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STATISTICAL INFERENCE BASED ON ROBUST LOW-RANK
DATA MATRIX APPROXIMATION

BY XINGDONG FENG1 AND XUMING HE2

Shanghai University of Finance and Economics and University of Michigan

The singular value decomposition is widely used to approximate data
matrices with lower rank matrices. Feng and He [Ann. Appl. Stat. 3 (2009)
1634–1654] developed tests on dimensionality of the mean structure of a data
matrix based on the singular value decomposition. However, the first singu-
lar values and vectors can be driven by a small number of outlying measure-
ments. In this paper, we consider a robust alternative that moderates the effect
of outliers in low-rank approximations. Under the assumption of random row
effects, we provide the asymptotic representations of the robust low-rank ap-
proximation. These representations may be used in testing the adequacy of
a low-rank approximation. We use oligonucleotide gene microarray data to
demonstrate how robust singular value decomposition compares with the its
traditional counterparts. Examples show that the robust methods often lead
to a more meaningful assessment of the dimensionality of gene intensity data
matrices.

1. Introduction. Research on robustness dates back to the prehistory of statis-
tics. However, the concepts and theories of robust statistics have not been formally
and systematically established until recent decades [Huber and Ronchetti (2009),
Hampel et al. (1986)]. Much work on robust statistics has focused on linear regres-
sion and multivariate location-scatter models. It has been well recognized that the
least squares method under those models is sensitive to a small number of outliers.
Robust methods are generally developed to down-weight outliers.

The singular value decomposition (SVD) of a data matrix is often used as a data
reduction tool. In fact, the SVD can be viewed as a basic tool in dimension reduc-
tion. Consider a data matrix

Y =
⎛
⎜⎝

y11 · · · y1m
...

...
...

yn1 · · · ynm

⎞
⎟⎠ ,
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of n rows and m columns, where m is fixed. An approximation of rank r to the
matrix can be found by

n∑
i=1

m∑
j=1

(yij − zij )
2,(1)

where zij are the elements of Z = RC for an n × r matrix R and a r × m ma-
trix C. The matrices R and C are not identifiable in this formulation, so additional
constraints may be imposed to ensure identifiability. As pointed out in Ammann
(1993) and Chen, He and Wei (2008), the SVD is equivalent to the least squares
approach to a bilinear regression model, so it suffers from the usual lack of robust-
ness against outliers.

Ruppert and Carroll (1980) have used the trimmed least squares estimation in
the linear model by using weights obtained from some initial consistent estimates,
and Gervini and Yohai (2002) have considered a variant of the trimmed method
leading to the maximum breakdown point and full asymptotic efficiency under
normal errors. In this paper, we adopt the idea of using trimmed least squares
estimation, where the scheme of choosing weights is explained in Section 2. The
low-rank approximation of matrices by weighted least squares has been considered
by Gabriel and Zamir (1979), but their weights are fixed, while the weights of the
proposed method in this paper are obtained from an initial robust estimate.

We will consider a two-step approximation method in this paper. More specifi-
cally, we consider the first approximation by minimizing

n∑
i=1

ŵi

m∑
j=1

(
yij −

r∑
k=1

θkiφkj

)2

,(2)

where ŵi are the weights based on an initial estimate (to be described later), θki are
the elements of R, and φkj are the elements of C. However, it is clear that the
estimates of θ ’s are the linear combination of vectors y’s given φ’s, so it implies
that this lower-rank approximation is not robust against outliers. Then we consider
the second approximation by using the estimated φ’s from the first step, denoted
collectively as φ̃

k
(k = 1, . . . , r), and then minimizing

n∑
i=1

m∑
j=1

L

(
yij −

r∑
k=1

θkiφ̃kj

)
,(3)

over the θ ’s for some robust loss function L, where φ̃kj is the j th component of φ̃
k
.

Our statistical analysis will be performed under the following model:

y
i
=

r∑
k=1

θ
(0)
ki φ(0)

k
+ εi, i = 1, . . . , n,(4)
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where y
i
= (yi1, . . . , yim)T is the ith observed vector, θ

(0)
k = (θ

(0)
k1 , . . . , θ

(0)
kn )T is

used to explain the row effects, and φ
(0)
k = (φ

(0)
k1 , . . . , φ

(0)
km)T is used to explain the

column effects in the data matrix. The row effects θ(0)’s are assumed to be random,
and the length of observed vectors, m, is fixed. We are interested in the structure
of the mean matrix E(Y), and the uniqueness of the low-rank representation is
implied by conditions (M1) and (M2) given in Appendix A.1. In our work, we
assume that each component of εi in the model is symmetrically distributed, but
outliers might be present in the data. The robust methods are meant to be reliable
against violations of the model assumptions.

Our model includes that of Feng and He (2009) as a special case where εi is
Gaussian. The main contribution of the present paper is to develop a robust proce-
dure that can accommodate outlying measurements in the data matrix. To achieve
this goal, we have to utilize nonlinear operations in the estimation procedure, and
consequently, we need to analyze the statistical properties of the robust procedures
with a new set of techniques.

When the data matrix is the sum of low-rank and sparse matrices, the theory of
the exact recovery of both matrices has been established by Candès et al. (2011)
and Zhou et al. (2009). Agarwal, Negahban and Wainwright (2012) further con-
sider a broader class of models, where random errors are introduced, and the pe-
nalized method is used for estimation. These authors have provided deterministic
error bounds for their estimates while allowing the number of columns to grow
with n, but in this paper we are interested in hypothesis testing based on the asymp-
totic representation of the robust estimates with a fixed number of columns.

For the estimates of θ
(0)
k and φ

(0)
k (k = 1, . . . , r) obtained from (3) and (2), re-

spectively, we shall derive their asymptotic representations in Section 3 as n → ∞.
In Appendix B, we discuss some finite sample properties of the estimators (3),
which are critical for the theoretical development in Section 4, where we robustify
the tests of unidimensionality for testing the adequacy of a unidimensional model
against the alternative rank-two mean structure for the data matrix. In Section 4.3,
we compare the results of testing unidimensionality of matrices from Feng and He
(2009) with those from the robust alternative in microarray data analysis. Tech-
nical assumptions of our model are given in Appendix A, and the proofs for the
lemmas and the theorems given in the paper can be found in Appendix B and in
the supplementary material [Feng and He (2014)].

2. Estimation procedure. In this paper, we propose the following procedure
to estimate the row and column parameters of model (4).

Step 0. Construction of an initial robust estimate of column parameters:

(I1) prechoose a constant α∗ (typically between 0.1 and 0.5);
(I2) select �(1−α∗)n� rows randomly from the data matrix, and denote this matrix

as Y∗, where �x� is the smallest integer greater than x;



ROBUST APPROXIMATIONS WITH LOW-RANK DATA MATRICES 193

(I3) carry out the regular SVD on the matrix Y∗ and obtain the first r right singular
vector as φ̂

k
, k = 1, . . . , r ;

(I4) estimate the row parameters θ
(0)
k by minimizing the objective function (3), in

which φ̃
k

is replaced by φ̂
k
. The resulting estimate is denoted as θ̂ k ;

(I5) repeat (I2)–(I4) for a prespecified number of times (to be discussed later),
and find the subset of �(1 − α∗)n� rows that gives the minimum value of∑n

i=1
∑m

j=1 L(yij − ∑r
k=1 θ̂ki φ̂kj ).

Step 1. Computation of the weighted least squares to improve efficiency of the
column parameters:

(1a) given the initial estimate of the column parameters, choose a trimming pro-
portion α ≤ α∗ and calculate the weights

ŵi = 1
(
ξ̂α < ‖êi‖2 ≤ ξ̂1−α

)
,(5)

where ξ̂α is the sample α quantile of ‖êi‖2 and êi = (Im − ∑r
k=1 φ̂

k
φ̂T

k )y
i
;

(1b) given the weights, obtain the estimate φ̃
k

(k = 1, . . . , r) of the column pa-
rameters by minimizing (2) over the row and column parameters.

Step 2. Updating row effect estimates with robustness: given φ̃
k

from step 1,
obtain the estimate θ̃ k of the row effects by minimizing (3) over the row parame-
ters.

In step 0, we obtain an initial root-n robust estimate of the column parame-
ters φ

(0)
k , denoted as φ̂

k
, k = 1, . . . , r . The choice of α∗ should reflect what per-

centage of outlying rows we expect, and it is similar to the amount of trimming
one chooses to use in the trimmed mean. The number of subsets used in (I5) is
fixed and should be chosen to ensure that there is a high probability that one of
the subsets contains no outliers. For example, if we have 20 rows in the data ma-
trix and expect 2 outlying rows, by choosing α∗ = 0.3 to use subsets of 14 rows,
the probability that one random subset is outlier-free is nearly 0.08. If we use 100
random subsets in (I5), the probability of having at least one outlier-free subset is
greater than 0.999. Simple calculations like this show that we can obtain a robust
estimate through this procedure with high probability.

Because the estimate φ̂
k

in (I3) is the least squares estimate considered in Feng
and He (2009), and the size of the subset is proportional to n, then the initial
estimate of column vectors here is root-n consistent. Given the initial estimate of
the column parameters, we calculate the weights in step (1a), where the trimming
level α plays the same role as α∗ in (I1) but in a different context. The main purpose
of step 1 is to increase efficiency of the column parameter estimates over those
from step 0, but the corresponding estimates of the row effects might not be robust.
The purpose of step 2 is to robustify the row effect estimates.

General weight functions of ‖êi‖2 can be considered in lieu of (5), but we expect
that the results given in the Appendix B still hold under appropriate regularity
conditions. Our proposed robust estimates of parameters θ

(0)
k and φ

(0)
k are obtained
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by minimizing (3) and (2), respectively. By considering the regular SVD on the
approximation matrix

∑r
k=1 θ̃ kφ̃

T
k , we actually obtain a robust SVD on the data

matrix Y.

3. Asymptotic properties. The data matrix Y often arises with the rows rep-
resenting individuals randomly sampled from a large population, but the columns
for measurements at m different locations or time points. It is then natural to use
θ as the random row effects, and φ as the fixed column effects. Individuals can
be characterized by the row effects, and their spatial or temporal profiles can be
understood by the column effects. The distinction between the random and the
fixed effects is not relevant to the optimization problems (2) and (3) themselves,
but is important for the statistical properties of the estimates obtained from the op-
timization. To derive the statistical representations of the row- and column-effect
estimates, we use conditions (M1)–(M5) detailed in Appendix A.1. Those condi-
tions also ensure proper parameter identifications.

Following Definition 1.1 of Feng and He (2009), we use the rank of the mean
matrix E(Y) as the dimensionality of the model. A unidimensional model refers
to the mean matrix of rank-one. For unidimensional data, we can use the first
singular component to summarize the row and column effects. For example, if a
unidimensional test of m items is given to n examinees, the data matrix as the
scores of the examinees on each of the items might be expected to be of rank
one, where a rank-one approximation uses θi to summarize the “ability” of the ith
examinee and φj to represent the difficulty level of the j th item. In educational
measurements, different forms of unidimensionality has been used. For a related
article on assessing unidimensionality of polytomous data, see Nandakumar et al.
(1998).

3.1. Profiling in optimization and column effect estimates. The number of
the θ ’s involved in the objective function (2) increases with n, which inconve-
niences the asymptotic analysis as n → ∞. To bypass this difficulty, we view θk

as nuisance parameters in the following profiling procedure. First, we minimize
the objective function (2) with respect to θk as if φ

k
(k = 1, . . . , r) were known.

Then, with the estimates θ∗
ki = φT

k
y

i
, minimizing (2) is equivalent to minimizing

the following objective function:

min
φ

n∑
i=1

ŵi

∥∥∥∥∥
(
Im −

r∑
k=1

φ
k
φT

k

)
y

i

∥∥∥∥∥
2

,(6)

under the restrictions that ‖φ
1
‖ = · · · = ‖φ

r
‖ = 1, and φ

k
⊥φ

l
for k 
= l.

Let ϕ0 = (φ
(0)T
1 , . . . , φ(0)T

r
)T , ϑ0 = (0, ϕT

0 )T , and ϑ̂τ = (ξ̂τ − ξτ , ϕ̂
T )T , where

ξτ is the τ th quantile of ‖ei‖2, ei = (Im − ∑r
k=1 φ

(0)
k φ

(0)T
k )y

i
and ϕ̂ is the

initial estimate of ϕ0. We obtain the Bahadur representation for the estimates
ϕ̃ = (φ̃T

1 , . . . , φ̃T
r )T from step 1.
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THEOREM 3.1. Assume model (4) with ϕ̂ as any root-n consistent estimate of
the parameter vector ϕ0. If conditions (M1)–(M5) and (E1)–(E3) in Appendix A
hold, then

ϕ̃ − ϕ0 = −(nD0)
−1

n∑
i=1

wi

⎛
⎜⎜⎝

b1
(
θ

(0)
1i , . . . , θ

(0)
ri , εi, ϕ0

)
...

br

(
θ

(0)
1i , . . . , θ

(0)
ri , εi, ϕ0

)

⎞
⎟⎟⎠

(7)

+ GT
n

(
ϑ̂1−α − ϑ0

ϑ̂α − ϑ0

)
+ op

(
n−1/2)

,

where wi = 1(ξα < ‖ei‖2 ≤ ξ1−α), D0 is an mr × mr nonsingular square matrix,
Gn is an mr × 2(mr + 1) matrix with the Frobenius norm ‖Gn‖F = O(1) and

bj

(
θ

(0)
1i , . . . , θ

(0)
ri , εi, ϕ0

)

= 2
{
θ

(0)
j i + εT

i φ(0)

j

}2
φ(0)

j
− {

θ
(0)
j i + εT

i φ(0)

j

}
y

i
−

r∑
k=1

{
θ

(0)
ki + εT

i φ(0)

k

}
y

i
.

The specific forms of D0 and Gn can be found in the supplementary material
[Feng and He (2014)]. From Theorem 3.1, Lemma B.2 (in the Appendix) and
Theorem 2.2 of Feng and He (2009), it is clear that the estimate ϕ̃ of the parameter
vector ϕ0 is root-n consistent with asymptotic normality. Its asymptotic variance–
covariance matrix is complicated because both variations from the initial estimates
and the variation from the weighted least squares method are present.

3.2. Row effect predictions. Note that the least squares estimate of θ
(0)
ki

is φ̃T
k y

i
, so it can be seriously affected by any outlying value of the observed

vector y
i
. We now consider the robust procedure that minimizes (3) for a smooth

loss function L.
If L has continuous second derivative, the minimizers of (3) are, by the implicit

function theorem in calculus,

θ̃1i = f (y
i
, φ̃

1
, φ̃

2
, . . . , φ̃

r
),(8)

...

θ̃ri = f (y
i
, φ̃

r
, φ̃

1
, . . . , φ̃

r−1
),(9)

where f is a function with continuous partial derivatives with respect to φkj for
k = 1, . . . , r and j = 1, . . . ,m.

Before we move on, it helps to explore some properties of the implicit func-
tion f . Consider minimizing the following objective function:

m∑
j=1

L

(
yij −

r∑
k=1

θkiφ
(0)
kj

)
,
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which can be written under model (4) as
m∑

j=1

L

(
εij −

r∑
k=1

(
θki − θ

(0)
ki

)
φ

(0)
kj

)
.

When this minimization is performed with respect to θki , we have

f
(
y

i
, φ

(0)
1 , φ

(0)
2 , . . . , φ(0)

r

) = θ
(0)
1i + f

(
εi, φ

(0)
1 , φ

(0)
2 , . . . , φ(0)

r

)
,(10)

...

f
(
y

i
, φ(0)

r , φ
(0)
1 , . . . , φ

(0)
r−1

) = θ
(0)
ri + f

(
εi, φ

(0)
r , φ

(0)
1 , . . . , φ

(0)
r−1

)
.(11)

If L is even, then the function f is radially symmetrical with respect to its first
argument. We obtain the asymptotic result for the estimates θ̃ki defined as the
minimizer of (3) in the following theorem.

THEOREM 3.2. Assume model (4) with ϕ̂ as any root-n consistent estimate
of the parameter vector ϕ0. If conditions (M1)–(M5), (A1)–(A4) and (C3) in Ap-
pendix A hold, then

r∑
k=1

θ̃ki φ̃k

d−→
r∑

k=1

θ
(0)
ki φ(0)

k

+ f
(
εi, φ

(0)
1 , φ

(0)
2 , . . . , φ(0)

r

)
φ(0)

1

+ · · · + f
(
εi, φ

(0)
r , φ

(0)
1 , . . . , φ

(0)
r−1

)
φ(0)

r
,

where θ̃ki is defined in (8)–(9), and
d−→ refers to convergence in distribution.

It is clear from Theorem 3.2 that each row of the approximating matrix∑r
k=1 θ̃ kφ̃

T
k converges in distribution to the corresponding row of the rank-r matrix∑r

k=1 θ
(0)
k φ

(0)T
k and some function of the model errors ε.

4. Application. For vector measurements, a unidimensional summary is
widely used in data analysis. In this section, we consider testing on the sufficiency
of unidimensional summaries, against the alternative that the matrix Y is a rank
two matrix under model (4).

4.1. Hypothesis testing. With the asymptotic results of the previous section,
we consider hypothesis testing here based on the robust estimates. The null hy-
pothesis is μ

2
= 0, which implies unidimensionality of the mean matrix E(Y),

and that no meaningful pattern can be found in the second dimension of the data
matrix. This hypothesis is especially interesting in the probe-level microarray data
analysis, where unidimensional models are usually assumed to summarize the gene
expression level from the intensity data matrix [Li and Wong (2001), Irizarry et al.
(2003)].
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We first consider the estimation by minimizing (2) with r = 2. We then use
the column vectors φ̃

1
and 0 in minimizing (3) to obtain the estimate θ̃1i =

f (y
i
, φ̃

1
,0), where f is defined in (8)–(9). For convenience, we use f (y

i
, φ̃

1
)

instead of f (y
i
, φ̃

1
,0) from now on. Let

γ (y
i
, ϕ) =

m∑
j=1

L′(yij − f (y
i
, φ

1
)φ1j

)
φ2j

be the score for unidimensionality corresponding to the ith vector y
i
. We have the

following result.

THEOREM 4.1. Let a = (a1, . . . , an)
T be a vector that is orthogonal to μ

1
and satisfies ‖a‖2 = n with a bounded supremum norm. Assume model (4) and
conditions (M1)–(M5), (C1)–(C4), (D1)–(D2) in Appendix A, then

n−1/2aT γ̃ /σ̃n
L−→ N(0,1),(12)

under the null hypothesis that μ
2
= 0, where

γ̃ = (
γ (y

1
, ϕ̃), . . . , γ (y

n
, ϕ̃)

)T
,(13)

σ̃ 2
n = n−1

n∑
i=1

γ 2(y
i
, ϕ̃) −

{
n−1

n∑
i=1

γ (y
i
, ϕ̃)

}2

(14)

and ϕ̃ is the robust estimate defined in Section 2.

REMARK 4.1. If the loss function L is the L2 norm, then L′(x) = 2x. It then
follows that γ (y

i
, ϕ̃) = 2

∑m
j=1{yij − (φ̃T

1 y
i
)φ̃1j }φ̃2j = 2φ̃T

2 y
i
, because φ̃

1
⊥ φ̃

2
for the least squares case. Thus, the statistic used by Feng and He (2009) can be
viewed as a special case of Theorem 4.1.

If the direction vector a is not orthogonal to μ
1
, then n−1/2aT γ̃ /σ̃n may not

converge in distribution to a mean zero distribution. Typically μ
1

is unknown and
needs to be estimated. This is usually done by extra group information in the rows
to enable us to consistently estimate μ

1
, which is sufficient to have the asymptotic

result for the pivotal statistic in Theorem 4.1. This theorem also ensures the valid-
ity of the bootstrap as described in Section 3.3 of Feng and He (2009) based on
Theorem 1 of Mammen (1991).

It is certainly possible that the direction vector a happens to be a poor choice in
the sense of low power against a particular alternative. To ensure decent power of
the test, we can consider several target directions that are orthogonal to each other.

THEOREM 4.2. Assume the conditions of Theorem 4.1. Consider a K × n

matrix A with all the row vectors orthogonal to each other, with K being fixed. If
the vector al = (al1, . . . , aln)

T is the lth row of the matrix A and satisfies al ⊥μ
1
,
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and ‖al‖2 = n with uniformly bounded elements, then P(n−1‖Aγ̃ ‖2/σ̃ 2 ≤ x) −
FK(x) → 0 under the null hypothesis that μ

2
= 0, where FK is the cumulative

distribution function of the χ2
K distribution, γ̃ and σ̃ are given in (13) and (14),

respectively.

4.2. A simulation study. In this section, we use a simulation study to as-
sess the performance of the target direction test based on robust loss func-
tions. We independently generate 20 rows of size 12 from model (4), with
the mean of the corresponding 20 × 12 matrix equal to μ

1
φT

1
and μ

1
φT

1
+

μ
2
φT

2
under the null and the alternative hypotheses, respectively, where μ

1
=

(20, . . . ,20)T , μ
2

= 21/2(1,−1, . . . ,1,−1)T , φ
1

= (1, . . . ,1)T /121/2 and φ
2

=
(1,−1, . . . ,1,−1)T /121/2. The random effects θ

(0)
1i − μ1i and θ

(0)
2i − μ2i are gen-

erated from normal distributions with mean 0 and variances 4 and 1, respectively.
To assess the robustness of the method, we generate model errors in two ways.

In an outlier-free model, all the errors are independently generated from one of
the three cases: (I) 2−1/2N(0,1); (II) (3/10)−1/2t5, where t5 is the t distribution
with 5 degrees of freedom; (III) 2−1(χ2

1 − 1), where χ2
1 is the χ2 distribution with

1 degree of freedom. In a contaminated model, the first two rows of the matrix are
generated from the mixture of the normal distribution N(0,11) with probability
0.1 and one of the three distributions (I), (II) or (III) with probability 0.9, but
the other rows are generated as in the outlier-free model. Under the contaminated
model, outliers are likely to occur in the first two rows. A total of 5000 data sets
are generated from each model in the simulation study.

For the initial steps (I1)–(I5) of Section 2, we use α∗ = 0.3 and 100 randomly
selected subsets, and the constant α = 0.1 is used in calculating the weights (5).
With only two possible outlying rows, the probability that all 100 subsets contain
an outlier is less than 0.001.

We consider two choices of the direction vector a, with a ∝ μ
2

in the

first case, and a ∝ (3/2)1/2(1,−1, . . . ,1,−1)T + (1, . . . ,1,−1, . . . ,−1)T in the
second case. The bootstrap calibration method of Feng and He (2009) is used to
calculate the p-values of the tests. Three loss functions are used for comparison.
They are

(L1) “Logistic”: L(s) = C log(cosh(s/C)),
(L2) “Huber”:

L(s) =
{

2−1s2, |s| ≤ C,

C|s| − 2−1C2, |s| > C,

(L3) “Least squares”: L(s) = s2,

where C = 0.1 is used in our simulation. Since C is close to zero, the two robust
loss functions (L1) and (L2) lead to results that are similar to those obtained under
the L1 loss L(s) = |s|.
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TABLE 1
Estimated type I errors and powers of various tests at the nominal level of 5%, with data generated

from outlier-free models

Null Alternative

Size Normal t χ2 Normal t χ2

Logistica 0.051 0.049 0.043 1.000 0.999 0.995
Hubera 0.051 0.049 0.043 1.000 0.999 0.997
Least squaresa 0.050 0.045 0.035 1.000 0.999 0.998
Logisticb 0.052 0.054 0.051 0.941 0.959 0.978
Huberb 0.053 0.054 0.051 0.936 0.956 0.976
Least squaresb 0.054 0.046 0.039 1.000 0.989 0.998

aThe results are from the case where a ∝ μ2.
bThe results are from the case where a ∝ (3/2)1/2(1,−1, . . . ,1,−1)T + (1, . . . ,1,−1, . . . ,−1)T .

We summarize the results for the outlier-free models in Table 1. It is clear from
Table 1 that all the three tests preserve type I errors well, and they achieve very high
power under the alternative. The story is different, however, for the contaminated
models with the results in Table 2. When no more than 10% of outliers are present,
the test based on the square loss becomes too conservative with low power, but the
robust tests with (L1) and (L2) loss functions withstand the outliers very well.

4.3. Case study. In this section, we analyze a real microarray dataset and ex-
amine the test results based on the least squares method of Feng and He (2009)
as well as the robust alternative studied in this paper. We use the same GeneChip
data obtained from the MicroArray Quality Control project [Shi et al. (2006), Lin

TABLE 2
Estimated type I errors and powers of various tests at the nominal level of 5%, with data generated

from contaminated models

Null Alternative

Size Normal t χ2 Normal t χ2

Logistica 0.049 0.051 0.052 0.987 0.983 0.985
Hubera 0.049 0.048 0.052 0.987 0.983 0.986
Least squaresa 0.024 0.021 0.019 0.467 0.398 0.404
Logisticb 0.054 0.046 0.053 0.884 0.908 0.866
Huberb 0.054 0.048 0.052 0.882 0.906 0.862
Least squaresb 0.021 0.018 0.022 0.455 0.371 0.464

aThe results are from the case where a ∝ μ2.
bThe results are from the case where a ∝ (3/2)1/2(1,−1, . . . ,1,−1)T + (1, . . . ,1,−1, . . . ,−1)T .
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et al. (2013)]. There are a total of 20 microarrays (HG-U133-Plus-2.0) with 54,675
probe-sets (each composed of 11 probes) on each, generated from five colorectal
adenocarcinomas and five matched normal colonic tissues with one technical repli-
cate at each of two laboratories involved in the MAQC project. We use the intensity
measure of perfect matches, and preprocess the probe-level microarray data with
the “RMA” background adjustment method [Irizarry et al. (2003)] and the quantile
normalization method [Bolstad et al. (2003)].

We consider a target direction [see supplementary material, Feng and He
(2014)] to contrast the two groups: the normal tissue group and the tumor group.
Since the gene expressions from the arrays of the same group are expected to be
equal, the target direction is approximately orthogonal to the mean of θ1.

For the first approximation by minimizing (2), we use the same values of
α and α∗ as those of Section 4.2. For the second approximation by minimizing (3),
we consider two loss functions: one is for the square loss and the other is the logis-
tic loss function with C = 1.205 (times the scale of the residuals). With this choice
of C, we retain 95% asymptotic efficiency at the normal distribution.

We inspect one probe-set “1555106_a_at” to better understand the discrepan-
cies between the least squares method and the robust alternative. In this case,
the data matrix has 20 rows and m = 11 columns. In Figure 1, we plot the ar-
rays and the probes with the coordinates (θ̂1i , θ̂2i) and (φ̂1j , φ̂2j ), respectively, for

FIG. 1. Scatter plot of singular vectors for the probe-set “1555106_a_at” from the regular SVD. In
the upper panel, the circles represent the arrays from tumor samples, while the solid points represent
normal tissues. In the lower panel, the circle corresponds to probe 3.
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FIG. 2. Scatter plot of singular vectors for the probe-set “1555106_a_at” from a robust approx-
imation. In the upper panel, the circles represent the arrays from tumor samples, while the solid
points represent normal tissues. In the lower panel, the circle corresponds to probe 3.

i = 1, . . . ,20 and j = 1, . . . ,11, where the least squares estimates are used. The
p-value is 0.036 based on the least squares method, and the first four singular
values are (472,163,36,29). It is clear from Figure 1 that there exist an outlying
array and an outlying probe. Further inspection of the data shows that there exists
an outlying measurement in the outlying array and the outlying probe in the in-
tensity data matrix. In other words, it is likely that the significant two-dimensional
mean structure is caused by the outlier.

With the robust alternative, the p-value is 0.741, and no outlying estimates of
the arrays-effects or probe-effects are observed in Figure 2. The first four singular
values are (169,29,25,23) in this case, and the second singular value is close to
the third and the fourth, which indicates that the 2nd singular structure is likely
to be due to noise. From this empirical example, we see that the robust method is
powerful in moderating the effect from outliers. More details of the case study can
be found in the supplementary material [Feng and He (2014)].

APPENDIX A: ASSUMPTIONS

A.1. Model assumptions.

(M1) The column vectors φ
(0)
k (k = 1, . . . , r) are orthogonal to one another.
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(M2) The row vectors θ
(0)
k (k = 1, . . . , r) are independently distributed with

mean μ
k

= (μk1, . . . ,μkn)
T and variance σ 2

k In, for k = 1, . . . , r . The compo-

nents of θ
(0)
k are independently distributed with finite fourth moments. Moreover,

μ
k
⊥μ

l
, for k 
= l, where ⊥ denotes orthogonality.

(M3) The error variables εi = (εi1, . . . , εim)T are independently generated
from a distribution with mean zero and finite fourth moment, and εij is symmetri-
cally distributed with E(ε2

ij ) = σ 2.

(M4) The variables {θ(0)
1i }, . . . , {θ(0)

ri } and {εi} are mutually independent.
(M5) n−1‖μ

k
‖2 → μ2

k as n → ∞ for some finite constants μk , where ‖ · ‖2 is

the L2 norm. We assume that μ2
k + σ 2

k > μ2
l + σ 2

l when k < l, which is necessary
for the identifiability of the model parameters.

These assumptions are clearly satisfied with Gaussian row-effects and Gaussian
errors. In robust statistics, a traditional parametric model is often assumed for the
outlier-free part of the data, but we design a robust procedure to be insensitive to
data contamination.

A.2. Assumptions for Lemma B.2 and Theorem 3.1. Let ϑ = (δ, ϕT )T , and
ξ̂τ and ξτ be the sample and the population τ quantiles of ‖êi‖2 and ‖ei‖2, respec-

tively, where êi = (Im − ∑r
k=1 φ̂

k
φ̂T

k )y
i

and ei = (Im − ∑r
k=1 φ

(0)
k φ

(0)T
k )y

i
. Let

the function g denote the probability density of the random variable ‖ei‖2.

(E1) The value g(ξτ ) is bounded and positive, and g is continuous in a neigh-
bour of ξτ .

(E2) n−1 ∑n
i=1 E{‖y

i
‖| ∂fi

∂y
i

|/fi(yi
)} ≤ K for some constant K and all n, where

fi is the probability density function of the random vector y
i
.

(E3) For given ξ ∈ R, n−1 ∑n
i=1 Hi (ξ, φ

(0)
j , ϑ0) = O(1), for j = 1, . . . , r ,

where

Hi (ξ, ν,ϑ) = ∂E{M(ξ, δ, ϕ, y
i
)ν}

∂ϑ
(15)

and

M(ξ, δ, ϕ, y
i
) = 1

{∥∥∥∥∥
(
Im −

r∑
k=1

φ
k
φT

k

)
y

i

∥∥∥∥∥
2

≤ ξ + δ

}
y

i
yT

i
.(16)

REMARK A.1. By similar arguments to those used in the proof of Lemma B.2,
we note that assumption (E3) holds if n−1 ∑n

i=1 E{‖y
i
‖3| ∂fi

∂y
i

|/fi(yi
)} ≤ K ′ for

some constant K ′ and all n. Conditions (E2) and (E3) are satisfied by the Gaussian
distribution as well as any t distribution with finite fourth moment.
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A.3. Assumptions on the loss function.

(C1) The loss function L is even and nonnegative, and L(x) = 0 if and only if
x = 0.

(C2) The first derivative L′ is continuous, piecewise differentiable, nondecreas-
ing in R and positive in R

+.
(C3) The second derivative L′′ is nonnegative, nonincreasing in R

+ and piece-
wise continuous.

(C4) The derivatives L′ and L′′ satisfy |L′(x)| ≤ C0|x| and L′′(x) ≤ C0 at all
x ∈ R, for some constant C0.

A.4. Assumptions for Theorem 4.1.

(D1) max1≤i≤n ‖y
i
‖ = Op(n1/4−δ) for some small positive number δ.

(D2) The distribution of θ
(0)
2i − μ2i is symmetric around zero.

APPENDIX B: PROOFS

In the proofs, we assume that r = 2 for simplicity. The same arguments work
for the general cases of r ≥ 2. We first give the Bahadur representations of the
quantile estimates. First we state four lemmas, but their proofs can be found in the
supplementary material.

LEMMA B.1. Suppose that assumptions (M1)–(M5) hold and (I2)–(I4) in
step 0 are repeated a fixed number of times, then the initial estimate ϕ̂ is root-n
consistent for ϕ0.

LEMMA B.2. Suppose that assumptions (M1)–(M5) and (E1)–(E2) hold, and
ϕ̂ is the initial root-n consistent estimate of ϕ0, then

ξ̂τ − ξτ = −{
ng(ξτ )

}−1
n∑

i=1

ψτ

{‖ei‖2 − ξτ

} + Op

(
n−1/2)

,(17)

where ξ̂τ , ξτ , ei , g and v are defined in Appendix A.2, and ψτ (u) = τ − 1(u < 0).

LEMMA B.3. If conditions (M2), (M3) and (M5) hold, and ϕ̂ is the initial
root-n consistent estimate of ϕ0, then

n−1
n∑

i=1

1
{
ξ̂α < ‖êi‖2 ≤ ξ̂1−α

}
y

i
yT

i

p−→ (1 − 2α)
(
μ2

1 + σ 2
1
)
φ(0)

1
φ(0)T

1
(18)

+ (1 − 2α)
(
μ2

2 + σ 2
2
)
φ(0)

2
φ(0)T

2
+ σ 2(α)I,

where σ 2(α) = E[1{ξα ≤ ‖(Im − ∑r
k=1 φ

(0)
k φ

(0)T
k )εi‖2 ≤ ξ1−α}ε2

ij ].
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Let ϕ̃ be the estimate of ϕ0 from step 1. We now have

LEMMA B.4. Suppose that the observations y
i
, y

2
, . . . , y

n
are drawn from

model (4). If assumptions (M1)–(M5) hold, then ϕ̃
p→ ϕ0.

In the following lemma, we obtain upper bounds for the estimates of θ(0)’s
given ϕ.

LEMMA B.5. If conditions (C1) and (C2) hold, then we have

f 2(y,φ
1
, φ

2
, . . . , φ

r
) + · · · + f 2(y,φ

r
,φ

1
, . . . , φ

r−1
) ≤ 4m2‖y‖2(19)

for any ϕ ∈ S and y ∈ R
m where

S = {(
φT

1
, . . . , φT

r

)T ∈ R
rm :‖φ

k
‖ = 1, φ

k
⊥φ

l
, for k 
= l

}
(20)

and f is defined in (8)–(9). Furthermore,

f 2(
y,φ∗

1
, φ∗

2
, . . . , φ∗

r

) + · · · + f 2(
y,φ∗

r
, φ∗

1
, . . . , φ∗

r−1

) ≤ 4m3(1 − 3τ/2)−1‖y‖2,

where ϕ∗ = λϕ1 + (1 − λ)ϕ2, λ ∈ (0,1), and ‖ϕ1 − ϕ2‖ ≤ τ for 0 < τ < 2/3 and
ϕ1, ϕ2 ∈ S.

REMARK B.1. The result of Lemma B.5 holds uniformly for ϕ ∈ S, so the ex-
istence of the moments of y

i
ensures the existence of the corresponding moments

of the estimates of θ(0)’s given ϕ.

PROOF OF LEMMA B.5. Again we present the proof for r = 2. From the def-
inition of f , we have

m∑
j=1

L
(
yj − f (y,φ

1
, φ

2
)φ1j − f (y,φ

2
, φ

1
)φ2j

) ≤
m∑

j=1

L(yj ),

where yj is the j th component of any vector y ∈ Rm.
From condition (C1), we have

L
(
yj − f (y,φ

1
, φ

2
)φ1j − f (y,φ

2
, φ

1
)φ2j

) ≤
m∑

j=1

L(yj ) =
m∑

j=1

L
(|yj |)

for j = 1, . . . ,m.
We now show that

m∑
j=1

L
(|yj |) ≤ L

(
m∑

j=1

|yj |
)
.



ROBUST APPROXIMATIONS WITH LOW-RANK DATA MATRICES 205

Consider x, z ∈ R. Without loss of generality, we assume that x > z > 0. It is clear
that

L(x + z) − L(x) = L′(x + λ1z)z

and

L(z) − L(0) = L′(λ2)z,

where 0 < λ1, λ2 < 1. From conditions (C1) and (C2), we have L(x + z)−L(x)−
L(z) = [L′(x +λ1z)−L′(λ2z)]z ≥ 0. Thus,

∑m
j=1 L(|yj |) ≤ L(

∑m
j=1 |yj |). It then

follows that

L
(∣∣yj − f (y,φ

1
, φ

2
)φ1j − f (y,φ

2
, φ

1
)φ2j

∣∣) ≤ L

(
m∑

l=1

|yl|
)
.

From (C2), so we have

∣∣yj − f (y,φ
1
, φ

2
)φ1j − f (y,φ

2
, φ

1
)φ2j

∣∣ ≤
m∑

l=1

|yl|.

Furthermore, we have

∣∣f (y,φ
1
, φ

2
)φ1j + f (y,φ

2
, φ

1
)φ2j

∣∣ ≤
m∑

l=1

2|yl|.

Also note that ‖φ
1
‖ = ‖φ

2
‖ = 1 and φ

1
⊥φ

2
, it then follows that

f 2(y,φ
1
, φ

2
) + f 2(y,φ

2
, φ

1
)

=
m∑

j=1

[
f (y,φ

1
, φ

2
)φ1j + f (y,φ

2
, φ

1
)φ2j

]2 ≤ 4m

(
m∑

j=1

|yj |
)2

≤ 4m2‖y‖2.

With the similar arguments, we have

∣∣f (
y,φ∗

1
, φ∗

2

)
φ∗

1j + f
(
y,φ∗

2
, φ∗

1

)
φ∗

2j

∣∣ ≤
m∑

j=1

2|yj |,

where λ ∈ (0,1), φ∗
1

= λφ
(1)
1 + (1 − λ)φ

(2)
1 and φ∗

2
= λφ

(1)
2 + (1 − λ)φ

(2)
2 . Note

that
m∑

j=1

∣∣f (
y,φ∗

1
, φ∗

2

)
φ∗

1j + f
(
y,φ∗

2
, φ∗

1

)
φ∗

2j

∣∣2

= [
f 2(

y,φ∗
1
, φ∗

2

) + f 2(
y,φ∗

2
, φ∗

1

)]
+ 2λ(1 − λ)f

(
y,φ∗

1
, φ∗

2

)
f

(
y,φ∗

2
, φ∗

1

)
× [

φ(1)T

1

(
φ(2)

2
− φ(1)

2

) + φ(1)T

2

(
φ(2)

1
− φ(1)

1

)]
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+ 2λ(1 − λ)
[
f 2(

y,φ∗
1
, φ∗

2

)
φ(1)T

1

(
φ(2)

1
− φ(1)

1

)
+ f 2(

y,φ∗
2
, φ∗

1

)
φ(1)T

2

(
φ(2)

2
− φ(1)

2

)]
≥ (1 − 3τ/2)

[
f 2(

y,φ∗
1
, φ∗

2

) + f 2(
y,φ∗

2
, φ∗

1

)]
,

so it follows that

f 2(
y,φ∗

1
, φ∗

2

) + f 2(
y,φ∗

2
, φ∗

1

)

≤ (1 − 3τ/2)−1

(
2m

m∑
j=1

|yj |
)2

≤ 4m3(1 − 3τ/2)−1‖y‖2. �

LEMMA B.6. If the result of Lemma B.5 and conditions (C2)–(C4) hold, the
following inequality holds for φ

1
in a neighbor of φ

(0)
1 ,

∣∣L′(yj − f (y,φ
1
)φ1j

) − L′(yj − f
(
y,φ(0)

1

)
φ

(0)
1j

)∣∣ ≤ C‖y‖∥∥φ
1
− φ(0)

1

∥∥(21)

for j = 1, . . . ,m, where yj is the j th component of the vector y, f is defined
in (8)–(9) with r = 1, and C is some constant.

PROOF. Without loss of generality, we assume that φ(0)
1j 
= 0 for j = 1, . . . ,m1,

and φ
(0)
1j = 0 for j = m1 + 1, . . . ,m.

(i) Now we consider j = 1, . . . ,m1. Consider unit vectors φ and ν such that

max{‖φ − φ
(0)
1 ‖,‖ν − φ

(0)
1 ‖} ≤ τ/2, where 0 < τ < 2/3.

If L′′(yj − f (y,φ)φj ) = 0, then

∣∣∣∣∂L′(yj − f (y,φ)φj )

∂φl

∣∣∣∣ = 0.

We now consider the case where L′′(yj − f (y,φ)φj ) > 0. Let K1 =
min{|φ(0)

1j |, j = 1, . . . ,m1}. When φ is sufficiently close to φ
(0)
1 , we must have

|φj | ≥ K1/2, for j = 1, . . . ,m1. It then follows from condition (C3) that

m∑
j=1

L′′(yj − f (y,φ)φj

)
φ2

j > 0.

Note that
m∑

j=1

L′(yj − f (y,φ)φj

)
φj = 0,
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based on the definition of f . By the implicit function theorem, the partial deriva-
tives of f with respect to φ is

∂f (y,φ)

∂φj

= −L′(yj − f (y,φ)φj ) − L′′(yj − f (y,φ)φj )f (y,φ)φj∑m
j=1 L′′(yj − f (y,φ)φj )φ

2
j

(22)

for j = 1, . . . ,m.
Consider the partial derivative

∂L′(yj − f (y,φ)φj )

∂φl

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−L′′(yj − f (y,φ)φj

)
φj

∂f (y,φ)

∂φl

, j 
= l,

−L′′(yj − f (y,φ)φj

){
φj

∂f (y,φ)

∂φl

+ f (y,φ)

}
, j = l.

Let K2 = K1/2 and

zj (y,φ) = L′′(yj − f (y,φ)φj )φj∑m
l=1 L′′(yl − f (y,φ)φl)φ

2
l

.

Consider∣∣zj (y,φ)
∣∣

= K−1
2

(
L′′(yj − f (y,φ)φj

)|φj |)/(
m1∑
j=1

L′′(yj − f (y,φ)φj

)
φ2

j /K2 +
m∑

j=m1+1

L′′(yj − f (y,φ)φj

)
φ2

j /K2

)

≤ K−1
2

L′′(yj − f (y,φ)φj )|φj |∑m1
j=1 L′′(yj − f (y,φ)φj )|φj | ≤ K−1

2 .

It then follows from assumption (C4) and Lemma B.5 that
∣∣∣∣∂L′(yj − f (y,φ)φj )

∂φl

∣∣∣∣ ≤ C1
{∣∣f (y,φ)

∣∣ + ‖y‖} ≤ C‖y‖(23)

for some constant C. Hence, by (C2)–(C4), we obtain∣∣L′(yj − f (y,φ)φj

) − L′(yj − f (y, ν)νj

)∣∣ ≤ C‖y‖‖φ − ν‖.(24)

(ii) Now consider j = m1 + 1, . . . ,m. By condition (C4), we have

L′′(x) ≤ C0
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for some constant C0, and x ∈ R. It follows from condition (C3) that∣∣L′(yj − f (y,φ)φj

) − L′(yj − f (y, ν)νj

)∣∣
≤ C0

∣∣f (y,φ)φj − f (y, ν)νj

∣∣
≤ C0

{∣∣f (y,φ) − f (y, ν)
∣∣|φj | +

∣∣f (y, ν)
∣∣|φj − νj |}

≤ C0
[{∣∣f (y,φ)

∣∣ + ∣∣f (y, ν)
∣∣}∣∣φj − φ

(0)
j

∣∣ + ∣∣f (y, ν)
∣∣|φj − νj |].

It then follows from Lemma B.5 that∣∣L′(yj − f (y,φ)φj

) − L′(yj − f (y, ν)νj

)∣∣
(25)

≤ ‖y‖(
C2

∣∣φj − φ
(0)
j

∣∣ + C3|φj − νj |)
for some constants C2 and C3.

Thus, by (24) and (25), we obtain (21). �

PROOF OF THEOREM 4.1. By (21) and Lemma 4.6 of He and Shao (1996),
we have

sup
|ϕ−ϕ0|≤Cn−1/2

∣∣∣∣∣
n∑

i=1

ai

[
γ (y

i
, ϕ) − γ (y

i
, ϕ0) − E

{
γ (y

i
, ϕ) − γ (y

i
, ϕ0)

}]∣∣∣∣∣
(26)

= Op

(
n1/2)

,

where γ (y
i
, ϕ) = ∑m

j=1 L′(yij − f (y
i
, φ

1
)φ1j )φ2j .

By the similar arguments to those used to obtain (10) and (11), we ob-

tain f (y
i
, φ

(0)
1 ) = θ

(0)
1i + f (θ

(0)
2i φ

(0)
2 + εi, φ

(0)
1 ). It then follows from conditions

(C1)–(C4), (D2) and (22) that

n−1
n∑

i=1

ai

∂E{γ (y
i
, ϕ0)}

∂ϕ0
= n−1

n∑
i=1

aiE

{∂γ (y
i
, ϕ0)

∂ϕ0

}
= o(1),(27)

when a ⊥μ
1

and μ
2
= 0. From (23) and (C4), we know that∣∣∣∣∂γ (y

i
, ϕ)

∂ϕ

∣∣∣∣ ≤ C1‖y‖
for some constants C1. It then follows from condition (C3) and the moment condi-

tion on y
i

that n−1 ∑n
i=1 ai

∂E{γ (y
i
,ϕ)}

∂ϕ
uniformly converges to a continuous func-

tion. Thus, it follows from (26) and (27) that
n∑

i=1

ai

{
m∑

j=1

L′(yij − f (y
i
, φ̃

1
)φ̃1j

)
φ̃2j

}

(28)

=
n∑

i=1

ai

{
m∑

j=1

L′(yij − f
(
y

i
, φ(0)

1

)
φ

(0)
1j

)
φ

(0)
2j

}
+ op

(
n1/2)

.
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Under condition (D2) and the null hypothesis that μ
2
= 0, we have

n−1/2
n∑

i=1

aiγ (y
i
, ϕ0)

= n−1/2
n∑

i=1

ai

{
m∑

j=1

L′(θ(0)
2i φ

(0)
2j + εij − f

(
θ

(0)
2i φ(0)

2
+ εi, φ

(0)

1

)
φ

(0)
1j

)
φ

(0)
2j

}

L−→ N
(
0, α2)

as n → ∞, where

α2 = Var

{
m∑

j=1

L′((θ(0)
2i −μ2i

)
φ

(0)
2j +εij −f

((
θ

(0)
2i −μ2i

)
φ(0)

2
+εi, φ

(0)

1

)
φ

(0)
1j

)
φ

(0)
2j

}
.

Note that ∣∣γ 2(y
i
, ϕ̃) − γ 2(y

i
, ϕ0)

∣∣ ≤ K‖y
i
‖‖ϕ̃ − ϕ0‖

for some constant K , so σ̃ 2
n

p−→ α2 as n → ∞, under the null that μ
2
= 0. There-

fore, we obtain (12). �
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SUPPLEMENTARY MATERIAL

Additional details of case study and technical proofs (DOI: 10.1214/13-
AOS1186SUPP; .pdf). We provide details of the case study in Section 4.3 and
complete the proofs of technical lemmas, as well as Theorems 3.1–3.2 and 4.2 of
this paper.

REFERENCES

AGARWAL, A., NEGAHBAN, S. and WAINWRIGHT, M. J. (2012). Noisy matrix decomposition via
convex relaxation: Optimal rates in high dimensions. Ann. Statist. 40 1171–1197. MR2985947

AMMANN, L. P. (1993). Robust singular value decompositions: A new approach to projection pur-
suit. J. Amer. Statist. Assoc. 88 505–514. MR1224375

BOLSTAD, B. M., IRIZARRY, R. A., ASTRAND, M. and SPEED, T. P. (2003). A comparison of
normalization methods for high density oligonucleotide array data based on variance and bias.
Bioinformatics 19 185–193.

CANDÈS, E. J., LI, X., MA, Y. and WRIGHT, J. (2011). Robust principal component analysis?
J. ACM 58 Art. 11, 37. MR2811000

http://dx.doi.org/10.1214/13-AOS1186SUPP
http://www.ams.org/mathscinet-getitem?mr=2985947
http://www.ams.org/mathscinet-getitem?mr=1224375
http://www.ams.org/mathscinet-getitem?mr=2811000
http://dx.doi.org/10.1214/13-AOS1186SUPP


210 X. FENG AND X. HE

CHEN, C., HE, X. and WEI, Y. (2008). Lower rank approximation of matrices based on fast and
robust alternating regression. J. Comput. Graph. Statist. 17 186–200. MR2424801

FENG, X. and HE, X. (2009). Inference on low-rank data matrices with applications to microarray
data. Ann. Appl. Stat. 3 1634–1654. MR2752151

FENG, X. and HE, X. (2014). Supplement to “Statistical inference based on robust low-rank data ma-
trix approximation.” DOI:10.1214/13-AOS1186SUPP.

GABRIEL, K. R. and ZAMIR, S. (1979). Lower rank approximation of matrices by least squares
with any choice of weights. Technometrics 21 489–498.

GERVINI, D. and YOHAI, V. J. (2002). A class of robust and fully efficient regression estimators.
Ann. Statist. 30 583–616. MR1902900

HAMPEL, F. R., RONCHETTI, E. M., ROUSSEEUW, P. J. and STAHEL, W. A. (1986). Robust Statis-
tics: The Approach Based on Influence Functions, 1st ed. Wiley, New York. MR0829458

HE, X. and SHAO, Q.-M. (1996). A general Bahadur representation of M-estimators and its appli-
cation to linear regression with nonstochastic designs. Ann. Statist. 24 2608–2630. MR1425971

HUBER, P. J. and RONCHETTI, E. M. (2009). Robust Statistics, 2nd ed. Wiley, Hoboken, NJ.
MR2488795

IRIZARRY, R., BOLSTAD, B. M., COLLIN, F., COPE, L. M., HOBBS, B. and SPEED, T. P. (2003).
A model-based background adjustment for oligonucleotide expression arrays. Nucleic Acids Res.
31 e15.

LI, C. and WONG, W. H. (2001). Model-based analysis of oligonucleotide arrays: Expression index
and outlier detection. Proc. Natl. Acad. Sci. USA 98 31–36.

LIN, G., HE, X., JI, H., SHI, L., DAVIS, R. W. and ZHONG, S. (2013). Reproducibility prob-
ability score–incorporating measurement variability across laboratories for gene selection. Nat.
Biotechnol. 24 1476–1477.

MAMMEN, E. (1991). When Does Bootstrap Work? Asymptotic Results and Simulations, 1st ed.
Springer, New York.

NANDAKUMAR, R., YU, F., LI, H. and STOUT, W. (1998). Assessing unidimensionality of polyto-
mous data. Appl. Psychol. Meas. 22 99–115.

RUPPERT, D. and CARROLL, R. J. (1980). Trimmed least squares estimation in the linear model.
J. Amer. Statist. Assoc. 75 828–838. MR0600964

SHI, L., REID, L. H., JONES, W. D. et al. (2006). The MicroArray Quality Control (MAQC) project
shows inter- and intraplatform reproducibility of gene expression measurements. Nat. Biotechnol.
24 1151–1161.

ZHOU, Z., LI, X., WRIGHT, J., CANDES, E. and MA, Y. (2009). Stable principal component pursuit.
In International Symposium on Information Theory, June 2010.

SCHOOL OF STATISTICS AND MANAGEMENT

AND KEY LABORATORY OF MATHEMATICAL ECONOMICS (SUFE),
MINISTRY OF EDUCATION

SHANGHAI UNIVERSITY OF FINANCE AND ECONOMICS

777 GUODING ROAD

SHANGHAI 200433
CHINA

E-MAIL: feng.xingdong@mail.shufe.edu.cn

DEPARTMENT OF STATISTICS

UNIVERSITY OF MICHIGAN

439 WEST HALL

1085 SOUTH UNIVERSITY AVENUE

ANN ARBOR, MICHIGAN 48109
USA
E-MAIL: xmhe@umich.edu

http://www.ams.org/mathscinet-getitem?mr=2424801
http://www.ams.org/mathscinet-getitem?mr=2752151
http://dx.doi.org/10.1214/13-AOS1186SUPP
http://www.ams.org/mathscinet-getitem?mr=1902900
http://www.ams.org/mathscinet-getitem?mr=0829458
http://www.ams.org/mathscinet-getitem?mr=1425971
http://www.ams.org/mathscinet-getitem?mr=2488795
http://www.ams.org/mathscinet-getitem?mr=0600964
mailto:feng.xingdong@mail.shufe.edu.cn
mailto:xmhe@umich.edu

	Introduction
	Estimation procedure
	Asymptotic properties
	Proﬁling in optimization and column effect estimates
	Row effect predictions

	Application
	Hypothesis testing
	A simulation study
	Case study

	Appendix A: Assumptions
	Model assumptions
	Assumptions for Lemma B.2 and Theorem 3.1
	Assumptions on the loss function
	Assumptions for Theorem 4.1

	Appendix B: Proofs
	Acknowledgements
	Supplementary Material
	References
	Author's Addresses

