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SECOND-ORDER ASYMPTOTICS FOR QUANTUM
HYPOTHESIS TESTING

BY KE LI1

IBM TJ Watson Research Center, Massachusetts Institute of Technology and
National University of Singapore

In the asymptotic theory of quantum hypothesis testing, the minimal er-
ror probability of the first kind jumps sharply from zero to one when the error
exponent of the second kind passes by the point of the relative entropy of
the two states in an increasing way. This is well known as the direct part and
strong converse of quantum Stein’s lemma.

Here we look into the behavior of this sudden change and have make it
clear how the error of first kind grows smoothly according to a lower order of
the error exponent of the second kind, and hence we obtain the second-order
asymptotics for quantum hypothesis testing. This actually implies quantum
Stein’s lemma as a special case. Meanwhile, our analysis also yields tight
bounds for the case of finite sample size. These results have potential appli-
cations in quantum information theory.

Our method is elementary, based on basic linear algebra and probability
theory. It deals with the achievability part and the optimality part in a unified
fashion.

1. Introduction. We are interested in the asymptotic theory of hypothesis
testing with two hypotheses. Suppose there are many identical physical systems,
each independently being in some random states, subject to the same statistical
description. Here the statistical description is probability distribution in classical
world and quantum state which is positive semi-definite matrix with trace 1 in
quantum mechanics. However, the statistical description is not fixed: it has two
possibilities, say, either ρ (the null hypothesis) or σ (the alternative hypothesis).
Thus the task is to identify which statistical description is the true one, based on
the instances of the physical systems.

It is the central problem in asymptotic hypothesis testing to characterize the
behavior of errors. An intuitive understanding is that the probabilities of mistaking
one hypothesis for the other can be made arbitrarily small when the sample size
n is big enough, except for the trivial case that ρ and σ are the same. However,
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assuming exponential decay, we want to optimize the rate exponent with which
the error of concern, under certain reasonable preconditions, converges to zero. In
the classical setting, this problem has been well understood, featured with a list of
famous results [7, 9–11, 13, 20], including the celebrated Stein’s lemma, Chernoff
distance and Hoeffding bound. These results are all obtainable using the likelihood
ratio tests.

In contrast to its classical counterpart, the problem of quantum hypothesis test-
ing becomes very difficult due to the noncommutativity of the two quantum states
ρ and σ , and the more complicated mechanics for observing the underlying phys-
ical systems, that is, quantum measurement. Although the quantum generalization
of the likelihood ratio test was obtained in the 1970s [18, 21], its structure is not
clear in the aymptotic limit. Yet, substantial achievements have been made since.

In 1991, Hiai and Petz established the quantum Stein’s lemma, providing rig-
orous operational interpretation for the quantum relative entropy, or quantum
Kullback–Leibler divergence [19]. Then its optimality part was strengthened by
Ogawa and Nagaoka, with a strong converse theorem [28]. More recently, quan-
tum Chernoff distance, the optimal rate exponent under which the average error
tends to 0 in the setting of symmetric hypothesis testing, has been identified in two
seminal papers. The achievability part was due to Audenaert et al. [1], and the opti-
mality part was by Nussbaum and Szkoła [26]. The methods invented in these two
papers were subsequently used to derive the quantum Hoeffding bound [3, 15, 24].

The quantum Stein’s lemma characterizes the optimal error exponent in asym-
metric hypothesis testing. Besides the breakthroughs mentioned above, some other
important progresses in this regime can be found in [3–6, 8, 14, 25]. To state this
result, we define two types of errors. Type I error (or the error of the first kind) is
the probability that we incorrectly accept the alternative hypothesis σ⊗n while it is
actually the null hypothesis ρ⊗n, and type II error (or the error of the second kind)
is the probability of the opposite situation. In an asymmetric setting, we want to
minimize the type II error while only simply requiring that the type I error con-
verges to 0. Let supp(X) be the support of the operator X. The quantum Stein’s
lemma states that the maximal exponent of type II error is the quantum relative
entropy [19], given by

D(ρ‖σ) =
{

Tr
(
ρ(logρ − logσ)

)
, if supp(ρ) ⊆ supp(σ ),

+∞, otherwise.

It also asserts that if the type II error goes to 0 with an exponent larger than
D(ρ‖σ), then the type I error inevitably converges to 1 [28].

However, the drawback of the quantum Stein’s lemma is that it characterizes the
asymptotic behavior of errors in a relatively coarse-grained way. To be precise, it
considers only the linear term of the type II error exponent, which is of the order n

(we call it the first order). As a result, the optimal type I error jumps sharply from 0
to 1 when the rate exponent of type II error—quantified by its first order—passes
by the relative entropy D(ρ‖σ) from the smaller side to the larger side.
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In this paper, we prove the second-order asymptotic theorem, and thus funda-
mentally refine the quantum Stein’s lemma. Specifically, we track the exponent of
the type II error in depth, to the order

√
n (we call it the second order), and clarify

how the type I error varies smoothly as a function of this second-order exponent.
A variance-like quantity, defined as

V (ρ‖σ) := Trρ(logρ − logσ)2 − (
D(ρ‖σ)

)2
,(1)

will play an important role, and we name it the quantum relative variance of
ρ and σ . Write the second-order rate exponent of the type II error as E2.
Then our result shows that, asymptotically, the minimal type I error is given by
�(E2/

√
V (ρ‖σ)), which grows smoothly from 0 to 1 when E2 increases from

−∞ to +∞. Here � is the cumulative distribution function of standard normal
distribution, and its appearance in our result comes from the use of the central
limit theorem in the proof.

We also obtain very tight bounds for the case of finite sample size n. Supposing
that the type I error is no larger than a constant ε, we minimize the type II error and
consider its negative logarithm. Then we derive upper and lower bounds for this
quantity, based on the method for proving our second-order asymptotic theorem.
This enables us to establish that this quantity can be written as

nD(ρ‖σ) + √
n

√
V (ρ‖σ)�−1(ε) + O(logn).

The first two terms coincide with the results of the quantum Stein’s lemma and our
second-order asymptotic theorem, respectively. Furthermore, the next leading term
(this is the term of the third order), included in O(logn) of the above formula, lies
between a constant and 2 logn.

Our results have potential applications in quantum information theory. There is a
deep connection between hypothesis testing and other topics in information theory
(e.g., channel capacity), both in the classical regime [12, 31] and in the quantum
regime [17]. Recently, this connection has been generalized to the one-shot sce-
nario as well [23, 32]. Indeed, such a connection is very helpful in the derivation
of the second-order coding rate and finite blocklength analysis in classical channel
coding [16, 29]. Our results make it possible to investigate the second-order and
finite blocklength analysis for classical information transmission over quantum
channels.

We point out that the results presented here are independently and concurrently
obtained by Tomamichel and Hayashi [30], using a different method. In [30], such
analysis is conducted in the context of one-shot entropies and has been applied
to the tasks of data compression with quantum side information and randomness
extraction against quantum side information. The bounds for finite sample size in
these two works are slightly different; see Section 4 for details.

The remainder of this paper is organized as follows. In Section 2, we present
our main result of second-order asymptotics. Then we prove it in Section 3. In
Section 4, we treat the case of finite sample size. In Section 5, we note a few
remarks. Finally, we give the proofs to technical lemmas in the Appendix.
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2. Second-order asymptotics. Every quantum system is associated with
a complex Hilbert space. The state of the quantum system is described by a den-
sity matrix � , which is a nonnegative definite matrix in the Hilbert space and
satisfies the normalization condition Tr� = 1. To detect the quantum system, we
have to do quantum measurement, which, in the most general form, is formulated
as positive operator-valued measurement (POVM) M = {Mi}i , with 0 ≤ Mi ≤ 1
and

∑
i Mi = 1. Then the measurement outcome i is obtained with probability

Tr(�Mi).
We consider a large number n of identical quantum systems, each of which has

finite level and is associated with the Hilbert space H of finite dimension |H|.
Given that the quantum systems are either of the state ρ⊗n (the null hypothesis) or
of the state σ⊗n (the alternative hypothesis), we want to identify which state the
systems belong to. Without loss of generality, this can be done by applying a two-
outcome POVM (An,1−An), with 0 ≤ An ≤ 1, on the joint Hilbert space H⊗n of
the quantum systems. If we obtain the outcome associated to An, then we conclude
that the state is ρ⊗n. Similarly, the outcome associated to (1 − An) corresponds
to the state σ⊗n. The error probabilities of the first kind and the second kind are,
respectively, given by αn(An) = Tr(ρ⊗n(1 − An)) and βn(An) = Tr(σ⊗nAn).

The quantum Stein’s lemma shows that the relative entropy D(ρ‖σ) is a critical
jump point in the asymptotics of asymmetric hypothesis testing. Explicitly, it is
stated in two parts as follows:

• Direct part [19]: for arbitrary R ≤ D(ρ‖σ), there exist tests {(An,1 − An)}n
satisfying

lim inf
n→∞

−1

n
logβn(An) ≥ R and lim

n→∞αn(An) = 0.

• Strong converse [28]: if a sequence of tests {(An,1 − An)}n is such that

lim inf
n→∞

−1

n
logβn(An) > D(ρ‖σ),

then limn→∞ αn(An) = 1.

Instead of the rate exponent −1
n

logβn(An) considered in the quantum Stein’s
lemma, we are concerned with a smaller order of the type II error exponent, that is,

1√
n
(− logβn(An) − nD(ρ‖σ)). Then we think about the optimal tradeoff between

the asymptotic limit of this quantity and the type I error αn(An). In an equivalent
way, we define the error-dependency functions as follows and present our result
subsequently.

DEFINITION 1. Let E1,E2 ∈ R, and f (n) be a fixed function of some order
other than n or

√
n, which is to be specified when necessary. We define a sequence

of functions {αn(E1,E2|f ) :n ∈ N}, which reflects the dependency of the minimal
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error probability of the first kind on the error exponent of the second kind, up to
the order n and

√
n, as

αn(E1,E2|f ) := min
An

{
αn(An)|βn(An) ≤ exp

(−(
E1n + E2

√
n + f (n)

))}
.

If supp(ρ) � supp(σ ), we have D(ρ‖σ) = +∞. Asymptotically, the optimal
error probability of the first kind is always 0, while the error exponent of the second
kind can be arbitrarily large. In such a case, the second-order asymptotics makes
no sense. So, in this paper, we suppose supp(ρ) ⊆ supp(σ ), and without loss of
generality, we further suppose σ is of full rank.

Our main result is the following theorem.

THEOREM 2. Let {αn(E1,E2|f )}n, the sequence of error-dependency func-
tions, be as defined in Definition 1, and let V (ρ‖σ), the quantum relative variance
of ρ and σ , be as defined by equation (1). We have

lim
n→∞αn(E1,E2|f ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, if E1 < D(ρ‖σ), f ∈ o(n),

�

(
E2√

V (ρ‖σ)

)
, if E1 = D(ρ‖σ), f ∈ o(

√
n),

1, if E1 > D(ρ‖σ), f ∈ o(n),

(2)

where �(x) is the cumulative distribution function of the standard normal distri-
bution, that is, �(x) := 1√

2π

∫ x
−∞ e−t2/2 dt .

The second case of equation (2) is our second-order asymptotics. In fact, it
implies the first and third cases, which are nothing else but the direct part and
strong converse of quantum Stein’s lemma, respectively. We include them here
such that one easily gets the full information at first sight. To see this, we take
the first case, for example. It is obvious from Definition 1 that, for arbitrary E1 <

D(ρ‖σ), E2 ∈ R, E′
2 ∈ R, f (n) ∈ o(n) and f ′(n) ∈ o(

√
n),

lim
n→∞αn(E1,E2|f ) ≤ lim

n→∞αn

(
D(ρ‖σ),E′

2|f ′).(3)

Assuming the second case of equation (2), the right-hand side of equation (3)
equals �(

E′
2√

V (ρ‖σ)
). Now letting E′

2 → −∞, the first case of equation (2) follows

immediately since αn(E1,E2|f ) is always nonnegative.
We divide Theorem 2 (precisely, its second case) into the achievability part and

optimality part, and equivalently reformulate it below. This reformulation form
corresponds to the structure of the proof in the next section.

REFORMULATION OF THEOREM 2. For quantum hypothesis testing with the
null hypothesis ρ⊗n and the alternative hypothesis σ⊗n and the error probabilities
of the first and second kinds denoted as αn(An) and βn(An), respectively, we have:
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Achievability: for any E2 ∈ R and f (n) ∈ o(
√

n), there exists a sequence of
measurements {(An,1 − An)}n, such that

βn(An) ≤ exp
{−(

nD(ρ‖σ) + E2
√

n + f (n)
)}

,(4)

lim sup
n→∞

αn(An) ≤ �

(
E2√

V (ρ‖σ)

)
.(5)

Optimality: if there is a sequence of measurements {(An,1 − An)}n such that

βn(An) ≤ exp
{−(

nD(ρ‖σ) + E2
√

n + f (n)
)}

(6)

holds for given E2 ∈ R and f (n) ∈ o(
√

n), then

lim inf
n→∞ αn(An) ≥ �

(
E2√

V (ρ‖σ)

)
.(7)

The equivalence is obvious. By the definition of αn(E1,E2|f ), it is straight-
forward to see that the achievability part of the above reformulation is equivalent
to

lim sup
n→∞

αn

(
D(ρ‖σ),E2|f ) ≤ �

(
E2√

V (ρ‖σ)

)
∀f (n) ∈ o(

√
n)(8)

and the optimality part of this reformulation is equivalent to

lim inf
n→∞ αn

(
D(ρ‖σ),E2|f ) ≥ �

(
E2√

V (ρ‖σ)

)
∀f (n) ∈ o(

√
n).(9)

Equations (8) and (9), in turn, are equivalent to the second case of equation (2).

3. Proof of main result. This section is devoted to the proof of our second-
order asymptotics presented in Section 2. The proof goes along the line of the
reformulation of Theorem 2. At first we make some necessary preparations, and
then we accomplish the proof by showing the achievability part and the optimality
part sequentially.

3.1. Preparations. Write ρ = ∑
x λ(x)|ax〉〈ax | and σ = ∑

y μ(y)|by〉〈by | in
their diagonal form, where {|ax〉}x and {|by〉}y , each being an orthonormal basis
of the underlying Hilbert space H, are the eigenvectors of ρ and σ , respectively.
λ(x) and μ(y) are the corresponding eigenvalues, which satisfy 0 ≤ λ(x) ≤ 1,
0 < μ(y) ≤ 1 and

∑
x λ(x) = ∑

y μ(y) = 1. Recall that we suppose σ is of full
rank, and thus μ(y) �= 0. Let xn denote the sequence x1x2 . . . xn and yn denote
y1y2 . . . yn. For n copies of the states ρ, we can write

ρ⊗n = ∑
xn

λn(
xn)∣∣an

xn

〉〈
an
xn

∣∣(10)
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with λn(xn) = ∏n
i=1 λ(xi) and |an

xn〉 = |ax1〉 ⊗ |ax2〉 ⊗ · · · ⊗ |axn〉. Similarly,

σ⊗n = ∑
yn

μn(
yn)∣∣bn

yn

〉〈
bn
yn

∣∣(11)

with μn(yn) = ∏n
i=1 μ(yi) and |bn

yn〉 = |by1〉⊗|by2〉⊗· · ·⊗|byn〉. The subscripts of
x and y indicate which systems they belong to. We further write |ax〉’s as superpo-
sitions of the vectors {|by〉}y , namely, |ax〉 = ∑

y γxy |by〉, with γxy = 〈by |ax〉 ∈ C
and

∑
x |γxy |2 = ∑

y |γxy |2 = 1. In such a way, we have

∣∣an
xn

〉 = ∑
yn

γ n
xnyn

∣∣bn
yn

〉
with γ n

xnyn =
n∏

i=1

γxiyi
.(12)

Define a pair of random variables (X,Y ), with alphabet {(x, y)}|H|
x,y=1 and joint

distribution PX,Y (x, y) = λ(x)|γxy |2. Operationally, this is the probability of ob-
taining (x, y) when we measure the quantum state ρ, sequentially in the bases
{|ax〉}x and {|by〉}y . Let (Xn,Y n) := (X1, Y1)(X2, Y2) · · · (Xn,Yn) be a sequence
of independent and identically distributed random variable pairs, and each (Xi, Yi)

has the same distribution as (X,Y ). Then

PXn,Yn

(
xn, yn) =

n∏
i=1

λ(xi)|γxiyi
|2 = λn(

xn)∣∣γ n
xnyn

∣∣2.(13)

As functions of X and Y , λ(X) and μ(Y ) are also random variables, and so are
λn(Xn) and μn(Y n). Using the idea of Nussbaum and Szkoła [26], we are able to
express the quantum relative entropy and quantum relative variance as statistical
quantities of classical random variables, as follows.

LEMMA 3. We have

D(ρ‖σ) = E(X,Y ) log
λ(X)

μ(Y )
,(14)

V (ρ‖σ) = Var(X,Y ) log
λ(X)

μ(Y )
.(15)

Note again that we are only interested in the case that σ has full rank, so μ(Y ) >

0. During the computation of the right-hand sides of equations (14) and (15),
if λ(x) = 0, we let λ(x) logλ(x) := limz→0 z log z = 0, and λ(x) log2 λ(x) :=
limz→0 z log2 z = 0.

We also present below another technical lemma, which will be used in Sec-
tion 3.3 in the proof of the optimality part.

LEMMA 4. Let |φ〉 and |ϕ〉 be normalized vectors in some Hilbert space. Let π

be a projector and ‖·‖ the 2-norm, that is, ‖|ψ〉‖ := √〈ψ |ψ〉. If ‖|φ〉−π |φ〉‖ ≤ ε,
then ∥∥(|φ〉〈φ|)|ϕ〉∥∥2 − ∥∥(

π |φ〉〈φ|π)|ϕ〉∥∥2 ≤ 2
√

2ε.(16)
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The proofs of Lemmas 3 and 4 are given in the Appendix.

3.2. Proof of the achievability part. For any fixed E2 ∈ R and f (n) ∈ o(
√

n),
let

Ln := exp
{
nD(ρ‖σ) + E2

√
n + f (n)

}
.

Associated with every xn, we define a projector Qn
xn as

Qn
xn := ∑

yn : λn(xn)/μn(yn)≥Ln

∣∣bn
yn

〉〈
bn
yn

∣∣.
Write |ξn

xn〉 := Qn
xn |an

xn〉. Referring to equation (12), we have∣∣ξn
xn

〉 = ∑
yn : λn(xn)/μn(yn)≥Ln

γ n
xnyn

∣∣bn
yn

〉
.(17)

Let An be the projector onto the space Sn that is spanned by {|ξn
xn〉}xn . We claim

that the sequence of measurements {(An,1 − An)}n is what we needed: it satisfies
equations (4) and (5).

Arrange all the values of xn in such a way that the eigenvalues of ρ⊗n, λn(xn)’s
are in an increasing order. This gives an ordering to the vectors {|ξn

xn〉}xn as well.

Let g : {i}|H|n
i=1 �→ {xn} be the bijection mapping the position of xn to xn itself, that

is, xn is at the g−1(xn)th position in the above ordering. Then we have

λn(
g(1)

) ≤ λn(
g(2)

) ≤ · · · ≤ λn(
g
(|H|n))

.(18)

Applying a modified Gram–Schmidt orthonormalization process to the sequence
of vectors ∣∣ξn

g(1)

〉
,
∣∣ξn

g(2)

〉
,
∣∣ξn

g(3)

〉
, . . . ,

∣∣ξn
g(|H|n)

〉
,

we obtain a new sequence of vectors∣∣ξ̂ n
g(1)

〉
,
∣∣ξ̂ n

g(2)

〉
,
∣∣ξ̂ n

g(3)

〉
, . . . ,

∣∣ξ̂ n
g(|H|n)

〉
.(19)

The modification is that if |ξn
g(i)〉 ∈ Span({|ξn

g(j)〉}i−1
j=1) (this includes the case that

|ξn
g(i)〉 = 0), we let |ξ̂ n

g(i)〉 = 0. As a result, the set of vectors {|ξ̂ n
xn〉}xn consists of

an orthonormal basis of the space Sn, plus some zero vectors. Thus

An = ∑
xn

∣∣ξ̂ n
xn

〉〈
ξ̂ n
xn

∣∣.(20)

The vectors {|ξ̂ n
xn〉}xn have another property as follows. From the Gram–Schmidt

process, we know that

∣∣ξ̂ n
g(i)

〉 = i∑
j=1

sn
ij

∣∣ξn
g(j)

〉
(21)
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for all 1 ≤ i ≤ |H|n, with the coefficients sn
ij ∈ C. Further, from equations (17),

(18), (21), and paying attention to the definition of g, we conclude that∣∣ξ̂ n
xn

〉 = ∑
yn : λn(xn)/μn(yn)≥Ln

tnxnyn

∣∣bn
yn

〉
,(22)

where tnxnyn ∈C and ∑
yn : λn(xn)/μn(yn)≥Ln

∣∣tnxnyn

∣∣2 = 1.(23)

Equations (11), (22), (23) lead to

Tr
(
σ⊗n

∣∣ξ̂ n
xn

〉〈
ξ̂ n
xn

∣∣) = ∑
yn : λn(xn)/μn(yn)≥Ln

∣∣tnxnyn

∣∣2μn(
yn) ≤ λn(xn)

Ln

.(24)

So, making use of equations (20) and (24), we arrive at

βn(An) = Trσ⊗nAn ≤ 1

Ln

= exp
{−(

nD(ρ‖σ) + E2
√

n + f (n)
)}

,(25)

which is exactly equation (4).
On the other hand, equation (5) is confirmed as follows. Let

∣∣ξ̄ n
xn

〉 :=
⎧⎪⎪⎨
⎪⎪⎩

0, if
∣∣ξn

xn

〉 = 0,
|ξn

xn〉√
〈ξn

xn |ξn
xn〉

, if
∣∣ξn

xn

〉 �= 0.

Obviously, |ξ̄ n
xn〉 ∈ Sn. So ∣∣ξ̄ n

xn

〉〈
ξ̄ n
xn

∣∣ ≤ An.(26)

Then we have

αn(An) = 1 − Tr
(
ρ⊗nAn

)
≤ 1 − ∑

xn

λn(
xn)

Tr
((∣∣an

xn

〉〈
an
xn

∣∣)(∣∣ξ̄ n
xn

〉〈
ξ̄ n
xn

∣∣))

= 1 − ∑
xn

λn(
xn)〈

ξn
xn |ξn

xn

〉

= Pr
{

λn(Xn)

μn(Y n)
< Ln

}
,

where the second line is by equations (10) and (26), the third line can be seen
from the definitions of |ξn

xn〉 and |ξ̄ n
xn〉 and the fourth line follows from equations

(17) and (13). Recalling that λn(Xn) = ∏n
i=1 λ(Xi) and μn(Y n) = ∏n

i=1 μ(Yi),
and by taking logarithms at both sides of λn(Xn)

μn(Y n)
< Ln, we further obtain

αn(An) ≤ Pr

{√
n

(
1

n

n∑
i=1

log
λ(Xi)

μ(Yi)
− D(ρ‖σ)

)
< E2 + f (n)√

n

}
.(27)
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Since f (n) ∈ o(
√

n), due to the central limit theorem and also by Lemma 3, the
limit of right-hand side of equation (27) equals

�

(
E2√

V (ρ‖σ)

)
;

thus equation (5) follows, and we are done.

3.3. Proof of the optimality part. Suppose that the sequence of measurements
{(An,1 − An)}n satisfies equation (6). We will prove equation (7). Let

Ln := exp
{(

nD(ρ‖σ) + E2
√

n + f (n)
) − f ′(n)

}
(28)

with some fixed

f ′(n) ∈ o(
√

n) ∩ ω(1).(29)

Here ω(1) is the family of functions that are defined on N and diverge to +∞.
Associated with every xn, we define the projector Qn

xn as

Qn
xn := ∑

yn : λn(xn)/μn(yn)≥Ln

∣∣bn
yn

〉〈
bn
yn

∣∣.(30)

Inserting equation (10) into the definition of αn(An), namely, αn(An) :=
Tr(ρ⊗n(1 − An)), and after a few calculations, we write

αn(An) = 1 − Cn − Dn,(31)

where Cn and Dn are

Cn := ∑
xn

λn(
xn)

Tr
(
Qn

xn

√
An

∣∣an
xn

〉〈
an
xn

∣∣√AnQ
n
xn

)
,(32)

Dn := ∑
xn

λn(
xn)

Tr
((

1 − Qn
xn

)√
An

∣∣an
xn

〉〈
an
xn

∣∣√An

(
1 − Qn

xn

))
.(33)

The basic difficulty in bounding Cn and Dn is that the POVM element An is
very general, except for the constraint of equation (6). Nevertheless, we will be
able to show that the Dn term is asymptotically negligible, due to the constraint of
equation (6) and our choice of Ln. This in turn, ensures that the Cn term can be
upper bounded by removing the operator “

√
An” from its expression, with only an

infinitesimal correction; cf. equation (41).
Now we show that the Dn term is asymptotically negligible. Because

σ⊗n ≥ (
1 − Qn

xn

)
σ⊗n(

1 − Qn
xn

) ≥ λn(xn)

Ln

(
1 − Qn

xn

)
,
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where the first inequality is owing to the commutativity of σ⊗n and the projector
(1 − Qn

xn), and the second one can be seen from the definition of Qn
xn , we obtain

βn(An) = Tr
(
σ⊗nAn

)
= ∑

xn

Tr
(
σ⊗n(√

An

∣∣an
xn

〉〈
an
xn

∣∣√An

))

≥ ∑
xn

Tr
(

λn(xn)

Ln

(
1 − Qn

xn

)(√
An

∣∣an
xn

〉〈
an
xn

∣∣√An

))

= Dn

Ln

.

This result, together with equations (6), (28) and (29), tells us that

Dn ≤ Lnβn(An) ≤ exp
{−f ′(n)

} → 0.(34)

The evaluation of the Cn term will be a bit more complicated. For simplicity,
we use the notation of norm, ‖|ψ〉‖ = √〈ψ |ψ〉 = √

Tr |ψ〉〈ψ |, with |ψ〉 being a
vector of some Hilbert space. Thus Cn is rewritten as

Cn = ∑
xn

λn(
xn)∥∥Qn

xn

√
An

∣∣an
xn

〉∥∥2
.(35)

Our strategy is to divide the terms in the sum of the above expression into different
classes, each satisfying some special conditions. Then we evaluate them individu-
ally under these conditions. For such a purpose, we define index sets

On
1 := {

xn|∥∥√
An

∣∣an
xn

〉∥∥ ≥ ε1
}
,

On
2 := {

xn|∥∥(
1 − Qn

xn

)√
An

∣∣an
xn

〉∥∥ ≤ ε1ε2
}

with sufficiently small ε1, ε2 > 0. Denote the full set of all the xn’s as On, and the
complementary sets of On

1 and On
2 as On

1 and On
2 , respectively. Since On is the

union of three disjoint subsets

On =On
1 ∪ (

On
1 ∩On

2

) ∪ (
On

1 ∩On
2
)
,

we deal with equation (35) under distinct cases that xn belongs to these subsets,
respectively, and then sum them up.

The first case is that xn ∈ On
1 . Noting that a projector (more generally, any

contraction whose singular values are no larger than 1) acting on a vector will
not increase its norm, we have∑

xn∈On
1

λn(
xn)∥∥Qn

xn

√
An

∣∣an
xn

〉∥∥2 ≤ ∑
xn∈On

1

λn(
xn)

ε2
1 ≤ ε2

1 .(36)



182 K. LI

The second case is that xn ∈On
1 ∩On

2 . We upper bound it as∑
xn∈On

1∩On
2

λn(
xn)∥∥Qn

xn

√
An

∣∣an
xn

〉∥∥2

≤ ∑
xn∈On

2

λn(
xn) ≤ ∑

xn∈On
2

λn(
xn) 1

ε2
1ε2

2

∥∥(
1 − Qn

xn

)√
An

∣∣an
xn

〉∥∥2(37)

≤ 1

ε2
1ε2

2

∑
xn

λn(
xn)∥∥(

1 − Qn
xn

)√
An

∣∣an
xn

〉∥∥2 = Dn

ε2
1ε2

2

,

where for the first inequality we use ‖Qn
xn

√
An|an

xn〉‖ ≤ ‖√An|an
xn〉‖ ≤

‖|an
xn〉‖ = 1, the second inequality is by definition of On

2 and the last equality
can be easily seen from equation (33) and the definition of norm.

The last case, which will turn out to be the dominant part, is that xn ∈ On
1 ∩On

2 .
In such a case, paying attention to the definition of On

1 and On
2 , we see that∥∥∥∥

√
An|an

xn〉
‖√An|an

xn〉‖ − Qn
xn

√
An|an

xn〉
‖√An|an

xn〉‖
∥∥∥∥ = ‖(1 − Qn

xn)
√

An|an
xn〉‖

‖√An|an
xn〉‖ ≤ ε1ε2

ε1
= ε2.

Then, directly applying Lemma 4, we get∥∥∥∥
√

An|an
xn〉〈an

xn |√An

‖√An|an
xn〉‖2

∣∣an
xn

〉∥∥∥∥
2

(38)

≤
∥∥∥∥
(
Qn

xn

√
An|an

xn〉〈an
xn |√An

‖√An|an
xn〉‖2

Qn
xn

)∣∣an
xn

〉∥∥∥∥
2

+ 2
√

2ε2.

Since 0 ≤ An ≤ 1, it holds that An ≤ √
An. As a result,

∥∥Qn
xn

√
An

∣∣an
xn

〉∥∥2 ≤ ∥∥√
An

∣∣an
xn

〉∥∥2 ≤
∥∥∥∥〈an

xn |√An|an
xn〉

〈an
xn |An|an

xn〉
√

An

∣∣an
xn

〉∥∥∥∥
2

.(39)

The last term of equation (39) and the left-hand side of equation (38) are actually
the same. So, combining these two equations together, and noting that the right-
hand side of equation (38) is obviously upper bounded by∥∥Qn

xn

∣∣an
xn

〉∥∥2 + 2
√

2ε2,

we arrive at ∑
xn∈On

1∩On
2

λn(
xn)∥∥Qn

xn

√
An

∣∣an
xn

〉∥∥2

≤ ∑
xn∈On

1∩On
2

λn(
xn)(∥∥Qn

xn

∣∣an
xn

〉∥∥2 + 2
√

2ε2
)

(40)

≤ ∑
xn

λn(
xn)∥∥Qn

xn

∣∣an
xn

〉∥∥2 + 2
√

2ε2.
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Now, adding equations (36), (37) and (40) together, we obtain from equa-
tion (35) that

Cn ≤ ∑
xn

λn(
xn)∥∥Qn

xn

∣∣an
xn

〉∥∥2 + Dn

ε2
1ε2

2

+ ε2
1 + 2

√
2ε2.(41)

In analogy to the process in the derivation of equation (5) in Section 3.2, mak-
ing use of equations (12), (30) and then (13), we can check that the first term
of the right-hand side of equation (41) is equal to the probability of the event
{λn(Xn)/μn(Y n) ≥ Ln}, which is equivalent to{√

n

(
1

n

n∑
i=1

log
λ(Xi)

μ(Yi)
− D(ρ‖σ)

)
≥ E2 + f (n) − f ′(n)√

n

}
.

So inserting equations (34) and (41) into equation (31), we eventually obtain

αn(An) ≥ Pr

{√
n

(
1

n

n∑
i=1

log
λ(Xi)

μ(Yi)
− D(ρ‖σ)

)
≤ E2 + f (n) − f ′(n)√

n

}

(42)

−
(

1

ε2
1ε2

2

+ 1
)

exp
{−f ′(n)

} − ε2
1 − 2

√
2ε2.

Recalling that f (n) ∈ o(
√

n) and f ′(n) ∈ o(
√

n) ∩ ω(1), and then making use of
the central limit theory and Lemma 3, we see that the right-hand side of equa-
tion (42) converges to

�

(
E2√

V (ρ‖σ)

)
− ε2

1 − 2
√

2ε2,

when n → ∞. Thus equation (7) follows, since ε1 and ε2 can be arbitrarily small,
and we are done.

4. Finite sample size analysis. In Section 3, we proved the second-order
asymptotics. Here we show that our method is able to provide tight bounds for
the case of finite sample size as well. The basic idea is to use the Berry–Esseen
theorem instead of the central limit theorem.

The Berry–Esseen theorem quantifies how fast the standardized mean of a ran-
dom sample converges to a normal distribution. Let X1,X2, . . . ,Xn be i.i.d. ran-
dom variables, with E(Xi) = �X, E(Xi − �X)2 = �2 > 0, and E|Xi − �X|3 = ς3 <

+∞. Then it asserts∣∣∣∣∣Pr

{√
n

(
1

n

n∑
i=1

Xi − �X
)

≤ x

}
− �

(
x

�

)∣∣∣∣∣ ≤ Cς3
√

n�3 ,(43)

where 0.40973 ≤ C ≤ 0.4784 is a constant [22].
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Consider the minimal type II error given that the type I error is no larger than
some constant, and define βn(ε) := minAn{βn(An)|αn(An) ≤ ε}. Theorem 5 pro-
vides this quantity with tight upper and lower bounds. It has fixed the second-
order term in the asymptotic expansion of − logβn(ε), and also indicates that the
third-order term lies between a constant and 2 logn. Note that previously, only the
first-order term (nD(ρ‖σ)) is known exactly [19, 28], and the second-order term
is known to be of the order

√
n [2]. Compared to the upper and lower bounds ob-

tained in the independent work of Tomamichel and Hayashi [30], those presented
here are tighter in the third-order term and are also relatively cleaner because those
in [30] depend on more parameters, such as the number of distinct eigenvalues and
the ratio between the maximum and minimum eigenvalues of the quantum state.

THEOREM 5. Let C be the constant in the Berry–Esseen theorem, and let
T 3 = E(X,Y )| log λ(X)

μ(Y )
− D(ρ‖σ)|3; cf. Section 3.1. Then for n sufficiently large

such that ε − 1√
n

CT 3
√

V (ρ‖σ)
3 ≥ 0, we have

− logβn(ε) ≥ nD(ρ‖σ) + √
n
√

V (ρ‖σ)�−1
(
ε − 1√

n

CT 3

√
V (ρ‖σ)

3

)
(44)

= nD(ρ‖σ) + √
n

√
V (ρ‖σ)�−1(ε) + O(1)

and for n sufficiently large such that ε + 1√
n
( CT 3
√

V (ρ‖σ)
3 + 2) ≤ 1, we have

− logβn(ε) ≤ nD(ρ‖σ) + √
n

√
V (ρ‖σ)�−1

(
ε + 1√

n

(
CT 3

√
V (ρ‖σ)

3 + 2
))

+ log
(
29n2)

(45)

= nD(ρ‖σ) + √
n
√

V (ρ‖σ)�−1(ε) + 2 logn + O(1).

PROOF. The equalities in equations (44) and (45) are easy to see by expanding
�−1 at the point ε using Lagrange’s mean value theorem. So it suffices to prove
the two inequalities.

Applying the Berry–Esseen theorem to the right-hand side of equation (27), and
then following from the argument in Section 3.2 [cf. equations (25) and (27)], we
have for any E2 ∈ R and f (n) ∈ o(

√
n), there exists a sequence of measurements

{(An,1 − An)}n, such that

αn(An) ≤ �

(
E2 + f (n)/

√
n√

V (ρ‖σ)

)
+ 1√

n

CT 3

√
V (ρ‖σ)

3 ,(46)

βn(An) ≤ exp
{−(

nD(ρ‖σ) + E2
√

n + f (n)
)}

.(47)
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When ε − 1√
n

CT 3
√

V (ρ‖σ)
3 ≥ 0, letting the right-hand side of equation (46) be equal

to ε, then eliminating E2
√

n + f (n) from equation (47), we get

αn(An) ≤ ε,

βn(An) ≤ exp
{
−

(
nD(ρ‖σ) + √

n
√

V (ρ‖σ)�−1
(
ε − 1√

n

CT 3

√
V (ρ‖σ)

3

))}
.

This, by the definition of βn(ε), leads to the first inequality in equation (44).
On the other hand, applying the Berry–Esseen theorem to the first term of the

right-hand side of equation (42), then the argument in Section 3.3 implies the fol-
lowing [cf. the precondition and equation (42)]: if there is a sequence of measure-
ments {(An,1 − An)}n such that

βn(An) ≤ exp
{−(

nD(ρ‖σ) + E2
√

n + f (n)
)}

,

then

αn(An) ≥ �

(
E2 + (f (n) − f ′(n))/

√
n√

V (ρ‖σ)

)
− F

with F = 1√
n

CT 3
√

V (ρ‖σ)
3 + ( 1

ε2
1ε2

2
+ 1) exp{−f ′(n)} + ε2

1 + 2
√

2ε2. Since αn and βn

are continuous functionals of An, this equivalently states that if

αn(An) ≤ �

(
E2 + (f (n) − f ′(n))/

√
n√

V (ρ‖σ)

)
− F,(48)

then

βn(An) ≥ exp
{−(

nD(ρ‖σ) + E2
√

n + f (n)
)}

.(49)

When ε +F ≤ 1, let E2 and f (n) be such that the right-hand side of equation (48)
equals ε, then we eliminate E2

√
n + f (n) from equation (49) using this equality.

Thus the above statement implies, by the definition of βn(ε),

βn(ε) ≥ exp
{−(

nD(ρ‖σ) + √
n
√

V (ρ‖σ)�−1(ε + F) + f ′(n)
)}

.(50)

At last, to optimize over the parameters, let ε1 = 21/8 exp{−1
8f ′(n)}, ε2 =

2−1/4 exp{−1
4f ′(n)} and f ′(n) = log(29n2). Thus F ≤ 1√

n
( CT 3
√

V (ρ‖σ)
3 + 2). Insert-

ing these into equation (50) results in the inequality of equation (45), and we are
done. �

5. Concluding remarks. The relation between our second-order asymptotics
and the quantum Stein’s lemma is similar in spirit to the relation between the cen-
tral limit theorem and the week law of large numbers. Indeed, we have employed
the central limit theorem and the Berry–Esseen theorem, to derive our results.
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We have succeeded in proving the results using elementary linear algebra and
probability theory in a unified fashion for the achievability part and optimality part.
Specifically, we have explicitly constructed a sequence of asymptotically optimal
tests for our problem, specifying the bases of spaces onto which the projective
measurements are applied by employing a modified Gram–Schmidt orthonormal-
ization process. In [27], the Gram–Schmidt orthonormalization process has already
been used in order to find the asymptotically optimal tests for testing multiple hy-
potheses in the symmetric setting (regarding the Chernoff bound). The attempt
in [27] is successful in some special cases, and is successful in general up to a
constant factor 1/3. We notice that even for two hypotheses, such an elementary
method is not known for fully proving the achievability of the Chernoff bound;
recall that the original—and hitherto unique—proof in [1] was based on the non-
trivial matrix inequality Tr(ρsσ 1−s) ≥ Tr(ρ + σ − |ρ − σ |)/2, for all 0 ≤ s ≤ 1.

The case that V (ρ‖σ) = 0 is a singular point in Theorem 2 and Theorem 5; how-
ever, we will see that this represents a very trivial case within classical hypothesis
testing. Using Lemma 3, we check that the equivalent conditions of V (ρ‖σ) = 0 is
as follows: (i) ρ and σ commute. This means that ρ and σ can be simultaneously
diagonalized as ρ = ∑

x λ(x)|ax〉〈ax | and σ = ∑
x μ(x)|ax〉〈ax |, and our problem

reduces to a classical one with probability laws {λ(x)}x and {μ(x)}x . (ii) There is
a constant k such that for all x with λ(x) �= 0, we have λ(x) = kμ(x); and actually
logk = D(ρ‖σ). Assigning arbitrarily any xn with nonzero λn(xn) to the null hy-
pothesis ρ⊗n, we obtain the best tradeoff between the type I error αn and type II
error βn, and this is expressed as αn = 1 − βn exp{nD(ρ‖σ)}.

APPENDIX: PROOF OF LEMMAS

We give proofs to the two lemmas presented in Section 3.1.

PROOF OF LEMMA 3. This is done by direct calculation. For functions
v and w, it is obvious that

Trv(ρ) = ∑
x

v
(
λ(x)

) = ∑
xy

v
(
λ(x)

)|γxy |2

and

Trv(ρ)w(σ) = Tr
(∑

x

v
(
λ(x)

)|ax〉〈ax |
)(∑

y

w
(
μ(y)

)|by〉〈by |
)

= ∑
xy

v
(
λ(x)

)
w

(
μ(y)

)|γxy |2.

Using these two equations with proper v and w at every step when needed, we get

Trρ(logρ − logσ) = ∑
xy

(
λ(x) logλ(x)|γxy |2 − λ(x) logμ(y)|γxy |2)

(51)

= ∑
xy

PX,Y (x, y) log
λ(x)

μ(y)
= E

(
log

λ(X)

μ(Y )

)
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and

Trρ(logρ − logσ)2

= Trρ log2 ρ − 2 Tr(ρ logρ) logσ + Trρ log2 σ

= ∑
xy

(
λ(x) log2 λ(x)|γxy |2(52)

− 2λ(x) logλ(x) logμ(y)|γxy |2 + λ(x) log2 μ(y)|γxy |2)
= ∑

xy

PX,Y (x, y)

(
log

λ(x)

μ(y)

)2

= E
(

log
λ(X)

μ(Y )

)2

.

Equation (51) confirms equation (14), and equations (51) and (52) together lead to
equation (15). Thus we finish the proof of Lemma 3. �

PROOF OF LEMMA 4. We show equation (16) as follows:∥∥(|φ〉〈φ|)|ϕ〉∥∥2 − ∥∥(
π |φ〉〈φ|π)|ϕ〉∥∥2

= (∥∥(|φ〉〈φ|)|ϕ〉∥∥ + ∥∥(
π |φ〉〈φ|π)|ϕ〉∥∥) × (∥∥(|φ〉〈φ|)|ϕ〉∥∥ − ∥∥(

π |φ〉〈φ|π)|ϕ〉∥∥)
≤ 2

(∥∥(|φ〉〈φ|)|ϕ〉∥∥ − ∥∥(
π |φ〉〈φ|π)|ϕ〉∥∥)

≤ 2
∥∥(|φ〉〈φ|)|ϕ〉 − (

π |φ〉〈φ|π)|ϕ〉∥∥
= 2

∥∥(〈φ|(1 − π)|ϕ〉)π |φ〉 + (〈φ|ϕ〉)(1 − π)|φ〉∥∥
= 2

√∣∣〈φ|(1 − π)|ϕ〉∣∣2 · ∥∥π |φ〉∥∥2 + ∣∣〈φ|ϕ〉∣∣2·∥∥(1 − π)|φ〉∥∥2

≤ 2
√∥∥|φ〉 − π |φ〉∥∥2 · 1 + 1 · ∥∥|φ〉 − π |φ〉∥∥2

≤ 2
√

ε2 + ε2 = 2
√

2ε,

where the fourth line is by the triangle inequality, the sixth line is due to Pythago-
ras’ theorem and the other lines are trivially by direct calculations and the condi-
tions stated in the lemma. �
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