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CLASSIFICATION OF HALF-PLANAR MAPS

BY OMER ANGEL1 AND GOURAB RAY2

University of British Columbia and University of Cambridge

We characterize all translation invariant half-planar maps satisfying a
certain natural domain Markov property. For p-angulations with p ≥ 3 where
all faces are simple, we show that these form a one-parameter family of mea-

sures H(p)
α . For triangulations, we also establish existence of a phase transi-

tion which affects many properties of these maps. The critical maps are the
well-known half-plane uniform infinite planar maps. The subcritical maps are
identified as all possible limits of uniform measures on finite maps with given
boundary and area.

1. Introduction. The study of planar maps has its roots in combinatorics [24,
27] and physics [2, 14, 19, 26]. The geometry of random planar maps has been the
focus of much research in recent years, and are still being very actively studied.
Following Benjamini and Schramm [12], we are concerned with infinite planar
maps [3, 6, 20]. Those infinite maps enjoy many interesting properties and have
drawn much attention (see, e.g., [10, 15, 16, 18]). One of these properties is the
main focus of the present work.

Recall that a planar map is (an equivalence class of) a connected planar graph
embedded in the sphere viewed up to orientation preserving homeomorphisms of
the sphere. In this paper, we are concerned primarily with maps with a boundary,
which means that one face is identified as external to the map. The boundary con-
sists of the vertices and edges incident to that face. The faces of a map are in gen-
eral not required to be simple cycles, and it is a priori possible for the external face
(or any other) to visit some of its vertices multiple times (see Figure 1). However,
in this work we consider only maps where the boundary is a simple cycle (when
finite) or a simple doubly infinite path (when infinite). If the map is finite and the
external face is an m-gon for some m, we say that the map is a map of an m-gon.

All maps with which we are concerned are rooted, that is, given with a distin-
guished oriented edge. We shall assume the root edge is always on the boundary
of the map, and that the external face is to its right.

It has been known for some time [3, 6] that the uniform measures on planar
maps with boundary converge in the weak local topology (defined below) as the
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FIG. 1. Two (general) maps. Boundary vertices and edges are in red. On the left: the boundary
is not simple, and visits some vertices multiple times. On the right: a map in an octagon (with one
nonsimple face).

area of the map and subsequently the boundary length tend to infinity. That is, if
Mn,m is a uniform triangulation with m boundary vertices and n internal vertices,
then

Mn,m −→
n→∞M∞,m −→

m→∞M∞,∞.

The first limit is an infinite triangulation in an m-gon, and the second limit is
known as the half-plane uniform infinite planar triangulation (half-plane UIPT).
The same limits exist for quadrangulations (yielding the half-plane UIPQ; see,
e.g., [16]) and many other classes of maps. These half-plane maps have a certain
property which we hereby call domain Markov and which we define precisely
below. The name is chosen in analogy with the related conformal domain Markov
property that SLE curves have (a property which was central to the discovery of
SLE [25]). This property appears in some forms also in the physics literature [1],
and more recently played a central role in several works on planar maps, [3, 5, 10].

The primary goal of this work is to classify all probability measures on half-
planar maps which are domain Markov, and which additionally satisfy the simpler
condition of translation invariance. As we shall see, these measures form a natural
one (continuous) parameter family of measures. Before stating our results in detail,
we review some necessary definitions.

Recall that a graph is one-ended if the complement of any finite subset has pre-
cisely one infinite connected component. We shall only consider one-ended maps
in this paper. We are concerned with maps with infinite boundary, which conse-
quently can be embedded in the upper half-plane R × R+ so that the boundary is
R × {0}, and the embedding has no accumulation points. Note that even when a
map is infinite, we still assume it is locally finite (i.e., all vertex degrees are finite).

We may consider many different classes of planar maps. We focus on trian-
gulations, where all faces except possibly the external face are triangles, and on
p-angulations where all faces are p-gons (except possibly the external face). We
denote by Hp the class of all infinite, one-ended, half-planar p-angulations. How-
ever, it so transpires that Hp is not the best class of maps for studying the domain
Markov property, for reasons that will be made clear later. At the moment, to state
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our results let us also define H′
p to be the subset of Hp of simple maps, where all

faces are simple p-gons (meaning that each p-gon consists of p distinct vertices).
Note that—as usual in the context of planar maps—multiple edges between ver-
tices are allowed. However, multiple edges between two vertices cannot be part of
any single simple face. We shall use H and H′ to denote generic classes of half-
planar maps, and simple half-planar maps, without specifying which. For example,
this could also refer to the class of all half-planar maps, or maps with mixed face
valencies.

1.1. Translation invariant and domain Markov measures. The translation op-
erator θ :H → H is the operator translating the root of a map to the right along the
boundary. Formally, θ(M) = M ′ means that M and M ′ are the same map, except
that the root edge of M ′ is the edge immediately to the right of the root edge of M .
Note that θ is a bijection. A measure μ on H is called translation invariant if
μ◦ θ = μ. Abusing language, we will also say that a random map M with law μ is
translation invariant, even though typically moving the root of M yields a different
(rooted) map.

The domain Markov property is more delicate, and may be informally described
as follows: if we condition on the event that M contains some finite configuration
Q and remove the submap Q from M , then the distribution of the remaining map
is the same as that of the original map (see Figure 2).

We now make this precise. Let Q be a finite map in an m-gon for some finite m,
and suppose the boundary of Q is simple (i.e., is a simple cycle in the graph of Q),
and let 0 < k < m be some integer. Define the event AQ,k ⊂ H that the map M

contains a submap which is isomorphic to Q, and which contains the k boundary
edges immediately to the right of the root edge of M , and no other boundary edges
or vertices. Moreover, we require that the root edge of Q corresponds to the edge
immediately to the right of the root of M . On this event, we can think of Q as
being a subset of M , and define the map M̃ = M \ Q, with the understanding that
we keep vertices and edges in Q if they are part of a face not in Q (see Figure 2).
Note that M̃ is again a half-planar infinite map.

FIG. 2. Left: a finite map Q. Centre: part of a map M containing Q with 2 edges along the bound-
ary. Right: the resulting map M̃ . The domain Markov property states that M̃ has the same law as M .
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DEFINITION 1.1. A probability measure μ on H is said to be domain Markov,
if for any finite map Q and k as above, the law of M̃ constructed from a sample M

of μ conditioned on the event AQ,k is equal to μ.

Note that for translation invariant measures, the choice of the k edges to the
right of the root edge is rather arbitrary: any k edges will result in M̃ with the
same law. Similarly, we can reroot M̃ at any other deterministically chosen edge.
Thus, it is also possible to consider k edges that include the root edge, and mark a
new edge as the root of M̃ .

This definition is a relatively restrictive form of the domain Markov property.
There are several other natural definitions, which we shall discuss below. While
some of these definitions are superficially stronger, it turns out that several of them
are equivalent to Definition 1.1.

1.2. Main results. Our main result is a classification and description of all
probability measures on H′

p which are translation invariant and have the domain
Markov property.

THEOREM 1.2. Fix p ≥ 3. The set of domain Markov, translation invariant
probability measures on H′

p forms a one-parameter family {H(p)
α } with α ∈ Ip ⊂

[0,1). The parameter α is the measure of the event that the p-gon incident to any
fixed boundary edge is also incident to p − 2 internal vertices.

Moreover, for p = 3, I3 = [0,1), and for p > 3 we have (α0(p),1) ⊂ Ip for
some α0(p) < 1.

We believe that Ip = [0,1) for all p. However, we have been able to prove
this fact only for p = 3, so only in that case is our classification complete. We
emphasize here that our approach would work for any p provided we have certain
enumeration results. See Section 3.5 for more on this.

We shall normally omit the superscript (p), as p is thought of as any fixed
integer. The measures H(p)

α are all mixing with respect to the translation θ and in
particular are ergodic. This actually follows from a much more general proposition
which is well-known among experts for the standard half-planar random maps, but
we could not locate a reference. We include it here for future reference.

PROPOSITION 1.3. Let μ be domain Markov and translation invariant on H.
Then the translation operator is mixing on (H,μ), and in particular is ergodic.

PROOF. Let Q,Q′ and AQ,k,AQ′,k′ be as in Definition 1.1. Since events of
the form AQ,k are simple events in the local topology (see Section 2.2 for more),
it suffices to prove that

μ
(
AQ,k ∩ θn(AQ′,k′)

) → μ(AQ,k)μ(AQ′,k′)
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as n → ∞ where θn is the n-fold composition of the operator θ . However, since on
AQ,k the remaining map M̃ = M \Q has the same law as M , and since θn(AQ′,k′)
is just θn′

(AQ′,k′) in M̃ , for some n′, we find from the domain Markov property
that for large enough integer n, μ(AQ,k ∩ θn(AQ′,k′)) = μ(AQ,k)μ(AQ′,k′) holds.

�

An application of Proposition 1.3 shows that the measures in the set {H(p)
α :α ∈

I} are all singular with respect to each other. This is because the density of the
edges on the boundary for which the p-gon containing it is incident to p − 2 inter-
nal vertices is precisely α by translation invariance. Note that the domain Markov
property is not preserved by convex combinations of measures, so the measures
Hα are not merely the extremal points in the set of domain Markov measures.

Note also that the case α = 1 is excluded. It is possible to take a limit α → 1,
and in a suitable topology we even get a deterministic map. However, this map
is not locally finite and so this can only hold in a topology strictly weaker than
the local topology on rooted graphs. Indeed, this map is the plane dual of a tree
with one vertex of infinite degree (corresponding to the external face) and all other
vertices of degree p. As this case is rather degenerate we shall not go into any
further details.

In the case of triangulations we get a more explicit description of the mea-
sures H

(3)
α , which we use in a future paper [22] to analyze their geometry. This

can be done more easily for triangulations because of readily available and very
explicit enumeration results. We believe deriving similar explicit descriptions for
other p-angulations, at least for even p is possible with a more careful treatment of
the associated generating functions, but leave this for future work. This deserves
some comment, since in most works on planar maps the case of quadrangulations
q = 4 yields the most elegant enumerative results. The reason the present work dif-
fers is the aforementioned necessity of working with simple maps. In the case of
triangulations, this precludes having any self-loops, but any triangle with no self-
loop is simple, so there is no other requirement. For any larger p (including 4), the
simplicity does impose further conditions. For example, a quadrangulation may
contain a face consisting of two double edges.

We remark also that forbidding multiple edges in maps does not lead to any
interesting domain Markov measures. The reason is that in a finite map Q it is
possible that there exists an edge between any two boundary vertices. Thus on the
event AQ,k , it is impossible that M̃ contains any edge between boundary edges.
This reduces one to the degenerate case of α = 1, which is not a locally finite
graph, and hence excluded.

Our second main result is concerned with limits of uniform measures on finite
maps. Let μm,n be the uniform measure on all simple triangulations of an m-gon
containing n internal (nonboundary) vertices (or equivalently, 2n + m − 2 faces,
excluding the external face). Recall we assume that the root edge is one of the
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boundary edges. The limits as n → ∞ of μm,n w.r.t. the local topology on rooted
graphs (formally defined in Section 2.2) have been studied in [6], and lead to the
well-known UIPT. Similar limits exist for other classes of planar maps; see, for
example, [20] for the case of quadrangulations. It is possible to take a second limit
as m → ∞, and the result is the half-plane UIPT measure (see also [16] for the
case of quadrangulations). A second motivation for the present work is to identify
other possible accumulation points of μm,n. These measures would be the limits
as m,n → ∞ jointly with a suitable relation between them.

THEOREM 1.4. Consider sequences of nonnegative integers ml and nl such
that ml,nl → ∞, and ml/nl → a for some a ∈ [0,∞]. Then μml,nl

converges

weakly to H
(3)
α where α = 2

2a+3 .

The main thing to note is that the limiting measure does not depend on the
sequences {ml,nl}, except through the limit of ml/nl . A special case is the measure
H2/3 which correspond to the half-planar UIPT measure. Note that in this case,
a = 0, that is the number of internal vertices grows faster than the boundary. Note
that the only requirement to get this limit is ml = o(nl). This extends the definition
of the half-planar UIPT, where we first took the limit as nl → ∞ and only then let
ml → ∞.

The other extreme case α = 0 (or a = ∞) is also of special interest. To look
into this case, it is useful to consider the dual map. Recall that the dual map M∗
of a planar map M is the map with a vertex corresponding to each face of M and
an edge joining two neighboring faces (i.e., faces which share at least an edge), or
more precisely a dual edge crossing every edge of M . Note that for a half-planar
map M , there will be a vertex of infinite degree corresponding to the face of infinite
degree. All other vertices shall have a finite degree (p in the case of p-angulations).
To fit into the setting of locally finite planar maps, we can simply delete this one
vertex, though a nicer modification is to break it up instead into infinitely many
vertices of degree 1, so that the degrees of all other vertices are not changed. For
half-planar triangulations, this gives a locally finite map which is 3-regular except
for an infinite set of degree 1 vertices, each of which corresponds to a boundary
edge. We can similarly define the duals of triangulations of an m-gon, where each
vertex is of degree 3 except for m degree 1 vertices.

For a triangulation of an m-gon with no internal vertices (n = 0), the dual is a 3
regular tree with m leaves. Let T be the critical Galton–Watson tree where a vertex
has 0 or 2 offspring with probability 1/2 each. We add a leaf to the root vertex,
so that all internal vertices of T have degree 3. Then the law of M∗ under μm,0
is exactly T conditioned to have m leaves. This measure has a weak limit known
as the critical Galton–Watson tree conditioned to survive. This is the law of the
dual map M∗ under H0. Observe that in H0, α = 0, hence the probability that the
triangle incident to any boundary edge has the third vertex also on the boundary
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is 1. As before, note that the only condition on ml,nl in Theorem 1.4 to get this
limiting measure is that nl = o(ml). For p > 3, the measure H

(p)
0 has a similar

description using trees with p − 1 or 0 offspring.
Note that Theorem 1.4 gives finite approximations of Hα for α ∈ [0,2/3], so it

is natural to ask for finite approximations to Hα for α ∈ (2/3,1). In this regime, the
maps behave differently than those in the regime α < 2/3 or α = 2/3. Maps with
law H

(3)
α are hyperbolic in nature, and, for example, have exponential growth (we

elaborate on the difference in Section 3.3 and investigate this further in [22]). Ben-
jamini and Curien conjectured (see [9]) that planar quadrangulations exhibiting
similar properties can be obtained as distributional limits of finite quadrangula-
tions whose genus grows linearly in the number of faces (for definitions of maps
on general surfaces, see, e.g., [21]). The intuition behind such a conjecture is that
in higher genus triangulations, the average degree is higher than 6, which gives
rise to negative curvature in the limiting maps, provided the distributional limit
is planar. Along similar lines, we think that triangulations on a surface of linear
genus size with a boundary whose size also grows to infinity are candidates for
finite approximations to Hα for α ∈ (2/3,1). As indicated in Section 4.1, a similar
phase transition is expected for p-angulations as well. Thus, we expect a similar
conjecture about finite approximation to hold for any p, and not only triangula-
tions.

1.3. Other approaches to the domain Markov property. In this section, we
discuss alternative possible definitions of the domain Markov property, and their
relation to Definition 1.1. The common theme is that a map M is conditioned to
contain a certain finite submap Q, connected to the boundary at specified locations.
We then remove Q to get a new map M̃ . The difficulty arises because it is possible
in general for M̃ to contain several connected components. See Figure 3 for some
ways in which this could happen, even when the map Q consists of a single face.

To make this precise, we first introduce some topological notions. A submap of
a planar map M is a subset of the faces of M along with the edges and vertices
contained in them. We shall consider a map as a subset of the sphere on which it is
embedded.

FIG. 3. Possibilities when removing a submap Q connected to the boundary. The red part is CM

which is identified with CQ. Left: Q consists of a single triangle. Right: Q consists of two faces in a
general map. The shaded areas are the holes—finite components of the complement of Q.
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DEFINITION 1.5. A submap of a planar map is said to be connected if it is
connected as subset of the sphere. A connected submap E of a half-planar map
M is said to be simply connected if its union with the external face of M is a
simply-connected set in the sphere.

Let Q denote a finite planar map, and let some (but at least one) of its faces be
marked as external, and the rest as internal. We assume that the internal faces of Q

are a connected set in the dual graph Q∗. One of the external faces of Q is singled
out, and a nonempty subset CQ containing at least one edge of the boundary of
that external face is marked (in place of the k edges we had before). Note that CQ

need not be a single segment now. Fix also along the boundary of M a set CM of
the same size as CQ, consisting of segments of the same length as those of CQ and
in the same order. We consider the event

AQ = {Q ⊂ M,∂M ∩ ∂Q = CM},
that Q is a submap of M , with CQ corresponding to CM . Figure 3 shows an ex-
ample of this where Q has a single face.

On the event AQ, the complement M \ Q consists of one component with in-
finite boundary in the special external face of Q, and a number of components
with finite boundary, one in each additional external face of Q. Let us refer to the
components with finite boundary sizes as holes. Note that because M is assumed
to be one-ended, the component with infinite boundary size, which is denoted by
M̃ is the only infinite component of M \ Q. All versions of the domain Markov
property for a measure μ state that

conditioned on AQ, the infinite component of M \ Q has law μ.

However, there are several possible assumptions about the distribution of the com-
ponents of M \ Q in the holes. We list some of these below:

(1) No additional information is given about the distribution of the finite com-
ponents.

(2) The finite components are independent of the distribution of the infinite
component.

(3) The finite components are independent of the distribution of the infinite
component and of each other.

(4) The law of the finite components depends only on the sizes of their respec-
tive boundaries (i.e., two maps Q with holes of the same size give rise to the same
joint distribution for the finite components).

It may seem at first that these are all stronger than Definition 1.1, since our def-
inition of the domain Markov property only applies if Q is simply connected, in
which case there are no finite components to M \ Q. This turns out to be mislead-
ing. Consider any Q as above, and condition on the finite components of M \ Q.
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Together with Q these form some simply-connected map �Q to which we may ap-
ply Definition 1.1. Thus, for any set of finite maps that fill the holes of Q, M̃ has
law μ. Since the conditional distribution of M̃ does not depend on our choice for
the finite components, the finite components are independent of M̃ . Thus, options
1 and 2 are both equivalent to Definition 1.1, and the simple-connectivity condition
for Q may be dropped.

In the case of p-angulations with simple faces, we have a complete classifica-
tion of domain Markov measures. Along the proof, it will become clear that those
in fact also satisfy the stronger forms 3 and 4 of the domain Markov property. This
shows that for simple faced maps, every definition of the domain Markov property
gives the same set of measures. If we allow nonsimple faces, however, then differ-
ent choices might yield smaller classes. For example, if a nonsimple face surrounds
two finite components of the map, then under the domain Markov property as de-
fined above, the parts of the map inside these components need not be independent
of each other.

1.4. Peeling. Let us briefly describe the concept of peeling which has its roots
in the physics literature [1, 28], and was used in the present form in [3]. It is a useful
tool for analyzing planar maps; see, for example, applications to percolation and
random walks on planar maps in [4, 5, 10]. While there is a version of this in full
planar maps, it takes its most elegant form in the half-plane case.

Consider a probability measure μ supported on a subset of H and consider a
sample M from this measure. The peeling process constructs a growing sequence
of finite simply-connected submaps (Pi) in M with complements Mi = M \ Pi as
follows. (The complement of a submap P contains every face not in P and every
edge and vertex incident to them.) Initially, P0 = ∅ and M0 = M . Pick an edge ai

in the boundary of Mi . Next, remove from Mi the face incident on ai , as well as
all finite components of the complement. This leaves a single infinite component
Mi+1 = M̃i , and we set Pi+1 = M \ Mi+1.

If μ is domain Markov and the choice of ai depends only on Pi and an inde-
pendent source of randomness, but not on Mi , then the domain Markov property
implies by induction that Mn has law μ for every n, and moreover, Mn is indepen-
dent of Pn. We will see that this leads to yet another interesting viewpoint on the
domain Markov property.

In general, it need not be the case that ∪Pi = M (e.g., if the distance from the
peeling edge ai to the root grows very quickly). However, there are choices of
edges ai for which we do have ∪Pi = M a.s. One way of achieving this is to pick
ai to be the edge of ∂Mi nearest to the root of M in the submap Mi , taking, for
example, the left-most in case of ties. Note that this choice of ai only depends on
Pi and this strategy will exhaust any locally finite map M .

Let Qi = Mi−1 \ Mi = Pi \ Pi−1 for i ≥ 1. This is the finite, simply-connected
map that is removed from M at step i. We also mark Qi with information on its in-
tersection with the boundary of Mi−1 and the peeling edge ai−1. This allows us to
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reconstruct Pi by gluing Q1, . . . ,Qi . In this way, the peeling procedure encodes an
infinite half-planar map by an infinite sequence (Qi) of marked finite maps. If the
set of possible finite maps is denoted by S , then we have a bijection � :H → SN.
It is straightforward to see that this bijection is even a homeomorphism, where H
is endowed with the local topology on rooted graphs (see Section 2.2), and SN

with the product topology (based on the trivial topology on S).
Now, if μ is a domain Markov measure on H, then the pull-back measure

μ∗ = μ ◦ �−1 on SN is an i.i.d. product measure, since the maps Mi all have
the same law, and each is independent of all the Qj ’s for j < i. However, transla-
tion invariance of the original measure does not have a simple description in this
encoding.

Organization. In the next section, we recall some necessary definitions and
results about the local topology and local limits introduced by Benjamini–
Schramm, enumeration of planar maps and the peeling procedure. In Section 3,
we prove the classification theorem for triangulations (Sections 3.1 and 3.2) and
for p-angulations (Section 3.5) and also discuss the variation of maps with non-
simple faces. In Section 4, we examine limits of uniform measures on finite maps,
and prove Theorem 1.4.

2. Preliminaries.

2.1. Enumeration of planar maps. In this section, we collect some known
facts about the number of planar triangulations, and its asymptotic behavior. Some
of our results rely on the generating function for triangulations of a given size.
The following combinatorial result may be found in [17], and are derived using the
techniques introduced by Tutte [27], or using more recent bijective arguments [24].

PROPOSITION 2.1. For n,m ≥ 0, the number of rooted triangulations of a
disc with m + 2 boundary vertices and n internal vertices is

φn,m+2 = 2n+1(2m + 1)!(2m + 3n)!
m!2n!(2m + 2n + 2)! .(2.1)

Note that this formula is for triangulations with multiple edges allowed, but no
self-loops (type II in the notation of [6]). The case of φ0,2 requires special attention.
A triangulation of a 2-gon must have at least one internal vertex so there are no
triangulations with n = 0, yet the above formula gives φ0,2 = 1. This is reconciled
by the convention that if a 2-gon has no internal vertices then the two edges are
identified, and there are no internal faces.

This makes additional sense for the following reason: frequently, a triangula-
tion of an m-gon is of interest not on its own, but as part of a larger triangulation.
Typically, it may be used to fill an external face of size m of some other triangula-
tion by gluing it along the boundary. When the external face is a 2-gon, there is a
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further possibility of filling the hole by gluing the two edges to each other with no
additional vertices. Setting φ0,2 = 1 takes this possibility into account.

Using Stirling’s formula, the asymptotics of φn,m as n → ∞ are easily found to
be

φn,m ∼ Cmn−5/2(27
2

)n
.

Again, using Stirling’s formula as m → ∞,

Cm+2 =
√

3(2m + 1)!
4
√

πm!2
(

9

4

)m

∼ Cm1/29m.

The power terms n−5/2 and m1/2 are common to many classes of planar structures.
They arise from the common observation that a cycle partitions the plane into two
parts (Jordan’s curve theorem) and that the two parts may generally be triangulated
(or for other classes, filled) independently of each other.

We will also sometimes be interested in triangulations of discs where the num-
ber of internal vertices is not fixed, but is also random. The following measure is
of particular interest.

DEFINITION 2.2. The Boltzmann distribution on rooted triangulations of an
m-gon with weight q ≤ 2

27 , is the probability measure on the set of finite triangu-
lations with a finite simple boundary that assigns weight qn/Zm(q) to each rooted
triangulation of the m-gon having n internal vertices, where

Zm(q) = ∑
n

φn,mqn.

From the asymptotics of φ as n → ∞, we see that Zm(q) converges for any
q ≤ 2

27 and for no larger q . The precise value of the partition function will be
useful, and we record it here.

PROPOSITION 2.3. If q = θ(1 − 2θ)2 with θ ∈ [0,1/6], then

Zm+2(q) = (
(1 − 6θ)(m + 1) + 1

) (2m)!
m!(m + 2)!(1 − 2θ)−(2m+2).

In particular, at the critical point q = 2/27 we have θ = 1/6 and Z takes the
values

Zm+2 = Zm+2

(
2

27

)
= (2m)!

m!(m + 2)!
(

9

4

)m+1

.

The proof can be found as intermediate steps in the derivation of φn,m in [17]. The
above form may be deduced after a suitable reparameterization of the form given
there.
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2.2. The local topology on graphs. Let G∗ denote the space of all connected,
locally finite rooted graphs. Then G∗ is endowed with the local topology, where
two graphs are close if large balls around their corresponding roots are isomorphic.
The local topology is generated by the following metric: for G,H ∈ G∗, we define

d(G,H) = (R + 1)−1 where R = sup
{
r :Br(G) ∼= Br(H)

}
.

Here, Br denotes the ball of radius r around the corresponding roots, and ∼=
denotes isomorphism of rooted graphs. Note that for the topology it is imma-
terial whether the root is a vertex or a directed edge. This metric on G∗ is
non-Archimedian. Finite graphs are isolated points, and infinite graphs are the ac-
cumulation points.

The local topology on graphs induces a weak topology on measures on G∗. This
is closely related to the Benjamini–Schramm limit of a sequence of finite graphs
[12], which is the weak limit of the laws of these graphs with a uniformly chosen
root vertex.

We consider below the uniform measures μm,n on triangulations of an m-gon
with n internal vertices. Their limits are supported on the closure T of the set of
finite triangulations of polygons. This closure includes also infinite triangulations
of an m-gon, as well as half-plane infinite triangulations. Angel and Schramm [6],
considered the measures μ2,n as n → ∞ and obtained their weak limit which
is known as the uniform infinite planar triangulation (UIPT). We shall consider
similar weak limits here.

Following the seminal work of Benjamini and Schramm [12], properties of such
limits have attracted much attention in recent years. A recent success is the proof
that the UIPT and similar limits are recurrent [18]. Many questions about the UIPT
remain open.

3. Classification of half-planar maps.

3.1. Half-planar triangulations. For the sake of clarity, we begin by prov-
ing the special case p = 3 of Theorem 1.2 of half-planar triangulations. In the
case of triangulations, the number of simple maps and corresponding generating
functions are known explicitly, making certain computations simpler. Somewhat
surprisingly, the case of quadrangulations is more complex here, and the gener-
ating function is not explicitly known. Apart from the lack of explicit formulae,
the case of general p presents a number of additional difficulties, and is treated in
Section 3.5.

THEOREM 3.1. All translation invariant, domain Markov probability mea-
sures on H′

3 form a one-parameter family of measures Hα for α ∈ [0,1). More-
over, in Hα the probability that the triangle containing any given boundary edge is
incident to an internal vertex is α.

In what follows, let μ be a measure supported on H′
3, that is translation invariant

and satisfies the domain Markov property. We shall first define a certain family of
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FIG. 4. Basic building blocks for triangulations. Left: the event Aα . Centre and right: the two
events of type Aβ .

events and show that their measures can be calculated by repeatedly using the
domain Markov property. Let T ∈ H′

3 denote a triangulation with law μ. Let α be
the μ-measure of the event that the triangle incident to a fixed boundary edge e

is also incident to an interior vertex (call this event Aα , see Figure 4). The event
depends on the boundary edge chosen, but by translation invariance its probability
does not depend on the choice of e. As stated, our main goal is to show that α fully
determines the measure μ.

For i ≥ 1, define p
(r)
i,k (resp., p

(l)
i,k) to be the μ-measure of the event that the

triangle incident to a fixed boundary edge e of T is also incident to a vertex on
the boundary to the right (resp., left) at a distance i along the boundary from the
edge e and that this triangle separates k vertices of T that are not on the boundary
from infinity. Note that because of translation invariance, these probabilities only
depends on i and k, and hence we need not specify e in the notation. It is not
immediately clear, but we shall see later that p

(l)
i,k = p

(r)
i,k (see Corollary 3.4 below).

In light of this, we shall later drop the superscript.
The case i = 1, k = 0 is of special importance. Since there is no triangulation

of a 2-gon with no internal vertex, if the triangle containing e is incident to a
boundary vertex adjacent to e, then it must contain also the boundary edge next
to e. (See also the discussion in Section 2.1.) We call such an event Aβ , shown in

Figure 4. By translation invariance, we now see that p
(r)
1,0 = p

(l)
1,0. We shall denote

β = p
(r)
1,0 = p

(l)
1,0.

In what follows, fix α and β . Of course, not every choice of α and β is associated
with a domain Markov measure, and so there are some constraints on their values.
We compute below these constraints, and derive β as an explicit function of α for
any α ∈ [0,1).

Let Q be a finite simply-connected triangulation with a simple boundary, and
let B � ∂Q be a marked, nonempty, connected segment in the boundary ∂Q. Fix a
segment in ∂T of the same length as B , and let AQ be the event that Q is isomor-
phic to a subtriangulation of T ∈ H′

3 with B being mapped to the fixed segment
in ∂T , and no other vertex of Q being mapped to ∂T . Let F(Q) be the number of
faces of Q, V (Q) the number of vertices of Q (including those in ∂Q), and V (B)

the number of vertices in B , including the endpoints.

LEMMA 3.2. Let μ be a translation invariant domain Markov measure on H′
3.

Then for an event AQ as above we have

μ(AQ) = αV (Q)−V (B)βF(Q)−V (Q)+V (B).(3.1)
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Furthermore, if a measure μ satisfies (3.1) for any such Q, then μ is translation
invariant and domain Markov.

REMARK 3.3. V (Q)−V (B) is the number of vertices of Q not on the bound-
ary of T . This shows that the probability of the event AQ depends only on the
number of vertices not on the boundary of T and the number of faces of Q, but
nothing else.

The proof of Lemma 3.2 is based on the idea that the events Aα and Aβ form
basic “building blocks” for triangulations. More precisely, there exists some order-
ing of the faces of Q such that if we reveal triangles of Q in that order and use
the domain Markov property, we only encounter events of type Aα , Aβ . Moreover,
in any such ordering the number of times we encounter the events Aα and Aβ are
the same as for any other ordering. Also observe that, for every event of type Aα

encountered, we add a new vertex while for every event of type Aβ encountered,
we add a new face. Thus, the exponent of Aα counts the number of “new” vertices
added while the exponent of Aβ counts the number of “remaining” faces.

PROOF OF LEMMA 3.2. We prove (3.1) by induction on F(Q): the number of
faces of Q. If F(Q) = 1, then Q is a single triangle, and B contains either one edge
or two adjacent edges. If it has one edge, then the triangle incident to it must have
the third vertex not on the boundary of T . By definition, in this case μ(AQ) = α

and we are done since V (Q) = 3 and V (B) = 2. Similarly, if B contains two
edges, then V (B) = 3 and AQ is just the event Aβ , with probability β , consistent
with (3.1).

Next, call the vertices of Q that are not in B new vertices. Suppose F(Q) = n,
and that we have proved the lemma for all Q′ with F(Q) < n. Pick an edge e0
from B (there exists one by hypothesis), and let 	 be the face of Q incident to this
edge. There are three options, depending on where the third vertex of 	 lies in Q

(see Figure 5):

• the third vertex of 	 is internal in Q,
• the third vertex of 	 is in ∂Q \ B ,
• the third vertex of 	 is in B .

We treat each of these cases separately.
In the first case, we have that Q′ = Q − 	 is also a simply-connected trian-

gulation, if we let B ′ include the remaining edges from B as well as the two new

FIG. 5. Cases in the inductive step in the proof of Lemma 3.2.
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edges from 	, we can apply the induction hypothesis to Q′. By the domain Markov
property, we have that

μ(AQ) = μ(A	)μ(AQ|A	) = αμ(AQ′).

This implies the claimed identity for Q, since Q′ has one less face and one less
new vertex than Q.

In the case where the third vertex of 	 is in ∂Q \ B , we have a decomposition
Q = 	 ∪ Q1 ∪ Q2, where Q1 and Q2 are the two connected components of Q \ 	

(see Figure 5). We define Bi , to contain the edges of B in Qi , and one edge of 	

that is in Qi . We have that F(Q) = F(Q1)+F(Q2)+ 1, and that the new vertices
in Q1 and Q2 except for the third vertex of F(Q) together are the new vertices
of Q. By the domain Markov property, conditioned on A	 , the inclusion of Q1
and of Q2 in T are independent events with corresponding probabilities μ(AQi

).
Thus,

μ(AQ) = αμ(AQ1 |A	)μ(AQ2 |A	) = αμ(AQ1)μ(AQ2)

= αV (Q)−V (B)βF(Q)−V (Q)+V (B),

as claimed.
Finally, consider the case that the third vertex of 	 is in B . As in the previous

case, we have a decomposition Q = 	 ∪ Q1 ∪ Q2, where Q1 is the triangulation
separated from infinity by 	, and Q2 is the part adjacent to the rest of T (see
Figure 5.) We let B1 consist of the edges of B in Q1 and let B2 be the edges of B

in Q2 with the additional edge of 	. We then have

μ(AQ) = μ(AQ1)μ(AQ1∪	|AQ1)μ(AQ|AQ1∪	).

By the induction hypothesis, the first term is αV (Q1)−V (B1)βF(Q1)−V (Q1)+V (B1).
By the domain Markov property, the second term is just β . Similarly, the third term
is αV (Q2)−V (B2)βF(Q2)−V (Q2)+V (B2). As before we have that F(Q) = F(Q1) +
F(Q2)+1, and this time V (Q)−V (B) = (V (Q1)−V (B1))+ (V (Q2)−V (B2)),
since the new vertices of Q are the new vertices of Q1 together with the new
vertices of Q2. The claim again follows.

Note that in the last case it is possible that Q1 is empty, in which case 	 contains
two edges from ∂Q. All formulae above hold in this case with no change.

For the converse, note first that since the events AQ are a basis for the local
topology on rooted graphs, they uniquely determine the measure μ. Moreover, the
measure of the events of the form AQ do not depend on the location of the root
and so μ is translation invariant. Now observe from Remark 3.3 that the measure
of any event of the form AQ only depends on the number of new vertices and the
number of faces in Q. Now suppose we remove any simple connected submap Q1
from Q. Then the union of new vertices in Q1 and Q \ Q1 gives the new vertices
of Q. Also clearly, the union of the faces of Q1 and Q \ Q1 gives the faces of Q.
Hence, it follows that μ(AQ|AQ1) = μ(AQ\Q1), and thus μ is domain Markov.

�
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COROLLARY 3.4. For any i, k we have

p
(r)
i,k = p

(l)
i,k = φk,i+1α

kβi+k.(3.2)

PROOF. This is immediate because the event with probability pi,k is a union of
φk,i+1 disjoint events of the form AQ, corresponding to all possible triangulations
of an i +1-gon with k internal vertices. A triangulation contributing to φk,i+1 has k

internal vertices by the Euler characteristic formula, 2k + i − 1 faces. The triangle
that separates it from the rest of the map is responsible for the extra factor of β .

�

Since the probability of any finite event in H′
3 can be computed in terms of the

peeling probabilities pi,k’s, we see that for any given α and β we have at most a
unique measure μ supported on H′

3 which is translation invariant and satisfies the
domain Markov property. The next step is to reduce the number of parameters to
one, thereby proving the first part of Theorem 3.1. This is done in the following
lemma.

LEMMA 3.5. Let μ be a domain Markov, translation invariant measure
on H′

3, and let α,β be as above. Then

β =
{ 1

16(2 − α)2, α ≤ 2/3,
1
2α(1 − α), α ≥ 2/3.

PROOF. The key is that since the face incident to the root edge is either of
type α, or of the type with probability pi,k for some i, k (with i = 1, k = 0 corre-
sponding to type β), we have the identity

α + ∑
i≥1

∑
k≥0

(
p

(r)
i,k + p

(l)
i,k

) = 1.

In light of Corollary 3.4, we may write this as

1 = α + 2
∑
i

βi
∑
k

φk,i+1(αβ)k = α + 2
∑
i

βiZi+1(αβ).

From Proposition 2.3, we see that the sum above converges if and only if αβ ≤ 2
27 .

In that case, there is a θ ∈ [0,1/6] with αβ = θ(1 − 2θ)2. Using the generating
function for φ (see, e.g., [17]) and simplifying gives the explicit identity

(2θ + α − 1)

√
1 − 4θ

α
= 0.(3.3)

Thus, θ ∈ {1−α
2 , α

4 }. Of these, only one solution satisfies θ ∈ [0,1/6] for any
value of α. If α ≤ 2/3, then we must have θ = α/4 which yields

β = 1

4

(
1 − α

2

)2

= 1

16
(2 − α)2.
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If α ≥ 2/3, one can see from (3.3) that the solution satisfying θ ∈ [0,1/6] is θ =
(1 − α)/2 which in turn gives

β = α(1 − α)

2
. �

3.2. Existence. As we have determined β in terms of α, and since Lemma 3.2
gives all other probabilities pi,k in terms of α and β , we have at this point proved
uniqueness of the translation invariant domain Markov measure with a given
α < 1. However, we still need to prove that such a measure exists. We proceed
now to give a construction for these measures, via a version of the peeling pro-
cedure (see Section 1.4). For α ≤ 2/3, we shall see with Theorem 1.4 that the
measures Hα can also be constructed as local limits of uniform measures on finite
triangulations.

In light of Lemma 3.2, all we need is to construct a probability measure μ such
that the measure of the events of the form AQ (as defined in Lemma 3.2) is given
by (3.1).

If we reveal a face incident to any fixed edge in a half-planar triangulation along
with all the finite components of its complement, then the revealed faces form some
submap Q. The events AQ for such Q are disjoint, and form a set we denote by A.
If we choose α and β according to Lemma 3.5, then the prescribed measure of the
union of the events in A is 1.

Let α and let β be given by Lemma 3.5. We construct a distribution μr on the
hull of the ball of radius r in the triangulation (which consists of all faces with a
corner at distance less than r from the root, and with the holes added to make the
hull).

Repeatedly pick an edge on the boundary which has at least an endpoint at a
distance strictly less than r from the root edge in the map revealed so far. Note
that as more faces are added to the map, distances may become smaller, but not
larger. Reveal the face incident to the chosen edge and all the finite components
of its complement. Given α and β we pick which event in A occurs by (3.1),
independently for different steps. We continue the process as long as any vertex
on the exposed boundary is at distance less than r from the root. Note that this is
possible since the revealed triangulation is always simply connected with at least
one vertex on the boundary, the complement must be the upper half-plane.

PROPOSITION 3.6. The above described process a.s. ends after finitely many
steps. The law of the resulting map does not depend on the order in which we
choose the edges.

PROOF. We first show that the process terminates for some order of explo-
ration. The following argument for termination is essentially taken from [3]. As-
sume that at each step we pick a boundary vertex at minimal distance (say, k) from
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the root (w.r.t. the revealed part of the map), and explore along an edge containing
that vertex. At any step with probability β > 0, we add a triangle such that the ver-
tex is no longer on the boundary. Any newly revealed vertex must have distance
at least k + 1 from the root. Moreover, any vertex that before the exploration step
had distance greater than k to the root, still has distance greater than k, since the
shortest path to any vertex must first exit the part of the map revealed before the
exploration step. Thus, the number of vertices at distance k to the root cannot in-
crease, and has probability β > 0 of decreasing at each step. Thus, a.s. after a finite
number of steps all vertices at distance k are removed from the boundary. Once we
reach distance r , we are done.

The probability of getting any possible map T is a monomial in α and β , and is
the same regardless of the order in which the exploration takes place (with one α

for each nonboundary vertex of the map, and a β term for the difference between
faces and vertices). It remains to show that the process terminates for any other
order of exploration. For some order of exploration, let νi(T ) be the probability
that the process terminated after at most i steps and revealed T as the ball of
radius r . For i large enough (larger than the number of faces in T ), we have that
νi(T ) = μr(T ). Summing over T and taking the limit as i → ∞, Fatou’s lemma
implies that limi

∑
T νi(T ) ≥ ∑

μr(T ). However, the last sum must equal 1, since
for some order of exploration the process terminates a.s. �

It is clear from Proposition 3.6 that μr is a well-defined probability measure.
Since we can first create the hull of radius r and then go on to create the hull
of radius r + 1, (μr) forms a consistent sequence of measures. By Kolmogorov’s
extension theorem, (μr)r∈N can be extended to a measure Hα on H′

3. Also, we
have the following characterization of Hα for any simple event of the form AQ as
defined in Lemma 3.2.

LEMMA 3.7. For any AQ and B as defined in Lemma 3.2,

Hα(AQ) = αV (Q)−V (B)βF(Q)−V (Q)+V (B).(3.4)

We alert the reader that such a characterization is not obvious from the fact
that the events of the form {Br = T } have the Hα measure exactly as asserted by
Lemma 3.7 where Br denotes the hull of the ball of radius r around the root vertex.
Any finite event like AQ can be written in terms of the measures of Hα(Br = T )

for different T ∈ T by appropriate summation. However, it is not clear a priori that
the result will be as given by (3.4).

PROOF OF LEMMA 3.7. Since Q is finite, there exists a large enough r such
that Q is a subset of Br . Now we claim that μr(AQ) is given by the right-hand
side of (3.4). This is because crucially, μr is independent of the choice of the
sequence of edges, and hence we can reveal the faces of Q first and then the rest
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of Br . However, the measure of such an event is given by the right-hand side
of (3.4) by the same logic as Proposition 3.6. Now the lemma is proved because
Hα(AQ) = μr(AQ) since Hα is an extension of μr . �

We now have all the ingredients for the proof of Theorem 3.1.

PROOF OF THEOREM 3.1. We have the measures Hα constructed above which
are translation invariant and domain Markov (from the second part of Lemma 3.2).
If μ is a translation invariant domain Markov measure, then by Lemmas 3.2, 3.5
and 3.7, μ agrees with Hα on every event of the form AQ, and thus μ = Hα for
some α. �

3.3. The phase transition. In the case of triangulations, we call the measures
Hα subcritical, critical and supercritical when α < 2

3 , α = 2
3 and α > 2

3 , respec-
tively. We summarize here for future reference the peeling probabilities pi,k and
pi = 2

∑
k≥0 pi,k for every α ∈ [0,1). Recall that θ is defined by αβ = θ(1 − 2θ)2

and θ ∈ [0, 1
6 ].

Critical case: α = 2
3 . This case is the well-known half-plane UIPT (see [3],

Section 1). Here, β = 1
9 and θ = 1

6 . The two possible values of θ coincide at 1
6 and

hence β = 1
9 . Using Corollary 3.4 and Proposition 2.3, we recover the probabilities

pi,k = φk,i+1
(1

9

)i( 2
27

)k
,

(3.5)

pi = 2

4i

(2i − 2)!
(i − 1)!(i + 1)! .

Note that in H2/3 we have the asymptotics pi ∼ ci−5/2 for some c > 0.

Subcritical case: α < 2
3 . Here, θ = α/4, and hence β = (2−α)2

16 . Using Corol-
lary 3.4 and Proposition 2.3, we get

pi,k = φk,i+1

(
2 − α

4

)2i(α

4

(
1 − α

2

)2)k

,

(3.6)

pi = 2

4i

(2i − 2)!
(i − 1)!(i + 1)! ·

((
1 − 3α

2

)
i + 1

)
.

As before, we get the asymptotics pi ∼ ci−3/2 for some c = c(α) > 0. Note that
pi is closely related to a linearly biased version of pi for the critical case.
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Super-critical case: α > 2/3. Here, θ = 1−α
2 and hence β = α(1−α)

2 . Using
Corollary 3.4 and Proposition 2.3, we get

pi,k = φk,i+1α
i+2k

(
1 − α

2

)i+k

,

(3.7)

pi = 2

4i

(2i − 2)!
(i − 1)!(i + 1)! ·

(
2

α
− 2

)i(
(3α − 2)i + 1

)
.

Here, the asymptotics of pi are quite different, and pi has an exponential tail:
pi ∼ cγ ii−3/2 for some c and γ = 2

α
− 2. The differing asymptotics of the con-

nection probabilities pi indicate very different geometries for these three types of
half-plane maps. These are almost (though not quite) the probabilities of edges be-
tween boundary vertices at distance i. We investigate the geometry of the various
half-planar maps in a future paper [22].

3.4. Nonsimple triangulations. So far, we have only considered one type of
maps: triangulations with multiple edges allowed, but no self-loops. Forbidding
double edges combined with the domain Markov property, leads to a very con-
strained set of measures. The reason is that a step of type α followed by a step of
type β can lead to a double edge. If μ is supported on measures with no multiple
edges, this is only possible if αβ = 0. As seen from the discussion above, this gives
the unique measure H0 which has no internal vertices at all. A similar phenomenon
occurs for p-angulations for any p ≥ 3, and we leave the details to the reader.

In contrast, the reason one might wish to forbid self-loops is less clear. We now
show that on the one hand, allowing self-loops in a triangulation leads to a very
large family of translation invariant measures with the domain Markov property.
On the other hand, these measures are all in an essential way very close to one
of the Hα measures already encountered. The reason that uniqueness breaks as
thoroughly as it does, is that here it is possible for removal of a single face to sep-
arate the map into two components, one of which is only connected to the infinite
part of the boundary through the removed face. We remark that for triangulations
with self-loops, the stronger forms of the domain Markov property discussed in
Section 1.3 are no longer equivalent to the weaker ones that we use.

Let us construct a large family of domain Markov measures as promised. Our
translation invariant measures on triangulations with self-loops are made up of
three ingredients. The first is the parameter α ∈ [0,1) which corresponds to a mea-
sure Hα as above. Next, we have a parameter γ ∈ [0,1) which represents the den-
sity of self-loops. Taking γ = 0 will result in no self-loops and the measure will
be simply Hα . Finally, we have an arbitrary measure ν supported on triangulations
of the 1-gon (i.e., finite triangulations whose boundary is a self-loop, possibly
with additional self-loops inside). From α,γ and ν we construct a measure de-
noted Hα,γ,ν . More precisely, we describe a construction for a triangulation with
law Hα,γ,ν .
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FIG. 6. Nonuniqueness for triangulation with self-loops. Starting with a triangulation with simple
faces (left), each edge is replaced by a geometric number of parallel edges with a self-loop at one of
the two vertices between any pair (greater than 1 at the bold edges). Independent maps with arbitrary
distribution are added inside the self-loops (shaded). Note that multiple edges may occur on the left
(but not self-loops).

Given α, take a sample triangulation T from Hα . For each edge e of T , including
the boundary edges, take an independent geometric variable Ge with Hα,q,ν(Ge =
k) = (1 − q)qk−1. Next, replace the edge e by Ge parallel edges, thereby creating
Ge − 1 faces which are all 2-gons. In each of the 2-gons formed, add a self-loop
at one of the two vertices, chosen with equal probability and independently of the
choices at all other 2-gons. This has the effect of splitting the 2-gon into a triangle
and a 1-gon. Finally, fill each self-loop created in this way with an independent
triangulation with law ν (see Figure 6).

PROPOSITION 3.8. The measures Hα,q,ν defined above are translation invari-
ant and satisfy the domain Markov property. For α > 0, these are all the measures
on half-planar triangulations with these properties.

Recall that we use α to denote the probability of the event of type α that the
triangle incident on any boundary edge also contains an internal vertex. The case of
triangulations with α = 0 is special for reasons that will be clearer after the proof,
and is the topic of Proposition 3.9. In that case, we shall require another parameter,
and another measure ν′. This will be the only place where we shall demonstrate
domain Markov measures that are not symmetric w.r.t. left-right reflection.

Coming back to the case α > 0, note that since ν is arbitrary, the structure of
domain Markov triangulations with self-loops is much less restricted than without
the self-loops. For example, ν could have a very heavy tail for the size of the maps,
or for the degree of the vertex in the self-loop, which will affect the degree distri-
bution of vertices in the map. However, the measures Hα,q,ν are closely related
to Hα , since the procedure described above for generating a sample of Hα,q,ν from
a sample of Hα is reversible. Indeed, if we take a sample from Hα,q,ν and remove
each loop and the triangulation inside it, we are left with a map whose faces are
triangles or 2-gons. If we then glue the edges of each 2-gon into a single edge,
we are left with a simple triangulation. We refer to this operation as taking the
2-connected core of the triangulation, since the dual of the triangulation contains
a unique infinite maximal 2-connected component, which is a subdivision of the
dual of the triangulation resulting from this operation. Clearly, the push-forward
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of the measures Hα,q,ν via this operation has law Hα . Thus, Hα does determine in
some ways the large scale structure of Hα,q,ν .

PROOF OF PROPOSITION 3.8. Translation invariance is clear as Hα is transla-
tion invariant, the variables Ge and triangulations in the self-loops do not depend
upon the location of the root.

To see that Hα,q,ν is domain Markov, let T be a half-planar triangulation with
law Hα,q,ν . Let core(·) denote the 2-connected core of a map, and observe that
core(T ) is a map with law Hα from which T was constructed. Let Q be a fi-
nite simply-connected triangulation (which may contain nonsimple faces), and
let AQ be the event as defined in Lemma 3.2. To establish the domain Markov
property for Hα,q,ν , we need to show that conditionally on AQ, T̃ = T \ Q (as
defined in Section 1.1) has the same law as T . On the event AQ, a correspond-
ing event Acore(Q) that core(Q) ⊂ core(T ) also holds. Moreover, on these events,
core(T̃ ) = core(T ) \ core(Q) has law Hα , since Hα is domain Markov. We there-
fore need to show that to get from core(T ) \ core(Q) to T̃ each edge is replaced
by a Geom(q) number of parallel nonsimple triangles with ν-distributed triangu-
lations inside the self-loops. Any edge of core(T ) \ core(Q) is split in T̃ into an
independent Geom(q) number of parallel edges. Indeed, for edges not in core(Q)

this number is the same as in T , and for edges in the boundary of Q, the number
is reduced by those nonsimple triangles that are in Q, but is still Geom(q) due to
the memory-less property of the geometric variables. The triangulations inside the
self-loops are i.i.d. samples of ν, since they are just a subset of the ones in T which
are i.i.d. and ν-distributed.

For the second part of the proposition, note first that if μ is domain Markov,
then the push-forward of μ w.r.t. taking the core is also domain Markov, hence
must be Hα for some α ∈ [0,1) by Theorem 3.1.

Fix an edge along the boundary, let q be the probability that the face containing
it is not simple. By the domain Markov property, conditioned on having such a
nonsimple face and removing it leaves the map unchanged in law, and so this is
repeated Geom(q) times before a simple face is found. Removing all of these faces
also does not change the rest of the map, and so this number is independent of the
multiplicity at any other edge of the map. Similarly, the triangulation inside the
self-loop within each such nonsimple face is independent of all others, and we
may denote its law by ν. Since any edge inside the map may be turned into a
boundary edge by removing a suitable finite submap, the same holds for all edges.

To see that μ = Hα,q,ν , it remains to show that the self-loops are equally likely
to appear at each end-point of the 2-gons and are all independent. The indepen-
dence follows as for the triangulations inside the self-loops. To see that the two
end-points are equally likely (and only to this end), we require α > 0. The config-
uration shown in Figure 7 demonstrates this. After removing the face on the right,
the self-loop is at the right end-point of a 2-gon on the boundary. Removing the
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FIG. 7. Exploring in different orders shows that self-loops are equally likely to be at each end-point
of a 2-gon. Conditioning on face A and removing it leaves a nonsimple face along the boundary with
the self-loop at the left vertex. Removing instead face B leaves the self-loop on the right vertex.

triangle on the left leaves the self-loop on the left end-point, and so the two are
equally likely. �

As noted above, the case α = 0 is special. In this case, no boundary edge has its
third vertex internal to the triangulation. Note that this is not the same as saying
that the triangulation has no internal vertices—they could all be inside self-loops,
which are attached to the boundary vertices. The contraction operation described
above still necessarily yields a sample T of H0. Similarly, each edge of T must
correspond to an independent, geometric number of edges in the full map, and the
triangulations inside the corresponding self-loops must be independent.

However, without steps of type α we cannot show that the two choices for the lo-
cation of the self-loop in 2-gons are equally likely. Indeed, since all 2-gons connect
a pair of boundary vertices, it is possible to tell them apart. Adding the self-loop
always on the left vertex will not be the same as adding it always on the right.
This reasoning leads to a complete characterization also in the case α = 0. In each
2-gon, the self-loop is on the left vertex with some probability γ ∈ [0,1], and these
must be independent of all other 2-gons. The triangulations inside the self-loops
are all independent, but their laws may depend on whether the self-loop is on the
left or right vertex in the 2-gon, so we need to specify two measures νL, νR on
triangulations of the 1-gon. Thus, we get the following.

PROPOSITION 3.9. A domain Markov, translation invariant triangulation
with α = 0 is determined by the intensity of multiple edges q , the probability
γ ∈ [0,1] that the self-loop is attached to the left vertex in each 2-gon, and proba-
bility measures νL, νR on triangulations of the 1-gon.

3.5. Simple and general p-angulations. Here, we prove the general case of
Theorem 1.2. The proof is similar to the proof of Theorem 3.1, with some addi-
tional complications: there are more than the two types of steps α and β , and the
generating function for simple p-angulations is not explicitly known. There are
implicit formulae relating it to the generating function for general maps with suit-
ably chosen weights for various face sizes, which are fairly well understood in the
case of even p. For quadrangulations, even more is known. In [23], the problem of
enumerating 2-connected loopless near 4-regular planar maps (see [23] for exact
definitions) is considered. This is easily equivalent to our problem of enumerating
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simple faced quadrangulations with a simple boundary. The generating function
is computed there in a nonclosed form. With careful analysis, this might lead to
explicit expressions analogous to the ones we have for the triangulation case at
least for the case of quadrangulations. We have not been able to obtain such ex-
pressions, and thus our description of the corresponding Hα’s still depends on an
undetermined parameter β = β(α). Instead, uniqueness is proved by a softer argu-
ment based on monotonicity. The proof of existence used for triangulations goes
through with no significant changes, but is now conditional on the existence of a
solution to a certain equation.

PROOF OF THEOREM 1.2. As before, let μ be a probability measure sup-
ported on the set H′

p of half-planar simple p-angulations which is translation in-
variant and satisfies the domain Markov property. The building blocks for simple
p-angulations, taking the place of Aα and Aβ , will be the events where the face
incident to the root edge consists of a single contiguous segment from the infinite
boundary, together with a simple path in the interior of the map closing the cycle,
with the path in any fixed position relative to the root [see Figure 8(a)]. The num-
ber of internal vertices can be anything from 0 to p −2. Let the μ-measure of such
an event with i internal vertices (call the event Ai ) be αi for i = 0, . . . , p − 2. For
example, in the case of p = 3 we have α1 = α and α0 = β . We shall continue to
use α for αp−2, that is, the μ-probability that the face on the root edge contains no
other boundary vertices. Note that there are several such events of type Ai , which
differ only in the location of the root. However because of translation invariance,
each such event has the same probability αi . For quadrangulations (p = 4), there
are three possible building blocks, shown in Figure 8(b)–(d).

We have a generalization of Lemma 3.2, that shows that the measure μ is deter-
mined by α0, . . . , αp−2, leaving us with p−1 degrees of freedom. However, before
doing that, let us reduce these to two degrees of freedom. For any i = 1, . . . , p−2,
consider the event Bi defined as follows (see, e.g., Figure 9):

(i) The face incident to the root edge has i − 1 internal vertices and its inter-
section with the boundary is a contiguous segment of length p − i + 1 with the
leftmost of those vertices being the root.

(ii) The face incident to the edge to the left of the root edge has i internal
vertices, its intersection with the boundary is a contiguous segment of length p− i,
with the root vertex being the right end-point.

FIG. 8. Building blocks for quadrangulations and general p-angulations. Shown: an event of
type A5 for p = 9 and the three building blocks for p = 4.
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FIG. 9. The event B4 for p = 6. Depending on the order of exploration, its probability is found to
be α2

3 or α4α2.

(iii) The two faces above share precisely one common edge between them
which is also incident to the root vertex.

The probability μ(Bi) can be computed by exploring the faces incident to the
root edge, and with the edge to its left in the two possible orders. We find that
α2

i−1 = αiαi−2, and hence the numbers {α0, . . . , αp−2} form a geometric series,
leaving two degrees of freedom. In order to simplify subsequent formulae, we
reparameterize these as follows. Denote

βp−2 = α0, γ p−2 = αp−2

so that the geometric series is given by αi = γ iβp−2−i . This is consistent with the
previous definition of β in the case p = 3.

LEMMA 3.10. Let μ be a measure supported on H′
p which is transla-

tion invariant and domain Markov. Let Q be a finite simply connected simple
p-angulation and 2 ≤ k < |∂Q|. As before, AQ,k is the event that Q is isomor-
phic to a submap of M with k consecutive vertices being mapped to the boundary
of M . Then

μ(AQ,k) = α
V (Q)−k
1 α

F(Q)−V (Q)+k
0 = β(p−2)F (Q)−V (Q)+kγ V (Q)−k.(3.8)

Furthermore, if μ satisfies (3.8) for any such Q and k, then μ is translation invari-
ant and domain Markov.

The proof is almost the same as in the case of triangulations, and we omit some
of the repeated details, concentrating only on the differences.

PROOF. We proceed by induction on the number of faces of Q. If Q has a
single face, then we are looking at one of the events Ai . Then the face connected
to the root sees i new vertices. The measure of such an event is αi which is equal
to α0(α1/α0)

i since {α0, . . . , αp−2} form a geometric series. Hence, (3.8) holds.
In general, the face 	 connected to the root can be connected to the boundary

of Q and to the interior of Q in several possible ways. Q \ 	 has several compo-
nents some of which are connected to the infinite component of M \ Q and some
are not. We shall explore the components not connected to the infinite component
of M \ Q first, then the face 	 and finally the rest of the components. Note that
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in every step of exploration if we encounter an event of type Ai , we get a factor
of αv

1α
f −v
0 for the probability, where v is the number of new vertices added and f

is the number of new faces added since {α0, α1, . . . , αp} are in geometric progres-
sion. Since the number of new vertices in all the components and 	 add up to that
of Q and similarly the number of faces in all the components and 	 also add up to
that of Q, this gives the claim. The details are left to the reader. �

Returning to the proof of Theorem 1.2, let Zm(x) = ∑
i≥0 ψ

(p)
m,ix

i be the gen-
erating function for p-angulations of an m-gon with weight x for each internal
vertex. The probability of any particular configuration for the face containing the
root is found by summing (3.8) over all possible ways of filling the holes created
by removal of the face. A hole which includes k ≥ 2 vertices from the boundary
of the half-planar p-angulation and has a total boundary of size m can be filled in
ψ

(p)
m,n ways with n additional vertices. A p-angulation of an m-gon with n internal

vertices has m+2n−2
p−2 faces, and so each of these contributes a factor of

β(p−2)F (Q)−V (Q)+kγ V (Q)−k = βn+k−2γ n+m−k

to the product in (3.8). Summing over p-angulations, these weights add up to

βk−2γ m−kZm(βγ ).

Now, suppose there are a number of holes with boundary sizes given by a sequence
(mi) involving (ki) boundary vertices, respectively (see Figure 10).

Since any p-angulation can be placed in each of the holes and the weights are
multiplicative, the total combined probability of all ways of filling the holes is∏

i

βki−2γ mi−kiZmi
(βγ ).

This must still be multiplied by a probability αj of seeing the face containing the
root conditioned on any compatible filling of the holes (see Figure 10). Thus, we
have the final identity R(β,γ ) = 1, where we denote

R(β,γ ) = ∑
αj

∏
i

βki−2γ mi−kiZmi
(βγ ),(3.9)

FIG. 10. A possible configuration for the root face in a 13-angulation. The hole parameters
(ki ,mi) from left to right are (4,5), (2,2), (5,7). There are j = 5 vertices exposed to infinity, so
the probability of this configuration is α5 · (β2γZ5) · (Z2) · (β3γ 2Z7).
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FIG. 11. Possible faces incident to a boundary edge for quadrangulations. The first three may also
be reflected to give the 8 topologically distinct possibilities. The holes (shaded) can have boundary
of any even length.

where the sum is over all possible configurations for the face containing the root
edge, and (mi, ki) and j are as above.

For any possible configuration for the face at the root, and each hole it creates
we have ki ≥ 2 (since k = 1 would imply a self-loop) and mi ≥ ki (since k counts
a subset of the vertices at the boundary of the hole). We also have αj = γ jβp−2−j ,
and so each term in R is a power series in β,γ with all nonnegative coefficients.
In particular, R is strictly monotone in β and γ , and consequently for any γ there
exists at most a single β so that R(β,γ ) = 1. �

As an example of (3.9), consider the next simplest case after p = 3, namely
p = 4. Here, there are 8 topologically different configurations for the face attached
to the root, shown in Figure 11. Of those, in the leftmost shown and its reflection
the hole must have a boundary of size at least 4. In all others, the hole or holes can
be of any even size. Summing over the possible even sizes, we get the total

R = γ 2 + 4γ

β
Z − 2γβZ2(βγ ) + 3

β2 Z2,

where Z = ∑
k≥2 βkZk(βγ ) is the complete generating function for simple-faced

quadrangulations with a simple boundary.
To get existence of the measures H

(p)
α , we need to show that for any γ =

α1/(p−2) there exists a β so that R(β,γ ) as defined in (3.9) equals 1. By mono-
tonicity, and since R(0, γ ) = γ p−2 < 1 (the only term with no power β corre-
sponds to the event Ap−2 with probability α), it suffices to show that some β

satisfies 1 ≤ R(β,γ ) < ∞. Note that just from steps of type A0 and Ap−2 we get
R(β,γ ) ≥ βp−2 + γ p−2. Thus, for β close to 1 we have R(β,γ ) > 1, provided it
is finite. We prove this holds at least for α sufficiently close to 1.

PROPOSITION 3.11. For any p ≥ 4, and any α ∈ (α0(p),1) there is some β

so that R(β,α1/(p−2)) > 1, and so the measure H
(p)
α exists for α > α0(p).

PROOF. To see that Zm(q) < ∞ for small enough q we need that the number
of p-angulations grows at most exponentially. For triangulations or even p, this is
known from exact enumerative formulae. For any p-angulation, we can partition
each face into triangles to get a triangulation of the m-gon. The number of those
is at most exponential in the number of vertices. The number of p-angulations
corresponding to a triangulation is at most 2 to the number of edges, as each edge
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is either in the p-angulation or not. Thus, we get a (crude) exponential bound also
for odd p.

It is easy to see that there exists a 0 < qc < 1 such that Zm(q) < ∞ for
q < qc �= 0. We expect Zm(qc) < ∞ as well, though that is not necessary for
the rest of the argument. Now we need some general estimate giving exponential
growth of Zm. Fix any q < qc. Note that ψm,n ≥ ψm+p−2,n−p+2 by just counting
maps where the face containing the root is incident to no other boundary vertices.
Thus, Zm(q) ≥ qp−2Zm+p−2(q), and so Zm(q) ≤ Cq−m for some constant C > 0,
provided it is finite. Of course, this crude bound does not give the correct rate of
increase for Z as m → ∞.

In each term of (3.9), the mi −ki are bounded, but while keeping them fixed, the
ki ’s could take any value (subject to parity constraints for even p). Fixing mi − ki

and summing over the possibilities for the ki ’s we see that R(β,γ ) < ∞ provided
that

∑
m βmZm(βγ ) < ∞. Now Zm(q) is an increasing function of q as long as

it is finite since all the coefficients of Zm are nonnegative integers. Thus, we have
for β = qc/(4γ ), any choice of γ > 1/2 and the estimate on Zm found above,∑

m

βmZm(βγ )

(3.10)

= ∑
m

βmZm

(
qc

4

)
<

∑
m

(
qc

4γ

)m

Zm

(
qc

2

)
<

∑
m

(2γ )−m < ∞.

Thus, for a choice of γ close to 1 and β = qc/4γ we have R(β,γ ) < ∞ and
R(β,γ ) ≥ βp−2 + γ p−2 > 1.

Having found a γ so that R(β,γ ) = 1, we know the probability that the map
contains any given finite neighborhood of the root. The rest of the construction
is similar to the triangulation case as described in Section 3.2 with no significant
changes. �

Based on the behavior in the case of p = 3, we expect the measures Hα to exist
for all α < 1. Moreover, we expect that R(qc/γ, γ ) > 1 when γ p−2 = α > αc

and that for smaller γ the maximal finite value taken by R is exactly 1 where
αc will be a critical value of α at which a phase transition occurs analogous to the
triangulation case. We see below that H(4)

α exists for α ≤ 3
8 , and a similar argument

holds for other even p (when there are explicit enumeration results).

3.6. Nonsimple p-angulations. Finally, let us address the situation with
p-angulations with nonsimple faces. In the case of p-angulations for p > 3,
uniqueness breaks down thoroughly, and a construction similar to Section 3.4
applies. For even p self-loops are impossible since a p-angulation is bipartite.
However, inspection of the construction of Hα,q,ν shows that it works not because
of the self-loop, but because it is possible for a single face to completely surround
other faces of the map.
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FIG. 12. Nonuniqueness for quadrangulations: each edge is replaced with a geometric number of
parallel edges. In each 2-gon, an internal 2-gon is added at a uniformly chosen endpoint, and filled
with an independent finite (possibly empty) quadrangulation.

Consider first the case p = 4, and suppose we are given a measure μ supported
on H4 satisfying translation invariance and the domain Markov property. Take
a sample from μ, and replace each edge by an independent geometric number
of parallel edges. In each of the 2-gons created, add another 2-gon attached to
one of the two vertices with equal probability, thereby creating a quadrangle. Fill
the smaller 2-gons with i.i.d. samples from an arbitrary distribution supported on
quadrangulations of 2-gons (see Figure 12). As with triangulations, this results in
a measure which is domain Markov and translation invariant.

Hence, we see that faces which completely surround other faces of the map
prevent us from getting only a one-parameter family of domain Markov measures.
For triangulations and quadrangulations, the external boundary of such a face can
only consist of 2 edges (i.e., there are precisely two edges connecting the face to
the infinite component of the complement). Removing such faces and identifying
the two edges results in a domain Markov map with simple faces, which falls into
our classification. Similarly to Proposition 3.8, it is possible to get a complete
characterization of all domain Markov maps on quadrangulations in terms of α,
the density γ of nonsimple faces, and a measure ν on quadrangulations in a 2-gon.

For p ≥ 5, things get messier. Similar constructions work for any p > 3, with
inserted 2-gons for even p, and any combination of 2-gons and self-loops for p

odd. However, here this no longer gives all domain Markov p-angulations. A non-
simple face can have external boundary of any size from 2 up to p − 1 (with parity
constraint for even p). Thus, it is not generally possible to get a p-angulation
with simple faces from a general one. Removing the nonsimple faces leaves a
domain Markov map with simple faces of unequal sizes. It is possible to classify
such maps, and these are naturally parameterized by a finite number of parameters,
since we must also allow for the relative frequency of different face sizes. Much
of such a classification is similar to the proofs of Theorems 1.2 and 3.1, and we do
not pursue this here.

4. Approximation by finite maps. We prove Theorem 1.4, identifying the lo-
cal limits of uniform measures on finite triangulations in this section. Here, we are
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concerned only with the measures Hα on triangulations for critical and subcritical
α ≤ 2/3. Recall from the statement of the theorem that we have sequences (ml)l∈N,
(nl)l∈N of integers such that ml/nl → a for some a ∈ [0,∞] and ml,nl → ∞. We
show that μml,nl

—the uniform measure on triangulations of an m-gon with n inter-
nal vertices—converges weakly to Hα where α = 2

2a+3 . To simplify the notation,
we drop the index l from the sequences ml and nl and assume that m is implicitly
a function of n. Note that since [0,∞] is compact, it follows that {Hα}α≤2/3 are
all the possible local limits of the μm,n’s.

Here is an outline of the proof: a direct computation shows that the μm,n mea-
sure of the event that the hull of the ball of radius r is a particular finite trian-
gulation T converges to the Hα measure of the same event (for any T ), as given
by Lemma 3.7. While a priori, this only gives convergence in the vague topology,
since the limit Hα is a probability measure, it actually follows that μm,n is a tight
family of measures and hence converges weakly. Thus we show the convergence
of the hulls of balls. Note that the hulls of balls around the root always have a
simple boundary.

We start with a simple estimate on relative enumerations on the number of tri-
angulations of a polygon.

LEMMA 4.1. Suppose m,n → ∞ so that m/n → a for some a ∈ [0,∞]. Then
for any fixed j, k ∈ Z,

lim
n,m→∞

φn−k,m−j

φn,m

=
(

(a + 1)2

(2a + 3)2

)j(
2(a + 1)2

(2a + 3)3

)k

.

PROOF. By applying Stirling’s approximation to (2.1), we have for m,n large

φn,m+2 = 2n+1(2m + 1)!(2m + 3n)!
(m!)2n!(2m + 2n + 2)!

∼ c1
2n+1(2m + 1)!

(m!)2

(
(2m + 3n)2m+3n+1/2

(2m + 2n + 2)2m+2n+5/2nn+1/2

)

∼ c22n4m
√

m

(
27

4

)n(
9

4

)m

n−5/2
(

1 + 2m

3n

)2m+3n(
1 + m

n

)−2m−2n

.

Taking the ratio, we have

φn−k,m+2−j

φn,m+2
∼

(
2

27

)k(1

9

)j (1 + (m/n))2j+2k

(1 + ((2m)/(3n)))2j+3k

×
(

1 + ((2m − 2j)/(3n − 3k))

1 + ((2m)/(3n))

)2m+3n

(4.1)

×
(

1 + ((m − j)/(n − k))

1 + (m/n)

)−2m−2n

.
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An easy calculation shows that the product of the last two terms in the right-hand
side of (4.1) converges to 1. Indeed, if a is finite then the first tends to e−2j+2ak

and the second to e2j−2ak . If a = ∞, then after shifting a factor of ( n
n−k

)2m from
the first to the second, the limits are e−2j and e2j .

The result follows by taking the limit and using the fact that m/n converges
to a. �

Let AQ,V (Q),F (Q),V (B) be as in Lemma 3.2, and note that AQ makes sense
also when looking for Q as a submap of a finite map.

LEMMA 4.2. Suppose m,n → ∞ with m/n → a for some a ∈ [0,∞]. Then

lim
m,n

μm,n(AQ) =
(

2

2a + 3

)V (Q)−V (B)( a + 1

2a + 3

)2(F (Q)−V (Q)+V (B))

.

REMARK 4.3. If we make the change of variable α = 2(2a + 3)−1, then
Lemma 4.2 gives us

lim
m,n

μm,n(AQ) = αV (Q)−V (B)

(
(2 − α)2

16

)(F (Q)−V (Q)+V (B))

.

From Lemma 4.2, we can immediately conclude that the μm,n-measure of AQ

converges to the Hα measure of the corresponding event.

COROLLARY 4.4. Suppose m,n → ∞ with m/n → a for some a ∈ [0,∞].
Then we have

lim
m,n

μm,n(AQ) = Hα(AQ),

where α = 2
2a+3 .

PROOF OF LEMMA 4.2. It is clear that the number of simple triangulations
of an m + 2-gon with n internal vertices where AQ occurs is φn−k,m+2−j where
j = 2V (B)−|∂Q|−2 where |∂Q| is the number of vertices in the boundary of Q,
and k = V (Q) − V (B). Then from Lemma 4.1, we have

lim
m,n

μm,n(AQ) = lim
n,m

φn−k,m+2−j

φn,m+2
=

(
(1 + a)2

(2a + 3)2

)j(
2(a + 1)2

(2a + 3)3

)k

.

From Euler’s formula, it is easy to see that F(Q) = 2V (B)−|∂Q|−2. This shows
j + k = F(Q) − V (Q) + V (B). Using all this, we have the lemma. �

PROOF OF THEOREM 1.4. Corollary 4.4 gives convergence for cylinder
events. Since Hα is a probability measure, the result follows by Fatou’s lemma.

�
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4.1. Quadrangulations and beyond. Can we get similar finite approximations
for H(p)

α for p > 3? We think it is possible to prove such results based on enumer-
ation of general p-angulations with a boundary, which is available for p even. We
believe that similar results should hold for any p, though do not see a way to prove
them. Let us present here a recipe for quadrangulations. For higher even p, there
are additional complications as the core is no longer a p-angulation and results on
maps with mixed face sizes are needed.

Let us first consider quadrangulations with a simple boundary. Denote by Q2m,n

the space of quadrangulations with simple boundary size 2m and number of inter-
nal vertices n (note that since the quadrangulation is bipartite, the boundary size is
always even). Let q2m,n = #Q2m,n be its cardinality. Enumerative results are avail-
able in this situation (see [13]). We alert the reader that our notation is slightly
different from [13]: they use q̃2m,n for quadrangulations with a simple boundary
and n denotes the number of faces, not the number of internal vertices. Using Eu-
ler’s formula, one can easily change from one variable to the other. Doing that, we
get

q2m,n = 3n−1 (3m)!
m!(2m − 1)!

(2n + 3m − 3)!
n!(n + 3m − 1)! .(4.2)

Now suppose m/n → a for some a ∈ [0,∞] where m and n are sequences such
that m → ∞ and n → ∞. Let ν2m,n be the uniform measure on all quadrangula-
tions of boundary size 2m and n internal vertices. A straightforward computation
similar to Lemmas 4.1 and 4.2 gives us for any finite Q,

lim
m,n

ν2m,n(AQ) =
(

4(1 + 3a)3

27(2 + 3a)3

)F(Q)

·
(

9(2 + 3a)

4(1 + 3a)2

)V (Q)−V (B)

,(4.3)

where V (Q) is the number of vertices in Q, V (B) is the number of vertices of
Q on the boundary of M , and F(Q) is the number of faces in Q [by Euler’s
characteristic, the “change” in the boundary length when removing Q is 2(V (Q)−
V (B) − F(Q))].

The limit (4.3) in itself is not enough to give us distributional convergence
of ν2m,n, as we are missing tightness. It is possible to get tightness for ν2m,n us-
ing the same ideas presented, for example, in [6, 20] or the general approach found
in [11]. The key is that it suffices to show the tightness of the root degree. The inter-
ested reader can work out the details and we shall not go into them here. Instead,
throughout the remaining part of this section, we shall assume that the distribu-
tional limits of ν2m,n exist. We remark here that when a = 0 the limiting measures
of the events described by (4.3) matches exactly with that of the half-planar UIPQ
measure (see [16]) and that for a = ∞ we get the dual of a critical Galton–Watson
tree conditioned to survive. Thus, in these two extreme cases, the distributional
limit has already been established.

To handle all a, we define the operator core :H4 → H′
4, which is the reverse of

the process used to define the measures Hα,q,ν in Section 3.4, and acts on the dual
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by taking the 2-connected core. Formally, any face which is not simple must have
an external double edge connecting it to the rest of the map (and a 2-gon inside it).
The core operator removes every such face, and identifies the two edges connecting
it to the outside. This operation is defined in the same way on quadrangulations
of an m-gon. As discussed in Section 3.4, if μ is domain Markov on H4 then
μ ◦ core−1 is domain Markov on H′

4.
Let μ = limν2m,n as m,n → ∞ with m/n → a ∈ [0,∞]. We first observe that

μ is domain Markov and translation invariant. This follows from (4.3) and the
converse part of Lemma 3.10.

Next, observe that the events Ai for i = 0,1,2 are not affected by core. This
is because in each of them, the face containing the root is a simple face, and so
is not contained in any nonsimple face. At this point from (4.3), we obtain β2 =
(4(1 + 3a)3)/(27(2 + 3a)3) and γ /β = (9(2 + 3a))(4(1 + 3a)2). Thus,

μ(A2) = 3

4(1 + 3a)(2 + 3a)
, μ(A0) = 4

27

(
1 + 3a

2 + 3a

)3

.

From the first, we see that as a goes from 0 to ∞ we get α ∈ [0, 3
8 ]. Solving

for a in terms of α = μ(A2) and plugging in we find β = √
μ(A0) = 2

27(
√

3 + α −√
α)3, which decreases from

√
4/27 to

√
1/54 as α increases from 0 to 3/8.

This gives the measures H
(4)
α as the core of the limit of uniform measures on

nonsimple quadrangulations. Since the core operation is continuous in the local
topology, this is also the limit of the core of uniform quadrangulations. This does
not give H(4)

α as a limit of uniform measures on nonsimple quadrangulations, since
the number of internal vertices in the core of a uniform map from Q2m,n is not
fixed. Thus, the above only proves the limit when n is taken to be random with
a certain distribution (though concentrated and tending to infinity in proportion
to m). It should be possible to deduce that uniform simple quadrangulations con-
verge to H

(4)
α by using a local limit theorem for the distribution of the size of the

core (see [7, 8]). We leave these details to the readers.
The above indicates that a phase transition for the family H

(4)
α occurs at α = 3/8,

similar to the case p = 3. We can similarly compute the asymptotics of pk as in
Section 3.3 and see that pk ∼ ck−5/2 for α = 3/8 and pk ∼ ck−3/2 for α < 3/8.
This indicates different geometry of the maps. All these hints encourage us to
conjecture that a similar picture of phase transition do exist for the measures H(p)

α

for all p > 3.
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