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TESTS FOR COVARIANCE MATRIX WITH FIXED OR
DIVERGENT DIMENSION

BY RONGMAO ZHANG1, LIANG PENG2 AND RUODU WANG3

Zhejiang University, Georgia Institute of Technology and University of Waterloo

Testing covariance structure is of importance in many areas of statisti-
cal analysis, such as microarray analysis and signal processing. Conventional
tests for finite-dimensional covariance cannot be applied to high-dimensional
data in general, and tests for high-dimensional covariance in the literature
usually depend on some special structure of the matrix. In this paper, we pro-
pose some empirical likelihood ratio tests for testing whether a covariance
matrix equals a given one or has a banded structure. The asymptotic distribu-
tions of the new tests are independent of the dimension.

1. Introduction. Let Xi = (Xi1, . . . ,Xip)T , i = 1,2, . . . , n, be independent
and identically distributed (i.i.d.) random vectors with mean μ = (μ1, . . . ,μp)T

and covariance matrix � = (σij )1≤i,j≤p . For a given covariance matrix �0, it has
been a long history for the study of testing

H0 :� = �0 against Ha :� �= �0.(1.1)

Traditional methods for testing (1.1) with finite p include the likelihood ratio test
(see [1]) and the scaled distance measure for positive definite �0 defined as

V = 1

p
tr(Sn − Ip)2,(1.2)

where tr(·) denotes the trace of a matrix, Ip denotes the p × p identity matrix

and Sn is the sample covariance matrix of �
−1/2
0 Xi (see [12, 13] and [15]). When

dealing with high-dimensional data, the sample covariance in the likelihood ratio
test is no longer invertible with probability one, and tests based on a scaled distance
may also fail as demonstrated in [14].

Since the above conventional tests cannot be employed for testing high-
dimensional covariance matrices, new methods are needed. When the high-
dimensional covariance matrix has a modest dimension p compared to the sample
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size n, that is, p/n → c for some c ∈ (0,∞), Ledoit and Wolf [14] proposed a test
by modifying the scaled distance measure V defined in (1.2) under the assumption
that X1 has a normal distribution. When the dimension p is much larger than the
sample size n, some special structure has to be imposed. Chen, Zhang and Zhong
[9] proposed a test which generalizes the result of [14] to the case of nonnormal
distribution and large dimension by assuming that Xi = �Zi + μ for some i.i.d.
m-dimensional random vectors {Zi} with EZ1 = 0, var(Z1) = Im, and � is a p×m

constant matrix with ��T = �.
Sparsity is another commonly employed special structure in analyzing high-

dimensional data such as variable selection and covariance matrix estimation. Es-
timating sparse covariance matrices has been actively studied in recent years. Some
recent references include [3, 6, 21] and [4]. When the covariance matrix is assumed
to be sparse and has a banded structure, it becomes important to test whether the
covariance matrix possesses such a desired structure, that is, to test

H0 :σij = 0 for all |i − j | ≥ τ,(1.3)

where τ < p is given and may depend on n. Recently, Cai and Jiang [5] proposed
to use the maximum of the absolute values of sample covariances to test (1.3)
when X1 has a multivariate normal distribution. However, it is known that the con-
vergence rate of the normalized maximum to a Gumbel limit is very slow, which
means such a test has a poor size in general. Although using maximum is very
powerful in detecting the departure from the null hypothesis when at least one
large departure exists, it is much less powerful than a test based on a Euclidean
distance when many small departures from the null hypothesis happen.

To avoid assuming the sparse structure and normality condition in the testing
problems (1.1) and (1.3), we propose to construct tests based on the equivalent
testing problem H0 :‖� −�0‖2

F = 0 against Ha :‖� −�0‖2
F �= 0, where ‖A‖F =√

tr(AT A) is the Frobenius norm of the matrix A.
Put Yi = (Xi −μ)(Xi −μ)T for i = 1, . . . , n. Based on the fact that E[Yi] = �,

one can test (1.1) by employing the well-known Hotelling one-sample T 2 statistic
for a mean vector when p is finite, and its modified versions when p is divergent
and some specific models are assumed; see, for example, [2] and [8].

Another popular test for a finite-dimensional mean vector is the empirical likeli-
hood ratio test proposed in [16, 18]. Recently, Hjort, McKeague and Van Keilegom
[11] and Chen, Peng and Qin [7] extended it to the high-dimensional case. It turns
out that the asymptotic distribution of the empirical likelihood ratio test is a chi-
square distribution for a fixed dimension and a normal distribution for a divergent
dimension. That is, the limit depends on whether the dimension is fixed or diver-
gent. Note that the methods in the above papers can also be used to construct an
estimator for unknown parameters, which is called maximum empirical likelihood
estimator.

Motivated by the empirical likelihood ratio test in [19] for testing a high-
dimensional mean vector, we propose to apply the empirical likelihood ratio test to
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two estimating equations, where one equation ensures the consistency of the pro-
posed test and another one is used to improve the test power. It turns out that the
proposed test puts no restriction on the sparse structure of the covariance matrix
and normality of X1. When testing (1.3), a similar procedure can be employed; see
Section 2 for more details.

The paper is organized as follows. In Section 2, we introduce the new method-
ologies and present the main results. Simulation results are given in Section 3.
Section 4 proves the main results. Detailed proofs for lemmas used in Section 4
are put in the supplementary material [22].

2. Methodologies and main results.

2.1. Testing a covariance matrix. Let Xi = (Xi1, . . . ,Xip)T , i = 1, . . . , n, be
independent and identically distributed observations with mean μ = (μ1, . . . ,

μp)T and covariance matrix � = (σij )p×p .
When μ is known, for i = 1, . . . , n, we define Yi = (Xi − μ)(Xi − μ)T .

Then E[tr((Y1 − �0)(Y2 − �0))] = 0 is equivalent to ‖� − �0‖2
F = 0, which

is equivalent to H0 :� = �0. A direct application of the empirical likelihood
ratio test to the above estimating equation may endure low power by noting
that E[tr((Y1 − �0)(Y2 − �0))] = ‖� − �0‖2

F = O(δ2) rather than O(δ) if
‖� − �0‖F = O(δ) and p is fixed. A brief simulation study and the power analy-
sis in Section 2.3 confirm this fact. In order to improve the test power, we propose
to add one more linear equation. Note that with prior information on the model or
more specific alternative hypothesis, a more proper linear equation may be avail-
able. Without additional information, any linear equation that detects the change
of order ‖� − �0‖F is a possible choice theoretically. Here we simply choose the
following functional 1T

p (Y1 + Y2 − 2�0)1p , where 1p = (1, . . . ,1)T ∈ R
p . More

specifically, we propose to apply the empirical likelihood ratio test to the following
two equations:

E
[
tr
(
(Y1 − �0)(Y2 − �0)

)]= 0 and E
[
1T
p (Y1 + Y2 − 2�0)1p

]= 0.(2.1)

Of course one can try other linear equations or add more equations to further im-
prove the power. Theorems derived below can easily be extended to the case when
1p is replaced by any constant vector.

In order to obtain an independent paired data (Y1,Y2), we split the sample
into two subsamples with size N = [n/2]. That is, for i = 1,2, . . . ,N , we define
Ri (�) = (ei(�), vi(�))T , where

ei(�) = tr
(
(Yi − �)(Yi+N − �)

)
and vi(�) = 1T

p (Yi + Yi+N − 2�)1p.

Based on {Ri (�)}Ni=1, we define the empirical likelihood ratio function for � as

L1(�) = sup

{
N∏

i=1

(Npi) :
N∑

i=1

pi = 1,

N∑
i=1

piRi(�) = 0,p1 ≥ 0, . . . , pN ≥ 0

}
.
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When μ is unknown, instead of using {Ri (�)}Ni=1, we use {R∗
i (�)}Ni=1 where

μ is replaced by the sample means. That is, put X1 = 1
N

∑N
i=1 Xi , X2 =

1
N

∑2N
i=N+1 Xi , and define

Y∗
i = (

Xi − X1)(Xi − X1)T and Y∗
N+i = (

XN+i − X2)(XN+i − X2)T
for i = 1, . . . ,N . Put R∗

i (�) = (e∗
i (�), v∗

i (�))T , where

e∗
i (�) = tr

((
Y∗

i − (N − 1)�

N

)(
Y∗

i+N − (N − 1)�

N

))

and

v∗
i (�) = 1T

p

(
Y∗

i + Y∗
i+N − 2(N − 1)�

N

)
1p.

As before, we define the empirical likelihood ratio function for � as

L2(�) = sup

{
N∏

i=1

(Npi) :
N∑

i=1

pi = 1,

N∑
i=1

piR∗
i (�) = 0,p1 ≥ 0, . . . , pN ≥ 0

}
.

First we show that Wilks’s theorem holds for the above empirical likelihood
ratio tests without imposing any special structure on X1.

THEOREM 2.1. Suppose that E[v2
1(�)] > 0 and for some δ > 0,

max
{
E
∣∣e1(�)

∣∣2+δ
/
(
E
[
e2

1(�)
])(2+δ)/2

,E|v1(�)|2+δ/
(
E
[
v2

1(�)
])(2+δ)/2}

(2.2)
= o

(
N(δ+min{2,δ})/4).

Then under H0 :� = �0, −2 logL1(�0) converges in distribution to a chi-square
distribution with two degrees of freedom as n → ∞. In addition, if

(
tr
(
�2))2 = o

(
N2E

[
e2

1(�)
])

and

( p∑
i=1

p∑
j=1

σij

)2

= o
(
NE

[
v2

1(�)
])

,(2.3)

then under H0 :� = �0, −2 logL2(�0) also converges in distribution to a chi-
square distribution with two degrees of freedom as n → ∞.

Using Theorem 2.1, one can test H0 :� = �0 against Ha :� �= �0. That is,
one rejects H0 at level α when −2 logL1(�0) > ξ1−α if μ is known, or when
−2 logL2(�0) > ξ1−α if μ is unknown, where ξ1−α denotes the (1−α)th quantile
of a chi-square distribution with two degrees of freedom.

Write the p × p matrix Y1 as a q = p2-dimensional vector, and denote the co-
variance matrix of such a vector by 
 = (θij )q×q . Conditions in Theorem 2.1 can
be guaranteed by imposing some conditions on the moments and dimensionality
of X1 such as the following assumptions:
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A1: lim infn→∞ 1
q

tr(
2) > 0 and lim infn→∞ 1
q

1T
q 
1q > 0;

A2: For some δ > 0, 1
p2

∑p
i=1
∑p

j=1 E|(X1,i − μi)(X1,j − μj) − σij |2+δ = O(1);

A3: p = o(n(δ+min(2,δ))/(4(2+δ))).

COROLLARY 2.1. Under conditions A1–A3 and H0 :� = �0, −2 logL1(�0)

converges in distribution to a chi-square distribution with two degrees of freedom
as n → ∞. Further, if

max
1≤i≤p

σii < C0 for some constant C0 > 0,(2.4)

then −2 logL2(�0) also converges in distribution to a chi-square distribution with
two degrees of freedom as n → ∞.

REMARK 2.1. Condition (2.2) requires that the second moment of (e1, v1) is
not too small compared to a higher-order moment of (e1, v1), which ensures that
Lyapunov central limit theorem holds for 1√

N

∑N
i=1 ei(�0) and 1√

N

∑N
i=1 vi(�0).

Condition (2.3) makes sure that the mean vector can be replaced by the sample
mean. It is obvious that (2.3) and (2.4) hold when p is fixed.

Note that condition A1 is only related to the covariance matrix and condition A2
holds obviously if

1

p2

p∑
i=1

p∑
j=1

E|X1,iX1,j |2+δ < ∞ or
1

p

p∑
i=1

E|X1i |4+2δ < ∞.

Condition A3 imposes some restriction on p, but it can be removed if Xi has
some special dependence structure. For example, Theorem 2.1 can be applied to
the following setting studied in [2, 8] and [9]:

(B) (Multivariate model). Assume that the sample has the following decompo-
sition:

Xi = �Zi + μ,(2.5)

where � is a p × m constant matrix with ��T = � and {Zi = (Zi1, . . . ,Zim)T }
is a sequence of m-dimensional i.i.d. random vectors with EZi = 0,var(Zi ) =
Im,E(Z4

11) = · · · = E(Z4
1m) = 3 + � > 1 and uniformly bounded 8th moment.

Further assume that for any integers lv ≥ 0 and h ≥ 1 with
∑h

v=1 lv = 8,

E
(
Z

l1
1i1

Z
l2
1i2

· · ·Zlh
1ih

)= E
(
Z

l1
1i1

)
E
(
Z

l2
1i2

) · · ·E
(
Z

lh
1ih

)
,(2.6)

where i1, . . . , ih are distinct.
Note that if Xi has a multivariate normal distribution, then (B) holds.

COROLLARY 2.2. Suppose (B) holds with
∑p

i=1
∑p

j=1 σij > 0. Then, under
H0 :� = �0, both −2 logL1(�0) and −2 logL2(�0) converge in distribution to a
chi-square distribution with two degrees of freedom as n → ∞.
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REMARK 2.2. Note that condition
∑p

i=1
∑p

j=1 σij > 0 for model (B) implies

that E[v2
1(�)] > 0; see the proof of Lemma 4.4. For testing H0 :� = Ip , [6] pro-

posed a test based on the above model and required p → ∞ as n → ∞. In com-
parison, the proposed empirical likelihood ratio tests work for both fixed and di-
vergent p.

REMARK 2.3. When one is interested in testing H0 :μ = μ0 and � = �0, it
is straightforward to combine the proposed empirical likelihood ratio test with that
in [19] for testing a high-dimensional mean.

2.2. Testing bandedness. Suppose {Xi} is a sequence of i.i.d. normal random
vectors with covariance matrix � = (σij )1≤i,j≤p . Cai and Jiang [5] proposed to
use the maximum of the absolute values of the sample correlations to test a banded
structure

H0 :σij = 0 for all |i − j | ≥ τ,(2.7)

where τ < p. It is known that the rate of convergence of the above maximum to
a Gumbel distribution is very slow in general, which results in a poor size; see
also the simulation results in Section 3. Using the maximum as a test statistic is
powerful when at least a large deviation from the null hypothesis exists. However,
when many small deviations from the null hypothesis exist, a test based on the
maximum is much less efficient than a test based on a Euclidean distance such as
the test in [20]. Here we modify the empirical likelihood ratio tests in Section 2.1
to test the above banded structure as follows.

For a matrix M , define the matrix M(τ) as (M(τ))ij = (M)ij I (|i−j |≥τ), where
I (·) denotes the indicator function. Put

e′
i (�) = tr

((
Y(τ )

i − �(τ))(Y(τ )
N+i − �(τ))),

v′
i (�) = 1T

p

(
Y(τ )

i + Y(τ )
N+i − 2�(τ))1p,

e∗′
i (�) = tr

((
Y∗(τ )

i − N − 1

N
�(τ)

)(
Y∗(τ )

N+i − N − 1

N
�(τ)

))

and

v∗′
i (�) = 1T

p

(
Y∗(τ )

i + Y∗(τ )
N+i − 2(N − 1)

N
�(τ)

)
1p.

Then �(τ) is zero under H0 in (2.7). Based on R′
i(�) = (e′

i (�), v′
i (�))T and

R∗′
i (�) = (e∗′

i (�), v∗′
i (�))T , we define the empirical likelihood ratio functions

for � as

L3(�) = sup

{
N∏

i=1

(Npi) :
N∑

i=1

pi = 1,

N∑
i=1

piR′
i (�) = 0,pi ≥ 0, i = 1, . . . ,N

}
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for the case of a known mean and

L4(�) = sup

{
N∏

i=1

(Npi) :
N∑

i=1

pi = 1,

N∑
i=1

piR∗′
i (�) = 0,pi ≥ 0, i = 1, . . . ,N

}

for the case of an unknown mean. Similar to the proof of Theorem 2.1, we can
show that −2 logL3(�0) and −2 logL4(�0) converge in distribution to a chi-
square distribution with two degrees of freedom as n → ∞ under some moment
conditions.

THEOREM 2.2. Suppose that E[v′2
1 (�)] > 0 and for some δ > 0,

max
{
E
∣∣e′

1(�)
∣∣2+δ

/
(
E
[
e′2

1 (�)
])(2+δ)/2

,E
∣∣v′

1(�)
∣∣2+δ

/
(
E
[
v′2

1 (�)
])(2+δ)/2}

(2.8)
= o

(
N(δ+min{2,δ})/4).

Then under H0 in (2.7), −2 logL3(�0) converges in distribution to a chi-square
distribution with two degrees of freedom as n → ∞, where �0 is any matrix such
that �

(τ)
0 = 0. In addition, if

E

{
N∑

i=1

(
e∗′
i (�) − e′

i (�)
)2 +

[
N∑

i=1

(
e∗′
i (�) − e′

i (�)
)]2}

= o
(
NE

[
e′2

1 (�)
])

and

E

{
N∑

i=1

(
v∗′
i (�) − v′

i (�)
)2 +

[
N∑

i=1

(
v∗′
i (�) − v′

i (�)
)]2}

= o
(
NE

[
v′2

1 (�)
])

,

then under H0 in (2.7), −2 logL4(�0) also converges in distribution to a chi-
square distribution with two degrees of freedom as n → ∞.

In order to compare with [5], we use a different linear functional so as to easily
verify conditions when Xi has a multivariate normal distribution. More specifi-
cally, for a p × p matrix M , we define the matrix M [τ ] as(

M [τ ])
ij = (M)ij

{
I
(
i ≤ (p − τ)/2, j > (p + τ)/2

)
+ I

(
j ≤ (p − τ)/2, i > (p + τ)/2

)}
.

Put ṽ′
i (�) = 1T

p (Y[τ ]
i + Y[τ ]

N+i − 2�[τ ])1p and

ṽ∗′
i (�) = 1T

p

(
Y∗[τ ]

i + Y∗[τ ]
N+i − 2(N − 1)

N
�[τ ]

)
1p.

Based on R̃∗′
i (�) = (e∗′

i (�), ṽ∗′
i (�))T , we define the empirical likelihood ratio

function for � as

L5(�) = sup

{
N∏

i=1

(Npi) :
N∑

i=1

pi = 1,

N∑
i=1

piR̃∗′
i (�) = 0,pi ≥ 0, i = 1, . . . ,N

}
.
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THEOREM 2.3. Assume Xi ∼ N(μ,�),

C1 ≤ lim inf
n→∞ min

1≤i≤p
σii ≤ lim sup

n→∞
max

1≤i≤p
σii ≤ C2

for some constants 0 < C1 ≤ C2 < ∞ and τ = o((
∑

1≤i,j≤p σ 2
ij )

1/2). Then under
H0 in (2.7), −2 logL5(�0) converges in distribution to a chi-square distribution
with two degrees of freedom as n → ∞, where �0 is any matrix such that �

(τ)
0 = 0.

REMARK 2.4. Condition (2.8) is similar to (2.2) to ensure that central limit
theorem can be employed. The other two conditions in Theorem 2.2 are similar
to (2.3), and they make sure that the mean vector can be replaced by the sample
mean. The test in [5] requires that τ = o(ps) for all s > 0 and logp = o(n1/3).
However, the new test in Theorem 2.3 only imposes conditions between τ and p.
Also note that τ = o(p1/2) is sufficient for τ = o((

∑
1≤i,j≤p σ 2

ij )
1/2).

2.3. Power analysis. In this subsection we analyze the powers of our new
tests. Denote π11 = E(e2

1(�)), π22 = E(v2
1(�)), ζn1 = tr((� −�0)

2)/
√

π11, ζn2 =
21T

p (� − �0)1p/
√

π22 and ν = N(ζ 2
n1 + ζ 2

n2). Let ξβ denote the β-quantile of a

chi-square distribution with two degrees of freedom, and let χ2
2,ν denote a noncen-

tral chi-square distribution with two degrees of freedom and noncentrality param-
eter ν.

THEOREM 2.4. Under conditions of Corollary 2.2 and Ha :� �= �0, we have
as n → ∞,

P
{−2 logLj(�0) > ξ1−α

}= P
{
χ2

2,ν > ξ1−α

}+ o(1)(2.9)

for j = 1,2.

REMARK 2.5. Note that under model (B), π11 = O(tr(�2)2) and π22 =
O(1T

p�1p)2; see the proof of Lemma 4.4. Therefore, ζn1 = O(tr((� − �0)
2)/

tr(�2)) and ζn2 = O(1T
p (� − �0)1p/(1T

p�1p)) are both natural measures of dis-
tance between the null hypothesis and the real model.

REMARK 2.6. For a test only using the first estimating equation in (2.1), one
needs

√
nζn1 → ∞ to ensure the probability of rejecting H0 goes to one. Thus it is

less powerful than the test using both estimating equations in (2.1) when
√

nζn2 →
∞ and

√
nζn1 is bounded from infinity.

From the above theorem, we conclude that the new test rejects H0 with prob-
ability tending to one when either

√
nζn1 or

√
n|ζn2| goes to infinity. To com-

pare with the power of the test given in [9], we consider the testing problem
H0 :� = Ip against Ha :� �= Ip , where � = Ip + (dI (|i − j | ≤ τ))1≤i,j≤p for
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some positive d = d(n) → 0 as n → ∞. Note that the term
√

n2ρ2
2,n + nρ2,n in

(3.6) of [9] is a typo, and it should be
√

ρ2
2,n + ρ2,n. It is easy to verify that the

power of the test in [9] tends to one when nd2τ → ∞ for the above example.
On the other hand, similar to Theorem 4 in [9],

√
n|ζn2| → ∞ is equivalent to√

n|21T
p (� − �0)1p|/p → ∞. Thus the proposed empirical likelihood ratio test

only needs nd2τ 2 → ∞ to ensure that the power tends to one. Hence, when
� = Ip + (d1(|i − j | ≤ τ))1≤i,j≤p and τ = τ(n) → ∞, the proposed empirical
likelihood ratio test has a larger local power than the test in [9]. For some other
settings, the test in [9] may be more powerful.

For testing the banded structure in Theorems 2.2 and 2.3, we have similar power
results. Here we focus on Theorem 2.3. Let κ11 = E(e′2

1 (�)) and κ22 = E(ṽ′2
1 (�)).

Define ζ ′
n1 = tr((�(τ))2)/

√
κ11, ζ ′

n2 = 21T
p�[τ ]1p/

√
κ22 and ν′ = N(ζ ′2

n1 + ζ ′2
n2).

THEOREM 2.5. Under conditions of Theorem 2.3, when H0 in (2.7) is false,
we have as n → ∞

P
{−2 logL5(�0) > ξ1−α

}= P
{
χ2

2,ν′ > ξ1−α

}+ o(1),(2.10)

where �0 is any matrix such that �
(τ)
0 = 0.

REMARK 2.7. As we argue in the Introduction, the size of the test in [5] is
poor for testing a banded structure. Since the power analysis for the test in [5]
is not available, theoretical comparison is impossible. Instead, a simulation com-
parison is given in the next section, which clearly shows that the proposed test is
much more powerful than the test in [5] when many small deviations from the null
hypothesis exist. On the other hand, the test in [5] is more powerful when only
a large deviation exists. In that case, one can add more equations or replace the
second equation by a more relevant one in the proposed empirical likelihood ratio
test so as to catch this sparsity effectively.

3. Simulation. In this section we investigate the finite sample behavior of
the proposed empirical likelihood ratio tests in terms of both size and power, and
compare them with the test in [9] for testing H0 :� = Ip and the test in [5] for
testing a banded structure.

First we consider testing H0 :� = Ip against Ha :� �= Ip . Draw 1000 ran-
dom samples with sample size n = 50 or 200 from the random variable W1 +
(δ/n1/4)W2, where W1 ∼ N(0, Ip), W2 ∼ N(0, (σij )1≤i,j≤p) with σij = 0.5|i−j | ×
I (|i − j | < τ), and W1 is independent of W2. When the sample size is small, it
turns out that the size of the proposed empirical likelihood ratio test is a bit large,
and some calibration is necessary. Here we propose the following bootstrap cali-
bration for the empirical likelihood ratio function L2(Ip) in Theorem 2.1.
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For a given sample {R∗
i (Ip)}Ni=1, we draw 300 bootstrap samples with size N ,

say {R̃∗(b)
i (Ip)}Ni=1 with b = 1, . . . ,300. Based on each bootstrap sample

{R̃∗(b)
i (Ip)}Ni=1, we compute the bootstrapped empirical likelihood ratio function

L
(b)
2 (Ip) = sup

{
N∏

i=1

(Npi) :p1 ≥ 0, . . . , pN ≥ 0,

N∑
i=1

pi = 1,

N∑
i=1

piR̃
∗(b)
i (Ip) = 1

N

N∑
j=1

R∗
j (Ip)

}
.

Then the bootstrap calibrated empirical likelihood ratio test with level γ will re-
ject the null hypothesis H0 :� = Ip whenever −2 logL2(Ip) is larger than the

[300(1 − γ )]th largest value of {−2 logL
(b)
2 (Ip)}300

b=1. More details on calibration
for empirical likelihood ratio test can be found in [17]. We denote the empirical
likelihood ratio test based on −2 logL2(Ip), its bootstrap calibrated version and
the test in [9] by EL(γ ), BCEL(γ ) and CZZ(γ ), respectively, where γ is the sig-
nificance level.

Table 1 reports the sizes (δ = 0) and powers (δ = 1) of these three tests with
level 0.05 by considering τ = 10 and p = 25,50,100,200,400,800. As we can
see: (i) the empirical likelihood ratio test has a large size for the small sample
size n = 50, but the bootstrap calibrated version has an accurate size, which is
comparable to the size of the test in [9]; (ii) the test in [9] is more powerful for

TABLE 1
Sizes and powers are reported for the proposed empirical likelihood method (EL(γ )), its bootstrap

calibrated version (BCEL(γ )) and the test in [9] (CZZ(γ )) with significance level γ = 0.05 for
tesing H0 :� = Ip . We choose τ = 10

EL(0.05) BCEL(0.05) CZZ(0.05) EL(0.05) BCEL(0.05) CZZ(0.05)

(n,p) δ = 0 δ = 0 δ = 0 δ = 1 δ = 1 δ = 1

(50,25) 0.127 0.054 0.053 0.296 0.118 0.219
(50,50) 0.148 0.065 0.067 0.324 0.136 0.216
(50,100) 0.138 0.068 0.038 0.317 0.125 0.212
(50,200) 0.168 0.081 0.041 0.310 0.113 0.221
(50,400) 0.151 0.071 0.045 0.342 0.145 0.242
(50,800) 0.154 0.064 0.041 0.337 0.137 0.219

(200,25) 0.065 0.048 0.052 0.348 0.305 0.179
(200,50) 0.058 0.052 0.041 0.336 0.298 0.162
(200,100) 0.068 0.054 0.059 0.353 0.319 0.179
(200,200) 0.056 0.051 0.058 0.358 0.322 0.155
(200,400) 0.069 0.064 0.051 0.374 0.343 0.180
(200,800) 0.058 0.047 0.050 0.366 0.338 0.182
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n = 50, but less powerful when n = 200; (iii) for a large sample size, the empirical
likelihood ratio test has no need to calibrate.

Next we consider testing H0 :σij = 0 for |i − j | ≥ τ by drawing 1000 random
samples from W̃ + (δ/n1/4)W̄ , where W̃ ∼ N(0, (0.5|i−j |I (|i − j | < τ))1≤i,j≤p),

W̄ = (
∑k

i=1 Wi/
√

k, . . . ,
∑p+k

i=p Wi/
√

k)T , W1, . . . ,Wp+k are i.i.d. with N(0,1)

and independent of W̃ . We consider the proposed empirical likelihood ratio test
based on Theorem 2.3 (EL(γ )) and a similar bootstrap calibrated version as in
testing H0 :� = Ip (BCEL(γ )), and compare them with the test based on maxi-
mum in [5] (CJ(γ )).

Table 2 reports the sizes (δ = 0) and powers (δ = 1) of these three tests with
level 0.05 by considering τ = 5, k = τ + 10 and p = 25,50,100,200,400,800.
From Table 2, we observe that: (i) the empirical likelihood ratio test has a large
size for the small sample size n = 50, but the bootstrap calibrated version has an
accurate size, which is more accurate than the size of the test in [5]; (ii) the test
in [5] has little power for all considered cases, and is much less powerful than the
proposed empirical likelihood ratio test; (iii) for a large sample size, the empirical
likelihood ratio test has no need to calibrate.

It is expected that the test based on the maximum statistic in [5] should be
more powerful than a test based on a Euclidean distance when a large departure,
instead of many small departures, from the null hypothesis happens. To examine
this, we test H0 :σij = 0 for |i − j | ≥ τ by drawing 1000 random samples with
size n = 200 from W̃ + δW̄ , where W̃ ∼ N(0, (0.5|i−j |I (|i − j | < τ))1≤i,j≤p),

TABLE 2
Sizes and powers are reported for the proposed empirical likelihood method (EL(γ )), its bootstrap

calibrated version (BCEL(γ )) and the test in [5] (CJ(γ )) with significance level γ = 0.05 for
testing H0 :σij = 0 for all |i − j | ≥ τ . We choose τ = 5, k = τ + 10

EL(0.05) BCEL(0.05) CZZ(0.05) EL(0.05) BCEL(0.05) CZZ(0.05)

(n,p) δ = 0 δ = 0 δ = 0 δ = 1 δ = 1 δ = 1

(50,25) 0.118 0.036 0.015 0.272 0.093 0.017
(50,50) 0.124 0.049 0.010 0.266 0.097 0.018
(50,100) 0.126 0.057 0.005 0.268 0.099 0.004
(50,200) 0.128 0.058 0.003 0.268 0.100 0.001
(50,400) 0.113 0.053 0.002 0.282 0.121 0.001
(50,800) 0.128 0.062 0.001 0.281 0.109 0.000

(200,25) 0.078 0.062 0.019 0.288 0.253 0.034
(200,50) 0.074 0.059 0.033 0.323 0.286 0.020
(200,100) 0.057 0.053 0.019 0.332 0.304 0.044
(200,200) 0.066 0.046 0.024 0.293 0.263 0.032
(200,400) 0.061 0.052 0.020 0.336 0.304 0.016
(200,800) 0.053 0.046 0.026 0.317 0.297 0.025



2086 R. ZHANG, L. PENG AND R. WANG

W̄ = (W̄1, . . . , W̄p)T with W̄1 = W̄τ+1 ∼ N(0,1) and W̄j = 0 for j �= 1, τ + 1.
Again, W̃ and W̄1 are independent. We take τ = 5, level 0.05 and δ = 0.6,0.7,0.8.
This is the sparse case in which we expect the CJ test to be favored. The powers
of CJ(0.05) are 0.074, 0.268 and 0.642 for δ = 0.6,0.7,0.8, respectively, while
the powers of EL(0.05) are 0.066 for all δ = 0.6,0.7,0.8. This confirms the ad-
vantage of using maximum when a large departure occurs. However, as we argue
in the Introduction, the proposed empirical likelihood ratio test is quite flexible in
taking information into account. Since only one large departure exists, the second
equation in the proposed empirical likelihood ratio test should be replaced by an
estimating equation related with this sparsity. Here, we use the first 40% data to get
the sample variance σ̂ij and find the positions of the largest four values of |σ̂ij | for
i − j ≥ τ . Next we use the remaining 60% data to formulate the empirical likeli-
hood ratio test through replacing ṽ∗′ in the second estimating equation of L5(�) by
the sum of values at the identified four positions of the covariances (Yi + YN+i ).
For this modified empirical likelihood ratio test, we find that the empirical size is
0.061, and powers are 0.106, 0.255 and 0.542 for δ = 0.6,0.7,0.8, respectively.
As we can see, the empirical likelihood ratio test with the new second equation
improves the power significantly and becomes comparable with the CJ test based
on the maximum statistic. In conclusion, the proposed empirical likelihood ratio
test is powerful and flexible.

4. Proofs. Without loss of generality, we assume μ0 = 0 throughout. For
simplicity, we use ‖ · ‖ to denote the L2 norm of a vector or matrix and write
ei(�0) = ei , vi(�0) = vi , e∗

i (�0) = e∗
i , v∗

i (�0) = v∗
i , e′

i (�0) = e′
i , ṽ′

i (�0) = ṽ′
i ,

e∗′
i (�0) = e∗′

i , ṽ∗′
i (�0) = ṽ∗′

i , π11 = E(e2
1(�0)) and π22 = E(v2

1(�0)). We first col-
lect some lemmas and leave the proofs in the supplementary file.

LEMMA 4.1. Under condition (2.2) in Theorem 2.1, we have

1√
N

N∑
i=1

(
ei√
π11

,
vi√
π22

)T
d−→ N(0, I2).(4.1)

Further, ∑N
i=1 e2

i

Nπ11
− 1

p−→ 0,

∑N
i=1 v2

i

Nπ22
− 1

p−→ 0,

∑N
i=1 eivi

N
√

π11π22

p−→ 0,(4.2)

max
1≤i≤N

|ei/
√

π11| = op

(
N1/2), max

1≤i≤N
|vi/

√
π22| = op

(
N1/2).(4.3)

LEMMA 4.2. Under conditions (2.2) and (2.3) in Theorem 2.1, we have

1√
N

N∑
i=1

(
e∗
i√
π11

,
v∗
i√
π22

)T
d−→ N(0, I2).(4.4)
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Further, ∑N
i=1 e∗2

i

Nπ11
− 1

p−→ 0,

∑N
i=1 v∗2

i

Nπ22
− 1

p−→ 0,

∑N
i=1 e∗

i v
∗
i

N
√

π11π22

p−→ 0,(4.5)

max
1≤i≤N

∣∣e∗
i /

√
π11
∣∣ = op

(
N1/2), max

1≤i≤N

∣∣v∗
i /

√
π22
∣∣= op

(
N1/2).(4.6)

LEMMA 4.3. Under conditions of Corollary 2.1, for any δ > 0, we have

E|e1|2+δ ≤ qδ

( p∑
i=1

p∑
j=1

E|X1iX1j − σij |2+δ

)2

and

E|v1|2+δ ≤ 24+δq1+δ
p∑

i=1

p∑
j=1

E|X1iX1j − σij |2+δ.

LEMMA 4.4. Under conditions of Corollary 2.2, we have

Ee4
1/
(
Ee2

1
)2 = O(1) and Ev4

1/
(
Ev2

1
)2 = O(1).

LEMMA 4.5. Under conditions of Theorem 2.3, we have

Ee′4
1 /
(
Ee′2

1
)2 = O(1),

(4.7)
Eṽ′4

1 /
(
Eṽ′2

1
)2 = O(1),

E

{
N∑

i=1

(
e∗′
i − e′

i

)2 +
[

N∑
i=1

(
e∗′
i − e′

i

)]2}
= o

(
NE

[
e′2

1
])

,(4.8)

E

{
N∑

i=1

(
ṽ∗′
i − ṽ′

i

)2 +
[

N∑
i=1

(
ṽ∗′
i − ṽ′

i

)]2}
= o

(
NE

[
ṽ′2

1
])

.(4.9)

PROOF OF THEOREM 2.1. Put êi = ei/
√

π11, v̂i = vi/
√

π22 and R̂i =
(êi , v̂i)

T for i = 1, . . . ,N . Then it is easy to see that −2 logL1(�0) = 2 ×∑N
i=1 log{1 + ρT R̂i}, where ρ = (ρ1, ρ2)

T satisfies

1

N

N∑
i=1

R̂i

1 + ρT R̂i

= 0.(4.10)

Using Lemma 4.1 and similar arguments in the proof of (2.14) in [16], we can
show that

‖ρ‖ = Op

(
N−1/2).(4.11)
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Then it follows from (4.3) and (4.11) that

max
1≤i≤N

∣∣∣∣ ρT R̂i

1 + ρT R̂i

∣∣∣∣= op(1).(4.12)

By (4.10), we have

0 = 1

N

N∑
i=1

ρT R̂i

1 + ρT R̂i

= 1

N

N∑
i=1

ρT R̂i

{
1 − ρT R̂i + (ρT R̂i)

2

1 + ρT R̂i

}

= 1

N

N∑
i=1

ρT R̂i − 1

N

N∑
i=1

(
ρT R̂i

)2 + 1

N

N∑
i=1

(ρT R̂i)
3

1 + ρT R̂i

= 1

N

N∑
i=1

ρT R̂i − 1 + op(1)

N

N∑
i=1

(
ρT R̂i

)2
,

which implies

1

N

N∑
i=1

ρT R̂i = 1 + op(1)

N

N∑
i=1

(
ρT R̂i

)2
.(4.13)

Using (4.10)–(4.12) and Lemma 4.1, we have

0 = 1

N

N∑
i=1

R̂i

1 + ρT R̂i

= 1

N

N∑
i=1

R̂i

{
1 − ρT R̂i + (ρT R̂i)

2

1 + ρT R̂i

}

= 1

N

N∑
i=1

R̂i − 1

N

N∑
i=1

R̂iR̂T
i ρ + 1

N

N∑
i=1

R̂i(ρ
T R̂i )

2

1 + ρT R̂i

= 1

N

N∑
i=1

R̂i − 1

N

N∑
i=1

R̂iR̂T
i ρ + Op

(
max

1≤i≤N

∥∥∥∥ R̂i

1 + ρT R̂i

∥∥∥∥ 1

N

N∑
i=1

(
ρT R̂i

)2)

= 1

N

N∑
i=1

R̂i − 1

N

N∑
i=1

R̂iR̂T
i ρ + op

(
N1/2ρT 1

N

N∑
i=1

R̂iR̂T
i ρ

)

= 1

N

N∑
i=1

R̂i − 1

N

n∑
i=1

R̂iR̂T
i ρ + op

(
N1/2),



TESTS FOR HD COVARIANCE MATRIX 2089

which implies that

ρ =
{

1

N

N∑
i=1

R̂iR̂T
i

}−1
1

N

N∑
i=1

R̂i + op

(
N−1/2).(4.14)

Hence, using Taylor expansion, (4.13), (4.14) and Lemma 4.1, we have

−2 logL1(�0)

= 2
N∑

i=1

ρT R̂i − (1 + op(1)
) N∑

i=1

(
ρT R̂i

)2

= (
1 + op(1)

)
ρT

N∑
i=1

R̂iR̂T
i ρ(4.15)

= (
1 + op(1)

)( 1√
N

N∑
i=1

R̂i

)T (
1

N

N∑
i=1

R̂iR̂T
i

)−1(
1√
N

N∑
i=1

R̂i

)
+ op(1)

d→ χ2
2 as n → ∞.

Similarly we can show that −2 logL2(�0)
d→ χ2

2 by using Lemma 4.2. �

PROOF OF COROLLARY 2.1. First we prove the case of known μ. Lemma 4.3
implies that under condition A2,

E|e1|2+δ = O
(
q2+δ) and E|v1|2+δ = O

(
q2+δ).

Further, under condition A1, we have for a constant C > 0, π11 = tr(
2) ≥ qC

and π22 = 1T
q 
1q ≥ qC. Thus,

E|e1|2+δ/π
(2+δ)/2
11 = O

(
q(2+δ)/2)= O

(
p2+δ)

and

E|v1|2+δ/π
(2+δ)/2
22 = O

(
q(2+δ)/2)= O

(
p2+δ).

Therefore, (2.2) in Theorem 2.1 follows from condition A3, that is, Corollary 2.1
holds for the case of known μ.

Next we prove the case of unknown μ. Since (2.2) is satisfied, by Theorem 2.1, it
is enough to show that condition (2.3) holds. Under condition max1≤i≤p σii < C0,
we have

(
tr
(
�2))2 =

( ∑
1≤i,j≤p

σ 2
ij

)2

≤ q2
(

max
1≤i≤p

σ 2
ii

)
≤ C2

0q2(4.16)

and (
1T
p�1p

)2 ≤ q2
(

max
1≤i≤p

σ 2
ii

)
≤ C2

0q2.(4.17)
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On the other hand, under condition A1, there exists a constant C > 0 such that

π11 = tr
(

2)≥ qC and π22 = 1T

q 
1q ≥ qC.(4.18)

Note that condition A3 implies that p = o(n1/4) and q = o(n1/2). Thus, by (4.16),
(4.17) and (4.18), we have

NEe2
1 = Nπ11 ≥ CNq ≥ (tr(�2))2

and √
NEv2

1 = √
Nπ22 ≥ √

NqC >
(
1T
p�1p

)2
.

Hence, (2.3) holds and the proof of Corollary 2.1 is complete. �

PROOF OF COROLLARY 2.2. It follows from Lemma 4.4 that (2.2) in Theo-
rem 2.1 holds with δ = 2. Hence Corollary 2.2 follows from Theorem 2.1 when μ

is known.
When μ is unknown, it follows from Lemma 4.4 that (2.2) holds. Further,

through the proof of Lemma 4.4, we have

E
[
e2

1
]≥ C2(tr(�2))2 and E

[
v2

1
]≥ C

(
1T
p�1p

)2
,

that is, condition (2.3) holds. Thus, by Theorem 2.1, Corollary 2.2 holds for un-
known μ. �

PROOF OF THEOREM 2.2. Since the required moment conditions are satisfied,
it follows from the same arguments as in the proof of Theorem 2.1. �

PROOF OF THEOREM 2.3. Using Lemma 4.5, the proof of Theorem 2.3 fol-
lows from the same arguments as in the proof of Theorem 2.1. �

PROOF OF THEOREM 2.4. We only show the case of known μ since the case
of unknown μ can be proved similarly.

First we consider the case of ν = o(N). Note that under the alternative hypoth-
esis Ha , EY1 = � and write for 1 ≤ i ≤ N ,

ei(�0) = ei(�) + tr
(
(� − �0)

2)+ tr
(
(� − �0)(Yi + YN+i − 2�)

)
and vi(�0) = vi(�) + 21T

p (� − �0)1p , where q = p2. As a result, we have

1√
N

N∑
i=1

(
ei(�0)√

π11
,
vi(�0)√

π22

)T

= 1√
N

N∑
i=1

(
ei(�)√

π11
,
vi(�)√

π22

)T

+ √
N(ζn1, ζn2)

T(4.19)

+ 1√
N

N∑
i=1

(
ηi(�),0

)T
,
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where ηi(�) = tr((� − �0)(Yi + YN+i − 2�))/
√

π11. Since E[ηi(�)] = 0 and

E
[
ηi(�)

]2 = 4E
(
tr
(
(� − �0)(Y1 − �)

)2)
/π11

≤ 4E
(
tr
(
(� − �0)

2) tr
(
(Y1 − �)2))/π11(4.20)

= O
[
tr
(
(� − �0)

2)/√π11
]= o(1),

we have

1

N

N∑
i=1

η2
i (�) = op(1) and

max1≤i≤N |ηi(�)|√
N

≤
√∑N

i=1 η2
i (�)

N

p→ 0.(4.21)

Hence it follows from Lemma 4.1 that

VN
d→ N(0, I2),(4.22)

where

VN =
(

VN1
VN2

)
= 1√

N

N∑
i=1

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝

ei(�0)√
π11

vi(�0)√
π22

⎞
⎟⎟⎠−

(
ζn1
ζn2

)⎫⎪⎪⎬
⎪⎪⎭ .

Put Wi = (
ei(�0)√

π11
,

vi(�0)√
π22

)T . Then it follows from the proof of Theorem 2.1 that

−2 logL1(�0)

= (
1 + op(1)

)( 1√
N

N∑
i=1

Wi

)T (
1

N

N∑
i=1

WiW
T
i

)−1
1√
N

N∑
i=1

Wi + op(1)

= (
1 + ζ 2

n1 + ζ 2
n2
)−1

× [(1 + ζ 2
n2
)
(VN1 + √

Nζn1)
2 − 2ζn1ζn2(VN1 + √

Nζn1)(4.23)

× (Vn2 + √
Nζn2) + (1 + ζ 2

n1
)
(Vn2 + √

Nζn2)
2]

+ op(1)

= (VN1 + √
Nζn1)

2(1 + op(1)
)+ (Vn2 + √

Nζn2)
2(1 + op(1)

)+ op(1).

If the limit of ν = N(ζ 2
n1 + ζ 2

n2), say ν0, is finite, then it follows from (4.22)
and (4.23) that −2 logL1(�0) converges in distribution to a noncentral chi-square
distribution with two degrees of freedom and noncentrality parameter ν0. If ν goes
to infinite, the limit of the right-hand side of (2.9) is 1. By (4.23), we have

−2 logL1(�0)

≥
(

Nζ 2
n1

2
− V 2

N1

)(
1 + op(1)

)+ (Nζ 2
n2

2
− V 2

N2

)(
1 + op(1)

)+ op(1)(4.24)

= ν

2

(
1 + op(1)

)− (V 2
N1 + V 2

N2
)(

1 + op(1)
)+ op(1)

p→ ∞,
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which implies that the limit of the left-hand side of (2.9) is also 1. Thus (2.9) holds
when ν = o(N).

For the case of lim infν/N > 0, we first consider the case of lim inf ζ 2
n2 > 0.

Since
∑N

i=1 piRi(�0) = 0 implies that
∑N

i=1 piνi(�0) = 0, we have

L1(�0) ≤ sup

{
N∏

i=1

(Npi) :p1 ≥ 0, . . . , pN ≥ 0,

N∑
i=1

pi = 1,

N∑
i=1

pivi(�0) = 0

}

(4.25)

= sup

{
N∏

i=1

(Npi) :p1 ≥ 0, . . . , pN ≥ 0,

N∑
i=1

pi = 1,

N∑
i=1

pi

vi(�0)√
π22

= 0

}
.

Define

L∗(θ) = sup

{
N∏

i=1

(Npi) :p1 ≥ 0, . . . , pN ≥ 0,

N∑
i=1

pi = 1,

N∑
i=1

pi

(
vi(�0)√

π22
− ζn2

)
= θ

}
.

Put θ∗ = 1
N

∑N
i=1(

vi(�0)√
π22

− ζn2). Then

logL∗(θ∗)= 0.(4.26)

Since E{vi(�0)/
√

π22 − ζn2} = E{vi(�)/
√

π22} = 0 and E{vi(�0)/
√

π22 −
ζn2}2 = 1 under Ha :� �= �0, we have by using Chebyshev’s inequality that

P
(∣∣θ∗∣∣> N−2/5)→ 0.(4.27)

Using E{vi(�0)/
√

π22 − ζn2}2 = 1, similar to the proof of (4.24), we can show
that

−2 logL∗(θ∗
1
) p→ ∞ and −2 logL∗(θ∗

2
) p→ ∞,

where θ∗
1 = N−1/4 and θ∗

2 = −N−1/4, which satisfy N(θ∗
1 )2 = o(N) and

N(θ∗
2 )2 = o(N). It follows from [10] that the set {θ :−2 logL∗(θ) ≤ c} =: Ic

is convex for any c. Take c = min{−2 logL∗(θ∗
1 ),−2 logL∗(θ∗

2 )}/2. By (4.26),
we have that θ∗ ∈ Ic. Thus, if −ζn2 ∈ Ic, then −aζn2 + (1 − a)θ∗ ∈ Ic for any
a ∈ [0,1], which implies that one of θ∗

1 and θ∗
2 must belong to Ic. As a result, we

have

P
(∣∣θ∗∣∣≤ N−2/5,−ζn2 ∈ Ic

)
≤ P

(
θ∗

1 ∈ Ic or θ∗
2 ∈ Ic

)
= P

(
min

{−2 logL∗(θ∗
1
)
,−2 logL∗(θ∗

2
)}= 0

)→ 0,
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which, together with (4.27), implies

P
(−2 logL∗(−ζn2) > c

)
= P(−ζn2 /∈ Ic)

≥ 1 − P
(∣∣θ∗∣∣≤ N−2/5,−ζn2 ∈ Ic

)
− P

(∣∣θ∗∣∣> N−2/5)→ 1,

and therefore

−2 logL∗(−ζn2)
p→ ∞(4.28)

since c
p→ ∞. Hence, combining with (4.25), we have

P
(−2 logL1(�0) > ξ1−α

)≥ P
(−2 logL∗(−ζn2) > ξ1−α

)→ 1,

when lim inf ζ 2
n2 > 0.

Next we consider the case of lim inf ζn1 > 0. Define

π33 = E
{
tr
(
(� − �0)(Yi + YN+i − 2�)

)}2 and ζn3 = tr((� − �0)
2)√

π11 + π33
.

As before, we have

L1(�0) ≤ sup

{
N∏

i=1

(Npi) :p1 ≥ 0, . . . , pN ≥ 0,

N∑
i=1

pi = 1,

N∑
i=1

piei(�0) = 0

}

(4.29)

= sup

{
N∏

i=1

(Npi) :p1 ≥ 0, . . . , pN ≥ 0,

N∑
i=1

pi = 1,

N∑
i=1

pi

ei(�0)√
π11 + π33

= 0

}
.

Define

L∗∗(θ) = sup

{
N∏

i=1

(Npi) :p1 ≥ 0, . . . , pN ≥ 0,

N∑
i=1

pi = 1,

N∑
i=1

pi

(
ei(�0)√
π11 + π33

− ζn3

)
= θ

}
.

Since e1(�) and tr((� − �0)(Y1 + YN+1 − 2�)) are two uncorrelated variables
with zero means, we have

Var
(
e1(�) + tr

(
(� − �0)(Y1 + YN+1 − 2�)

))= π11 + π33.
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As we have shown in the proof of Lemma 4.4, E|e1(�)|4 = o(Nπ2
11). Following

the same lines for estimating E(v4
1) in the end of the proof of Lemma 4.4, we have

E
{
tr
(
(� − �0)(Y1 + YN+1 − 2�)

)}4 = O
(
π2

33
)
.

Then it follows that

E
{
e1(�) + tr

(
(� − �0)(Y1 + YN+1 − 2�)

)}4

≤ 8
(
E
∣∣e1(�)

∣∣4 + E
{
tr
(
(� − �0)(Y1 + YN+1 − 2�)

)}4)
= o

(
N(π11 + π33)

2).
Write

ei(�0)√
π11 + π33

− ζn3 = ei(�) + tr((� − �0)(Yi + YN+i − 2�))√
π11 + π33

.

Then we have

E
(

ei(�0)√
π11 + π33

− ζn3

)4

= E(ei(�) + tr((� − �0)(Yi + YN+i − 2�)))4

(π11 + π33)2

= o(N).

This ensures the validity of Wilks’s theorem for −2 logL∗∗(0); that is, −2 ×
logL∗∗(0) converges in distribution to a chi-square distribution with one degree
of freedom. Similar to the proof of (4.24), we can show that

−2 logL∗∗(θ∗
1
) p→ ∞ and −2 logL∗∗(θ∗

2
) p→ ∞,

where θ∗
1 = N−1/4 and θ∗

2 = −N−1/4, which satisfy N(θ∗
1 )2 = o(N) and

N(θ∗
2 )2 = o(N).

Put θ∗∗ = 1
N

∑N
i=1(

ei(�0)√
π11+π33

− ζn3). Then

logL∗∗(θ∗∗)= 0.(4.30)

Since

E
{
ei(�0)/

√
π11 + π33 − ζn3

}
= E

{
ei(�) + tr((� − �0)(Yi + YN+i − 2�))√

π11 + π33

}
= 0

and

E
{

ei(�0)√
π11 + π33

− ζn3

}2

= E
{
ei(�) + tr((� − �0)(Yi + YN+i − 2�))√

π11 + π33

}2

= 1

under Ha :� �= �0, we have from Chebyshev’s inequality that

P
(∣∣θ∗∗∣∣> N−2/5)→ 0.(4.31)
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By (4.20), we have π33/π11 = O(ζn1), which implies that there exists a constant
M > 0 such that

ζn3/N
−1/4 = N1/4ζn1

√
π11√

π11 + π33
≥ N1/4ζn1{1 + Mζn1}−1/2 → ∞

since lim inf ζn1 > 0.
Using (4.30), (4.31) and the same arguments in proving (4.28), we have

−2 logL∗∗(−ζn3)
p→ ∞. Hence, combining with (4.29), we have

P
(−2 logL1(�0) > ξ1−α

)≥ P
(−2 logL∗∗(−ζn3) > ξ1−α

)→ 1,

when lim inf ζ 2
n1 > 0. Therefore (2.9) holds when lim inf ζn1 > 0. This completes

the proof of Theorem 2.4. �

PROOF OF THEOREM 2.5. The proof is similar to that of Theorem 2.4. �

Acknowledgments. We thank the Editor Professor Runze Li, an Associate
Editor and two reviewers for their constructive comments.

SUPPLEMENTARY MATERIAL

Supplement to “Tests for covariance matrix with fixed or divergent dimen-
sion” (DOI: 10.1214/13-AOS1136SUPP; .pdf). This supplementary file contains
detailed proofs of Lemmas 4.1–4.5 used in Section 4.
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