) might be of some interest from the image
analysis point of view. In particular, the study of a suitable test for the hypothesis
H0 :ρ ≥ ρ0 seems a natural aim. Note that in the case ρ0 = π this would essentially
amount to test convexity. The theory of multivariate spacings, as developed, for
example, by Janson [22], seems to be a relevant auxiliary tool in this problem.

Cone-convexity for functions. Our cone-convexity concepts have been primar-
ily defined for sets but they could be extended in a natural way for real func-
tions f : [a, b]d → R: we could say that f is ρ-cone-convex when the hypograph
H(f ) = {(x, y) :x ∈ [a, b]d, y ≤ f (x)} is ρ-cone-convex. The distance between
two ρ-cc functions might then be defined in terms of the Hausdorff distance be-
tween the corresponding hypographs; similar ideas have been considered else-
where, for example, Sendov [34]. On the one hand, this Hausdorff-based met-
ric would provide a “visual” proximity criterion (potentially meaningful in many
real-world applications) between the data. On the other hand, the cone-convexity
assumption would lead to a natural way for data smoothing. For example, in the
setting of a nonparametric regression model yi = f (xi)+εi (with d = 1), we could
think of recovering the function f from the data (xi, yi) under the assumption that
f is ρ-cone-convex. Other applications to Functional Data Analysis (in particular
to supervised functional classification) are also under study.

APPENDIX

PROOF OF PROPOSITION 3. Let C be a member of the class �ρ,h(x). Without
loss of generality, take C = Cρ,e1,h(0) where e1 is the first vector in the canonical
basis. The reasoning for any other cone C = Cρ,ξ,h(z) is reduced to this case by
translation and/or rotation.

By definition of the class, we have x ∈ Cρ,e1,h(0). As a first step in the proof, it
will be useful to consider three possible situations regarding the position of x. In
all three cases, we will be able to find a cone C ′ = Cγ,v,h1(x) ⊂ C.
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FIG. 7. Case 3, Cγ,ν,h1(x) ⊂ Cρ,e1,h(0).

1. If x ∈ Cρ,e1,h/2(0), then C′ ⊂ Cρ,e1,h(0) for C′ = Cγ,e1,h1(x).
2. If x = re1 with h/2 ≤ r < h, then C′ ⊂ Cρ,e1,h(0) for C′ = Cγ,−e1,h1(x)

since h1 is smaller than the distance from he1/2, the middle point of the axis of
C = Cρ,e1,h(0), to the boundary of C.

3. For any other x ∈ Cρ,e1,h(0), note that t = he1/2 corresponds to the least
favorable position of the vertex of a γ,h1-cone, C′ in order to get C′ ⊂ C. Let
λ1 be the solution of 〈 λ1t−x

‖λ1t−x‖ , −x
‖x‖〉 = cos(γ /2). Then if we take a cone C′ =

Cγ,v,h1(x) with axis v = λ1t−x
‖λ1t−x‖ we also get C′ ⊂ Cρ,e1,h(0); see Figure 7.

Finally, the unavoidable family is constructed by selecting a finite number
of directions ξj such that the cones {Cγ/2,ξj ,h1(x)}j=1,...,k are a minimal cov-
ering of B(x,h1). Indeed, given C ∈ �ρ,h(x) the point x ∈ C is in one of the
three previously considered cases so that there exists a unit vector ξ for which
Cγ,ξ,h1(x) ⊂ C. Since {Cγ/2,ξj ,h1(x)}j=1,...,k is a covering of B(x,h1), we can
take j0 such that 〈ξj0, ξ〉 ≥ γ /2. Therefore, Cγ/2,ξj0 ,h1(x) ⊂ Cγ,ξ,h1(x). The final
statement about the cardinality follows directly from the construction. �

PROOF OF THEOREM 7. Note that F is a volume function (and hence a
Kneser function) as those considered in Stachó [38]. According to Lemma 2 in
that paper, F is absolutely continuous and F ′(t) exists except for a countable set.
So, there exist a countable set N and positive constants s and q such that F ′(t) < q

∀t ∈ [0, s] ∩ Nc. If we take h2 = min{s, h1}, where h1 = h
2 sin(ρ/2), then accord-

ing with equation (5.7):

E
(
dPX

(
S, C̃ρ,h(ℵn)

)) ≤ k2

∫
{x∈S:d(x,∂S)≤h2}

∑
U∈Ux,ρ,h

(
1 − k1μ(U ∩ S)

)n
dx

+ k2

∫
{x∈S:d(x,∂S)>h2}

∑
U∈Ux,ρ,h

(
1 − k1μ(U ∩ S)

)n
dx.

With respect to the last term, note that d(x, ∂S) > h2 entails B(x,h2) ⊂ S and
for all U ∈ Ux,ρ,h, we have: k1μ(U ∩ S) ≥ k1μ(U ∩ B(x,h2)) = c0h

d
2 for some
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positive c0. Therefore, if k = k(ρ,h) denotes the cardinality of the set Ux,ρ,h then
∫
{x∈S:d(x,∂S)>h2}

∑
U∈Ux,ρ,h

(
1 − k1μ(U ∩ S)

)n
dx

≤ k
(
1 − c0h

d
2
)n

μ
({

x ∈ S :d(x, ∂S) > h2
})

,

which can be upper bounded by k3e
−nhd

2c0 , for some positive constant k3.
In order to bound the first integral, note that if U = Cγ/2,ξj ,h1(x) and t ≤ h2 ≤

h1 then U ∩ B(x, t) = Cγ/2,ξj ,t (x) and so, if d(x, ∂S) = t

k1μ(U ∩ S) ≥ k1μ
(
U ∩ B(x, t)

) = c0t
d .

Therefore,
∫
{x∈S:d(x,∂S)≤h2}

∑
U∈Ux,ρ,h

(
1 − k1μ(U ∩ S)

)n
dx

≤
∫
{x∈S:d(x,∂S)≤h2}

k
(
1 − c0d(x, ∂S)d

)n
dx

≤
∫
{x∈S:d(x,∂S)≤h2}

ke−c0nd(x,∂S)d dx.

Next, let g(z) = ke−c0nzd
. A change of variables leads to

∫
{x∈S:d(x,∂S)≤h2}

ke−c0nd(x,∂S)d dx =
∫
{x∈S:d(x,∂S)≤h2}

g
(
d(x, ∂S)

)
dx

=
∫
[0,h2]

g(z) dF (z)

=
∫
[0,h2]

g(z)F ′(z) dz ≤
∫
[0,h2]

k4e
−c0nzd

dz,

with k4 a positive constant (we have used in the last inequality the essential bound-
edness F ′ in [0, s]). Finally, we have that there exists k5 > 0 such that

∫
[0,h2]

k4e
−c0nzd

dz = n−1/d
∫ c0nhd

2

0
k5e

−uu(1−d)/d du

≤ n−1/d
∫ +∞

0
k5e

−uu(1−d)/d du

= O
(
n−1/d)

.

Collecting bounds, we get E(dPX
(S, C̃ρ,h(ℵn))) = O(e−nhd

2c0 + n−1/d) =
O(n−1/d). �
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