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QUARTICITY AND OTHER FUNCTIONALS OF VOLATILITY:
EFFICIENT ESTIMATION

BY JEAN JACOD AND MATHIEU ROSENBAUM

Université Pierre et Marie Curie (Paris 6)

We consider a multidimensional Itô semimartingale regularly sampled
on [0, t] at high frequency 1/�n, with �n going to zero. The goal of this
paper is to provide an estimator for the integral over [0, t] of a given function
of the volatility matrix. To approximate the integral, we simply use a Rie-
mann sum based on local estimators of the pointwise volatility. We show that

although the accuracy of the pointwise estimation is at most �
1/4
n , this pro-

cedure reaches the parametric rate �
1/2
n , as it is usually the case in integrated

functionals estimation. After a suitable bias correction, we obtain an unbi-
ased central limit theorem for our estimator and show that it is asymptotically
efficient within some classes of sub models.

1. Introduction. Let X be a semimartingale, which is observed at discrete
times i�n for i = 0,1, . . . , over a finite time interval [0, T ], with a discretization
mesh �n which is small and eventually goes to 0 (high-frequency setting). One
of the main problems encountered in practice is the estimation of the integrated
(squared) volatility (in finance terms), or equivalently of the continuous part of the
quadratic variation [X,X]t .

By now, this is a well-understood problem, at least when X is an Itô semimartin-
gale. For example, in the continuous one-dimensional case, if X takes the form

Xt = X0 +
∫ t

0
bs ds +

∫ t

0
σs dWs

the approximate quadratic variation
∑[t/�n]

i=1 (Xi�n − X(i−1)�n)
2, which of course

converges to [X,X]t = ∫ t
0 σ 2

s ds, enjoys a central limit theorem (CLT): the differ-
ence between these two processes, normalized by 1√

�n
, converges stably in law

to a limit which is conditionally on X a continuous Gaussian martingale with
quadratic variation (equivalently, with variance) twice the so-called “quarticity,”
that is, 2

∫ t
0 σ 4

s ds.
Although later we consider a much more general framework, allowing X to be

multi-dimensional and with jumps, in the Introduction we pursue the discussion in
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this special one-dimensional continuous case. In various statistical problems one
needs to estimate not only the quarticity, but functionals of the form

V (g)t =
∫ t

0
g(cs) ds where cs = σ 2

s

(for relatively general test functions g, and to derive associated CLTs, see [5]);
notice that we plug in the “spot” squared volatility ct rather than σt , since in any
case it is impossible to determine the sign of σt on the basis of the observation of
the path t �→ Xt . The case g(x) = x corresponds to the usual integrated volatility,
and g(x) = x2 to the quarticity.

Toward this aim, two methods are currently at hand:

(1) The first one is available if g(x) = E(f (U(x)1, . . . ,U(x)k)) for all x ≥ 0,
where the U(x)j ’s are independent N (0, x) variables and f is a continuous func-
tion on R

k , of polynomial growth. Then we know that

Un(f )t = �n

[t/�n]−k+1∑
i=1

f

(
�n

i X√
�n

, . . . ,
�n

i+k−1X√
�n

)
(1.1)

where �n
i X = Xi�n − X(i−1)�n,

converges to V (g)t in probability, and if f is C1 the rate of convergence is 1/
√

�n,
and in the associated CLT the limiting conditional variance is

∫ t
0 F(cs) ds for a

suitable function F .
(2) The second one consists in using estimators for the spot volatility and ap-

proximating the integral V (g)t by Riemann sums, in which the spot volatility is
replaced by its estimator; that is, we set

V n(g)t = �n

[t/�n]−kn+1∑
i=1

g
(
ĉn
i

)
where ĉn

i = 1

kn�n

kn−1∑
j=0

(
�n

i+jX
)2(1.2)

for an arbitrary sequence of integers such that kn → ∞ and kn�n → 0. Then one

knows that V n(g)t
P−→ V (g)t (when g is continuous and of polynomial growth).

But so far nothing is known about the rate of convergence of these estimators when
kn goes to infinity (the situation kn = k not depending on n is studied in [11] where
the rate 1/

√
�n is obtained for power functions).

The first method is quite powerful and gives optimal rates, but the special form
of g puts strong constraints on this function [e.g., it is C∞ on (0,∞), and much
more]. To tell the truth, in the one-dimensional case, by far the most useful test
functions g are the powers gp(x) = xp (recall that x ≥ 0 here) for p > 0, which
are associated as above with fp(x) = |x|2p/m2p , where mq is the qth absolute
moment of N (0,1). Nevertheless, some functions g of interest might not be,
or not in an obvious way, of this form or, more generally, linear combinations
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of functions of this form. In the multivariate case, however, with X being d-
dimensional and thus U above as well, one typically finds asymptotic variances
which are complicated functions of the d × d-dimensional spot volatility. This is,
for instance, the case when studying multipower variations for integrated volatility
estimation in the presence of jumps; see, for example, [5]. In this situation and
more generally for an arbitrary (smooth) function g on the set M+

d of all d × d

symmetric nonnegative matrices, it is rather a difficult task in practice to find an
integer k ≥ 1 and a function f on (Rd)k such that, for all x ∈ M+

d , we have
g(x) = E(f (U(x)1, . . . ,U(x)k)), where again the U(x)j ’s are (d-dimensional)
i.i.d. N (0, x).

In addition, this first method does not provide efficient estimation in general.
To see that, consider the toy example Xt = σWt , where σ is a constant, c = σ 2,
�n = 1

n
and T = 1. We thus observe the increments �n

i X for i = 1, . . . , n, or
equivalently the n variables Yi = �n

i X/
√

�n. These variables are i.i.d. N (0, c),
so the asymptotically best estimators for c (efficient in all possible senses, and
also the MLE) are ĉn = 1

n

∑n
i=1(Yi)

2 = ∑n
i=1(�

n
i X)2, with convergence rate

√
n

and asymptotic variance 2c2. If instead one wants to estimate cp for some p �= 1
in (0,∞), one can use ĉ(p)n = 1

nm2p

∑n
i=1 |Yi |2p = np−1

m2p

∑n
i=1 |�n

i X|2p , and the

ordinary central limit theorem tells us that the rate of convergence is again
√

n, and

the asymptotic variance is
m4p−m2

2p

m2
2p

c2p: this is exactly what the first method above

does. But this is not optimal, the asymptotically optimal estimators being (ĉn)
p

(the MLE again), with rate
√

n and asymptotic variance 2p2c2p , smaller than the
previous one when p �= 1. Now, taking (ĉn)

p is exactly what the second method
(1.2) does.

The aim of this paper is to develop the second method, and in particular to pro-
vide a central limit theorem, with the rate 1/

√
�n (as it is usually the case in a

nonparametric setting for integrated functionals estimation; see, e.g., [2, 3]), and
with an asymptotic variance always smaller than if one uses the first method. This
can be viewed as an extension, in several directions, of the “block method” of Myk-
land and Zhang in [11]. About efficiency, and despite the title of the paper, we do
not really examine the question in the general nonparametric or semi-parametric
setting assumed below, since even for the simpler problem of estimating the inte-
grated volatility, the concept of efficiency is not well established so far. Instead,
we will term as “efficient” a procedure which is efficient in the usual sense for the
sub-model consisting in the toy model Xt = σWt above, and efficient in the sense
of the Hajek convolution theorem, for the Markov-type model recently studied by
Clément, Delattre and Gloter in [4] and of the form

dXt = a(Xt) dt + f (t,Xt , Yt ) dWt , dYt = bt dt + σ tdWt,(1.3)

where a,f are unknown smooth enough functions and b,σ arbitrary processes
and where the two Brownian motions W,W are independent.
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This will be done in the multivariate setting and when X possibly has jumps
(upon suitably truncating the increments in (1.2) if it is the case, in the spirit of
[9, 10]), and under the additional assumptions that ct itself is an Itô semimartingale
and that, when X jumps, these jumps are summable, which are exactly the same
assumptions under which the truncated versions of Un(f ) in (1.1) converge with
rate 1/

√
�n.

The paper is organized as follows: Section 2 is devoted to presenting the as-
sumptions. Results are given in Section 3, and all proofs are gathered in Section 4.

2. Setting and assumptions. The underlying process X is d-dimensional,
and observed at the times i�n for i = 0,1, . . . , within a fixed interval of inter-
est [0, t]. For any process Y we use the notation �n

i Y defined in (1.1) for the
increment over the ith observation interval. We assume that the sequence �n goes
to 0. The precise assumptions on X are as follows:

First, X is an Itô semimartingale on a filtered space (�, F , (Ft )t≥0,P). It can
be written in its Grigelionis form, using a d-dimensional Brownian motion W and
a Poisson random measure μ on R+ ×E, where E is an auxiliary Polish space and
with the (nonrandom) intensity measure ν(dt, dz) = dt ⊗ λ(dz) for some σ -finite
measure λ on E,

Xt = X0 +
∫ t

0
bs ds +

∫ t

0
σs dWs

+
∫ t

0

∫
E

δ(s, z)1{‖δ(s,z)‖≤1}(μ − ν)(ds, dz)(2.1)

+
∫ t

0

∫
E

δ(s, z)1{‖δ(s,z)‖>1}μ(ds, dz).

This is a vector-type notation: the process bt is R
d -valued optional, the process

σt is R
d ⊗ R

d -valued optional, δ = δ(ω, t, z) is a predictable R
d -valued function

on � × R+ × E and ‖ · ‖ denotes the Euclidean norm on any finite-dimensional
linear space. Besides the measurability requirements above, and for any r ∈ [0,2],
we introduce the assumption:

ASSUMPTION (H-r ). There are a sequence (Jn) of nonnegative bounded λ-
integrable functions on E and a sequence (τn) of stopping times increasing to ∞,
such that

t < τn(ω) ⇒ ∥∥bt (ω)
∥∥ ≤ n,

∥∥σt (ω)
∥∥ ≤ n,

(2.2)
t ≤ τn(ω) ⇒ ∥∥δ(ω, t, z)

∥∥r ∧ 1 ≤ Jn(z).

The spot volatility process ct = σtσ
∗
t (∗ denotes transpose) takes its values in

the set M+
d of all nonnegative symmetric d × d matrices. We will indeed suppose

that ct is again an Itô semimartingale, and we consider the following assumption:



1466 J. JACOD AND M. ROSENBAUM

ASSUMPTION (A-r ). The process X satisfies Assumption (H-r), the asso-
ciated volatility process c satisfies (H-2) and the processes bt and, when r ≤ 1,
b′
t = bt − ∫

δ(t, z)1{‖δ(t,z)‖≤1}λ(dz) are càglàd or càdlàg.

The bigger r is, the weaker Assumption (A-r) is, and when (A-0) holds the
process X has finitely many jumps on each finite interval. Since we suppose in the
theorems of the next section that r < 1, the last condition in (2.2) implies that b′

t is
indeed well defined, and it is the “genuine” drift, in the sense that this is the drift
after removing the sum

∑
s≤t �Xs of all jumps (which here are summable, and we

even have
∑

s≤t ‖�Xs‖r < ∞ a.s. here).

3. The results.

3.1. A (seemingly) natural choice for the window kn. In order to define the
estimators of the spot volatility, we need to fix a sequence kn of integers and a
sequence un of cut-off levels in (0,∞]. The M+

d -valued variables c̃n
i are defined,

componentwise, as

ĉ
n,lm
i = 1

kn�n

kn−1∑
j=0

�n
i+jX

l�n
i+jX

m1{‖�n
i+jX‖≤un},(3.1)

and they implicitly depend on �n, kn,un.
A natural idea is to choose the sequence kn satisfying, as n → ∞,

kn ∼ θ√
�n

, θ ∈ (0,∞).(3.2)

Indeed, one knows that ĉn[t/�n]
P−→ ct for any t , as soon as kn → ∞ and kn�n → 0,

and there is an associated central limit theorem under Assumption (A-r) for some
r < 2, with rate min(1/

√
kn,1/

√
kn�n), which reaches its biggest value 1/�

1/4
n

when kn � 1/
√

�n: this choice of kn ensures a balance between the involved “sta-
tistical error” which is of order 1/

√
kn, and the variation of ct over the interval

[t, t + kn�n], which is of order
√

kn�n because ct is an Itô semimartingale (and
even when it jumps); see [1, 5].

By Theorem 9.4.1 of [5], and again as soon as kn → ∞ and kn�n → 0, one also
knows that

V (g)nt := �n

[t/�n]−kn+1∑
i=1

g
(
ĉn
i

) u.c.p.�⇒ V (g)t :=
∫ t

0
g(cs) ds(3.3)

(convergence in probability, uniform over each compact interval; by convention∑b
i=a vi = 0 whenever b < a), as soon as the function g on M+

d is continuous
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with |g(x)| ≤ K(1 + ‖x‖p) for some constants K,p, and under either one of the
following three conditions:

• (A-0) holds, X is continuous, un

�ε
n

→ ∞ for some ε < 1
2 (e.g.,

un ≡ ∞);
• (A-r) holds for some r < 2 and p ≤ 1 and un � ��

n for some � ∈
(0, 1

2);
• (A-r) holds for some r < 2 and p > 1 and un � ��

n for some � ∈
[ p−1

2p−r
, 1

2).

(3.4)

Notice the upper limit in definition (3.3) of V n(g)t : this is to ensure that V n(g)t is
actually computable from the observations up to the time horizon t . Note also that
when X is continuous, the truncation in (3.1) is useless: one may use (3.1) with
un ≡ ∞, which reduces to (1.2) in the one-dimensional case.

Now, we want to determine at which rate convergence (3.3) takes place. This
amounts to proving an associated central limit theorem. Under the restriction r < 1
and an appropriate choice of the truncation levels, such a CLT is available for
V (g)n, with the rate 1/

√
�n, but the limit exhibits a bias term.

Below, g is a smooth function on M+
d , and the two first partial derivatives are

denoted as ∂jkg and ∂2
jk,lmg, since any x ∈ M+

d has d2 components xjk . The

family of all partial derivatives of order j is simply denoted as ∂jg.

THEOREM 3.1. Assume Assumption (A-r) for some r < 1. Let g be a C3

function on M+
d such that∥∥∂jg(x)

∥∥ ≤ K
(
1 + ‖x‖p−j )

, j = 0,1,2,3,

for some constants K > 0,p ≥ 3. Either suppose that X is continuous and
un/�

ε
n → ∞ for some ε < 1/2 (e.g., un ≡ ∞, so there is no truncation at all),

or suppose that

un � ��
n ,

2p − 1

2(2p − r)
≤ � <

1

2
.

Then we have the finite-dimensional (in time) stable convergence in law

1√
�n

(
V (g)nt − V (g)t

) Lf −s−→ A1
t + A2

t + A3
t + A4

t + Zt,

where Z is a process defined on an extension (�̃, F̃ , (F̃t )t≥0, P̃) of (�, F , (Ft )t≥0,

P), which conditionally on F is a continuous centered Gaussian martingale with
variance

Ẽ
(
(Zt )

2 | F
) =

d∑
j,k,l,m=1

∫ t

0
∂jkg(cs) ∂lmg(cs)

(
cjl
s ckm

s + cjm
s ckl

s

)
ds,
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and where

A1
t = −θ

2

(
g(c0) + g(ct )

)
,

A2
t = 1

2θ

d∑
j,k,l,m=1

∫ t

0
∂2
jk,lmg(cs)

(
cjl
s ckm

s + cjm
s ckl

s

)
ds,

A3
t = − θ

12

d∑
j,k,l,m=1

∫ t

0
∂2
jk,lmg(cs)c̃

jk,lm
s ds,

where c̃s is the volatility process of ct ,

A4
t = θ

∑
s≤t

G(cs−,�cs)

with G(x,y) = ∫ 1
0 (g(x + wy) − (1 − w)g(x) − wg(x + y)) dw.

Note that |G(x,y)| ≤ K(1 + ‖x‖)p‖y‖2, so the sum defining A4
t is absolutely

convergent, and vanishes when ct is continuous.
The bias has four parts:

(1) The first part A1 is a border effect, easily eliminated by taking

Ṽ (g)nt = V (g)nt + (kn − 1)�n

2

(
g
(
ĉn

1
) + g

(
ĉn[t/�n]−kn+1

))
(3.5)

instead of V (g)nt : we then have 1√
�n

(Ṽ (g)nt − V (g)t )
Lf −s−→ A2

t + A3
t + A4

t + Zt ,
and this convergence is even functional in time when ct is continuous.

(2) The second part A2 is continuous in time and is present even for the toy
model Xt = √

cWt with c a constant and �n = 1
n

and T = 1. In this simple case it
can be interpreted as follows: instead of taking the “optimal” g(ĉn) for estimating
g(c), with ĉn = ∑n

i=1(�
n
i X)2, one takes 1

n

∑n
i=1 g(ĉn

i ) with ĉn
i a “local” estimator

of c. This adds a statistical error which results in a bias.
(3) The third and fourth parts A3 and A4 are, respectively, continuous and

purely discontinuous, due to the continuous part and to the jumps of the volatility
process ct itself. These two biases disappear if we take θ = 0 in (3.2) (with still
kn → ∞).

The only test function g for which the biases A2,A3,A4 disappear is the identity
g(x) = x. This is because, in this case, and up to border terms, Ṽ (g)nt is nothing
but the realized quadratic variation itself and the spot estimators ĉn

i actually merge
together and disappear as such.

It is possible to consistently estimate A2
t ,A

3
t ,A

4
t , and thus de-bias Ṽ (g)nt

and obtain a CLT with a conditionally centered Gaussian limit. Consistent es-
timators for A2

t are easy to derive, since A2
t = V (f )t for the function f (x) =
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j,k,l,m ∂2

jk,lmg(x)(xjlxkm + xjmxkl). Consistent estimators for A3
t and A4

t , in-
volving the volatility and the jumps of ct , are more complicated to describe, espe-
cially the last one, and also likely to have poor performances. All the details about
the way to remove the bias together with the proof of Theorem 3.1 can be found
in [7].

3.2. A suitable window kn. In front of the difficulties involved in de-biasing
the estimators V (g)nt above, we in fact choose a window size kn smaller than the
one in (3.2). Namely, we choose kn such that, as n → ∞,

k3
n�n → ∞, k2

n�n → 0.(3.6)

Of course, the second condition enables us to make the first and last two bias terms
in Theorem 3.1 vanish, which is technically very convenient. However, it amplifies
the first bias term, which becomes the leading term in the difference V (g)n−V (g),
and thus a prior de-biasing is necessary if we want a rate 1/

√
�n. This leads us to

consider the following estimator:

V ′(g)nt = �n

[t/�n]−kn+1∑
i=1

(
g
(
ĉn
i

) − 1

2kn

d∑
j,k,l,m=1

∂2
jk,lmg

(
ĉn
i

)
(3.7)

× (
ĉ
n,j l
i ĉ

n,km
i + ĉ

n,jm
i ĉ

n,kl
i

))
.

This estimator uses overlapping intervals, in the sense that we estimate c(i−1)�n

on the basis of the time window ((i −1)�n, (i +kn −1)�n], and then sum over all
i’s. Another version is indeed possible, which does not use overlapping intervals
and is as follows:

V ′′(g)nt = kn�n

[t/kn�n]−1∑
i=0

(
g
(
ĉn
ikn+1

)

− 1

2kn

d∑
j,k,l,m=1

∂2
jk,lmg

(
ĉn
ikn+1

)
(3.8)

× (
ĉ
n,j l
ikn+1ĉ

n,km
ikn+1 + ĉ

n,jm
ikn+1ĉ

n,kl
ikn+1

))
.

We can now give the final version of our associated central limit theorems.

THEOREM 3.2. Assume Assumption (A-r) for some r < 1. Let g be a C3

function on M+
d such that∥∥∂jg(x)

∥∥ ≤ K
(
1 + ‖x‖p−j )

, j = 0,1,2,3,(3.9)
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for some constants K > 0,p ≥ 3. Either suppose that X is continuous and
un/�

ε
n → ∞ for some ε < 1/2 (e.g., un ≡ ∞, so there is no truncation at all),

or suppose that

un � ��
n ,

2p − 1

2(2p − r)
≤ � <

1

2
.(3.10)

Then under (3.6) we have the two (functional in time) stable convergences in law

1√
�n

(
V ′(g)n − V (g)

) L−s�⇒ Z,
1√
�n

(
V ′′(g)n − V (g)

) L−s�⇒ Z,(3.11)

where Z is a process defined on an extension (�̃, F̃ , (F̃t )t≥0, P̃) of (�, F , (Ft )t≥0,

P), which conditionally on F is a continuous centered Gaussian martingale with
variance

Ẽ
(
(Zt )

2 | F
) =

d∑
j,k,l,m=1

∫ t

0
∂jkg(cs) ∂lmg(cs)

(
cjl
s ckm

s + cjm
s ckl

s

)
ds.(3.12)

REMARK 3.3. When X jumps, the requirement (3.10) is exactly the same
as in Theorem 3.1, and it implies r < 1. This restriction is not a surprise, since
one needs r ≤ 1 in order to estimate the integrated volatility by the (truncated)
realized volatility, with a rate of convergence 1/

√
�n. Indeed, it is shown in [6]

that if r > 1, the optimal rate in the minimax sense is (
√

�n log(1/
√

�n))
−(2−r)/2.

When r = 1 it is likely that the CLT still holds for an appropriate choice of the
sequence un, and with another additional bias; see, for example, [12] for a slightly
different context. Here we let this borderline case aside.

REMARK 3.4. The limiting process Z is the same in both Theorems 3.1
and 3.2, but in the latter case the functional convergence always holds. It is also the
same for (the normalized versions of) the processes V ′(g)n and V ′′(g)n, which is
somewhat a surprise since in many instances using overlapping intervals instead of
nonoverlapping intervals results in a strictly smaller asymptotic variance; this is for
example the case for multipower variations, see Theorem 11.2.1 in [5]. However,
in practice, it is probably advisable to use V ′(g)n rather than V ′′(g)n, because the
former estimator is likely to be less sensitive to way-off values of the spot estima-
tors ĉn

i than the latter one, due to the “smoothing” embedded in its definition.

REMARK 3.5. The C3 property of g is somewhat restrictive, as, for exam-
ple, in the one-dimensional case it rules out the powers g(x) = xr with r ∈
(0,3) \ {1,2}. It could be proved that, in the one-dimensional case again, and if
the processes ct and ct− do not vanish (equivalently, the process 1/ct is locally
bounded), the result still holds when g is C3 on (0,∞) and satisfies (3.9) with
an arbitrary p > 0: here again, the fact that 1/ct is locally bounded is also neces-
sary for having a CLT for the functionals of (1.1) (say, with k = 1) when the test
function f is C1 outside 0 only.



INTEGRATED FUNCTION OF VOLATILITY 1471

REMARK 3.6. One should compare this result with those of Mykland and
Zhang in [11]: in that paper [in which only the continuous one-dimensional case
and the test functions g(x) = xr are considered] the authors propose to take kn = k

in (3.1). Of course (3.6) fails, but V (g)n in this case is actually of the form (1.1)
and a CLT holds for 1√

�n
(α(g, k)V (g)n − V (g)) [without de-biasing term, but

with an appropriate multiplicative factor α(g, k), which is explicitly known]: the
asymptotic variance is bigger than in (3.12), but approaches this value when k is
large.

An advantage of Mykland–Zhang’s approach is that when g is positive, hence
V (g)t as well, the estimators are also positive. In contrast, V ′(g)nt in (3.7) may
be negative even when g ≥ 0 everywhere. Thus if this positivity issue is important
for a specific application, taking kn = k “large” and the estimator α(g, k)V (g)nt
might be advisable, although it seems to work only when g is a power function.
Moreover, if V ′(g)nt is negative, it probably means that there is not enough data in
order to obtain a relevant estimation.

It is simple to make this CLT “feasible,” that is, usable in practice for determin-
ing a confidence interval for V (g)t at any time t > 0. Indeed, we can define the
following function on M+

d :

h(x) =
d∑

j,k,l,m=1

∂jkg(x) ∂lmg(x)
(
xjlxkm + xjmxkl),(3.13)

which is continuous with h(x) ≤ K(1 + ‖x‖2p−2), and nonnegative (and positive
at each x such that ∂g(x) �= 0). (3.10) implies the last condition in (3.4), and we
have V (h)n

u.c.p.�⇒ V (h), with V (h)t being the right-hand side of (3.12). Then we
readily deduce:

COROLLARY 3.7. Under the assumptions of the previous theorem, for any
t > 0 we have the following stable convergence in law, where Y is an N (0,1)

variable:

V ′(g)nt − V (g)t√
�nV (h)nt

L−s−→ Y in restriction to the set
{
V (h)t > 0

}
,(3.14)

and the same holds with V ′′(g)nt instead of V ′(g)nt .

3.3. Optimality of the procedures. We address now the question of the opti-
mality of our procedures.

For simplicity, we restrict our attention to the one-dimensional case d = 1. We
denote by S the class of all one-dimensional continuous semimartingales X of the
form (1.3), with a,f being C3 functions with bounded derivatives with further
f bounded away from 0, and W,W being two independent Brownian motions,
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and bt , σ t being Lebesgue square-integrable processes, optional with respect to
the filtration generated by W , and with (σ t )

2 bounded away from 0. Such an X

satisfies (A-0), with σt = f (t,Xt , Yt ).
Let t > 0. In the following, we say that a sequence of estimators (T n

t )n≥1 of
V (g)t satisfy Property P over S if:

(1) the estimator T n
t is a function of (Xi�n : 0 ≤ i ≤ [t/�n]);

(2) for any X ∈ S , the variables 1√
�n

(T n
t − V (g)t ) converge stably in law to a

limit Z′
t (depending of g of course), defined on an extension of the space.

The following theorem gives three small steps toward optimality.

THEOREM 3.8. Let d = 1 and g be a C3 function on R+ satisfying (3.9) and
which is strictly increasing, or strictly decreasing.

(a) For the parametric model Xt = σWt , where ct = σ 2
t = c is a constant (the

toy example of the Introduction), for any t > 0, the estimators V ′(g)nt and V ′′(g)nt
are asymptotically efficient (in Le Cam’s sense) for estimating the number tg(c).

(b) Let (T n
t )n≥1 be a sequence of estimators satisfying P over the class of con-

tinuous processes X for which (A-0) holds. Assume Z′
t has a conditional variance

of the form

Ẽ
((

Z′
t

)2 | F
) =

∫ t

0
H(cs) ds(3.15)

for some nonnegative Borel function H . Then necessarily H ≥ h, as given by
(3.13), and in particular,

Ẽ
((

Z′
t

)2 | F
) ≥ Ẽ

(
(Zt )

2 | F
)
.(3.16)

(c) The estimators V ′(g)nt and V ′′(g)nt are optimal over S in the following
sense: for any sequence (T n

t ) of estimators satisfying P over S , the limiting vari-
able Z′

t can be realized as Zt +Z′′
t , where Zt is the limiting process in (3.11), and

the variable Z′′
t is independent of Zt conditionally on F .

Part (b) of Theorem 3.8 shows in particular that the estimators Un(f )t given
in (1.1) for estimating g(x) = E(f (

√
xU)) have always an asymptotic variance

bigger than or equal to the variance (3.12).
Part (c) states that our estimators achieve the lower bounds of Hajek convolution

theorem over the class S . This convolution theorem for the subclass S is due to
Clément, Delattre and Gloter; see [4]. It in particular implies that for given t , any
rate optimal estimator over S has a limiting variance which is larger than those of
Zt the limiting process in (3.11).

So far, however, a “general” theory of optimality in our nonparametric context
seems still out of reach.
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EXAMPLE 3.9 (Quarticity). Suppose d = 1, and take g(x) = x2, so we want
to estimate the quarticity

∫ t
0 c2

s ds. In this case an “optimal” estimator for the quar-
ticity is

�n

(
1 − 2

kn

) [t/�n]−kn+1∑
i=1

(
ĉn
i

)2
.

The asymptotic variance is 8
∫ t

0 c4
s ds, to be compared with the asymptotic variance

of the more usual estimators 1
3�n

∑[t/�n]
i=1 (�n

i X)4, which is 32
3

∫ t
0 c4

s ds.

REMARK 3.10. Although taking (3.6) eliminates the bias terms A1
t , A3

t

and A4
t showing in Theorem 3.1, it might be judicious to still eliminate the

(asymptotically negligible) bias A1
t by adding to V ′(g)nt the same correction term

(kn−1)�n

2 (g(ĉn
1) + g(ĉn[t/�n]−kn+1) as in (3.5).

Due to their probable instability, it does not seem advisable, though, to eliminate
the biases A3

t and A4
t by using (with the proper normalization) the method of [7].

4. Proofs. Under Assumption (A-r), not only do we have (2.1), but we can
write ct in a similar fashion:

ct = c0 +
∫ t

0
b̃s ds +

∫ t

0
σ̃s dW ′

s +
∫ t

0

∫
E

δ̃(s, z)1{‖δ̃(s,z)‖≤1}(μ − ν)(ds, dz)

+
∫ t

0

∫
E

δ̃(s, z)1{‖δ̃(s,z)‖>1}μ(ds, dz)

(here, W ′ is a d2-dimensional Brownian motion, possibly correlated with W ).
Then, according to the localization Lemma 4.4.9 of [5] [for the assumption (K)
in that lemma], it is enough to show Theorem 3.2 under the following stronger
assumption:

ASSUMPTION (SA-r ). We have Assumption (A-r). Moreover we have, for a
λ-integrable function J on E and a constant A,

‖b‖,‖b̃‖,‖c‖,‖c̃‖, J ≤ A,
∥∥δ(ω, t, z)

∥∥r ≤ J (z),
(4.1) ∥∥δ̃(ω, t, z)

∥∥2 ≤ J (z).

In the sequel we suppose that X satisfies Assumption (SA-r), and also that
(3.6) holds: these assumptions are typically not recalled. Below, all constants are
denoted by K , and they vary from line to line. They may implicitly depend on
the process X [usually through A in (4.1)]. When they depend on an additional
parameter p, we write Kp .
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Recall the notation b′
t in Assumption (A-r). We will usually replace the discon-

tinuous process X by the continuous process

X′
t =

∫ t

0
b′
s ds +

∫ t

0
σs dWs,(4.2)

connected with X by Xt = X0 + X′
t + ∑

s≤t �Xs . Note that b′ is bounded, and
without loss of generality we will use below its càdlàg version.

4.1. Estimates. (1) First, we recall well-known estimates for X′ and c. Under
(4.1) and for s, t ≥ 0 and q ≥ 0, we have

E

(
sup

w∈[0,s]
∥∥X′

t+w − X′
t

∥∥q ∣∣ Ft

)
≤ Kqs

q/2,

∥∥E
(
X′

t+s − X′
t | Fs

)∥∥ ≤ Ks,
(4.3)

E

(
sup

w∈[0,s]
‖ct+w − ct‖q

∣∣ Ft

)
≤ Kqs

1∧(q/2),

∥∥E(ct+s − ct | Fs)
∥∥ ≤ Ks.

We need slightly more refined estimates for X′, and before giving them we
introduce some simplifying notation,

cn
i = c(i−1)�n, F n

i = F(i−1)�n,

ηt,s = sup
(∥∥b′

t+u − b′
t

∥∥2 :u ∈ [0, s]),(4.4)

ηn
i,j =

√
E

(
η(i−1)�n,j�n | F n

i

)
, ηn

i = ηn
i,kn

.

LEMMA 4.1. We have∣∣E(
�n

i X
′j�n

i X
′m | F n

i

) − c
n,jm
i �n

∣∣
≤ K�3/2

n

(√
�n + ηn

i,1
)
,∣∣E(

�n
i X

′j�n
i X

′k�n
i X

′l�n
i X

′m | F n
i

) − (
c
n,jk
i c

n,lm
i + c

n,j l
i c

n,km
i + c

n,jm
i c

n,kl
i

)
�2

n

∣∣
≤ K�5/2

n .

PROOF. For simplicity we prove the result when i = 1, so �n
1X

′ = X′
�n

, but
upon shifting time the proof for i > 1 is the same.

First we have X′
t = Mt + tb′

0 + ∫ t
0 (b′

s − b′
0) ds, where M is a martingale with

M0 = 0. Taking the F0-conditional expectation thus yields∥∥E
(
X′

t | F0
) − tb′

0
∥∥ ≤ tη0,t .(4.5)
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Next, Itô’s formula yields that X
′j
t X′m

t is the sum of a martingale vanishing at 0,
plus

b
′j
0

∫ t

0
X′m

s ds + b′m
0

∫ t

0
X′j

s ds +
∫ t

0
X′m

s

(
b′j
s − b

′j
0

)
ds

+
∫ t

0
X′j

s

(
b′m
s − b′m

0
)
ds + c

jm
0 t +

∫ t

0

(
cjm
s − c

jm
0

)
ds.

Upon taking the conditional expectation, and using the Cauchy–Schwarz inequal-
ity and the first and the last parts of (4.3), plus (4.5), we readily deduce∣∣E(

X
′j
t X′m

t | F0
) − tc

jm
0

∣∣ ≤ Kt3/2(
√

t + η0,t ).(4.6)

With t = �n, this gives the first claim. Finally, for any indices j1, . . . , j4 Itô’s
formula yields a martingale M vanishing at 0 such that

4∏
l=1

�n
1X

′jl = M�n +
p∑

l=1

∫ �n

0
b′jl
s

∏
1≤m≤p,m �=l

X′jm
s ds

+ 1

2

∑
1≤l,l′≤d,l �=l′

c
jljl′
0

∫ �n

0

∏
1≤m≤4,m�=l,l′

X′jm
s ds(4.7)

+ 1

2

∑
1≤l,l′≤d,l �=l′

∫ �n

0

(
c
jljl′
s − c

jljl′
0

) ∏
1≤m≤4,m�=l,l′

X′jm
s ds.

Again, we take the F0-conditional expectation and we deal with the second, the
third and the last term in the right-hand side above by Fubini’s theorem and the
Cauchy–Schwarz inequality. For the fourth term we use (4.6), and a simple calcu-
lation yields the second claim. �

LEMMA 4.2. For all t > 0 we have �nE(
∑[t/�n]

i=1 ηn
i ) → 0, and for all j, k

such that j + k ≤ kn we have E(ηn
i+j,k | F n

i ) ≤ ηn
i .

PROOF. The second claim follows from the definitions of ηn
i and ηn

i,j and

the Cauchy–Schwarz inequality. For the first claim, we observe that E((ηn
i )2) is

smaller than a constant always, and than 1
�n

∫ (i−1)�n

(i−2)�n
E((ηs,2kn+1)

2) ds when i ≥ 2.
Hence by the Cauchy–Schwarz inequality,

�nE

([t/�n]∑
i=1

ηn
i

)
≤

(
tE

(
�n

[t/�n]∑
i=1

(
ηn

i

)2
))1/2

≤
(
Kt�n + E

(
t

∫ t

0
(ηs,2kn+1)

2 ds

))1/2

.
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We have ηs,2kn+1 ≤ K , and the càdlàg property of b′ yields that ηs,2kn+1(ω) → 0
for all ω, and all s except for countably many strictly positive values (depending
on ω). Then, the first claim follows by the dominated convergence theorem. �

(2) It is much easier (although unfeasible in practice) to replace ĉn
i in (3.3) by

the estimators based on the process X′, as given by (4.2). Namely, we will replace
ĉn
i by the following:

ĉ′n
i = 1

kn�n

kn−1∑
j=0

�n
i+jX

′�n
i+jX

′∗.

The comparison between ĉn
i and ĉ′n

i is based on the following consequence of
Lemma 13.2.6 of [5], applied with F(x) = xx∗, so k = 1 and p′ = s′ = 2 and s = 1
and ε = 0 (because r < 1) with the notation of that lemma. Namely, we have for
all q ≥ 1 and for some sequence an going to 0,

E
(∥∥(

�n
i X�n

i X
∗)

1{‖�n
i X‖≤un} − (

�n
i X

′�n
i X

′∗)
1{‖�n

i X′‖≤un}
∥∥q)

≤ Kqan�
(2q−r)�+1
n .

Since E(‖�n
i X

′‖2q) ≤ Kq�
q
n for any q > 0 by classical estimates, implying by

Markov’s inequality that E(‖�n
i X

′‖2q1{‖�n
i X′‖>un}) ≤ K�

q+q ′(1−2�)
n for any q ′ >

0, by taking q ′ > 1
1−2�

, we then easily deduce

E
(∥∥ĉn

i − ĉ′n
i

∥∥q) ≤ Kqan�
(2q−r)�+1−q
n .(4.8)

(3) Let us introduce the following R
d ⊗ R

d -valued variables:

αn
i = �n

i X
′�n

i X
′∗ − cn

i �n,
(4.9)

βn
i = ĉ′n

i − cn
i = 1

kn�n

kn−1∑
j=0

(
αn

i+j + (
cn
i+j − cn

i

)
�n

)
.

From (4.3) we get that for all q ≥ 0,

E
(∥∥αn

i

∥∥q | F n
i

) ≤ Kq�q
n,

∥∥E
(
αn

i | F n
i

)∥∥ ≤ K�3/2
n .(4.10)

This and the Burkholder–Gundy and Hölder inequalities give us, for q ≥ 2, that
E(‖∑kn−1

j=0 αn
i+j‖q | F n

i ) ≤ Kq�
q
nk

q/2
n . This and (4.3) and again Hölder’s inequal-

ity yield

q ≥ 2 ⇒ E
(∥∥βn

i

∥∥q | F n
i

) ≤ Kq

(
k−q/2
n + kn�n

)
.(4.11)

Lemma 4.1 allows us for better estimates for αn
i , namely∥∥E

(
αn

i | F n
i

)∥∥ ≤ K�
3/2
n

(√
�n + ηn

i,1

)
,

(4.12) ∣∣E(
α

n,jk
i α

n,lm
i | F n

i

) − (
c
n,j l
i c

n,km
i + c

n,jm
i c

n,kl
i

)
�2

n

∣∣ ≤ K�
5/2
n .
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LEMMA 4.3. We have∥∥E
(
βn

i | F n
i

)∥∥ ≤ K
√

�n

(
kn

√
�n + ηn

i

)
,∣∣∣∣E(

β
n,jk
i β

n,lm
i | F n

i

) − 1

kn

(
c
n,j l
i c

n,km
i + c

n,jm
i c

n,kl
i

)∣∣∣∣
≤ K

√
�n

(
k−1/2
n + kn

√
�n + ηn

i

)
.

PROOF. The first claim follows from (4.3), (4.12) and the last part of Lem-
ma 4.2. For the second one, we set ξn

i = c
n,j l
i c

n,km
i + c

n,jm
i c

n,kl
i and ζ n

i,j = αn
i+j +

(cn
i+j − cn

i )�n and write β
n,jk
i β

n,lm
i as

1

k2
n�

2
n

kn−1∑
u=0

ζ
n,jk
i,u ζ

n,lm
i,u + 1

k2
n�

2
n

kn−2∑
u=0

kn−1∑
v=u+1

ζ
n,jk
i,u ζ

n,lm
i,v

(4.13)

+ 1

k2
n�

2
n

kn−2∑
u=0

kn−1∑
v=u+1

ζ
n,lm
i,u ζ

n,jk
i,v .

First, we have∣∣ζ n,jk
i,u ζ

n,lm
i,u − α

n,jk
i+u α

n,lm
i+u

∣∣ ≤ 2�n

∥∥cn
i+u − cn

i

∥∥∥∥αn
i+u

∥∥ + �2
n

∥∥cn
i+u − cn

i

∥∥2
,

whose F n
i -conditional expectation is less than K�

5/2
n k

1/2
n by (4.3) and (4.10). The

boundedness of ct and (4.3) yield |E(ξn
i+u | F n

i )−ξn
i | ≤ Kkn�n. Then (4.12) gives

us that the F n
i -conditional expectation of the first term in (4.13), minus 1

kn
ξn
i , is

less than K
√

�n/
√

kn.
Second, (4.3) and (4.12), plus the first claim of Lemma 4.1, yield, when 0 ≤

u < v < kn,∣∣E(
ζ

n,jk
i,v | F n

i+u+1
) − (

c
n,jk
i+u+1 − c

n,jk
i

)
�n

∣∣ ≤ K�3/2
n

(
kn

√
�n + ηn

i+v,1
)
,∣∣E(

α
n,lm
i+u

(
c
n,jk
i+u+1 − c

n,jk
i+u

) | F n
i+u

)∣∣ ≤ K�3/2
n

(√
�n + ηn

i+u,1
)
,∣∣E(

α
n,lm
i+u

(
c
n,jk
i+u − c

n,jk
i

) | F n
i+u

)∣∣ ≤ K�3/2
n

(√
�n + ηn

i+u,1
)
,∣∣E((

c
n,lm
i+u − c

n,lm
i

)(
c
n,jk
i+u+1 − c

n,jk
i

) | F n
i

)∣∣ ≤ Kkn�n.

Since ζ n
i+u is F n

i+u+1-measurable, and using (4.10) and the second part of Lem-
ma 4.2, the F n

i -conditional expectation of the last term of (4.13) is smaller than
K

√
�n(kn

√
�n + ηn

i ). The same is obviously true for the second term, and we
readily deduce the second claim of the lemma. �

4.2. Proof of Theorem 3.2. Using the key property ĉ′n
i = cn

i + βn
i and the def-

inition (4.9) of βn
i , a simple calculation shows the decomposition 1√

�n
(V ′(g)nt −
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V (g)t ) = ∑5
j=1 V

n,j
t , as soon as t > kn�n, and where

V
n,1
t = √

�n

[t/�n]−kn+1∑
i=1

(
g
(
ĉn
i

) − g
(
ĉ′n
i

)

− 1

2kn

d∑
j,k,l,m=1

(
∂2
jk,lmg

(
ĉn
i

)(
ĉ
n,j l
i ĉ

n,km
i + ĉ

n,jm
i ĉ

n,kl
i

)

− ∂2
jk,lmg

(
ĉ′n
i

)(
ĉ
′n,j l
i ĉ

′n,km
i + ĉ

′n,jm
i ĉ

′n,kl
i

)))
,

V
n,2
t = 1√

�n

[t/�n]−kn+1∑
i=1

∫ i�n

(i−1)�n

(
g
(
cn
i

) − g(cs)
)
ds

− 1√
�n

∫ t

�n([t/�n]−kn+1)
g(cs) ds,

V
n,3
t = √

�n

[t/�n]−kn+1∑
i=1

d∑
l,m=1

∂lmg
(
cn
i

) 1

kn

kn−1∑
u=0

(
c
n,lm
i+u − c

n,lm
i

)
,

V
n,4
t = √

�n

[t/�n]−kn+1∑
i=1

(
g
(
cn
i + βn

i

) − g
(
cn
i

) −
d∑

l,m=1

∂lmg
(
cn
i

)
β

n,lm
i

− 1

2kn

d∑
j,k,l,m=1

∂2
jk,lmg

(
cn
i + βn

i

)
× ((

c
n,j l
i + β

n,j l
i

)(
c
n,km
i + β

n,km
i

)
+ (

c
n,jm
i + β

n,jm
i

)(
c
n,kl
i + β

n,kl
i

)))
,

V
n,5
t = 1

kn

√
�n

[t/�n]−kn+1∑
i=1

d∑
l,m=1

∂lmg
(
cn
i

) kn−1∑
u=0

α
n,lm
i+u .

The leading term is V n,5, and the first claim in (3.11), about V ′(g)n, is a conse-
quence of the following two lemmas:

LEMMA 4.4. For v = 1,2,3,4 we have V n,v u.c.p.�⇒ 0.

LEMMA 4.5. With Z as in Theorem 3.2, we have the functional stable conver-
gence in law

V n,5 L−s�⇒ Z.(4.14)
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PROOF OF LEMMA 4.4. The case v = 1: We define functions hn on M+
d by

hn(x) = g(x) − 1

2kn

d∑
j,k,l,m=1

∂2
jk,lmg(x)

(
xjlxkm + xjmxkl).

From (3.9) we obtain |hn(x) − hn(y)| ≤ K(1 + ‖y‖)p−1)‖x − y‖ + K‖x − y‖p

(uniformly in n). So if ηn
i is the ith summand in the definition of V

n,1
t , we get∣∣ηn

i

∣∣ ≤ K
(
1 + ∥∥ĉn

i

∥∥p−1 + ∥∥ĉ′n
i

∥∥p−1)∥∥ĉn
i − ĉ′n

i

∥∥ + K
∥∥ĉn−ĉ′n

i

∥∥p
.

Recalling the last part of (4.10), and by (4.8), Hölder’s inequality and the fact that
(2p − r)� +1−p < 1

q
((2q − r)� +1−q) when q > 1 is small enough, because

� < 1
2 , we deduce E(|g(ĉn

i ) − g(ĉ′n
i )|) ≤ Kan�

(2p−r)�+1−p
n and thus

E

(
sup
s≤t

∣∣V n,1
s

∣∣) ≤ Ktan�
(2p−r)�+1/2−p
n .

In view of (3.10), we deduce the result for v = 1.
The case v = 2: Since g(cs) is bounded, it is obvious that the absolute value of

the last term in V
n,2
t is smaller than Kkn

√
�n, which goes to 0 by (3.6). Since g

is C2, the convergence of the first term in V
n,2
t to 0 in probability, locally uniformly

in t , is well known; see, for example, the proof of (5.3.24) in [5], in which one
replaces ρcs (f ) by g(cs). Thus the result holds for v = 2.

The case v = 3: Letting ζ n
i = ∑d

l,m=1 ∂lmg(cn
i ) 1

kn

∑kn−1
u=0 (c

n,lm
i+u − c

n,lm
i ) be the

ith summand in the definition of V
n,3
t , and N(n, j, t) be the integer part of

([t/�n] − kn − j + 1)/kn, we have

V
n,3
t = √

�n

kn∑
j=1

H(j)nt where H(j)nt =
N(n,j,t)∑

i=0

ζ n
j+kni .

From (4.3) and the Cauchy–Schwarz inequality, we get∣∣E(
ζ n
i | F n

i

)∣∣ ≤ Kkn�n, E
(∣∣ζ n

i

∣∣2 | F n
i

) ≤ Kkn�n.

Then Doob’s inequality, the F n
j+kn(i+1)-measurability of ζ n

j+kni , and N(n, j, t) ≤
t/kn�n imply

E

(
sup
s≤t

∣∣H(j)ns
∣∣) ≤

N(n,j,t)∑
i=0

E
(∣∣E(

ζ n
j+kni | F n

j+kni

)∣∣)

+
(

4
N(n,j,t)∑

i=0

E
((

ζ(j)nj+kni

)2))1/2

≤ K(t + √
t).
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Since |V n,3
t | ≤ √

�n

∑kn

j=1 |H(j)nt | and kn

√
�n → 0, we deduce the result for

v = 3.
The case v = 4: The ith summand in the definition of V

n,4
t is vn

i + wn
i , where

vn
i = 1

2

d∑
j,k,l,m=1

∂2
jk,lmg

(
cn
i

)(
β

n,jk
i β

n,lm
i − 1

kn

(
c
n,j l
i c

n,km
i + c

n,jm
i c

n,kl
i

))
,

∣∣wn
i

∣∣ ≤ K
(
1 + ∥∥βn

i

∥∥p−3)∥∥βn
i

∥∥3 + K

kn

(
1 + ∥∥βn

i

∥∥p−1)∥∥βn
i

∥∥
[use (3.9) and ‖ct‖ ≤ K repeatedly], and we thus have V

n,4
t = Gn

t + ∑kn

j=1 H(j)nt ,
with N(n, j, t) as in the previous step and

Gn
t = √

�n

[t/�n]−kn+1∑
i=1

(
wn

i + E
(
vn
i | F n

i

))
,

H(j)nt =
N(n,j,t)∑

i=0

ζ(j)ni , ζ(j)ni = √
�n

(
vn
j+kni − E

(
vn
j+kni | F n

j+kni

))
.

In view of Lemma 4.3 and (4.11), plus Hölder’s inequality, we have∣∣E(
vn
i | F n

i

)∣∣ ≤ K
√

�n

(
kn

√
�n + ηn

i

)
,

E
(∣∣wn

i

∣∣) ≤ K

(
1

k
3/2
n

+ kn�n +
√

�n√
kn

)
,

and thus (3.6) and Lemma 4.2 yield

E

(
sup
s≤t

∣∣Gn
s

∣∣) ≤ E

([t/�n]∑
i=1

√
�n

(∣∣wn
i

∣∣ + ∣∣E(
vn
i | F n

i

)∣∣)) → 0.

Moreover (4.11) and k−2
n ≤ Kkn�n yield E(|ζ(j)ni |2) ≤ K�2

nkn, whereas ζ(j)ni is
a martingale increment for the filtration (F n

j+kni)i≥0, hence Doob’s inequality and
N(n, j, t) ≤ t/kn�n imply

E

(
sup
s≤t

∣∣H(j)ns
∣∣) ≤

(N(n,j,t)∑
i=0

E
((

ζ(j)ni
)2))1/2

≤ Kt�n.

Since |V n,4
t | ≤ |Gn

t | +
∑kn

j=1 |H(j)nt |, we deduce the result for v = 4. �

PROOF OF LEMMA 4.5. We can rewrite V n,5 as

V
n,5
t = 1√

�n

[t/�n]∑
i=1

d∑
l,m=1

w
n,lm
i α

n,lm
i ,
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where

w
n,lm
i = 1

kn

(i−1)∧(kn−1)∑
j=(i−[t/�n]+kn−1)+

∂lmg
(
cn
i−j

)
.

Observe that wn
i and αn

i are measurable with respect to F n
i and F n

i+1, respectively,
so by Theorem IX.7.28 of [8] (with G = 0 and Z = 0 in the notation of that the-
orem) it suffices to prove the following four convergences in probability, for all
t > 0 and all component indices:

1√
�n

[t/�n]−kn+1∑
i=1

w
n,lm
i E

(
α

n,lm
i | F n

i

) P−→ 0,(4.15)

1

�n

[t/�n]−kn+1∑
i=1

w
n,jk
i w

n,lm
i E

(
α

n,jk
i α

n,lm
i | F n

i

)
(4.16)

P−→
∫ t

0
∂jkg(cs) ∂lmg(cs)

(
cjl
s ckm

s + cjm
s ckl

s

)
ds,

1

�2
n

[t/�n]−kn+1∑
i=1

∥∥wn
i

∥∥4
E

(∥∥αn
i

∥∥4 | F n
i

) P−→ 0,(4.17)

1√
�n

[t/�n]−kn+1∑
i=1

w
n,lm
i E

(
α

n,lm
i �n

i N | F n
i

) P−→ 0,(4.18)

where N = Wk for some k, or is an arbitrary bounded martingale, orthogonal to W .
Lemma 4.2, (4.10), (4.12) and the property ‖wn

i ‖ ≤ K readily imply (4.15) and
(4.17). In view of the form of αn

i , a usual argument (see, e.g., [5]) shows that in
fact E(α

n,lm
i �n

i N | F n
i ) = 0 for all N as above, and hence (4.18) holds.

For (4.16), by (4.12) it suffices to prove that

�n

[t/�n]−kn+1∑
i=1

w
n,jk
i w

n,lm
i

(
c
n,j l
i c

n,km
i + c

n,jm
i c

n,kl
i

)
P−→

∫ t

0
∂jkg(cs) ∂lmg(cs)

(
cjl
s ckm

s + cjm
s ckl

s

)
ds.

In view of the definition of wn
i , for each t we have w

n,jk
i(n,t) → ∂jkg(ct ) and c

n,jk
i(n,t) →

c
jk
t almost surely if |i(n, t)�n − t | ≤ kn�n, and the above convergence follows by

the dominated convergence theorem, thus ending the proof of (4.14). �

PROOF OF THE SECOND CLAIM IN (3.11). The proof is basically the same
as for the first claim. We have the decomposition 1√

�n
(V ′′(g)nt − V (g)t ) =
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j=1 V

n,j
t , where

V
n,1
t = kn

√
�n

[t/kn�n]−1∑
i=0

(
g
(
ĉn
kni+1

) − g
(
ĉ′n
kni+1

))
,

V
n,2
t = 1√

�n

[t/kn�n]−1∑
i=0

∫ kn(i+1)�n

kni�n

(
g(ckni�n) − g(cs)

)
ds

− 1√
�n

∫ t

kn�n([t/kn�n])
g(cs) ds,

V
n,3
t = kn

√
�n

[t/kn�n]−1∑
i=0

d∑
l,m=1

∂lmg
(
cn
kni+1

) 1

kn

kn−1∑
u=0

(
c
n,lm
kni+1+u − c

n,lm
kni+1

)
,

V
n,4
t = kn

√
�n

×
[t/kn�n]−1∑

i=0

(
g
(
cn
kni+1 + βn

kni+1
) − g

(
cn
kni+1

)

−
d∑

l,m=1

∂lmg
(
cn
kni+1

)
β

n,lm
kni+1

− 1

2kn

d∑
j,k,l,m=1

∂2
jk,lmg

(
cn
kni+1 + βn

kni+1
)

× ((
c
n,j l
kni+1 + β

n,j l
kni+1

)(
c
n,km
kni+1 + β

n,km
kni+1

)
+ (

c
n,jm
kni+1 + β

n,jm
kni+1

)(
c
n,kl
kni+1 + β

n,kl
kni+1

)))
,

V
n,5
t = 1√

�n

[t/kn�n]−1∑
i=0

d∑
l,m=1

∂lmg
(
cn
kni+1

) kn−1∑
u=0

α
n,lm
kni+u+1.

The proofs of Lemmas 4.4 and 4.5 carry over to V n,v instead of V n,v , for v =
1,2,3,4,5, almost word for word, except for the following points:

(1) For Lemma 4.4, cases v = 3,4, there is no need to consider the kn processes
H(j)n; a single process Hn is enough, and the proof is simpler.

(2) For Lemma 4.4, case v = 2, the proof of the u.c.p. convergence to 0 of the
first term in the definition of V n,2 should be reworked as follows: the ith summand
ζ n
i in this term is F n

kn(i+1)-measurable, and by (3.9) and (4.3) it satisfies∣∣E(
ζ n
i | F n

kni

)∣∣ ≤ K(kn�n)
2, E

(∣∣ζ n
i

∣∣2 | F n
kni

) ≤ K(kn�n)
3.
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Then the claim follows from the usual martingale argument and kn

√
�n → 0.

(3) For Lemma 4.5, we have

V
n,5
t = 1√

�n

kn[t/kn�n]∑
i=1

d∑
l,m=1

∂lmg
(
cn

1+kn[(j−1)/kn]
)
α

n,lm
i ,

and the rest of the proof is similar. �

4.3. Proof of Theorem 3.8(a) and (b). (a) is almost obvious: indeed, V (g)nt
converges with the rate 1√

�n
and is asymptotically normal with asymptotic vari-

ance 2tg′(c)2c2 (g′ is the derivative of g). However, since g is one-to-one, the
model index by the new parameter tg(c) is regular, and the MLE is tg(ĉn), where
ĉn = ∑[t/�n]

i=1 (�n
i X)2, and clearly tg(ĉn) has the same asymptotic properties as

V (g)nt : this proves the result.
(b) is also obvious: the properties of T n

t hold for all continuous processes X

satisfying (A-0). Then, using the toy model of (a), the optimality proved above
implies that tH(c) ≥ 2tg′(c)2c2 for any constant c > 0, that is, H ≥ h.

Finally, (c) is exactly Theorem 3 of [4] applied to the present setting.

Acknowledgments. We thank two anonymous referees for very constructive
comments, which led to substantial improvements. We also thank Jia Li for point-
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