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MAXIMUM-LIKELIHOOD ESTIMATION FOR DIFFUSION
PROCESSES VIA CLOSED-FORM DENSITY EXPANSIONS

BY CHENXU LI1

Guanghua School of Management, Peking University

This paper proposes a widely applicable method of approximate maxi-
mum-likelihood estimation for multivariate diffusion process from discretely
sampled data. A closed-form asymptotic expansion for transition density is
proposed and accompanied by an algorithm containing only basic and ex-
plicit calculations for delivering any arbitrary order of the expansion. The
likelihood function is thus approximated explicitly and employed in statis-
tical estimation. The performance of our method is demonstrated by Monte
Carlo simulations from implementing several examples, which represent a
wide range of commonly used diffusion models. The convergence related to
the expansion and the estimation method are theoretically justified using the
theory of Watanabe [Ann. Probab. 15 (1987) 1–39] and Yoshida [J. Japan
Statist. Soc. 22 (1992) 139–159] on analysis of the generalized random vari-
ables under some standard sufficient conditions.

1. Introduction. Diffusion processes governed by stochastic differential
equations (hereafter SDE) are widely used in describing the phenomenon of ran-
dom fluctuations over time, and even become indispensable for analyzing high-
frequency data; see, for example, Mykland and Zhang [52]. Practical application
of diffusion models calls for statistical inference based on discretely monitored
data. The literature has seen a wide spectrum of asymptotically efficient estima-
tion methods, for example, those based on various contrast functions proposed in
Yoshida [69], Kessler [39], Kessler and Sørensen [40] and the references given
in Sørensen [59]. Taking the efficiency, feasibility and generality into account,
maximum-likelihood estimation (hereafter MLE) can be a choice among others.
However, for the increasingly complex real-world dynamics, likelihood functions
(transition densities) are generally not known in closed-form and thus involve sig-
nificant challenges in valuation. This leads to various methods of approximation
and the resulting approximate MLE. The focus of this paper is to propose a widely
applicable closed-form asymptotic expansion for transition density and thus to
apply it in approximate MLE for multivariate diffusion process.
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1.1. Background. To approximate likelihood functions, Yoshida [69] pro-
posed to discretize continuous likelihood functions (see, e.g., Basawa and Prakasa
Rao [13]); many others focused on direct approximation of likelihood functions
(transition densities) for discretely monitored data, see surveys in, for example,
Phillips and Yu [56], Jensen and Poulsen [36], Hurn, Jeisman and Lindsay [34] and
the references therein. In particular, among various numerical methods, Lo [46]
proposed to employ a numerical solution of Kolmogorov equation for transition
density; Pedersen [55], Brandt and Santa-Clara [21], Durham and Gallant [25],
Stramer and Yan [60], Beskos and Roberts [17], Beskos et al. [16], Beskos, Pa-
paspiliopoulos and Roberts [15] and Elerian, Chib and Shephard [28] advocated
the application of various Monte Carlo simulation methods; Yu and Phillips [73]
developed an exact Gaussian method for models with a linear drift function; Jensen
and Poulsen [36] resorted to the techniques of binomial trees. Since all these nu-
merical methods are computationally demanding, real-world implementation has
necessitated the development of analytical methods for efficiently approximating
transition density. An adhoc approach is to approximate the model by discretiza-
tion, for example, the Euler scheme, and then use the transition density of the dis-
cretized model. Elerian [27] refined such an approximation via the second order
Milstein scheme. Kessler [39] and Uchida and Yoshida [63] employed a more so-
phisticated normal-distribution-based approximation via higher order expansions
of the mean and variance.

For approximate MLE of diffusions, Dacunha-Castelle and Florens-Zmirou [23]
is one of the earliest attempts to apply the idea of small-time expansion of transi-
tion densities, which in principle can be made arbitrarily accurate. However, their
method relies on implicit representation of moments of Brownian bridge function-
als, and thus requires Monte Carlo simulation in implementation. A milestone is
the ground-breaking work of Aït-Sahalia [1–3], which established the theory of
Hermite-polynomial-based analytical expansion for transition density of diffusion
models and the corresponding approximate MLE. Along the line of Aït-Sahalia
[1–3], a number of substantial refinements and applications emerged in the litera-
ture of likelihood-based statistical inference (see surveys in Aït-Sahalia [4]); see,
for example, Bakshi and Ju [11], Bakshi, Ju and Ou-Yang [12], Aït-Sahalia and
Mykland [7, 8], Aït-Sahalia and Kimmel [5, 6], Li [45], Egorov, Li and Xu [26],
Schaumburg [58], Aït-Sahalia and Yu [9], Yu [72], Filipović, Mayerhofer and
Schneider [31], Tang and Chen [61], Xiu [66] and Chang and Chen [22].

1.2. Expansion for likelihood functions and approximate MLE. Starting from
the celebrated Edgeworth expansion for distribution of standardized summation of
independently identically distributed random variables (see, e.g., Chapter XVI in
Feller [30], Chapter 2 in Hall [33] and Chapter 5 in McCullagh [47]), asymptotic
expansions have become powerful tools for statistics, econometrics and many other
disciplines in science and technology. Taking dependence of random variables into
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account, Mykland [48–51] established the theory, calculation and various statisti-
cal applications of martingale expansion, which is further developed in Yoshida
[70, 71].

Having an analogy with these Edgeworth-type expansions and motivated by
MLE for diffusion processes, I propose a new small-time asymptotic expansion
of transition density for multivariate diffusions based on the theory of Watanabe
[65] and Yoshida [67, 68]. However, in contrast to the traditional Edgeworth ex-
pansions, our expansion does not require the knowledge of generally implicit mo-
ments, cumulants or characteristic function of the underlying variable, and thus it
is applicable to a wide range of diffusion processes. Moreover, in analogy to the
verification of validity given in, for example, Bhattacharya and Ghosh [18], Myk-
land [48–51] and Yoshida [70, 71] for Edgeworth type expansions, the uniform
convergence rate (with respect to various parameters) of our density expansion is
proved under some sufficient conditions on the drift and diffusion coefficients of
the underlying diffusion using the theory of Watanabe [65] and Yoshida [67, 68].
Consequently, the approximate MLE converges to the true one, and thus inherits
its asymptotic properties. Such results are further demonstrated through numerical
tests and Monte Carlo simulations for some representative examples.

In comparison to the expansion proposed by Aït-Sahalia [1–3], our method
is able to bypass the challenge resulting from the discussion of reducibility,
the explicity of the Lamperti transform (see, e.g., Section 5.2 in Karatzas and
Shreve [38]) and its inversion, as well as the iterated equations for expressing cor-
rection terms, which in general lead to multidimensional integrals; see Bakshi, Ju
and Ou-Yang [12]. Thus it renders an algorithm for practically obtaining a closed-
form expansion (without integrals and implicit transforms) for transition density
up to any arbitrary order, which serves as a widely applicable tool for approximate
MLE. Even after the Lamperti transform, our expansion employs a completely
different nature comparing with those proposed in Aït-Sahalia [1–3], which hinge
on expansions in an orthogonal basis consisting of Hermite polynomials and ex-
pansions of each coefficient expressed by an expectation of a smooth functional
of the transformed variable via an iterated Dynkin formula; see Section 4 in Aït-
Sahalia [2].

Moreover, our method is different from the existing theory of large-deviations-
based expansions, which were discussed in, for example, Azencott [10], Bis-
mut [20], Ben Arous [14] and Léandre [43], and given probabilistic representation
in Watanabe [65] for the purpose of investigating the analytical structure of heat
kernel in differential geometry. Large-deviations-based asymptotic expansions in-
volve Riemannian distance (implied by the true but generally unknown transition
density) and higher order correction terms. Except for some special cases, they
rarely admit closed-form expressions by solving the corresponding variational
problems. However, for practical implementation of statistical estimation, rela-
tively simple closed-form approximations are usually favorable.
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The rest of this paper is organized as follows. In Section 2, the model is
introduced with some technical assumptions and the maximum-likelihood esti-
mation problem is formulated. In Section 3, the transition density expansion is
proposed with closed-form correction terms of any arbitrary order for general
multivariate diffusion processes, and the uniform convergence of the expansion
is established. In Section 4, numerical performance of the density expansion is
demonstrated through examples. In Section 5, the asymptotic properties of the
consequent approximate MLE are established. In Section 6, Monte Carlo evidence
for the approximate MLE is provided. In Section 7, the paper is concluded and
some opportunities for future research are outlined. Appendix A provides an al-
gorithm for explicitly calculating a type of conditional expectation, which plays
an important role in the closed-form expansion. Appendix B contains all proofs.
The supplementary material [44] collects some concrete formulas for illustration,
figures for exhibiting detailed numerical performance, additional and alternative
output of simulation results, more examples, a brief introduction to the theory of
Watanabe–Yoshida and the proof of a technical lemma.

2. The model and maximum-likelihood estimation. Assuming known para-
metric form of the drift vector function μ = (μ1, . . . ,μm) : Rm → R

m and the dis-
persion matrix σ = (σij )m×d : R

m → R
m×d with unknown parameter θ belonging

to a compact set � ⊂ R
k , an m-dimensional time-homogenous diffusion X is mod-

eled by an SDE,

dX(t) = μ
(
X(t); θ)

dt + σ
(
X(t); θ)

dW(t), X(0) = x0,(2.1)

where {W(t)} is a d-dimensional standard Brownian motion. Let E ⊂ R
m denote

the state space of X. Without loss of generality, we assume m = d throughout the
paper.

By the time-homogeneity nature of diffusion X, let pX(�,x|x0; θ) denote the
conditional density of X(t + �) given X(t) = x0, that is,

P
(
X(t + �) ∈ dx|X(t) = x0

) = pX(�,x|x0; θ) dx.

Based on the discrete observations of X at time grids {�,2�, . . . , n�}, which cor-
respond to the daily, weekly or monthly monitoring, etc., the likelihood function
is constructed as

ln(θ) =
n∏

i=1

pX

(
�t,X(i�)|X(

(i − 1)�
); θ);(2.2)

the corresponding log-likelihood function admits the following form:

�n(θ) =
n∑

i=1

Li(θ),(2.3)
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where the log transition density is

Li(θ) = log
[
pX

(
�,X(i�)|X(

(i − 1)�
); θ)]

.(2.4)

Maximum-likelihood estimation is to identify the optimizer in θ ∈ � for (2.2) or
equivalently (2.3). However, except for some simple models, (2.2) and (2.3) rarely
admit closed-form expressions.

For ease of exposition, we introduce some technical assumptions. Let A(x; θ) =
σ(x; θ)σ (x; θ)T denote the diffusion matrix.

ASSUMPTION 1. The diffusion matrix A(x; θ) is positive definite, that is,
detA(x; θ) > 0, for any (x, θ) ∈ E × �.

ASSUMPTION 2. For each integer k ≥ 1, the kth order derivatives in x of
the functions μ(x; θ) and σ(x; θ) exist, and they are uniformly bounded for any
(x, θ) ∈ E × �.

ASSUMPTION 3. The transition density pX(�,x|x0; θ) is continuous in θ ∈
�, and the log-likelihood function (2.3) admits a unique maximizer in the param-
eter set �.

Assumptions 1 and 2 are conventionally proposed in the study of stochastic dif-
ferential equations; see, for example, Ikeda and Watanabe [35]. They are sufficient
(but not necessary) to guarantee the existence and uniqueness of the solution and
other desirable technical properties. For convenience, the theoretical proofs given
in Appendix B are based on these conditions. However, as is shown in Sections 4
and 6, numerical examples suggest that the method proposed in this paper is ap-
plicable to a wide range of commonly used models, rather than confined to those
strictly satisfying these sufficient (but not necessary) conditions. Assumption 3
collects two standard conditions for maximum likelihood estimation. In particu-
lar, for the continuity (and higher differentiability) of the transition density in the
parameter, sufficient conditions based on the smoothness of the drift and disper-
sion functions can be found in, for example, Azencott [10] and Aït-Sahalia [2].
Theoretical relaxation of these conditions may involve case-by-case treatment and
standard approximation argument, which is beyond the scope of this paper and can
be regarded as a future research topic.

3. A closed-form expansion for transition density. The method of approx-
imate maximum-likelihood estimation proposed in this paper relies on a closed-
form expansion for transition density of any arbitrary diffusion process. Bypassing
the discussion of the Lamperti transform and the reducibility issue as in Aït-Sahalia
[1–3], our starting point stands on the fact that the transition density can be ex-
pressed as

pX(�,x|x0; θ) = E
[
δ
(
X(�) − x

)|X(0) = x0
]
,(3.1)
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where δ(z) is the Dirac Delta function centered at 0 for some variable z. More
precisely, δ(z) is defined as a generalized function (distribution) such that it is zero
for all values of z except when it is zero, and its integral from −∞ to ∞ is equal
to one; see, for example, Kanwal [37] for more details. Watanabe [65] established
the validity of (3.1) through the theory of generalized random variables and ex-
pressed correction terms of large-deviations-based density expansion as implicit
expectation forms by separately treating the cases of diagonal (x = x0) and off-
diagonal (x �= x0). In particular, the off-diagonal (x �= x0) expansion depends on a
generally implicit variational formulation for Riemanian distance. From the view-
point of statistical applications where X(�) �= X(0) (corresponding to x �= x0)
happens almost surely, the expansion proposed in Watanabe [65] is impractical
due to high computational costs. In the literature of statistical inference, (3.1) has
been employed in Pedersen [55] for simulation-based approximate MLE. In this
section, we propose a new expansion of the transition density which universally
treats the diagonal (x = x0) and off-diagonal (x �= x0) cases. Heuristically speak-
ing, our method hinges on a Taylor-like expansion of a standardized version of
δ(X(�) − x), which results in closed-form formulas for any arbitrary correction
term.

3.1. Basic setup and notation. Let ε = √
� be a small parameter based on

which an asymptotic expansion is carried out. By rescaling the model (2.1) to
bring forth finer local behavior of the diffusion process, we let Xε(t) := X(ε2t).
Integral substitution and the Brownian scaling property yield that

dXε(t) = ε2μ
(
Xε(t); θ)

dt + εσ
(
Xε(t); θ)

dWε(t), Xε(0) = x0,(3.2)

where {Wε(t)} is a m-dimensional standard Brownian motion. For notation sim-
plicity, we write the scaled Brownian motion Wε(t) as W(t) and drop the param-
eter θ in what follows.

Let us introduce a vector function b(x) = (b1(x), b2(x), . . . , bm(x))T defined
by

bi(x) = μi(x) − 1

2

m∑
k=1

m∑
j=1

σkj (x)
∂

∂xk

σij (x)(3.3)

and construct the following differential operators:

A0 :=
m∑

i=1

bi(x)
∂

∂xi

and Aj :=
m∑

i=1

σij (x)
∂

∂xi

for j = 1, . . . ,m,(3.4)

which map vector-valued functions to vector-valued functions of the same di-
mension, respectively. More precisely, for any ν ∈ N and a ν-dimensional vector-
valued function ϕ(x) = (ϕ1(x), ϕ2(x), . . . , ϕν(x))T ,

(
A0(ϕ)

)
(x) =

(
m∑

i=1

bi(x)
∂ϕ1(x)

∂xi

,

m∑
i=1

bi(x)
∂ϕ2(x)

∂xi

, . . . ,

m∑
i=1

bi(x)
∂ϕν(x)

∂xi

)T
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and

(
Aj (ϕ)

)
(x) =

(
m∑

i=1

σij (x)
∂ϕ1(x)

∂xi

,

m∑
i=1

σij (x)
∂ϕ2(x)

∂xi

, . . . ,

m∑
i=1

σij (x)
∂ϕν(x)

∂xi

)T

for j = 1,2, . . . ,m.
For an index i = (i1, . . . , in) ∈ {0,1,2, . . . ,m}n and a right-continuous stochas-

tic process {f (t)}, define an iterated Stratonovich integral with integrand f as

Ji[f ](t) :=
∫ t

0

∫ t1

0
· · ·

∫ tn−1

0
f (tn) ◦ dWin(tn) · · · ◦ dWi2(t2) ◦ dWi1(t1),(3.5)

where ◦ denotes stochastic integral in the Stratonovich sense. Note that Ji[f ](t)
is recursively defined from inside to outside; see page 174 of Kloeden and
Platen [41]. For ease of exposition, the order of iterated integrations defined in
this paper is the reverse of that in Kloeden and Platen [41] for any arbitrary index.
To lighten the notation, for f ≡ 1, the integral Ji[1](t) is abbreviated to Ji(t). By
convention, let W0(t) := t and define

‖i‖ :=
n∑

k=1

[2 · 1{ik=0} + 1{ik �=0}](3.6)

as a “norm” of index i, which counts an index k with ik = 0 twice.
By viewing Xε(1) as a function of ε, it is natural to obtain a pathwise expansion

in ε with random coefficients, which serves as a foundation for our transition den-
sity expansion. According to Watanabe [65], I introduce the following coefficient
function Ci(x0) defined by iterative application of the differential operators (3.4):

Ci(x0) := Ain

(· · · (Ai3

(
Ai2(σ·i1)

)) · · ·)(x0)(3.7)

for an index i = (i1, . . . , in). Here, for i1 ∈ {1,2, . . . ,m}, the vector σ·i1(x) =
(σ1i1(x), . . . , σmi1(x))T denotes the i1th column vector of the dispersion matrix
σ(x), for i1 = 0, σ·0(x) refers to the vector b(x) defined in (3.3).

Using vector function (3.3), the scaled diffusion (3.2) can be equivalently ex-
pressed as the following stochastic differential equation in the Stratonovich sense
(see, e.g., Section 3.3 in Karatzas and Shreve [38]), that is,

dXε(t) = ε2b
(
Xε(t)

)
dt + εσ

(
Xε(t)

) ◦ dW(t).

Thus, similarly to Theorem 3.3 in Watanabe [65], it is easy to obtain a closed-form
pathwise expansion of Xε(1) from successive applications of the Itô formula.

LEMMA 1. Xε(1) admits the following pathwise asymptotic expansion:

Xε(1) =
J∑

k=0

Fkε
k + O

(
εJ+1)

(3.8)
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for any J ∈ N . Here, F0 = x0 and Fk can be written as a closed-form linear com-
bination of iterated Stratonovich integrals, that is,

Fk = ∑
‖i‖=k

Ci(x0)Ji(1)(3.9)

for k = 1,2, . . . , where the integral Ji(1), the norm ‖i‖ and coefficient Ci(x0) are
defined in (3.5), (3.6) and (3.7), respectively.

For any arbitrary dimension r = 1,2, . . . ,m, one has the element-wise form of
the expansion (3.8) as Xε

r (1) = ∑J
k=0 Fk,rε

k + O(εJ+1) where

Fk,r = ∑
‖i‖=k

Ci,r (x0)Ji(1)(3.10)

with

Ci,r (x0) := Ain

(· · · (Ai3

(
Ai2(σri1)

)) · · ·)(x0)

for i = (i1, . . . , in). Note that (3.8) is different from the Wiener chaos decompo-
sition (see, e.g., Nualart [53]), which employs an alternative way of representing
random variables. The validity of the pathwise expansion (3.8) and other expan-
sions introduced in the next subsection can be rigorously guaranteed by the theory
of Watanabe [65] and Yoshida [67, 68]. For ease of exposition, we focus on the
derivation of density expansion in this and the following subsection and articulate
the validity issue in Section 3.3.

We introduce an m-dimensional correlated Brownian motion

B(t) = (
B1(t),B2(t), . . . ,Bm(t)

)
with Bk(t) =

∑m
j=1 σkj (x0)Wj (t)√∑m

j=1 σ 2
kj (x0)

(3.11)

for k = 1,2, . . . ,m. Thus, the leading term F1 can be expressed as

F1 =
(√√√√ m∑

j=1

σ 2
1j (x0)B1(1),

√√√√ m∑
j=1

σ 2
2j (x0)B2(1), . . . ,

√√√√ m∑
j=1

σ 2
mj (x0)Bm(1)

)
.

Let D(x) be a diagonal matrix defined by

D(x) := diag
(

1√∑m
j=1 σ 2

1j (x)
,

1√∑m
j=1 σ 2

2j (x)
, . . . ,

1√∑m
j=1 σ 2

mj (x)

)
.(3.12)

It follows that B(t) = D(x0)σ (x0)W(t) and D(x0)F1 = B(1). Furthermore, the
correlation of Bk(t) and Bl(t) for k �= l is given by

ρkl(x0) := Corr
(
Bk(t),Bl(t)

) =
∑m

j=1 σkj (x0)σlj (x0)√∑m
j=1 σ 2

kj (x0)
√∑m

j=1 σ 2
lj (x0)

.
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So, the covariance matrix of B(1) is


(x0) = (
ρij (x0)

)
m×m = D(x0)σ (x0)σ (x0)

T D(x0).(3.13)

It follows that Assumption 1 is equivalent to the positive definite property of the
correlation matrix 
(x0) and the nonsingularity of the dispersion matrix σ(x0),
that is, detA(x0) > 0 ⇐⇒ det
(x0) > 0 ⇐⇒ detσ(x0) > 0. Finally, for any index
i ∈ {1,2, . . . ,m} and differentiable function u(y) with y ∈ R

m, we introduce the
following differential operator:

Diu(y) := ∂u(y)

∂yi

− u(y)
(

(x0)

−1y
)
i ,(3.14)

where (
(x0)
−1y)i denotes the ith element of the vector 
(x0)

−1y.

3.2. Asymptotic expansion for transition densities: A general framework. Em-
ploying the scaled diffusion Xε(t) = X(ε2t) with ε = √

�, the expectation repre-
sentation (3.1) for transition density can be expressed as

pX(�,x|x0; θ) = E
[
δ
(
Xε(1) − x

)|Xε(0) = x0
]
.(3.15)

To guarantee the convergence, our expansion procedure begins with standardizing
Xε(1) to

Y ε := D(x0)
Xε(1) − x0

ε
= D(x0)

Xε(1) − x0√
�

,(3.16)

which converges to a nonconstant random variable (a multivariate normal in our
case), see Watanabe [65] and Yoshida [67, 68] for a similar setting. Indeed, based
on the Brownian motion defined in (3.11) and the fact D(x0)F1 = B(1), the j th
component of Y ε(1) satisfies that

Y ε
j := Xε

j (1) − x0j

ε
√∑d

i=1 σ 2
ji(x0)

→ Bj(1) as ε → 0(3.17)

for j = 1,2, . . . ,m. It is worth noting that Watanabe [65] employed an alternative
standardization method (see Theorem 3.7 in Watanabe [65]) in constructing the
implicit expectation representation for the correction terms of large-deviations-
based density expansion for the case of x �= x0; see Theorem 3.8 in Watanabe [65].

Owing to (3.16), the pathwise expansion (3.8) implies that

Y ε =
J∑

i=0

Yiε
i + O

(
εJ+1)

with Yi = D(x0)Fi+1(3.18)

for any J ∈ N. Thus, based on (3.15), a Jacobian transform resulting from the
change of variable in (3.16) yields the following representation of the density of
Xε(1) based on that of Y ε , that is,

pX(�,x|x0; θ) =
(

1√
�

)m

detD(x0)E
[
δ
(
Y ε − y

)|X(0) = x0
]
,
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where y = D(x0)(x − x0)/
√

�. For ease of exposition, the initial condition
X(0) = x0 is omitted in what follows. So, the key task is to develop an asymp-
totic expansion for E[δ(Y ε − y)] around ε = 0.

Based on the theory of Watanabe [65] and Yoshida [67, 68], the Dirac Delta
function can be manipulated as a function for many purposes, though it can be
formally defined as a distribution. Based on the expansion of Y ε and heuristic ap-
plication of classical rule for differentiating composite functions [the Dirac Delta
function δ(· − y) acting on Y ε as a function of ε], one is able to obtain a Taylor
expansion of δ(Y ε − y) as

δ
(
Y ε − y

) =
J∑

k=0

�k(y)εk + O
(
εJ+1)

(3.19)

for any J ∈ N, where �k(y) represents the coefficient of the kth expansion term.
Thus, the following expansion is immediately implied:

E
[
δ
(
Y ε − y

)] :=
J∑

k=0

�k(y)εk + O
(
εJ+1)

,(3.20)

where �k(y) := E�k(y) will be explicitly derived and the remainder term is inter-
preted in the sense of classical calculus. Thus, the approximate transition density
for X up to the J th order is proposed as

p
(J )
X (�,x|x0; θ) :=

(
1

ε

)m

detD(x0)

J∑
k=0

�k

(
D(x0)

x − x0

ε

)
εk

(3.21)

=
(

1√
�

)m

detD(x0)

J∑
k=0

�k

(
D(x0)

x − x0√
�

)
�k/2.

The convergence of this expansion (guaranteed by the theory of Watanabe [65] and
Yoshida [67, 68]) will be discussed in Section 3.3.

As outlined in the whole framework, our idea naturally originates from path-
wise expansion of a standardized random variable. However, explicit calculation
of the correction terms �k is still a challenging issue. In what follows, we will
give a general closed-form formula. Based on (3.17), (3.18), (3.19) and (3.20), it
is straightforward to find the leading term as

�0(y) = E
[
δ(Y0 − y)

] = E
[
δ
(
B(1) − y

)]
(3.22)

= φ
(x0)(y) := exp(−yT 
(x0)
−1y/2)

(2π)m/2(det
(x0))1/2 ,

where 
(x0) is defined in (3.13).
To express �k(y) for arbitrary k ∈ N, we introduce an index set

Sk = {(
l, r(l), j(l)

)|l = 1,2, . . . , r(l) = (r1, r2, . . . , rl) ∈ {1,2, . . . ,m}l ,
(3.23)

j(l) = (j1, j2, . . . , jl) with ji ≥ 1 and j1 + j2 + · · · + jl = k
}
.
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As building blocks, let P(i1,i2,...,il )(z) denote a multivariate function in z =
(z1, z2, . . . , zm) ∈ R

m defined by the conditional expectation of multiplication of
iterated Stratonovich integrals with arbitrary indices i1, i2, . . . , il , that is,

P(i1,i2,...,il )(z) := E

(
l∏

ω=1

Jiω(1)|W(1) = z

)
,(3.24)

which can be explicitly calculated as a multivariate polynomial according to an
effective algorithm proposed in Appendix A.

Now, we will give an explicit formula for obtaining any arbitrary correction
term �k(y) under any arbitrary multivariate diffusion process in the following
proposition, which can be implemented using only basic and explicit calculations
in any symbolic software package, for example, Mathematica.

THEOREM 1. For any k ∈ N, the correction term �k(y) in (3.21) admits the
following explicit expression:

�k(y) =
( ∑

(l,r(l),j(l))∈Sk

Q(l,r(l),j(l))(y)

)
φ
(x0)(y),(3.25)

where Q(l,r(l),j(l))(y) is a polynomial explicitly calculated from

Q(l,r(l),j(l))(y)

= (−1)l

l!
∑

{(i1,i2,...,il )|‖iω‖=jω+1,ω=1,2,...,l}

l∏
ω=1

[
Ciω,rω(x0)Drωrω(x0)

]
× Dr1

(
Dr2

(· · · Drl

(
P(i1,i2,...,il )

(
σ(x0)

−1D(x0)
−1y

)) · · ·))(3.26)

for the index (l, r(l), j(l)) = (l, (r1, r2, . . . , rl), (j1, j2, . . . , jl)) ∈ Sk . Here, Sk ,
φ
(x0)(y), ‖ · ‖, Ciω,rω(x0), Drωrω(x0), Dri and P(i1,i2,...,il )(·) are defined in (3.23),
(3.22), (3.6), (3.7), (3.12), (3.14) and (3.24), respectively.

PROOF. See Appendix B. �

An algorithm for explicitly calculating conditional expectation (3.24), which
plays an important role in completing the closed-form correction terms as proposed
in Theorem 1, is given in Appendix A. Regardless of the dimension of diffusion
processes, I concretely exemplify the closed-form expression (3.25) by the first
three correction terms in the supplementary material [44]. With �k given by (3.25),
a closed-form expansion for transition density can be constructed via (3.21).
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3.3. Convergence of the expansion. In this subsection, we establish the uni-
form convergence of the asymptotic expansion (3.21), which will serve as an im-
portant building block for the asymptotic properties of approximate maximum-
likelihood estimation discussed in Section 5. Theoretically speaking, unlike the
Hermite-polynomial-based method in Aït-Sahalia [1–3], which allows justification
of convergence as more correction terms are added, our new method is a Taylor-
like asymptotic expansion, which is established in the neighborhood of � = 0.
However, as demonstrated in the numerical experiments and Monte Carlo evidence
in Sections 4 and 6, respectively, accuracy of the expansion is enhanced as J in-
creases while holding � fixed. Based on the theory of Watanabe [65] and Yoshida
[67, 68], the following result implies uniform convergence of our asymptotic ex-
pansion of transition density jointly in the whole state space E for the forward
variable x, the whole set � for the parameter θ , and an arbitrary compact subset
K ⊂ E for the backward variable x0.

THEOREM 2. Under the Assumptions 1 and 2, the transition density expan-
sion (3.21) satisfies

sup
(x,x0,θ)∈E×K×�

∣∣p(J )
X (�,x|x0; θ) − pX(�,x|x0; θ)

∣∣ = O
(
�(J+1−m)/2)

(3.27)

as � → 0 for J ≥ m.

PROOF. See Appendix B. �

It deserves to note that (3.27) gives a theoretical (not necessarily tight) up-
per bound estimate of the uniform approximation error of p

(J )
X (�,x|x0; θ) −

pX(�,x|x0; θ). The effects of dimensionality can be seen as resulting from the
multiplier �−m/2 in the expansion (3.21), which leads to the error magnitude
�(J+1−m)/2. When J is taken sufficiently large as J ≥ m, the uniform error is
controlled by taking � → 0.

4. Numerical performance of density approximation. In this section,
we employ three representative and analytically tractable examples (the mean-
reverting Ornstein–Uhlenbeck process, the Feller square root process and the dou-
ble mean-reverting Ornstein–Uhlenbeck process) with explicitly known transi-
tion densities to demonstrate the numerical performance of the transition density
asymptotic expansion proposed in Section 3. For all of the examples investigated
in this and the subsequent sections, we provide the first several expansion terms
calculated from the general formula (3.22) and (3.25) in the supplementary mate-
rial [44]. Higher order correction terms involved in the numerical implementation
are documented in the form of Mathematica notebook, which will be provided
upon request. The density expansions will be used in Monte Carlo analysis for
approximate maximum likelihood estimation in Section 6.
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The mean-reverting Ornstein–Uhlenbeck process (also known as the Vasicek
model in financial applications) labeled as MROU is specified as:

MODEL 1. The MROU (mean-reverting Ornstein–Uhlenbeck) model,

dX(t) = κ
(
α − X(t)

)
dt + σ dW(t).

The Gaussian nature of the MROU model renders a closed-form transition den-
sity, which serves as a benchmark for explicit comparison with our asymptotic
expansion approximations. In the numerical experiments, we choose a parameter
set κ = 0.5, α = 0.06 and σ = 0.03 similar to those employed in Aït-Sahalia [2].

The Feller square root process (also known as the Cox–Ingersoll–Ross model
in financial applications) labeled as SQR is specified as:

MODEL 2. The SQR (Feller’s square root) model,

dX(t) = κ
(
α − X(t)

)
dt + σ

√
X(t) dW(t).

The combination of the mean-reverting feature and the Bessel nature (see, e.g.,
Chapter XI in Revuz and Yor [57]) renders closed-form transition densities. In
particular, we concentrate on the case where zero is unattainable, that is, the Feller
condition 2κα − σ 2 > 0 holds; see Feller [29]. In the numerical experiments, we
choose a parameter set κ = 0.5, α = 0.06 and σ = 0.15 similar to those employed
in Aït-Sahalia [2].

We recall that, for the one-dimensional diffusions investigated in Aït-Sahalia
[1, 2] and the so-called reducible multivariate diffusions discussed in Aït-Sahalia
[3], the density expansions proposed in Aït-Sahalia [1–3] begin with a so-called
Lamperti transform, which transforms the marginal distribution to locally normal.
Whenever applied, let γ (·; θ) denote such a transform, and let Z(t) = γ (X(t); θ)

denote the process after the transform. Thus, taking one-dimensional cases as an
example, the expansion for the transition density of X can be constructed from

p
(J )
X (�,x|x0; θ) := σ(x; θ)−1p

(J )
Z

(
�,γ (x; θ)|γ (x0; θ); θ)

.(4.1)

As momentarily demonstrated in the numerical results, a combination of the Lam-
perti transform and our expansion leads to faster convergence, compared with the
direct expansion. A heuristic reason for this phenomenon is as follows. As seen
from Section 3, our expansion is carried out around a normal distribution. After
a Lamperti transform, the diffusion behaves locally as a Brownian motion, which
facilitates the convergence. Therefore, the Lamperti transform may accelerate the
convergence of expansion, and thus it is recommended to apply it whenever it ex-
ists and is explicit.

For multivariate cases, we employ a popular double mean-reverting Ornstein–
Uhlenbeck model (see, e.g., Aït-Sahalia [3]) labeled as DMROU, whose transition
density is bivariate correlated normal:
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MODEL 3. The DMROU (double mean-reverting Ornstein–Uhlenbeck) mod-
el,

d

(
X1(t)

X2(t)

)
=

(
κ11 0
κ21 κ22

)((
α1
α2

)
−

(
X1(t)

X2(t)

))
dt + d

(
W1(t)

W2(t)

)
,

where {(W1(t),W2(t))} is a standard two-dimensional Brownian motion.

According to the classification in Dai and Singleton [24], the DMROU model
is a multivariate affine diffusion process of the A0(2) type. In the numerical exper-
iments, we choose the parameters as κ11 = 5, κ21 = 1, κ22 = 10 and α1 = α2 = 0
similar to those employed in Aït-Sahalia [3].

Based on the explicit expressions of the true transition densities of the three
models (see, e.g., Aït-Sahalia [1–3]), we exhibit the error of J th order ap-
proximation e

(J )
X (�,x|x0; θ) = p

(J )
X (�,x|x0; θ) − pX(�,x|x0; θ) for the time

increment �. The numerical investigation is performed at a region D, which
is several standard deviations around the mean of the forward position (i.e.,
E(X(�)|X(0) = x0)), and as an indicator of the overall performance, the uni-
form error maxx∈D |e(J )

X (�,x|x0; θ)| is considered. In Figure 1(a), (b), (c) and (d),
the uniform errors for the above three benchmark models (MROU, SQR and
DMROU) are plotted for monthly, weekly and daily monitoring frequencies (� =
1/12,1/52,1/252) and different orders of approximation (J = 1,2,3, . . . ,6). Es-
pecially for the SQR model, the plots are provided for both a direct expansion
in Figure 1(c) and an expansion with Lamperti transform acceleration [see (4.1)]
in Figure 1(d). Such numerical evidence demonstrates that the approximation er-
ror tends to decrease as the monitoring increment shrinks (� decreases) or more
correction terms are included (J increases), and that the combination with Lam-
perti transform may accelerate the convergence. As seen from the dynamics of
the SQR model, the volatility function σ(x) = σ

√
x violates Assumption 2 at the

point x = 0. However, the numerical performance exhibited in Figure 1(c) and (d)
suggests that the technical assumptions given in Section 2 are sufficient but not
necessary in order to guarantee numerical convergence of the density expansion
and the resulting properties of the approximate MLE. From theoretical perspec-
tives, the singularity at x = 0 may lead to a significant challenge in mathematically
verifying the convergence of transition density expansion, which can be regarded
as a future research topic.

In the supplementary material [44], we document detailed performance of the
density approximation for the MROU, SQR (for both the direct expansion and the
accelerated approach via Lamperti transform) and DMROU models, respectively.
For the former two one-dimensional cases, that is, the MROU and SQR models,
we plot the errors of approximation corresponding to weekly monitoring frequency
and orders ranging from J = 1,2, . . . ,6. For the latter set of graphs, we plot the
contours of the approximation errors for the DMROU model corresponding to
weekly monitoring frequency and orders ranging from J = 1,2, . . . ,6.
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FIG. 1. Maximum absolute errors of density approximation for Models 1, 2 and 3.

The asymptotic expansion proposed in this paper is essentially different from
that in Aït-Sahalia [1–3] and other existing large-deviations-based results. First,
the expansion proposed here includes correction terms corresponding to any order
of ε = √

�; however, in Aït-Sahalia [1–3] and other methods, expansions include
only integer orders of � (even orders of ε = √

�). Second, the expansion terms in
Aït-Sahalia [1–3] appear to be longer than the corresponding orders in the expan-
sion proposed in this paper. Taking the MROU and the SQR model, for example,
the mean-reverting correction starts from the leading order in Aït-Sahalia’s expan-
sion; however, in our expansion, the leading order term is the density of a normal
distribution, and the first appearance of mean-reverting drift parameters is deferred
to the correction term corresponding to first order of ε.
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FIG. 2. Cross comparisons of absolute approximation errors (corresponding to different orders of

expansion) of the proposed method (|e(J )
X |) and that of Aït-Sahalia [2] (|̂e(J )

X |).

Let ê
(J )
X (�,x|x0; θ) = p̂

(J )
X (�,x|x0; θ) − pX(�,x|x0; θ) denote the approxi-

mation error of Aït-Sahalia’s J th order expansion, where p̂
(J )
X is defined in equa-

tion (2.14) as in Aït-Sahalia [2]. For the method proposed in this paper, approxima-
tion errors are denoted by e

(J )
X (�,x|x0; θ) = p

(J )
X (�,x|x0; θ) − pX(�,x|x0; θ).

Without loss of generality, I employ the MROU and the SQR models to numeri-
cally illustrate the comparison of errors resulting from the method of Aït-Sahalia
[1–3] and those from this paper. Considering different expressions and arrange-
ments of correction terms, I make a cross comparison of absolute errors for dif-
ferent orders from the two methods as exhibited in Figure 2(a), (b) and (c) for the
MROU model as well as Figure 2(d), (e) and (f) for the SQR model. In particular,
we consider the Lamperti transform acceleration for the SQR model in order to
parallel the method in Aït-Sahalia [2]. In the comparison, the orders range from
J = 1,2,3, . . . ,6 for our method, while J = 0,1,2 for that of Aït-Sahalia [2].
Without loss of generality, the monitoring frequency is chosen as � = 1/52. As we
will see, the absolute errors resulting from each two consecutive orders J = 2K −1
and J = 2K of the expansion proposed in this paper sandwich that resulting from
the order K − 1 of the expansion proposed in Aït-Sahalia [2], for K = 0,1,2.
The two methods both admit small magnitude of errors resulting from low order
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approximations and are comparable to each other as more correction terms are
included.

5. Approximate maximum-likelihood estimation. This section is devoted
to a method of approximate MLE based on the asymptotic expansion for transition
density proposed in Section 3. Similar to Aït-Sahalia [1–3], the J th order expan-
sion of the log-density can be given by

l
(J )
X (�,x|x0; θ) := −m

2
log� + log

[
detD(x0)

] +
J∑

k=0

�k

(
D(x0)

x − x0√
�

)
εk

for any J = 0,1,2, . . . , where the correction terms �k can be explicitly calculated
from straightforward differentiation of the density expansion (3.21).

Without loss of generality, we employ Model 1 (MROU) and Model 2 (SQR)
to illustrate the convergence of uniform errors of the log-density expansions
(maxx∈D |l(J )

X (�,x|x0; θ) − logpX(�,x|x0; θ)|) in Figure 3(a) and (b) in a sim-
ilar way as Figure 1(a)–(d) do for the uniform errors of density expansions. For
the MROU model, Figure 3(a) shows the uniform errors of its log-density expan-
sions. For the SQR model, Figure 3(b) plots the uniform errors of its Lamperti-
transformed log-density expansions which are naturally calculated from

l
(J )
X (�,x|x0; θ) := − logσ(x; θ) + l

(J )
Z

(
�,γ (x; θ)|γ (x0; θ); θ)

,(5.1)

where γ is the Lamperti transform and Z(t) = γ (X(t); θ).
By analogy to the log-likelihood function �n(θ) in (2.3), we introduce the J th

order approximate log-likelihood function

�(J )
n (θ) =

n∑
i=1

L
(J)
i (θ),(5.2)

FIG. 3. Maximum absolute errors of log-density approximation for Models 1 and 2.
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where L
(J)
i (θ) = l

(J )
X (�,X(i�)|X((i − 1)�); θ). According to Assumption 3, we

assume, for simplicity, that the true log-likelihood function �n(θ) admits a unique
maximizer θ̂n, which serves as the true maximum-likelihood estimator. Similarly,
let θ̂

(J )
n be the approximate maximum-likelihood estimator of order J obtained

from maximizing �
(J )
n (θ). Setting up or refining technical conditions for ensuring

the identification and the usual asymptotic properties of the true but generally in-
computable MLE is beyond the scope of this paper, and can be investigated as a
future research topic; see, for example, Aït-Sahalia [2] for the discussion of one-
dimensional cases. As a consequence of Theorem 2, we set up the convergence of
the approximate MLE θ̂

(J )
n to the true MLE θ̂n in what follows.

PROPOSITION 1. Under Assumptions 1 and 2, the approximate maximum-
likelihood estimator obtained from optimizing (5.2) satisfies that, for the fixed sam-
ple size n,

θ̂ (J )
n − θ̂n

P→ 0(5.3)

as � → 0 for J ≥ m.

PROOF. See Appendix B. �

Though the convergence in (5.3) is theoretically justified as the monitoring in-
crement � shrinks to 0 for any fixed order J , the convergence of (5.3) may also
hold as J → ∞ for a range of fixed values of �. This is analogous to the Taylor
expansion in classical calculus. The respective effects on the discrepancy between
the approximate MLE and the true MLE resulting from shrinking � and increas-
ing expansion orders J are illustrated via Monte Carlo evidence in Section 6. In
particular, we will demonstrate numerically that for an arbitrary �, a larger order
J results in a better approximation of the MLE.

6. Monte Carlo evidence of approximate maximum-likelihood estimation.
To further demonstrate the convergence issues discussed in the previous sections,
we provide Monte Carlo evidence of approximate maximum-likelihood estimation
for the three models discussed in Section 4. Let N denote the number of sample
paths generated from the transition distributions; let n denote the number of obser-
vations on each path. For finite-sample results, we report the mean and standard
deviation of the discrepancy between the MLE and the true parameter value (i.e.,
θ̂n − θTrue), and the discrepancy between the approximate MLE and the MLE (i.e.,
θ̂

(J )
n − θ̂n).

For the two Gaussian models, that is, the MROU model and the DMROU model,
the situation considered here is restricted to the stationary case. Therefore, the
asymptotic variance of the maximum-likelihood estimator is given by the inverse
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of Fisher’s information matrix, which is the lowest possible variance of all estima-
tors. So, as in Aït-Sahalia [1–3], we assume that κ > 0 for the MROU model, and
κ11 > 0 and κ22 > 0 for the DMROU model. By the nature of stationarity, one has
the local asymptotic normal structure for the maximum-likelihood estimator θ̂n,
that is,

√
n(θ̂n − θ)

D→ N
(
0, i(θ)−1)

(6.1)

as n → ∞ with � fixed. Here, the Fisher information matrix is calculated as

i(θ) = −E

(
∂2L1(θ)

∂θ ∂θT

)
,(6.2)

where T denotes matrix transposition.
Without loss of generality, we analyze the results of the MROU model in what

follows. As seen from Table 1, the asymptotic distribution of θ̂n − θTrue is calcu-
lated from (6.1) and (6.2). The small discrepancy between the finite-sample and
asymptotic standard deviations of θ̂n − θTrue indicates that the choice of sample
size n = 1000 is approaching an optimality. When the monitoring frequency �

shrinks, or when the order of approximation J increases, the approximate MLEs
obtained from maximizing the approximate log-likelihood function (5.2) get closer
to the exact (but usually incomputable) MLEs, and thus get closer to the true pa-
rameter, if the sample size n is large enough. This can be seen by a comparison
of some outputs with relatively larger bias and standard deviations resulting from
relatively lower order expansions or larger monitoring increments with those im-
proved outputs resulting from relatively higher order expansions and smaller mon-
itoring increments. This phenomenon reconciles our discussions in Section 5.

TABLE 1
Monte Carlo evidence for the MROU model

Asymptotic Finite sample Finite sample Finite sample

Parameters
θTrue

̂θn − θTrue ̂θn − θTrue ̂θ
(3)
n − ̂θn

̂θ
(6)
n − ̂θn

Mean Stddev Mean Stddev Mean Stddev Mean Stddev

� = 1/52
κ = 0.5 0 0.229136 0.245175 0.329396 0.013477 0.014645 0.000002 0.000102
α = 0.06 0 0.013682 0.000329 0.015202 0.000002 0.000318 0.000000 0.000003
σ = 0.03 0 0.000674 0.000021 0.000675 0.000003 0.000015 −0.000000 0.000000

� = 1/12
κ = 0.5 0 0.111867 0.054162 0.124773 0.028923 0.014382 −0.000003 0.000297
α = 0.06 0 0.006573 0.000097 0.006440 0.000002 0.000174 0.000000 0.000014
σ = 0.03 0 0.000685 0.000022 0.000687 0.000025 0.000022 0.000000 0.000001

Notes. The number of simulation trials is N = 5000 and the number of observations on each path is
n = 1000.
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While holding the length of sampling interval � fixed, the approximation error
θ̂

(J )
n − θ̂n decreases and is dominated by the intrinsic sampling error θ̂n − θTrue

as J increases. Therefore, according to Aït-Sahalia [1–3], a small-order approx-
imation (e.g., the θ̂

(6)
n for the MROU model) is adequate enough for replacing

the true MLE θ̂n for the purpose of estimating unknown parameter θ . According
to Aït-Sahalia [1–3], once the approximation error resulting from replacing the
true density pX by its approximation, say p

(J )
X , is dominated by the sampling er-

ror [usually estimated from asymptotic variance computed from (6.1)] due to the
true maximum-likelihood estimation, such p

(J )
X is appropriate in practice. Such a

proper replacement has an effect that is statistically indiscernible from the sam-
pling variation of the true yet incomputable MLE θ̂n around θ . As a result of the
fast development of modern computation and optimization technology, calculation
of high-order likelihood approximations will become increasingly feasible; thus
errors between approximate MLE and MLE can be improved to become arbitrar-
ily small, at least in principle.

Owing to the limited space in this paper and the similarity in the pattern of
results to those of the MROU model, we collect the simulation results for the DM-
ROU and the SQR models in the supplementary material [44]. In particular, for
the SQR model, the simulation results will demonstrate that a combination of the
Lamperti transform and our expansion may enhance the efficiency of the estima-
tion. Moreover, in the supplementary material [44], we will investigate two more
sophisticated data-generating processes (arising from financial modeling) with rich
drift and diffusion specifications, in which the Lamperti transform either requires
computationally demanding implicit integration and inversion or does not exist due
to a multivariate irreducible specification; see Aït-Sahalia [3].

7. Concluding remarks. This paper contributes a method for approximate
maximum-likelihood estimation (MLE) of multivariate diffusion processes from
discretely sampled data, based on a closed-form asymptotic expansion for tran-
sition density, for which any arbitrary order of corrections can be systematically
obtained through a generally implementable algorithm. Numerical examples and
Monte Carlo evidence for illustrating the performance of density asymptotic ex-
pansion and the resulting approximate MLE are provided in order to demonstrate
the wide applicability of the method. Based on some sufficient (but not necessary)
technical conditions, the convergence and asymptotic properties are theoretically
justified. Owing to the limited space of this paper which focuses on introducing a
method of estimation, investigations on more asymptotic properties related to the
approximate MLE can be regarded as a future research topic, for example, a tighter
upper bound for the discrepancy (5.3) based on the error estimate of the transition
density expansion (3.27), as well as the consistency and asymptotic distribution
of the approximate MLE under various sampling schemes in terms of monitoring
frequency and observational horizon; see, for example, Yoshida [69], Kessler [39],
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Bibby and Sørensen [19] and Genon-Catalot and Jacod [32]. In this regard, we
note Chang and Chen [22] for analyzing the asymptotic properties of the approx-
imate MLE proposed in Aït-Sahalia [2] of one-dimensional diffusion processes.
One may also apply the idea for explicitly approximating transition density in var-
ious other aspects of statistical inference, for which explicit asymptotic expansions
of certain quantities are helpful.

APPENDIX A: EXPLICIT CALCULATION OF CONDITIONAL
EXPECTATION (3.24)

In this section, we expatiate on a general algorithm for explicitly calculating the
conditional expectation (3.24) of multiplication of iterated Stratonovich integrals
as a multivariate polynomial in z = (z1, z2, . . . , zm) ∈ R

m. In addition to theoreti-
cal interests, iterated stochastic integral plays important roles in many applications
arising from stochastic modeling, for example, the analysis of convergence rate of
various methods for approximating solutions to stochastic differential equations;
see Kloeden and Platen [41]. Special cases for conditional expectations of iter-
ated Itô stochastic integrals (without integral with respect to the time variable) can
be found in, for example, Nualart, Üstünel and Zakai [54], Yoshida [67, 68] and
Kunitomo and Takahashi [42].

To present our algorithm, similar to the definition of iterated Stratonovich inte-
gral, we define

Ii[f ](t) :=
∫ t

0

∫ t1

0
· · ·

∫ tn−1

0
f (tn) dWin(tn) · · ·dWi2(t2) dWi1(t1)(A.1)

as an iterated Itô integral for an arbitrary index i = (i1, i2, . . . , in) ∈ {0,1,2, . . . ,

m}n with a right-continuous integrand f . To lighten the notation, the integral
Ii[1](t) is abbreviated to Ii(t).

Before discussing details in the following subsections, we briefly outline a gen-
eral algorithm, which can be implemented using any symbolic packages, for ex-
ample, Mathematica. Throughout our discussion, the iterated (Stratonovich or Itô)
stochastic integrals may involve integrations with respect to not only Brownian
motions but also time variables.

ALGORITHM.

• Convert each iterated Stratonovich integral in (3.24) to a linear combination of
iterated Itô integrals;

• Convert each multiplication of iterated Itô integrals resulting from the previous
step to a linear combination of iterated Itô integrals;

• Compute the conditional expectation of iterated Itô integral via an explicit con-
struction of Brownian bridge.

A.1. Conversion from iterated Stratonovich integrals to Itô integrals. De-
note by l(i) := l((i1, . . . , in)) = n the length of the index i. Denote by −i an index
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obtained from deleting the first element of i. In particular, if l(i) = 0, we define
Ji[f ](t) = f (t) by slightly extending the definition (3.5). According to page 172
of Kloeden and Platen [41], we have the following conversion algorithm: for the
case of l(i) = 0 or 1, we have Ji(t) = Ii(t); for the case of l(i) ≥ 2, we have

Ji(t) = I(i1)

[
J−i(·)](t) + 1{i1=i2 �=0}I(0)

[1
2J−(−i)(·)](t).(A.2)

For example, if l(i) = 2, one has

Ji(t) = Ii(t) + 1
21{i1=i2 �=0}I(0)(t).

Thus, with the conversion algorithm (A.2), we convert each iterated Stratonovich
integral in (3.24) to a linear combination of iterated Itô integrals. Thus, the prod-
uct

∏l
ω=1 Jiω(1) can be expanded as a linear combination of multiplication of Itô

integrals.

A.2. Conversion from multiplication of Itô integrals to a linear combina-
tion. We provide a simple recursion algorithm for converting a multiplication of
iterated Itô integrals to a linear combination. According to Lemma 2 in Tocino
[62], a product of two Itô integrals as defined in (A.1) satisfies that

Iα(t)Iβ(t) =
∫ t

0
Iα(s)I−β(s) dWβ1(s) +

∫ t

0
I−α(s)Iβ(s) dWα1(s)

(A.3)

+
∫ t

0
I−α(s)I−β(s)1{α1=β1 �=0} ds

for any arbitrary indices α = (α1, α2, . . . , αp) and β = (β1, β2, . . . , βq). Iterative
applications of this relation render a linear combination form of Iα(t)Iβ(t). Induc-
tive applications of such an algorithm convert a product of any number of iterated
Itô integrals to a linear combination. Therefore, our immediate task is reduced to
the calculation of conditional expectations of iterated Itô integrals.

A.3. Conditional expectation of iterated Itô integral. We focus on the ex-
plicit calculation of conditional expectations of the following type:

E
(
Ii(1)|W(1) = z

)
(A.4)

= E

(∫ 1

0

∫ t1

0
· · ·

∫ tn−1

0
dWin(tn) · · ·dWi2(t2) dWi1(t1)|W(1) = z

)
.

By an explicit construction of Brownian bridge (see page 358 in Karatzas
and Shreve [38]), we obtain the following distributional identity, for any k =
1,2, . . . ,m:(

Wk(t)|W(1) = z
) D= (

Wk(t)|Wk(1) = zk

) D= BBz
k(t) := Bk(t) − t Bk(1) + tzk,

where Bk’s are independent Brownian motions and BBz
k(t) := Bk(t) − t Bk(1) +

tzk is distributed as a Brownian bridge starting from 0 and ending at zk at time 1.
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For ease of exposition, we also introduce B0(t) ≡ 0 and z0 = 1. Therefore, the
condition W(1) = z in (A.4) can be eliminated since

E

(∫ 1

0

∫ t1

0
· · ·

∫ tn−1

0
dWin(tn) · · ·dWi2(t2) dWi1(t1)|W(1) = z

)

= E

(∫ 1

0

∫ t1

0
· · ·

∫ tn−1

0
d
(

Bin(tn) − tnBin(1) + tnzin

) · · ·
(A.5)

d
(

Bi2(t2) − t2Bi2(1) + t2zi2

)
d
(

Bi1(t1) − t1Bi1(1) + t1zi1

))
.

An early attempt using the idea of Brownian bridge to deal with conditional ex-
pectation (A.4) can be found in Uemura [64], which investigated the calculation of
heat kernel expansion in the diagonal case. It is worth mentioning that, instead of
giving a method for explicitly calculating (A.4), Uemura [64] employed discretiza-
tion of stochastic integrals to show that (A.4) has the structure of a multivariate
polynomial in z with unknown coefficients. Therefore, the validity of the above
derivation can be seen from the definition of stochastic integral as a limit of dis-
cretized summation. In particular, the random variables Bi1(1), Bi2(1), . . . , Bin(1)

are not involved in the integral in (A.5). The integrals with respect to dBik (tk) are
in the sense of usual stochastic integrals; the integrals with respect to dtk are in the
sense of Lebesgue integrals.

By expanding the right-hand side of (A.5) and collecting terms according to
monomials of zi ’s, we express (A.4) as a multivariate polynomial in z:

E
(
Ii(1)|W(1) = z

) =
n∑

k=0

∑
{l1,l2,...,lk}⊂{1,2,...,n}

c(l1, l2, . . . , lk)zil1
zil2

· · · zilk
,

where the coefficients are determined by

c(l1, l2, . . . , lk)

:= E

∫ 1

0

∫ t1

0
· · ·

∫ tn−1

0
d
(

Bin(tn) − tnBin(1)
) · · ·

d
(

Bilk+1(tlk+1) − tlk+1Bilk+1(1)
)

dtlk d
(

Bilk−1(tlk−1) − tlk−1Bilk−1(1)
) · · ·

(A.6)
d
(

Bil2+1(tl2+1) − tl2+1Bil2+1(1)
)

dtl2 d
(

Bil2−1(tl2−1) − tl2−1Bil2−1(1)
) · · ·

d
(

Bil1+1(tl1+1) − tl1+1Bil1+1(1)
)

dtl1 d
(

Bil1−1(tl1−1) − tl1−1Bil1−1(1)
) · · ·

d
(

Bi1(t1) − t1Bi1(1)
)
.
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Algebraic calculation from expanding the terms like d(Bin(tn) − tnBin(1)) sim-
plifies (A.6) as a linear combination of expectations of the following form:
E(Bm1(1)Bm2(1) · · · Bmr (1)Ij(1)) where Ij(1) is an iterated Itô integral.

By viewing Bmi
(1) as

∫ 1
0 dBmi

(t1), we have

E
(

Bm1(1)Bm2(1) · · · Bmr (1)Ij(1)
) = E

(
r∏

i=1

∫ 1

0
dBmi

(t1)Ij(1)

)
.(A.7)

To calculate this expectation, we use the algorithm proposed in Section A.2 to con-
vert

∏r
i=1

∫ 1
0 dBmi

(t1)Ij(1) to a linear combination of iterated Itô integrals. Finally,
we need to calculate expectation of iterated Itô integrals without conditioning. For
any arbitrary index i = (i1, i2, . . . , in) ∈ {0,1,2, . . . ,m}n, we have

EIi(1) = E

(∫ 1

0

∫ t1

0
· · ·

∫ tn−1

0
dWin(tn) · · ·dWi2(t2) dWi1(t1)

)

=
∫ 1

0

∫ t1

0
· · ·

∫ tn−1

0
dtn · · ·dt2 dt1 ≡ 1

n! ,
if i = (i1, i2, . . . , in) = (0,0, . . . ,0) and EIi(1) = 0, otherwise (by the martingale
property of stochastic integrals).

APPENDIX B: PROOFS

B.1. Proof of Theorem 1. Using the chain rule and the Taylor theorem, the
kth (k ≥ 1) order correction term for δ(Y ε − y) admits the following form:

�k(y) = ∑
(l,r(l),j(l))∈Sk

1

l!∂
rδ

(
B(1) − y

)
Yj1,r1Yj2,r2 · · ·Yjl,rl ,(B.1)

where ∂r denotes ∂
∂xr1

∂
∂xr2

· · · ∂
∂xrl

for simplicity. Thus, taking expectation of (B.1)

and applying (3.18), we obtain that

�k(y) = E�k(y)

= ∑
(l,r(l),j(l))∈Sk

1

l!Dr1r1(x0)Dr2r2(x0) · · ·Drlrl (x0)

× E
(
∂rδ

(
B(1) − y

)
Fj1+1,r1Fj2+1,r2 · · ·Fjl+1,rl

)
.

Employing the integration-by-parts property of the Dirac delta function (see, e.g.,
Section 2.6 in Kanwal [37]), the conditional expectation can be computed as

E
[
∂rδ

(
B(1) − y

)
Fj1+1,r1Fj2+1,r2 · · ·Fjl+1,rl

]
=

∫
b∈Rd

E
[
∂rδ

(
B(1) − y

)
Fj1+1,r1Fj2+1,r2 · · ·Fjl+1,rl |B(1) = b

]
× φ
(x0)(b) db
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= (−1)l ∂r[
E

[
Fj1+1,r1Fj2+1,r2 · · ·Fjl+1,rl |W(1) = σ(x0)

−1D(x0)
−1y

]
× φ
(x0)(y)

]
,

where φ
(x0)(y) is given in (3.22). By plugging in (3.10), we have that

E
[
Fj1+1,r1Fj2+1,r2 · · ·Fjl+1,rl |W(1) = z

]
= ∑

{(i1,i2,...,il )|‖iω‖=jω+1,ω=1,2,...,l}

l∏
ω=1

Ciω,rω(x0)P(i1,i2,...,il )(z),

where P(i1,i2,...,il )(z) is defined in (3.24). Formula (3.25) follows from the fact that

∂

∂yi

(
P(i1,i2,...,il )

(
σ(x0)

−1D(x0)
−1y

)
φ
(x0)(y)

)
=

(
∂

∂yi

P(i1,i2,...,il )
(
σ(x0)

−1D(x0)
−1y

)
− P(i1,i2,...,il )

(
σ(x0)

−1D(x0)
−1y

)(

(x0)

−1y
)
i

)
φ
(x0)(y)

as well as the definition of the differential operators in (3.14).

REMARK 1. The above conditioning argument can be justified, when
∂rδ(B(1) − y) is regarded as a generalized Wiener functional (random variable)
and the expectation is interpreted in the corresponding generalized sense as in
Watanabe [65].

B.2. Proof of Theorem 2. Now, based on Assumption 2, we introduce the
following uniform upper bounds. For k ≥ 1, let μk and σk be the uniform upper
bounds of the kth order derivative of μ and σ , respectively, that is,∣∣∣∣∂(k)μ(x; θ)

∂xk

∣∣∣∣ ≤ μk and
∣∣∣∣∂(k)σ (x; θ)

∂xk

∣∣∣∣ ≤ σk(B.2)

for (x, θ) ∈ R
m × �. Also, let μ0 and σ0 denote the uniform upper bounds of

|μ(x0; θ)| and |σ(x0; θ)| on (x0, θ) ∈ K × �, respectively, that is,∣∣μ(x0; θ)
∣∣ ≤ μ0 and

∣∣σ(x0; θ)
∣∣ ≤ σ0(B.3)

for (x0, θ) ∈ K × �. In order to establish the uniform convergence in Theorem 2,
we introduce the following lemma. When the dependence of parameters is em-
phasized, we express Xε(1) as Xε(1; θ, x0) and express the standardized random
variable Y ε defined in (3.16) as

Y ε(θ, x0) = D(x0)
(
Xε(1; θ, x0) − x0

)
/
√

�.

In this Appendix, we employ standard notation of Malliavin calculus (see, e.g.,
Nualart [53] and Ikeda and Watanabe [35]) and the theory of Watanabe [65] and
Yoshida [67, 68]. For the readers’ convenience, a brief survey of some relative
theory is provided in the supplementary material [44].
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LEMMA 2. Under Assumption 2, the pathwise expansion (3.18) holds in the
sense of D∞ uniformly in (x0, θ) ∈ K × �, that is,∥∥∥∥∥Y ε(θ, x0) −

J∑
k=0

1

k!
∂(k)Y ε(θ, x0)

∂εk

∣∣∣∣
ε=0

εk

∥∥∥∥∥
Ds

p

= O
(
εJ+1)

for any J ∈ N, p ≥ 1 and s ∈ N.

PROOF. See the supplementary material [44]. �

Because of Assumption 1, Theorem 3.4 in Watanabe [65] guarantees the uni-
form nondegenerate condition, that is,

lim sup
ε→0

E
[
det

(



(
Y ε(θ, x0)

))−p]
< ∞ for any p ∈ (0,+∞).

Let � = R
m denote a set of indices. For any y = (y1, . . . , ym) ∈ �, let us consider a

generalized function defined as Ty(z) := δ(z−y), which is a Schwartz distribution,
that is, Ty ∈ S ′(Rm). Applying Theorem 2.3 in Watanabe [65] and Theorem 2.2
in Yoshida [68], we obtain that Ty(Y

ε(θ, x0)) admits the following asymptotic
expansion: for any arbitrary J ∈ N,

δ
(
Y ε(θ, x0) − y

) :=
J∑

k=0

�k,(θ,x0)(y)εk + O
(
εJ+1)

in D−∞,

uniform in y ∈ �, x0 ∈ K and θ ∈ �. Here, the correction term �k,(θ,x0)(y) is
given in (B.1). Therefore, we obtain that

sup
y∈�,x0∈K,θ∈�

∣∣∣∣∣E
(
δ
(
Y ε(θ, x0) − y

) −
J∑

k=0

�k,(θ,x0)(y)εk

)∣∣∣∣∣ = O
(
εJ+1)

.

Hence, by taking into account the transform (3.16), we obtain that

sup
(x,x0,θ)

∈E×K×�

∣∣∣∣∣Eδ
(
Xε(1) − x

) − detD(x0)√
�m

J∑
k=0

�k

(
D(x0)(x − x0)√

�

)
εk

∣∣∣∣∣
= O

(
�(J+1−m)/2)

,

which yields (3.27).

B.3. Proof of Proposition 1. For J ≥ m, let

R(J)(�,x|x0;�) := sup
θ∈�

∣∣pX(�,x|x0; θ) − p
(J )
X (�,x|x0; θ)

∣∣.
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By Theorem 2, there exists a constant C > 0 such that R(J)(�,x|x0;�) ≤
CεJ+1−m for any x ∈ E and ε sufficiently small. Thus, for any positive integer k,
it follows that

E
[∣∣R(J)(�,X(t + �)|X(t);�)∣∣k|X(t) = x0

] ≤ Ckεk(J+1−m) → 0 as ε → 0.

By the Chebyshev inequality, R(J)(�,X(t + �)|X(t);�) converges to zero in
probability given X(t) = x0, that is, for any ε > 0,

P
[∣∣R(J)(�,X(t + �)|X(t);�)∣∣ > ε|X(t) = x0

] → 0 as ε → 0.

By conditioning, it follows that

P
[∣∣R(J)(�,X(t + �)|X(t);�)∣∣ > ε

]
=

∫
R

P
[∣∣R(J)(�,X(t + �)|X(t);�)∣∣ > ε|X(t) = x0

]
P

(
X(t) ∈ dx0

)
.

Because of the fact that

0 ≤ P
[∣∣R(J)(�,X(t + �)|X(t);�)∣∣ > ε|X(t) = x0

] ≤ 1

and
∫
R P(X(t) ∈ dx0) = 1, it follows from the Lebesgue dominated convergence

theorem that

P
[∣∣R(J)(�,X(t + �)|X(t);�)∣∣ > ε

] → 0 as ε → 0,

that is,

P

[
sup
θ∈�

∣∣pX

(
�,X(t + �)|X(t); θ) − p

(J )
X

(
�,X(t + �)|X(t); θ)∣∣ > ε

]
→ 0

as ε → 0. Now, we obtain that

p
(J )
X

(
�,X(t + �)|X(t); θ) − pX

(
�,X(t + �)|X(t); θ) P→ 0(B.4)

as ε → 0 uniformly in θ ∈ �. Following similar lines of argument as those in the
proof of Theorem 2 in Aït-Sahalia [2] and Theorem 3 in Aït-Sahalia [3], we arrive
at

L
(J)
i (θ)

P→ Li(θ) as ε → 0 uniformly in θ ∈ �

by the convergence in (B.4) and continuity of logarithm. Hence, for any arbitrary

n > 0, one obtains the convergence of log-likelihood �
(J )
n (θ)

P→ �n(θ) uniformly

in θ . Finally, the convergence of θ̂
(J )
n − θ̂n

P→ 0 as ε → 0 follows directly from
Assumption 3 and the standard method employed in Aït-Sahalia [2, 3].
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SUPPLEMENTARY MATERIAL

Maximum-likelihood estimation for diffusion processes via closed-
form density expansions—Supplementary material (DOI: 10.1214/13-
AOS1118SUPP; .pdf). This supplementary material contains (1) closed-form for-
mulas for �1(y),�2(y) and �3(y), (2) closed-form expansion formulas for the ex-
amples, (3) detailed plots of errors for the examples, (4) simulation results for the
DMROU and SQR models, (5) an alternative exhibition of the simulation results,
(6) two more examples for simulation study, (7) a brief survey of the Malliavin
Calculus and Watanabe–Yoshida Theory and (8) proof of Lemma 2.
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