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COMPLETE CLASSES OF DESIGNS FOR NONLINEAR
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In a recent paper Yang and Stufken [Ann. Statist. 40 (2012a) 1665–1685]
gave sufficient conditions for complete classes of designs for nonlinear re-
gression models. In this note we demonstrate that there is an alternative way
to validate this result. Our main argument utilizes the fact that boundary
points of moment spaces generated by Chebyshev systems possess unique
representations.

1. Introduction. The construction of locally optimal designs for nonlinear
regression models has found considerable interest in recent years [see, e.g., He,
Studden and Sun (1996), Dette, Melas and Wong (2006), Khuri et al. (2006), Fang
and Hedayat (2008), Yang and Stufken (2012b) among others]. While most of the
literature focuses on specific models or specific optimality criteria, general results
characterizing the structure of locally optimal designs are extremely difficult to ob-
tain due to the complicated structure of the corresponding nonlinear optimization
problems. In a series of remarkable papers Yang and Stufken (2009), Yang (2010),
Dette and Melas (2011) and Yang and Stufken (2012a) derived several complete
classes of designs with respect to the Loewner Ordering of the information ma-
trices. The first paper in this direction of Yang and Stufken (2009) investigates
nonlinear regression models with two parameters. These results were generalized
by Yang (2010) and Dette and Melas (2011) to identify small complete classes
for nonlinear regression models with more than two parameters. The most general
contribution is the recent paper of Yang and Stufken (2012a), which provides a
sufficient condition for a complete class of designs and is applicable to most of the
commonly used regression models. On the one hand, the proof of this statement
is self-contained and only involves basic algebra. On the other hand, the proof is
complicated, requires several auxiliary results and hides some of the mathematical
structure of the problem.
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The purpose of the present paper is to demonstrate that conditions of this type
are intimately related to the characterization of boundary points of moment spaces
associated with a nonlinear regression model. Our main tool is a Chebyshev sys-
tem [Karlin and Studden (1966)] appearing in (a transformation of) the Fisher in-
formation matrix of a given design. The complete class of designs can essentially
be characterized as the set of measures corresponding to the unique representations
of the boundary points of the corresponding moment spaces. With this insight the
main result in the paper of Yang and Stufken (2012a) is a simple consequence of
the fact that a representation of a boundary point of a k + 1-dimensional moment
space associated with a Chebyshev system depends only on the first k functions
which are used to generate the moment space.

In Section 2 we state some facts about moment spaces associated with Cheby-
shev systems which are of general interest for constructing admissible designs.
The design problem and Theorem 1 of Yang and Stufken (2012a) are stated in
Section 3, where we also present our alternative proof. We finally note that the
paper of Yang and Stufken (2012a) contains numerous interesting examples and
provides a further result which are not discussed in this note for the sake of brevity.

2. Chebyshev systems and associated moment spaces. A set of k real val-
ued functions �0, . . . ,�k−1 : [A,B] → R is called Chebychev system on the in-
terval [A,B] if and only if it fulfills the inequality

det

⎛
⎜⎝

�0(x0) . . . �0(xk−1)

...
. . .

...

�k−1(x0) . . . �k−1(xk−1)

⎞
⎟⎠ > 0

for any points x0, . . . , xk−1 with A ≤ x0 < x1 < · · · < xk−1 ≤ B . The moment
space associated with a Chebyshev system is defined by

Mk−1 =
{
c = (c0, . . . , ck−1)

T
∣∣∣c0

i =
∫ B

A
�i(x) dσ(x),

i = 0, . . . , k − 1, σ ∈ P
([A,B])

}
,

where P([A,B]) denotes the set of all finite measures on the interval [A,B]. It can
be characterized as the smallest convex cone containing the curve

Ck−1 = {(
�0(t), . . . ,�k−1(t)

)T |t ∈ [A,B]};
see Karlin and Studden (1966). By Caratheodory’s theorem, any point of Mk−1
can be described as a linear combination of at most k + 1 points in Ck−1,
where the coefficients are positive. Moment spaces can be defined for any set
of linearly independent functions, but if the functions {�0, . . . ,�k−1} generate
a Chebyshev system, the moment space has several additional interesting prop-
erties. In particular, fewer points of Ck−1 are required for the representation of
points in Mk−1. To be precise, we define for a point c0 ∈ Mk−1 its index
I (c0) as the minimal number of points in Ck−1 which are required to represent
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c0, where the points (�0(A), . . . ,�k−1(A))T and (�0(B), . . . ,�k−1(B))T cor-
responding to the boundary points of the interval [A,B] are counted by 1/2.
The index I (σ ) of a finite measure σ on the interval [A,B] is defined as the
number of its support points, where the boundary points are counted as 1/2. If
c0 = ∫ B

A (�0(x), . . . ,�k−1(x))T dσ (x), the measure σ is also called a representa-
tion of the point c0 ∈ Mk−1. If {t1, . . . , tn} denotes the support of σ , the vectors
{(�0(tj ), . . . ,�k−1(tj ))

T | j = 1, . . . , n} and the corresponding weights of σ can
be used to obtain a convex representation of the c0 by elements of Ck−1.

With this convention it follows that the point c0 ∈ Mk−1 is a boundary point of
Mk−1 if and only if its index satisfies I (c0) < k

2 . Similarly, c0 is in the interior of
Mk−1 if its index is k

2 . Following Karlin and Studden (1966) we denote a repre-
sentation σ of an interior point c0 as principal, if I (σ ) = I (c0) = k

2 . These authors
also proved that representations of boundary points are unique. Furthermore, for
each interior point c0 ∈ Mk−1 there exist exactly two principal representations
(a further proof of this statement is given below). The first is called upper prin-
cipal representation and contains the point B of the interval [A,B], whereas the
second is called lower principal representation and does not use this point. These
measures are denoted by σ+ and σ−, respectively. If k is odd, the lower and upper
principal representation has k+1

2 support points. On the other hand, if k is even, the
lower and upper principal representation have k

2 and k+2
2 support points, respec-

tively. The next Lemma is crucial in the following investigations.

LEMMA 2.1. Let �j : [A,B] → R (j = 0, . . . , k − 1);� : [A,B] → R denote
real valued functions and assume that the systems {�0, . . . ,�k−1} and {�0, . . . ,

�k−1,�} are Chebyshev systems on the interval [A,B]. If c0 = (c0
1, . . . , c

0
k−1)

T ∈
Mk−1, then the upper and lower principal representation σ+ and σ− of c0 are
uniquely determined and satisfy

max
{∫ B

A
�(t) dσ(t)

∣∣∣∣σ ∈ P
([A,B]), c0

i =
∫ B

A
�i(t) dσ (t), i = 0, . . . , k − 1

}

=
∫ B

A
�(t) dσ+(t),

min
{∫ B

A
�(t) dσ(t)

∣∣∣∣σ ∈ P
([A,B]), c0

i =
∫ B

A
�i(t) dσ (t), i = 0, . . . , k − 1

}

=
∫ B

A
�(t) dσ−(t).

In particular both representations do not depend on the function � : [A,B] → R.

PROOF. The proof follows essentially from the discussion in Sections 3–5 of
Chapter II in Karlin and Studden (1966) and—as proposed by a referee—some
details are given here for sake of completeness. If c0 is a boundary point of the
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moment space Mk−1, there exists precisely one representation, say σ 0, of c0. This
shows that the set of measures σ ∈ P([A,B]) satisfying c0

i = ∫ B
A �i(x) dσ(x) (i =

0, . . . , k − 1) is a singleton, which yields σ 0 = σ+ = σ− and the statement of
Lemma 2.1 is obvious.

Therefore it remains to consider the case where c0 is an interior point of the
moment space Mk−1, that is, I (c0) = k

2 . We assume that k = 2m and that there
exist two upper principal representations, say σ+

1 and σ+
2 (the case k = 2m − 1

and the corresponding statement for the lower principal representation are shown
by similar arguments). Because I (σ+

1 ) = I (σ+
2 ) = I (c0) = m, it follows that σ+

1
and σ+

2 have m+ 1 support points including the boundary points A and B . Now, if
σ+

1 �= σ+
2 , the signed measure σ+

1 −σ−
1 has at most 2m support points and satisfies

0 =
∫ B

A

(
�0(x), . . . ,�2m−1(x)

)T
d
(
σ+

1 − σ+
2

)
(x).

Because {�0, . . . ,�2m−1} is a Chebyshev system, it follows that σ+
1 = σ+

2 , which
proves the first part of Lemma 2.1.

For a proof of the second part we note that the set
{∫ B

A
�(t) dσ(t)

∣∣∣∣σ ∈ P
([A,B]), c0

i =
∫ B

A
�i(t) dσ (t), i = 0, . . . , k − 1

}

is a bounded closed interval, say [γ −, γ +]. Moreover, the points c−
0 = (cT

0 , γ −)T

and c+
0 = (cT

0 , γ +)T are boundary points of the moment space M2m generated by
the Chebyshev system

{�0, . . . ,�2m−1,�}.
Consequently, I (c±

0 ) < 2m+1
2 and the representations of c+

0 and c−
0 are unique.

Moreover, because I (c0) = m we also have I (c±
0 ) = m. It is shown in Karlin and

Studden [(1966), pages 55–56] that the representations of c+
0 and c−

0 must coincide
with the principal representations σ+ and σ− of the interior point c0 ∈ Mk−1,
which proves the second assertion of Lemma 2.1. �

3. A complete class of designs for regression models. Consider the common
nonlinear regression model

E[Y |x] = η(x, θ),(3.1)

where θ ∈ R
p is the vector of unknown parameters, x denotes a real valued co-

variate from the design space [A,B] ⊂ R and different observations are assumed
to be independent with variance σ 2. The function η is called regression function
[see Seber and Wild (1989) or Ratkowsky (1990)] and assumed to be continuous
and differentiable with respect to the variable θ . A design is defined as a probabil-
ity measure ξ on the interval [A,B] with finite support; see Kiefer (1974). If the
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design ξ has masses wi at the points xi (i = 1, . . . , l) and n observations can be
made by the experimenter, this means that the quantities win are rounded to inte-
gers, say ni , satisfying

∑l
i=1 ni = n, and the experimenter takes ni observations at

each location xi (i = 1, . . . , l). If the design ξ contains l support points x1, . . . , xl

such that the vectors ∂
∂θ

η(x1, θ), . . . , ∂
∂θ

η(xl, θ) are linearly independent, and ob-
servations are taken according to this procedure, it follows from Jennrich (1969)
that the covariance matrix of the nonlinear least squares estimator is approximately
(if n → ∞) given by

σ 2

n
M−1(ξ, θ) = σ 2

n

(∫ B

A

(
∂

∂θ
η(x, θ)

)(
∂

∂θ
η(x, θ)

)T

dξ(x)

)−1

.(3.2)

An optimal design maximizes an appropriate functional of the matrix n
σ 2 M(ξ, θ),

and numerous criteria have been proposed in the literature to discriminate between
competing designs; see Pukelsheim (2006). Note that the matrix (3.2) depends on
the unknown parameter θ , and following Chernoff (1953) we call the maximiz-
ing designs locally optimal designs. These designs require an initial guess of the
unknown parameters in the model and are used as benchmarks for many com-
monly used designs or for the construction of more sophisticated optimality crite-
ria which require less information regarding the parameters of the model [Chaloner
and Verdinelli (1995) and Dette (1997)].

Most of the available optimality criteria are positively homogeneous, that is,

( n

σ 2 M(ξ, θ)) = n
σ 2 
(M(ξ, θ)) [Pukelsheim (2006)]. Therefore it is sufficient to

consider maximization of functions of the matrix M(ξ, θ), which is called infor-
mation matrix in the literature. Moreover, the commonly used optimality criteria
also satisfy a monotonicity property with respect to the Loewner ordering, that is,

(M(ξ1, θ)) ≥ 
(M(ξ2, θ)), whenever M(ξ1, θ) ≥ M(ξ2, θ), where the param-
eter θ is fixed, ξ1, ξ2 are two competing designs on the interval [A,B] and 


denotes an information function in the sense of Pukelsheim (2006). Throughout
this paper we call a design ξ admissible if there does not exist any design ξ1, such
that M(ξ1, θ) �= M(ξ, θ) and

M(ξ1, θ) ≥ M(ξ, θ).(3.3)

Yang and Stufken (2012a) derive a complete class theorem in this general context
which characterizes the class of designs, which cannot be improved with respect to
the Loewner ordering of their information matrices. For the sake of completeness
and because of its importance we will state this result here again. In particular,
we demonstrate that the complete class specified by these authors corresponds to
upper and lower principal representations of a moment space generated by the
regression functions. For this purpose we denote by P(θ) a regular p × p matrix,
which does not depend on the design ξ , such that the representation

M(ξ, θ) = P(θ)C(ξ, θ)P T (θ)(3.4)
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holds, where the p × p matrix C(ξ, θ) is defined by

C(ξ, θ) =
∫ B

A

⎛
⎜⎝

�11(x) . . . �1p(x)

...
. . .

...

�p1(x) . . . �pp(x)

⎞
⎟⎠ dξ(x)

=
∫ B

A

(
C11(x) CT

21(x)

C21(x) C22(x)

)
dξ(x),

and C11(x) ∈ R
p−p1×p−p1 , C21(x) ∈ R

p1×p−p1 , C22(x) ∈ R
p1×p1 are appropriate

block matrices (1 ≤ p1 ≤ p). Obviously, P(θ) could be chosen as identity matrix,
but in concrete applications other choices might be advantageous; see Yang and
Stufken [(2012b), Section 4] for numerous interesting examples. A similar com-
ment applies to the choice of p1 which is used to represent the matrix C in a 2 × 2
block matrix. Note that the inequality (3.3) is satisfied if and only if the inequality

C(ξ1, θ) ≥ C(ξ, θ)(3.5)

holds. Following Yang and Stufken (2012a) we define �0(x) = 1, denote the
different elements among {�ij |1 ≤ i ≤ p, j ≤ p − p1} in the matrices C11(x)

and C21(x) which are not constant by �1, . . . ,�k−1 and define for any vector
Q ∈ R

p1 \ {0} the function

�
Q
k (x) = QT C22(x)Q.(3.6)

We are now in a position to state and prove the main result of this paper.

THEOREM 3.1 [Yang and Stufken (2012a)].

(1) If {�0, . . . ,�k−1} and {�0, . . . ,�k−1,�
Q
k } are Chebyshev systems for every

nonzero vector Q, then for any design ξ there exists a design ξ+ with at most
k+2

2 support points, such that M(ξ+, θ) ≥ M(ξ, θ).
If the index of ξ satisfies I (ξ) < k

2 , then the design ξ+ is uniquely determined
in the set {

η
∣∣∣
∫ B

A
�i(x) dη(x) =

∫ B

A
�i(x) dξ(x), i = 1, . . . , k − 1

}
(3.7)

and coincides with the design ξ .
If the index of ξ satisfies I (ξ) ≥ k

2 , then the following cases are discrimi-
nated:
(a) If k is odd, then the design ξ+ has at most k+1

2 support points and it can be
chosen such that B is a support point of the design ξ+.

(b) If k is even, then the design ξ+ has at most k+2
2 support points and it can

be chosen such that A and B are support points of the design ξ+.
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(2) If {�0, . . . ,�k−1} and {�0, . . . ,�k−1,−�
Q
k } are Chebyshev systems for every

nonzero vector Q, then for any design ξ there exists a design ξ− with at most
k+1

2 support points, such that M(ξ−, θ) ≥ M(ξ, θ).
If the index of ξ satisfies I (ξ) < k

2 , then the design ξ− is uniquely determined
in the set of measures satisfying (3.7) and coincides with the design ξ .

If the index of ξ satisfies I (ξ) ≥ k
2 , then the following cases are discrimi-

nated:
(a) If k is odd, then the design ξ− has at most k+1

2 support points and it can be
chosen such that A is a support point of the design ξ−.

(b) If k is even, then the design ξ− has at most k
2 support points.

PROOF. We only present the proof of the first part of the theorem; the second
part follows by similar arguments. Yang and Stufken (2012a) showed that a design
ξ1 satisfies (3.3) if the conditions

∫ B

A
�i(x) dξ1(x) =

∫ B

A
�i(x) dξ(x), i = 1, . . . , k − 1,

(3.8) ∫ B

A
�

Q
k (x) dξ1(x) ≥

∫ B

A
�

Q
k (x) dξ(x)

are satisfied for all vectors Q �= 0. Consequently an improvement of the design
ξ is obtained by maximizing the “kth moment”

∫ B
A �

Q
k (x) dξ1(x) in the set of

all designs satisfying (3.8). If I (ξ) < k
2 , then this set is a singleton and the max-

imizing design ξ+
Q coincides with ξ . Otherwise, by Lemma 2.1 the maximizing

measure ξ+
Q corresponds to the upper principal presentation of the moment point

(
∫ B
A �0(x) dξ(x), . . . ,

∫ B
A �k−1(x) dξ(x))T , which does not depend on the vec-

tor Q. Finally, assertion 1(a) or 1(b) of Theorem 3.1 follows from the discussion
regarding the number of support points of principal representations given at the
end of Section 2. �
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