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A REMARK ON THE RATES OF CONVERGENCE FOR
INTEGRATED VOLATILITY ESTIMATION IN

THE PRESENCE OF JUMPS

BY JEAN JACOD1 AND MARKUS REISS

UPMC (Université Paris-6) and Humboldt-Universität zu Berlin

The optimal rate of convergence of estimators of the integrated volatility,
for a discontinuous Itô semimartingale sampled at regularly spaced times and
over a fixed time interval, has been a long-standing problem, at least when
the jumps are not summable. In this paper, we study this optimal rate, in
the minimax sense and for appropriate “bounded” nonparametric classes of
semimartingales. We show that, if the rth powers of the jumps are summable
for some r ∈ [0,2), the minimax rate is equal to min(

√
n, (n logn)(2−r)/2),

where n is the number of observations.

1. Introduction. Let X be a one-dimensional Itô semimartingale, which in
particular means that its “continuous martingale part” has the form

Xc
t =

∫ t

0
σs dWs,

where W is a standard Brownian motion, and the process σt is optional and (lo-
cally) squared integrable.

One of the long-standing problems is the estimation of the so-called integrated
volatility, say at time 1, that is of the variable C1 = ∫ 1

0 cs ds, where ct = σ 2
t is the

(squared) volatility, on the basis of discrete observations of X. A huge number of
papers have been devoted to this question already, in various situations: when the
process is continuous (so X is the sum of Xc above, plus possibly a drift term), or
when it has jumps; when the process X is “perfectly” observed, or contaminated
by noise; when the sampling times are equi-spaced, or when they are irregularly
spaced.

Below, we focus on the basic case, where the sampling is at regularly spaced
times i/n for i = 0, . . . , n, and when Xi/n is observed without noise. Even in this
simple situation, the question of the “optimal” rate of convergence of estimators
toward C1, as n → ∞, is unanswered so far, when there are jumps which are “too
active.”

Received September 2012; revised September 2013.
1Supported in part by a Humboldt Research Award.
MSC2010 subject classifications. Primary 62C20, 62G20, 62M09; secondary 60H99, 60J75.
Key words and phrases. Semimartingale, volatility, jumps, infinite activity, discrete sampling,

high frequency.

1131

http://www.imstat.org/aos/
http://dx.doi.org/10.1214/13-AOS1179
http://www.imstat.org
http://www.ams.org/mathscinet/msc/msc2010.html


1132 J. JACOD AND M. REISS

More precisely, estimators are known, which converge to C1 with the rate
√

n,
in the continuous case (the realized volatility, or “approximate quadratic variation”
at time 1, achieves this rate), and also when X has jumps with a degree of activity,
or Blumenthal–Getoor index, less than 1. This rate is optimal (in a minimax sense),
for the following reason: if X = σW where c = σ 2 is a constant, so C1 = c, we
have a purely parametric setting for which the local asymptotic normality (LAN)
holds with rate

√
n, and the realized volatility is indeed the MLE in this case.

However, when the degree r of jump activity is larger than 1, the best rates
found in the literature are of the form n((2−r)/2)−ε for ε > 0 arbitrarily small (see
below for more details). The difficulty comes of course from the essentially non-
parametric feature of the problem, since we do not want to specify the law of
the process X, apart from the fact that it is an Itô semimartingale, plus possibly
some boundedness assumptions on its characteristics. In a purely parametric prob-
lem, for example, when X is a Lévy process with a known Lévy measure and the
only unknown parameters are the variance c of the Gaussian part, and possibly the
drift, then again the rate

√
n is available for estimating c (this rate is achieved by

the MLE, under very general circumstances). There has been a considerable inter-
est in providing also nonparametric estimators that converge at rate

√
n, but as we

show here, this is in general impossible.
In this paper, a bound for the minimax rate is determined, when the degree of

activity is r or smaller [the precise definition of r is given in Assumption (L-r)
below, and is slightly different from the usual Blumenthal–Getoor index]. We will
see that the best possible rate is (n logn)(2−r)/2 when r > 1 (and of course

√
n

when r ≤ 1). It is interesting to notice that the truncated realized volatility, which
achieves the rate n((2−r)/2)−ε for any prespecified ε > 0 is indeed “almost” rate-
optimal.

The paper is organized as follows: in Section 2, we state the assumptions and
review some known results. The results of this paper are presented in Section 3,
and the proofs are given in the last section.

2. Some known results. We consider a one-dimensional Itô semimartingale
X on a filtered space (�,F, (Ft )t≥0,P), which is observed at regularly spaced
times i

n
for i = 0,1, . . . , n, over the (fixed) finite interval [0,1]. The characteristics

(B,C, ν) where B is the drift, C the integrated volatility and ν the Lévy system
of X (see, e.g., Chapter 1 of [4]), thus have the form

Bt =
∫ t

0
bs ds, Ct =

∫ t

0
cs ds, ν(dt, dx) = dtFt (dx).(2.1)

Here, bt and ct are optional (or, predictable) processes, with ct ≥ 0, and Ft =
Fω,t (dx) is an optional random measure, also called the Lévy measure, which
accounts for the jumps of the process.
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When X is continuous, the canonical way for estimating C1 is to use the realized
volatility, or approximate quadratic variation at time 1:

[X,X]n1 =
n∑

i=1

(
�n

i X
)2 where �n

i X = Xi/n − X(i−1)/n,(2.2)

which converges in probability to C1. When further
∫ 1

0 b2
s ds and

∫ 1
0 c2

s ds are a.s.
finite, we have the stable convergence in law at rate

√
n

√
n
([X,X]n1 − C1

) L−s−→ U where U = √
2

∫ 1

0
cs dW ′

s,(2.3)

and where W ′ is a standard Brownian motion, defined on an extension of
(�,F, (Ft )t≥0,P), and which is independent of the σ -field F : see, for example,
Theorem 5.4.2 in [4].

When X has jumps, the variables [X,X]n1 no longer converge to C1, but to
the “full” quadratic variation [X,X]1 = C1 + ∑

s≤1(�Xs)
2, where �Xs = Xs −

Xs− denotes the jump size at time s. However, there are two known methods to
consistently estimate C1:

(1) Truncated realized volatility. One chooses a sequence vn of positive trunca-
tion levels, typically of the form vn 	 1/n� for some � ∈ (0,1/2), and considers

Ĉ(vn)1 =
n∑

i=1

(
�n

i X
)21{|�n

i X|≤vn}.(2.4)

(2) Multipower variations. One chooses an integer k ≥ 2, and considers

Ĉ(k, n)1 = 1

mk
2/k

n−k+1∑
i=1

k−1∏
j=0

∣∣�n
i+jX

∣∣2/k
,(2.5)

where mp = E(|U |p) is the pth absolute moment of a standard normal variable U

(other versions are possible; one may, e.g., take any product of k increments, with
powers adding up to 2).

The first method has been introduced by Mancini in [5], the second one by
Barndorff-Nielsen and Shephard in [2]. Both provide estimators which converge
in probability to C1, upon rather weak assumptions on the jumps.

The question of the rate of convergence, though, is still open, and we quickly
review the known results, in the case of truncated realized volatility. One needs the
following assumption, where r is a number in [0,2]:

ASSUMPTION (L-r ). The variables supt≤1 |bt |, supt≤1 ct and supt≤1
∫
(|x|r ∧

1)Ft (dx) are almost surely finite.
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The larger r is, the weaker Assumption (L-r) is. (L-2) is a very weak assumption
for an Itô semimartingale, whereas (L-r) when r < 2 puts restrictions on the jump
activity, and is slightly stronger than saying that the Blumenthal–Getoor index of
X (or, jump activity index) is not bigger than r . In particular, (L-1) is slightly
stronger than the property of the jumps to be summable on each finite interval, for
example, the jump part to have trajectories of finite variation. Note that a stable
process of index β ∈ (0,2) satisfies (L-r) for all r > β , but not for r ≤ β .

When (L-r) holds for some r < 1, the estimators Ĉ(vn)1 enjoy exactly the same
CLT as in (2.3) with Ĉ(vn) in place of [X,X]t , with the same limit, provided we
have

vn 	 1/n� with
1

4 − 2r
< � <

1

2
.(2.6)

When (L-r) holds for some r ≥ 1, the CLT with rate
√

n no longer holds for Ĉ(vn),
but we have when vn 	 1/n� with � ∈ (0,1/r):

0 < � < 1
2 �⇒ n�(2−r)(Ĉ(vn)1 − C1

) P−→ 0(2.7)

(convergence in probability). These results are shown in [3], and Mancini in [6]
has proved that when the jumps of X are those of a stable process with in-
dex β [so (L-r) holds for all r > β , but not for r = β], and when β ≥ 1,
the estimator converges exactly at rate n�(2−β), in the sense that the sequence
n�(2−β)(Ĉ(vn)1 − C1) converges to a nontrivial limit (in probability, and not in
law, in this case): this rate is less than

√
n, as it is in (2.7), and no proper CLT is

available in this case.
Turning now to multipowers, we have analogous results, except that one needs

stronger assumptions: basically, (L-r) plus the fact that the process ct is also an Itô
semimartingale, and never vanishes: the CLT for Ĉ(k, n)1 holds when r < 1, with√

2 replaced by a suitable (bigger) constant depending on k; see [1]. When r = 1,
Vetter in [7] proves that there is a CLT at rate

√
n with a nonvanishing bias term.

When r > 1 nothing is formally known, but the presence of the bias term when
r = 1 suggests that for r > 1 the rate is less than

√
n.

3. The results. We are in a nonparametric setting, in which the process X is
not specified [apart from the fact that it satisfies (L-r) for some r], and even the
space (�,F, (Ft )t≥0,P) is not specified. The meaning of “optimality” or “rate-
optimality” is not a priori clear; and, to begin with, even the quantity to estimate,
namely C1, depends of course on the space (�,F, (Ft )t≥0,P) and on X.

A possible setting is as follows. We consider a family S of Itô semi-
martingales satisfying (L-r), each one being defined on its own filtered space
(�,F, (Ft )t≥0,P), and the quantity to estimate is the associated integrated volatil-
ity C(X)1. Each X in S takes its values, as a process, in the Skorokhod space D

1

of all càdlàg functions on R+, and the image by X of the observed σ -field
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σ(Xi/n : i = 0, . . . , n) is the σ -field Dn = σ(x(i/n) : i = 0,1, . . . , n) of D
1. For

any X ∈ S we denote by P
n
X the restriction to Dn of the law of X.

An estimator at stage n is a Dn-measurable function X → Ĉ(X)ni on D
1. We

say that a sequence Ĉn
1 of such estimators achieves the uniform rate wn (with

wn → ∞) on S , for estimating C1, if the family wn(Ĉ(X)n1 − C(X)1) is tight,
uniformly in n and in X ∈ S , that is, |Ĉ(X)n1 − C(X)1| = OP (w−1

n ) uniformly in
X ∈ S .

Of course, if Sr denotes the set of all Itô semimartingales satisfying (L-r), there
cannot be any uniform rate because, to begin with, the variables C(X)1 are not
uniformly tight when X runs through Sr : we need to restrict our attention to sub-
families of Sr which are “bounded” in some sense. In view of the formulation
of (L-r), it is natural to consider, for any A > 0, the class

Sr
A = the set of all Itô semimartingales with

(3.1) |bt | + ct + ∫
(|x|r ∧ 1)Ft (dx) ≤ A for all t .

We also denote by Sr,L
A the subclass of all Lévy processes belonging to Sr

A.
The main result of this paper is the following theorem.

THEOREM 3.1. Let r ∈ [0,2) and A > 0. Any uniform rate wn for estimating
C(X)1, within the class Sr,L

A , hence also within the bigger class Sr
A, satisfies (up

to a multiplicative constant, of course)

wn ≤ ρn :=
{√

n, if r ≤ 1,

(n logn)(2−r)/2, if r > 1.
(3.2)

The results recalled in the previous section show that the truncated estimators
Ĉ(vn)1 (which are estimators in the sense specified above) achieve the rate ρn

when r < 1, and at least n�(2−r) when r ≥ 1, for any X satisfying (L-r). We
indeed have (slightly) more:

THEOREM 3.2. Let r ∈ [0,2) and A > 0, and take vn 	 1/n� . The trun-
cated estimators Ĉ(vn)1 have the uniform rate wn below, within Sr

A, for estimat-
ing C(X)1,

wn =

⎧⎪⎪⎨⎪⎪⎩
√

n, if r < 1 and
1

4 − 2r
≤ � <

1

2
,

n�(2−r), if r ≥ 1 and 0 < � <
1

2
.

(3.3)

When r < 1, the truncated estimators Ĉ(vn)1 achieve the uniform rate
√

n, and
as seen in the previous section they even enjoy a CLT. When r ≥ 1 we have the
uniform rate n�(2−r), although for any given X we indeed have a “faster” rate, as
seen in (2.7); however, this faster rate is not uniform in X ∈ Sr

A, as could be seen by
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taking a sequence of Lévy processes with characteristics (0,1,Gn), with
∫
(|x|r ∧

1)Gn(dx) ≤ 1 (so Xn ∈ Sr
1 for all n), but such that supn

∫
{|x|≤ε} |x|rGn(dx) does

not tend to 0 as ε → 0.
We then conclude that the truncated estimators are uniformly rate optimal when

r < 1, and otherwise they approach the bound ρn, up to n−ε with ε > 0 arbitrarily
small, upon choosing � close enough to 1

2 .

Let us finally show that on the restricted class Sr,L
A of Lévy processes the rate

ρn of (3.2) can be achieved exactly and thus constitutes the exact minimax optimal
rate: this means that for any r ∈ [0,2) and any A > 0 one can find estimators for
C(X)1 enjoying the uniform rate ρn. When r < 1, we already know this (even
for the much larger class Sr

A) by the previous theorem, but for all r ∈ [0,2) we
can construct estimators with the uniform rate ρn on Sr,L

A as follows. For any
process X, we consider the empirical characteristic function of the increments, at
each stage n (below u ∈ R):

φ̂n(u) = 1

n

n∑
j=1

e
iu�n

jX
.(3.4)

Then we set

Ĉ′(u)1 = −2n

u2

(
log

∣∣φ̂n(u)
∣∣)1{φ̂n(u) �=0}.(3.5)

THEOREM 3.3. For all A > 0 and r ∈ [0,2), the estimators Ĉ′(un)1 with

un =
{√

n, if r ≤ 1,√
(r − 1)n logn/

√
A, if r > 1

(3.6)

attain the uniform rate ρn for estimating C(X)1, within the class Sr,L
A of Lévy

processes.

REMARK 3.4. When r ≤ 1 the estimators Ĉ′(un)1 are likely to enjoy a Central
Limit theorem with rate ρn, and with a bias when r = 1.

When r > 1, and upon examining the proof [see (4.15) and (4.17), e.g.], the esti-
mation error Ĉ′(un)1 −C(X)1 is the sum of a random part, which is easily seen to
enjoy a CLT with rate n(2−r)/2 logn, and a nonrandom part equal to �n = 2ρn

u2
n

∫
(1−

cos(unx))F (dx), where F is the Lévy measure of the Lévy process X under con-
sideration. It turns out that |ρn�n| ≤ ∫

(u−r
n ∧ |x|r )F (dx) tends to 0 by Lebesgue’s

theorem, so, for any given X we indeed have ρn(Ĉ
′(un)1 − C(X)1) → 0 in

probability: this convergence is of course not uniform in X ∈ S
r,L
A , otherwise

the conclusion of Theorem 3.1 would be violated. Now, depending on whether
ρn�n(logn)r/2 converges or diverges—and both occurrences are possible—we
have a CLT with rate ρn(logn)r/2, or we have a slower effective rate (still at
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least ρn, of course) with the normalized error converging in probability to a non-
trivial limit.

Note that the argumentation is in line with the standard nonparametric error de-
composition in a bias and variance part. Our estimator uses that the characteristic
exponent for high frequencies un separates the Brownian from the jump part ac-
cording to the ratio u2

n/u
r
n. We have reliable empirical access to this exponent only

up to frequency un (otherwise the stochastic error explodes due to a Gaussian de-
convolution setting). So far, we do not know whether this spectral approach yields
the same optimal rate on the larger class Sr

A.

4. Proofs.

4.1. Proof of Theorem 3.1. The bound wn ≤ √
n. For proving this bound, it is

enough to show that it already holds on the subclass SBM
A of all Brownian motions

with unit variance c ≤ A (so SBM
A ⊂ Sr,L

A for all r ∈ [0,2]).
In this case, and as already mentioned in the Introduction, the increments follow

the parametric model N(0, c/n)⊗n with parameter c running through [0,A], for
which the LAN property holds with rate

√
n, and the result follows.

The bound wn ≤ (n logn)(2−r)/2 when r ∈ (0,2). By scaling, if the result holds
for one A > 0, it holds for all A > 0. Hence, in order to find a bound on the uniform
rate wn on Sr,L

A , hence a fortiori on Sr
A, it is enough to construct two sequences

Xn and Yn of Lévy processes belonging to Sr,L
K for n ≥ 2 and some constant K ,

with the following two properties, where an = (n logn)−(2−r)/2:

• we have C
(
Xn

)
1 = 1 + an and C

(
Yn

)
1 = 1 identically,(4.1)

• the total variation distance between P
n
Xn and P

n
Yn tends to 0.(4.2)

Indeed, letting Ĉ(X)1 be a sequence of estimators with uniform rate wn → ∞
on Sr

A (or, even, on Sr,L
A ), the two sequences wn(Ĉ(Xn)n1 − (1 + an)) and

wn(Ĉ(Y n)nt − 1) are tight under Pn
Xn and P

n
Yn , respectively, by (4.1). Then (4.2)

implies that the sequence wn(Ĉ(Y n)n1 − (1 + an)) is also tight under Pn
Yn . This is

possible only if the sequence wnan is bounded. So 1/an is an upper bound for any
uniform rate on Sr,L

K (up to a multiplicative constant, of course).
The proof of (4.1) and (4.2) is divided into several steps:

(1) We take Lévy processes Xn and Yn with respective characteristics (0,1 +
an,Fn) and (0,1,Gn), with Lévy measures Fn,Gn satisfying∫ (|x|r ∧ 1

)
Fn(dx) ≤ K,

∫ (|x|r ∧ 1
)
Gn(dx) ≤ K(4.3)

for some constant K (below constants change from line to line, and may depend
on r , and are all denoted as K).

By construction, we have (4.1) and Xn,Y n ∈ Sr,L
K for a constant K [which may

differ from the one in (4.3)], and we need to choose the above measures Fn and
Gn in such a way that (4.2) is satisfied.
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(2) We take un = 2/a
1/(2−r)
n = 2

√
n logn and the even functions hn ∈ C2(R)

defined for u ≥ 0 by

hn(u) = an

(
1{u≤un} + e−(u−un)3

1{u>un}
)
.

We use the following convention for the Fourier transform, namely Fg(u) =∫
eiuxg(x) dx, so the inverse is F−1h(x) = 1

2π

∫
e−iuxh(u)du. We also denote as

f (q) the qth derivative of any q-differentiable function f .
Since h

(q)
n ∈ L

p for all p ≥ 1 and q = 0,1,2, we can define Hn = F−1hn, and
we have h

(q)
n = iqF−1Hn,q , where Hn,q(x) = xqHn(x). By the Plancherel identity

we deduce

‖Hn‖L2 ≤ Kanu
1/2
n ≤ Ka(3−2r)/(4−2r)

n , q = 1,2
(4.4)

⇒ ‖Hn,q‖L2 ≤ ∥∥h(q)
n

∥∥
L2 ≤ Kan.

Then the Cauchy–Schwarz inequality applied to the functions 1√
1+x2

and

Hn(x)
√

1 + x2 yields∫ ∣∣Hn(x)
∣∣dx ≤ K

(
1 + a(3−2r)/(4−2r)

n

)
< ∞(4.5)

[note that ‖Hn‖L1 is bounded in n when r ≤ 3/2, but not otherwise; we also have
Hn(0) > anun → ∞]. Therefore, the two measures

Fn(dx) = |Hn(x)|
x2 dx, Gn(dx) = Fn(dx) + Hn(x)

x2 dx

are nonnegative and integrate x2, hence are Lévy measures.
This construction will satisfy (4.2) mainly because the definition of the two

Lévy measures and the constant value of hn for |u| ≤ un imply that the difference
between the two characteristic exponents vanishes for |u| ≤ un, as we shall prove
next.

(3) Splitting the integration domain into the sets {|u| ≤ un} and {|u| > un} in
the integral

∫
e−iuxhn(u) du, we get∣∣Hn(x)

∣∣ ≤ Kan

( | sin(unx)|
|x| + 1

)

≤ Kan

(
un1{|x|≤1/un} + 1

|x|1{1/un<|x|≤1} + 1{|x|>1}
)
.

In turn, the integral
∫ |x|r∧1

x2 |Hn(x)|dx can be split into integrals on the sets {|x| ≤
1/un}, {1/un < |x| ≤ 1} and {|x| > 1}, and recalling 1 < r < 2 we deduce from
the above that ∫ |x|r ∧ 1

x2

∣∣Hn(x)
∣∣dx ≤ Kan

(
u2−r

n + 1
) ≤ K.

It follows that the measures Fn and Gn satisfy (4.3), and it remains to prove (4.2).
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(4) We denote by φn and ψn the characteristic functions of Xn
1/n and Yn

1/n, and
ηn = φn − ψn. These functions are real (because Hn is an even function) and are
given by

φn(u) = exp
(
− 1

2n

(
u2 + anu

2 + 2φ̃n(u)
))

,

ψn(u) = exp
(
− 1

2n

(
u2 + 2φ̃n(u) + 2η̃n(u)

))
,

where

φ̃n(u) =
∫ (

1 − cos(ux)
) |Hn(x)|

x2 dx,

η̃n(u) =
∫ (

1 − cos(ux)
)Hn(x)

x2 dx.

We proceed to studying φ̃n and η̃n. Equation (4.4) applied with q = 1,2 implies
that φ̃n and η̃n are twice differentiable. First, we have φ̃′

n(u) = ∫
sin(ux)

|Hn(x)|
x

dx,
hence (4.5) yields

0 ≤ φ̃n(u) ≤ K
(
1 + a(3−2r)/(4−2r)

n

)
u2,

(4.6) ∣∣φ̃′
n(u)

∣∣ ≤ K
(
1 + a(3−2r)/(4−2r)

n

)|u|.
Second, η̃′′

n(u) = ∫
cos(ux)Hn(x) dx = hn(u), whereas η̃(0) = η̃′

n(0) = 0, and this
yields

|u| ≤ un ⇒ η̃n(u) = anu
2

2
, η̃′

n(u) = anu,

(4.7)

|u| ≥ un ⇒ ∣∣η̃n(u)
∣∣ ≤ anu

2

2
,

∣∣η̃′
n(u)

∣∣ ≤ an|u|.
(5) Since Xn and Yn have a nonvanishing Gaussian part, the variables Xn

1/n and
Yn

1/n have densities, denoted by fn and gn, and we set kn = fn − gn. Since Xn and
Yn are Lévy processes, the variation distance between P

n
Xn and P

n
Yn is not more

than n times
∫ |kn(x)|dx, and we are thus left to show that n

∫ |kn(x)|dx → 0.
To check this, we use the same argument as for (4.5): if kn,1(x) = xkn(x), by

the Cauchy–Schwarz inequality we have
∫ |kn(x)|dx ≤ K(‖kn‖L2 + ‖kn,1‖L2),

whereas ηn = Fkn and also, since ηn is twice differentiable, η′
n = iFkn,1. By

Plancherel identity, it is thus enough to prove that

n2
∫ ∣∣ηn(u)

∣∣2 du → 0, n2
∫ ∣∣η′

n(u)
∣∣2 du → 0.(4.8)

We have φ̃n ≥ 0 and φ̃n + η̃n ≥ 0, which implies φn(u) ≤ e−u2/2n and ψn(u) ≤
e−u2/2n, whereas 2ηn(u) = anu

2 if |u| ≤ un and |2ηn(u)| ≤ anu
2 if |u| > un
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by (4.7). Therefore,∣∣ηn(u)
∣∣ = ψn(u)

∣∣∣∣1 − φn(u)

ψn(u)

∣∣∣∣
= ψn(u)

∣∣1 − e−(anu2−2η̃n(u))/(2n)
∣∣ ≤ anu

2

2n
e−u2/2n1{|u|>un},

and also, upon using (4.6),∣∣η′
n(u)

∣∣ = 1

n

∣∣(u + uan + φ̃′
n(u)

)
φn(u) − (

u + φ̃′
n(u) + η′

n(u)
)
ψn(u)

∣∣
≤ 1

n

(
an|u|e−u2/2n + ∣∣η̃′

n(u)
∣∣e−u2/2n + ∣∣u + φ̃′

n(u)
∣∣∣∣ηn(u)

∣∣)1{|u|>un}

≤ Kan

|u|
n

e−u2/2n

(
1 + (

1 + a(3−2r)/(4−2r)
n

)u2

n

)
1{|u|>un}.

Now, since un = 2
√

n logn, we have
∫
{|u|>un}(u2

n
)qe−u2/n du ≤ K

(logn)q−1

n7/2 for q =
1,2,3. Since further a

(3−2r)/(4−2r)
n /

√
n → 0, we deduce∫ ∣∣ηn(u)

∣∣2 du ≤ K
logn

n7/2 ,

∫ ∣∣η′
n(u)

∣∣2 du ≤ K
(logn)2

n7−1/2 .

Then (4.8) follows, and the proof is complete.

4.2. Proof of Theorem 3.2. The proof requires several steps:

(1) Any X ∈ Sr
A can be written as follows, on some space (�,F, (Ft )t≥0,P):

Xt = X0 +
∫ t

0
bs ds +

∫ t

0

√
cs dWs

+
∫ t

0

∫
E

δ(s, z)1{‖δ(s,z)‖≤1}(μ − ν)(ds, dz)(4.9)

+
∫ t

0

∫
E

δ(s, z)1{‖δ(s,z)‖>1}μ(ds, dz).

Here, b and c are as in (L-r), and W is a standard Brownian motion, and μ is
a Poisson random measure on R+ × R with intensity measure ν(dt, dz) = dt ⊗
dz, and δ = δ(ω, t, z) is a predictable function on � × R+ × R. The connection
between δ and Ft is that Fω,t is the image of Lebesgue measure by the map z →
δ(ω, t, z), restricted to R \ {0}.

We use the decomposition X = X′ + Y + Z, where

X′
t = X0 +

∫ t

0
bs ds +

∫ t

0

√
cs dWs

and Y and Z are, respectively, the last two terms in (4.9).
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With wn given by (3.3), it is clearly enough to prove that, for some constant K

only depending on A, r,� (as will be all constants K below, changing from line
to line), we have

E
(∣∣Ĉ(vn)1 − C1

∣∣) ≤ K/wn.(4.10)

(2) Here, we recall estimates on the increments of X′ and Y , the later coming
from Lemmas 2.1.5 and 2.1.6 of [4], and where p > 0 is arbitrary (the constants
Kp below depend on p in addition to r,A). Namely, since

∫
{|x|≤1} |x|rFt (dx) ≤ A,

we have uniformly in s ∈ [(i − 1)/n, i/n]:
E

(∣∣X′
s − X′

(i−1)/n

∣∣p) ≤ Kpn−p/2,
(4.11)

E
(∣∣Ys − Y(i−1)/n

∣∣p) ≤ Kn−(p/r)∧1.

We will also use the following estimates, which follow from the property
Ft({x : |x| > 1}) ≤ A and from the fact that if �n

i Z �= 0 there is at least one jump
of Z within the interval ( i−1

n
, i

n
] (this estimate follows from Lemma 2.1.7 of [4]

applied to the counting process
∑

s≤t 1{�Zs �=0}):

P
(
�n

i Z �= 0
) ≤ K

n
.(4.12)

(3) With the notation (2.2), Itô’s formula yields [X′,X′]n1 − C1 = Un + Vn,
where

Un =
n∑

i=1

E
(
ζ n
i |F(i−1)/n

)
,

ζ n
i = 2

∫ i/n

(i−1)/n

(
X′

s − X′
(i−1)/n

)
bs ds,

Vn =
n∑

i=1

ξn
i ,

ξn
i = 2

∫ i/n

(i−1)/n

(
X′

s − X′
(i−1)/n

)√
cs dWs + ζ n

i −E
(
ζ n
i |F(i−1)/n

)
.

Equation (4.11) yields∣∣E(
ζ n
i |F(i−1)/n

)∣∣ ≤ K/n3/2, E
((

ξn
i

)2) +E
((

ζ n
i

)2) ≤ K/n2,

whereas E(ξn
i |F(i−1)/n) = 0. Thus we have E(|Un|) ≤ K/

√
n and E(V 2

n ) ≤ K/n,
implying

E
(∣∣[X′,X′]n

1 − C1
∣∣) ≤ K/

√
n.(4.13)

Therefore, it remains to prove that

E
(∣∣Ĉ(vn)1 − [

X′,X′]n
1

∣∣) ≤ K/wn.(4.14)
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(4) Consider the case r < 1 first. By Lemma 13.2.6 of [4], applied with k = 1
and F(x) = x2, hence s′ = 2 and m = s = p′ = 1 and θ = 0 (with the notation of
this lemma), we have

E

(∣∣∣∣∣Ĉ(vn)1 −
n∑

i=1

(
�n

i X
′)21{|�n

i X′|≤vn}

∣∣∣∣∣
)

≤ K

n(2−r)�
≤ K√

n
,

where the last inequality follows from � ≥ 1
4−2r

. On the other hand, (4.11)
and Markov inequality yield E((�n

i X
′)21{|�n

i X′|>vn}) ≤ Kp/n1+p(1−2�)/2 for any

p > 0, and upon taking p = 1
1−2�

we obtain

E

(∣∣∣∣∣[X′,X′]n
1 −

n∑
i=1

(
�n

i X
′)21{|�n

i X′|≤vn}

∣∣∣∣∣
)

≤ K√
n
.

These two estimates readily give (4.14).
(5) Now we turn to the case r ≥ 1. One has Ĉ(vn)1 −[X′,X′]n1 = ∑3

j=1 U(j)n,
where U(j)n = ∑n

i=1 η(j)ni and

η(1)ni = (
�n

i X
)21{|�n

i X|≤vn} − (
�n

i X
′)2 − 2�n

i X
′�n

i Y,

η(2)ni = 2E
(
�n

i X
′�n

i Y |F(i−1)/n

)
, η(3)ni = 2�n

i X
′�n

i Y − η(2)ni .

Itô’s formula yields, with the notation γs = ∫
{|z|≤1} z2Fs(dz), and taking advantage

of the facts that Y and
∫ t

0
√

cs dWs are two orthogonal martingales and that Y 2
t −∫ t

0 γs ds is a martingale:

η(2)ni = 2E
(∫ i/n

(i−1)/n

(
X′

s − X′
(i−1)/n

)
bs ds

∣∣∣F(i−1)/n

)
E

((
�n

i X
′�n

i Y
)2|F(i−1)/n

)
= E

(∫ i/n

(i−1)/n
(Ys − Y(i−1)/n)

2cs ds
∣∣∣F(i−1)/n

)

+ 2E
(∫ i/n

(i−1)/n

(
X′

s − X′
(i−1)/n

)
(Ys − Y(i−1)/n)

2bs ds
∣∣∣F(i−1)/n

)

+E

(∫ i/n

(i−1)/n

(
X′

s − X′
(i−1)/n

)2
γs ds

∣∣∣F(i−1)/n

)
.

Then standard estimates and (4.11), plus Hölder’s inequality, yield (the first bound
is a.s.) ∣∣η(2)ni

∣∣ ≤ K

n3/2 , E
((

η(3)ni
)2) ≤ K

n2 .

Since E(η(3)ni |F(i−1)/n) = 0, these estimates yield |U(2)n| ≤ K/
√

n and
E(U(3)2

n) ≤ K/n, hence it is enough to show that E(|U(1)n|) ≤ K/wn.
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(6) Recalling r ≥ 1, the following inequality is easy to check, for x, y, z ∈ R

and v ∈ (0,1/4]:∣∣(x + y + z)21{∣∣x+y+z|≤v} − x2 − 2xy|
≤ 2v21{z �=0} + 6|xy|1{|x|>v/2} + 6x21{|x|>v/2} + 16v2−r |y|r .

It follows that |η(1)ni | ≤ K
∑5

j=1 ξ(j)ni , where

ξ(1)ni = v2
n1{�n

i Z �=0}, ξ(2)ni = ∣∣�n
i X

′�n
i Y

∣∣1{|�n
i X′|>vn/2},

ξ(3)ni = (
�n

i X
′)21{|�n

i X′|≥vn/2}, ξ(4)ni = v2−r
n

∣∣�n
i Y

∣∣r .
Equation (4.12) yields E(ξ(1)ni ) ≤ K/n1+2� , and (4.11) yields E(ξ(4)ni ) ≤
K/n1+(2−r)� . Another application of (4.11), plus Hölder and Markov inequalities,
give us E(ξ(j)ni ) ≤ Kp/n1+p(1−2�)/2 for j = 2,3. Upon taking p large enough,
we obtain

E
(
ξ(j)ni

) ≤ K/nwn

for j = 1,2,3,4,5. We deduce E(|U(1)n|) ≤ K/wn, and the proof is complete.

4.3. Proof of Theorem 3.3. We let X ∈ Sr,L
A , where r ∈ [0,2) and A > 0 are

given. The characteristic triple of X is (b, c,F ) and the characteristic function of
X1/n is

φn(u) = exp
(

1

n

(
iub − cu2

2
+

∫ (
eiux − 1 − iux1{|x|≤1}

)
F(dx)

))
.

Then |φn(un)| = e(−1/(2n))(cu2
n+γn), where γn = 2

∫
(1 − cos(unx))F (dx). As soon

as n is large enough we have un ≥ 1, hence, since 1 − cosy ≤ 1 ∧ y2 ≤ |y|r ∧ 1,

0 ≤ γn ≤ 2
∫ (|unx|r ∧ 1

)
F(dx) ≤ 2ur

n

∫ (|x|r ∧ 1
)
F(dx)

≤ 2u2
n

∫ (|x|r ∧ 1
)
F(dx).

Because c + ∫
(|x|r ∧ 1)F (dx) ≤ A by hypothesis, and in view of the form of

un in (3.6), by singling out the two cases r ≤ 1 and r > 1 this implies that, with
� = eA,

1

|φn(un)| = eu2
n(c+γn)/2n ≤ �n(r−1)+/2.(4.15)

The estimation error Ĉ′(un)1 − c is the sum Gn + Hn of the deterministic and
stochastic errors:

Gn = −2n

u2
n

log
∣∣φn(un)

∣∣ − c = γn

u2
n

,

Hn = 2n

u2
n

(
log

∣∣φn(un)
∣∣ − (

log
∣∣φ̂n(un)

∣∣)1{φ̂n(un) �=0}
)
.
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The previous estimates on γn readily yield

|Gn| ≤ 2A

u2−r
n

.(4.16)

Second, we study Hn. The variables exp(iun�
n
jX) are i.i.d. as j varies,

with modulus 1 and expectation φn(un), hence Vn = φ̂n(un) − φn(un) satis-
fies E(|Vn|2) ≤ 1/n. In view of (4.15), on the set {|Vn| ≤ 1/nr/4} we have
|Vn/φn(un)| ≤ 1/2 and φ̂n(un) = Vn + φn(un) �= 0 as soon as n ≥ n0 =
(2�)4/((2−r)∧r), in which case we deduce, for some universal constant K :

|Hn| = 2n

u2
n

∣∣∣∣log
∣∣∣∣1 + Vn

φn(un)

∣∣∣∣∣∣∣∣ ≤ K
n|Vn|

u2
n|φn(un)| .

Henceforth, if n ≥ n0,

E
(|Hn|1{|Vn|≤1/nr/4}

) ≤

⎧⎪⎪⎪⎨⎪⎪⎪⎩
K�√

n
, if r ≤ 1,

KA�

(r − 1)n(2−r)/2 logn
, if r > 1.

(4.17)

Putting together (4.16) and (4.17), plus the fact that P(|Vn| > 1/nr/4) ≤
1/n(2−r)/2 (by Bienaymé–Tchebycheff inequality) tends to zero, and the equality
Ĉ′(un)1 − c = Gn + Hn, we deduce that ρn(Ĉ

′(un)1 − c) [with the notation (3.2)]
is tight, uniformly in X ∈ Sr,L

A .
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