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ON THE LARGE DEVIATION RATE FUNCTION FOR THE
EMPIRICAL MEASURES OF REVERSIBLE JUMP

MARKOV PROCESSES

BY PAUL DUPUIS1 AND YUFEI LIU2

Brown University

The large deviations principle for the empirical measure for both contin-
uous and discrete time Markov processes is well known. Various expressions
are available for the rate function, but these expressions are usually as the so-
lution to a variational problem, and in this sense not explicit. An interesting
class of continuous time, reversible processes was identified in the original
work of Donsker and Varadhan for which an explicit expression is possible.
While this class includes many (reversible) processes of interest, it excludes
the case of continuous time pure jump processes, such as a reversible finite
state Markov chain. In this paper, we study the large deviations principle for
the empirical measure of pure jump Markov processes and provide an explicit
formula of the rate function under reversibility.

1. Introduction. Let X(t) be a time homogeneous Markov process with Pol-
ish state space S, and let P(t, x, dy) be the transition function of X(t). For
t ∈ [0,∞), define Tt by

Ttf (x)
.=
∫
S
f (y)P (t, x, dy).

Then Tt is a contraction semigroup on the Banach space of bounded, Borel mea-
surable functions on S ([6], Chapter 4.1). We use L to denote the infinitesimal gen-
erator of Tt and D the domain of L (see [6], Chapter 1). Hence, for each bounded
measurable function f ∈ D,

Lf (x) = lim
t↓0

1

t

[∫
S
f (y)P (t, x, dy) − f (x)

]
.

The empirical measure (or normalized occupation measure) up to time T of the
Markov process X(t) is defined by

ηT (·) .= 1

T

∫ T

0
δX(t)(·) dt.(1.1)
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Let P(S) be the metric space of probability measures on S equipped with the
Lévy–Prohorov metric, which is compatible with the topology of weak conver-
gence. For η ∈ P(S), define

I (η)
.= − inf

u∈D
u>0

∫
S

Lu

u
dη.(1.2)

It is easy to check that I thus defined is lower semicontinuous under the topology
of weak convergence. Consider the following regularity assumption.

CONDITION 1.1. There exists a probability measure λ on S such that for t > 0
the transition functions P(t, x, dy) have densities with respect to λ, that is,

P(t, x, dy) = p(t, x, y)λ(dy).(1.3)

Under additional recurrence and transitivity conditions, Donsker and Varadhan
[2, 3] prove the following. For any open set O ⊂ P(S)

lim inf
T →∞

1

T
logP

(
ηT (·) ∈ O

)≥ − inf
η∈O

I (η),(1.4)

and for any closed set C ⊂P(S)

lim sup
T →∞

1

T
logP

(
ηT (·) ∈ C

)≤ − inf
η∈C

I (η).(1.5)

We refer to (1.4) as the large deviation lower bound and (1.5) as the large de-
viation upper bound. Under ergodicity, the empirical measure ηT converges to the
invariant distribution of the Markov process X(t). The large deviation principle
characterizes this convergence through the associated rate function. While there
are many situations where an explicit formula for (1.2) would be useful, it is in
general difficult to solve the variational problem. The main existing results on this
issue are for the self-adjoint case in the continuous time setting; see [2, 9, 11].
Specifically, suppose there is a σ -finite measure ϕ on S, and that the densities
in (1.3) satisfy the following reversibility condition:

p(t, x, y) = p(t, y, x) almost everywhere (ϕ × ϕ).(1.6)

Then Tt is self-adjoint. If we denote the closure of L by L̄ (see, e.g., [6], page 16)
and the domain of L̄ by D(L̄), then L̄ is self-adjoint and negative semidefinite

(since Tt is a contraction). We denote by (−L̄)
1/2

the canonical positive semidef-

inite square root of −L̄ ([10], Chapter 12). Let D̄1/2 be the domain of (−L̄)
1/2

.
Donsker and Varadhan [2], Theorem 5, show under certain conditions that I de-
fined by (1.2) has the following properties: I (μ) < ∞ if and only if μ 	 ϕ and
(dμ/dϕ)1/2 ∈ D̄1/2, and with f

.= dμ/dϕ and g
.= f 1/2,

I (μ) = ∥∥(−L̄)1/2g
∥∥2

,(1.7)
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where ‖ · ‖ denotes the L2 norm with respect to ϕ. Typically, ϕ is taken to be the
invariant distribution of the process.

It should be noted that this explicit formula does not apply to one of the simplest
Markov processes, namely, continuous time Markov jump processes with bounded
infinitesimal generators. Let B(S) be the Borel σ -algebra on S and let α(x,�) be
a transition kernel on S × B(S). Let B(S) denote the space of bounded Borel
measurable functions on S and let q ∈ B(S) be nonnegative. Then

Lf (x)
.= q(x)

∫
S

(
f (y) − f (x)

)
α(x, dy)(1.8)

defines a bounded linear operator on B(S) and L is the generator of a Markov
process that can be constructed as follows. Let {Xn,n ∈ N} be a Markov chain in
S with transition probability α(x,�), that is,

P(Xn+1 ∈ �|X0,X1, . . . ,Xn) = α(Xn,�)(1.9)

for all � ∈ B(S) and n ∈ N. Let τ1, τ2, . . . be independent and exponentially dis-
tributed with mean 1, and independent of {Xn,n ∈ N}. Define a sojourn time si for
each i = 1,2, . . . by

q(Xi−1)si = τi.(1.10)

Then

X(t) = Xn for
n∑

i=1

si ≤ t <

n+1∑
i=1

si

(with the convention
∑0

i=1si = 0) defines a Markov process {X(t), t ∈ [0,∞)}
with infinitesimal generator L, and we call this process a Markov jump process.

A very simple special case is as follows. Using the notation above, assume S =
[0,1], q ≡ 1 and for each x ∈ [0,1], α(x, ·) is the uniform distribution on [0,1].
The infinitesimal generator L defined in (1.8) reduces to

Lf (x) =
∫ 1

0
f (y) dy − f (x),

which is clearly self-adjoint with respect to Lebesgue measure. If C is the col-
lection of all Dirac measures on S, then C is closed under the topology of weak
convergence on P(S). Hence, a large deviation upper bound would imply

lim sup
T →∞

1

T
logP(ηT ∈ C) ≤ − inf

μ∈C
I (μ).(1.11)

However, the probability that the very first exponential holding time is bigger than
T is exactly exp{−T }, and when this happens, the empirical measure is a Dirac
measure located at some point that is uniformly distributed on [0,1]. Hence,

lim inf
T →∞

1

T
logP

(
ηT (·) ∈ C

)≥ lim inf
T →∞

1

T
logP(τ1 > T ) = −1.
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In fact, we will prove later that the rate function for the empirical measure of this
Markov jump process never exceeds 1. However, if the upper bound held with the
function defined in (1.7), one would have I (δa) = ∞ for a ∈ [0,1], and by (1.11)

lim sup
T →∞

1

T
logP

(
ηT (·) ∈ D

)= −∞,

which is impossible.
This example shows that this type of Markov jump process is not covered by [2,

3]. In fact, the transition function P(t, x, dy) takes the form

P(t, x, dy) = e−t δx(dy) + (1 − e−t )1[0,1](y) dy,

which means that we cannot find a reference probability measure λ on S such that
P(t, x, ·) has a density with respect to λ(·) for almost all x ∈ S and t > 0, which is
a violation to Condition 1.1 used in [2, 3], and also violates the form of reversibility
needed for (1.7).

A condition such as Condition 1.1 holds naturally for Markov processes that
possess a “diffusive” term in the dynamics, which is not the case for Markov jump
processes, and the form of the rate function given in (1.7) will not be valid for these
processes either. The purpose of the current paper is to establish a large deviation
principle for the empirical measures of reversible Markov jump processes, and to
provide an explicit formula for the rate function like the one given in (1.7). We also
show why the boundedness of the rate function results from the fact that tilting of
the exponential holding times with bounded relative entropy cost can be used for
target measures that are not absolutely continuous with respect to the invariant
distribution.

Finally, we mention that [1] evaluates (1.2) for certain classes of measures when
L is the generator of a jump Markov process satisfying various conditions. How-
ever, it does not present an expression for an arbitrary measure, and indeed in
appears that the authors are unaware that (1.7) is not the correct rate function for
such processes, or that the large deviation principle had not been established.

The paper is organized as follows. Section 2 presents our assumptions on the
process. In Section 3, we state the main result, Theorem 3.1. The proof of Theo-
rem 3.1 is divided into two sections, Section 4 for the upper bound and Section 5
for the lower bound. In the final section, we discuss the special feature of Markov
jump processes that leads to the boundedness of the rate function.

2. Assumptions. Our first assumption is that the Polish state space S is com-
pact. While compactness is not needed, it lets us focus on the novel features of
the problem. For standard techniques to deal with the noncompact case see, for
example, [3].

A construction of Markov jump processes was given in the Introduction, and
we continue to use the notation introduced there. The jump intensity q in (1.8) is
assumed to be continuous on S, and there exist 0 < K1 ≤ K2 < ∞ such that

K1 ≤ q(x) ≤ K2.(2.1)
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Reversibility seems necessary to obtain an explicit formula for the rate function,
and we will make such an assumption. Recall that D is the domain of L.

CONDITION 2.1. L is self-adjoint (or reversible) under π in the following
sense: for any f,g ∈ D∫

S

(
Lf (x)

)
g(x)π(dx) =

∫
S

(
Lg(x)

)
f (x)π(dx).(2.2)

An equivalent condition for (2.2) to hold is the “detailed balance” condition,
that is, for π -a.e. x, y ∈ S

q(x)α(x, dy)π(dx) = q(y)α(y, dx)π(dy).(2.3)

Note that (2.3) directly implies
∫
S(Lf (x))π(dx) = 0 for all f ∈D.

To ensure ergodicity of X(t), we need several conditions on the transition func-
tion α in (1.9). Recall that P(S) is the metric space of probability measures on S

equipped with Lévy–Prohorov metric, which is compatible with the topology of
weak convergence.

CONDITION 2.2. α satisfies the Feller property. That is, α(x, ·) :S �−→ P(S)

is continuous in x.

REMARK 2.3. The Feller property and the compactness of S guarantee α

has an invariant distribution ([4], Proposition 8.3.4), which we denote by π̃ . The
boundedness of q enables us to define a probability measure π according to

π(A)
.=
∫
A(1/q(x))π̃(dx)∫
S(1/q(x))π̃(dx)

.(2.4)

Since π̃ is invariant under α, that is, π̃(·) = ∫
S α(x, ·)π̃(dx), we have∫

S

(
Lf (x)

)
π(dx) = 1∫

S(1/q(x))π̃(dx)

∫
S

∫
S

[
f (y) − f (x)

]
α(x, dy)π̃(dx) = 0.

By Echeverria’s theorem ([6], Theorem 4.9.17), π is an invariant distribution of
X(t).

CONDITION 2.4. α satisfies the following transitivity condition. There exist
positive integers l0 and n0 such that for all x and ζ in S

∞∑
i=l0

1

2i
α(i)(x, dy) 	

∞∑
j=n0

1

2j
α(j)(ζ, dy),

where α(k) denotes the k-step transition probability.
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REMARK 2.5. Under this condition, π̃ is the unique invariant distribution of α

([4], Lemma 8.6.2). Thus, π defined by (2.4) is the unique probability distribu-
tion that satisfies

∫
S(Lf (x))π(dx) = 0, and hence by [6], Theorem 4.9.17, is the

unique invariant distribution of X(t).

CONDITION 2.6. There exists an integer N and a positive real number c such
that

α(N)(x, ·) ≤ cπ̃(·)
for all x ∈ S.

REMARK 2.7. This type of assumption is common in the large deviation anal-
ysis of empirical measures. See, for example, [5], Hypothesis 1.1.

CONDITION 2.8. The support of π is S.

REMARK 2.9. This condition guarantees that any probability measure η ∈
P(S) can be approximated by measures that are absolutely continuous with respect
to π . Indeed, given δ > 0 let {xj ,Nj , j = 1, . . . , J } be such that J < ∞, xj ∈ Nj ∈
B(S), the Nj are disjoint,

⋃J
j=1 Nj = S, π(Nj ) > 0 and sup{d(xi, y) :y ∈ Nj } ≤ δ

for j = 1, . . . , J (this can be done by an open covering argument). Given any
η ∈ P(S) and A ∈ B(S), let

η̄δ(A) =
J∑

j=1

π(A ∩ Nj)

π(Nj )
η(Nj ).

Then η̄δ is absolutely continuous with respect to π . Since η̄δ(Nj ) = η(Nj ) and
sup{d(xi, y) :y ∈ Nj } ≤ δ, η̄δ → η in the weak topology as δ → 0.

REMARK 2.10. Condition 2.8 excludes the existence of transient states. Al-
though one can obtain an LDP for X(t) that has transient states, one would end up
with a rate function that depends on the initial state.

3. A large deviation principle.

3.1. Definition of the rate function. In this subsection, we define the rate func-
tion I . In later sections, we prove that I thus defined is the correct form of the
large deviation rate function for the empirical measures of the Markov jump pro-
cesses. All conditions stated in Section 2 will be assumed throughout the rest of
the paper. We wish to study the large deviation principle for the empirical mea-
sures ηT ∈ P(S) defined by (1.1). Under compactness of S and Condition 2.2, ηT

converges in distribution to an invariant distribution of L. As pointed out in Re-
mark 2.5, π is the unique invariant distribution of L, and thus ηT converges in
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distribution to π . Let H be the collection of all distributions that are absolutely
continuous with respect to π , that is,

H
.= {

η ∈ P(S) :η 	 π
}
.(3.1)

For η ∈ H , and assuming that the integral is well defined, consider

−
∫
S
θ1/2(x)L

(
θ1/2(x)

)
π(dx),

where θ = dη/dπ . This is a rewriting of ‖(−L̄)
1/2

g‖2 in (1.7). By inserting the
form of L from (1.8), we obtain the candidate rate function

I (η) =
∫
S
q(x)η(dx) −

∫
S×S

θ1/2(x)θ1/2(y)q(x)α(x, dy)π(dx).(3.2)

Note that by applying (2.3) and using the Cauchy–Schwarz inequality, one can
prove that I defined by (3.2) is nonnegative. Recall that K2 is the upper bound of
q as in (2.1), and thus I is bounded above by K2. In addition, it is straightforward
to show that I is convex on H .

We want to extend the definition of I to all measures in P(S). As pointed out in
Remark 2.9, H is dense in P(S) under the topology of weak convergence. Hence,
we can extend the definition of I to all of P(S) via lower semicontinuous regular-
ization with respect to the topology of weak convergence. Thus, if ηn → η weakly
and {ηn} ∈ H , lim infn→∞ I (ηn) ≥ I (η), and equality holds for at least one such
sequence. This extension guarantees that the extended I is convex, lower semicon-
tinuous and bounded above by K2 on all of P(S). The compactness of S and the
lower semicontinuity of I ensure that I has compact level sets. Being a nonneg-
ative, lower semicontinuous function with compact level sets, I indeed is a valid
large deviation rate function.

We have finished the definition of the rate function I , and are now ready to state
the large deviation principle.

3.2. A large deviation principle. Our main result is the following.

THEOREM 3.1. Let X(t) be a Markov jump process satisfying all the assump-
tions in Section 2. Let I be defined as in Section 3.1. Then the large deviation
bounds (1.4) and (1.5) hold.

To prove Theorem 3.1, it suffices to show the equivalent Laplace principle ([4],
Theorem 1.2.3). Specifically, we establish that for any bounded continuous func-
tion F :P(S) →R

lim
T →∞− 1

T
logE

[
exp

{−T F(ηT )
}]= inf

η∈P(S)

[
F(η) + I (η)

]
.(3.3)
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By adding a constant to both sides of (3.3), we can assume F ≥ 0 and do that for
the rest of the paper. The proof is based on a weak convergence approach and is
split into two parts: a Laplace upper bound and a Laplace lower bound.

Relative entropy plays a key role in the proof, and we hence state the definition
and a few important properties. Details can be found in [4].

DEFINITION 1. Let (V,A) be a measurable space. For ϑ ∈P(V), the relative
entropy R(·‖ϑ) is a mapping from P(V) into the extended real numbers. It is
defined by

R(γ ‖ϑ)
.=
∫
V

(
log

dγ

dϑ

)
dγ

when γ ∈ P(V) is absolutely continuous with respect to ϑ and log dγ /dϑ is inte-
grable with respect to γ . Otherwise, we set R(γ ‖ϑ)

.= ∞.

If V is a Polish space and A the associated σ -algebra, then R(·‖·) is nonneg-
ative, jointly convex and jointly lower semicontinuous [with respect to the weak
topology on P(V)2]. We state the following two properties of relative entropy.

LEMMA 3.2 (Variational formula). Let (V,A) be a measurable space, k a
bounded measurable function mapping V into R, and ϑ a probability measure
on V . The following conclusions hold:

(a) We have the variational formula

− log
∫
V

e−k dϑ = inf
γ∈P(V)

{
R(γ ‖ϑ) +

∫
V

k dγ

}
.(3.4)

(b) The infimum in (3.4) is attained uniquely at γ0 defined by

dγ0

dϑ
(x)

.= e−k(x)
/∫

V
e−k dϑ.

THEOREM 3.3 (Chain rule). Let X and Y be Polish spaces and β and γ prob-
ability measures on X ×Y . We denote by [β]1 and [γ ]1 the first marginals of β

and γ and by β(dy|x) and γ (dy|x) the stochastic kernels on Y given X for which
we have the decompositions

β(dx ×dy) = [β]1(dx)⊗β(dy|dx) and γ (dx ×dy) = [γ ]1(dx)⊗γ (dy|dx).

Then the function mapping x ∈X → R(β(·|x)‖γ (·|x)) is measurable and

R(β‖γ ) = R
([β]1‖[γ ]1

)+ ∫
X

R
(
β(·|x)‖γ (·|x)

)[β]1(dx).

We devote the next two sections to proving the Laplace upper bound and the
Laplace lower bound, respectively.
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4. Proof of the Laplace upper bound. In this section, we prove the Laplace
upper bound part of (3.3), that is,

lim inf
T →∞ − 1

T
logE

[
exp

{−T F(ηT )
}]≥ inf

η∈P(S)

[
F(η) + I (η)

]
.(4.1)

Recalling the construction of X(t) in the Introduction, we define a random in-
teger RT as the index when the total “waiting time” first exceeds T , that is,

RT −1∑
i=1

si ≤ T <

RT∑
i=1

si .(4.2)

Then the empirical measure ηT can be written as

ηT (·) = 1

T

∫ T

0
δX(t)(·) dt

= 1

T

[
RT −1∑
i=1

δXi−1(·)si + δXRT −1(·)
(
T −

RT −1∑
i=1

si

)]
(4.3)

= 1

T

[
RT −1∑
i=1

δXi−1(·)
τi

q(Xi−1)
+ δXRT −1(·)

(
T −

RT −1∑
i=1

τi

q(Xi−1)

)]
.

The proof of (4.1) will be partitioned into two cases: RT /T > C and 0 ≤ RT /T ≤
C, where C will be sent to ∞ after sending T → ∞.

4.1. The case RT /T > C. Let F :P(S) → R be nonnegative and continuous.
Then since F ≥ 0,

− 1

T
logE

[
1{(C,∞)}(RT /T )e−T F(ηT )] ≥ − 1

T
logP

{�T C�+1∑
i=1

si ≤ T

}

= − 1

T
logP

{�T C�+1∑
i=1

τi

q(Xi−1)
≤ T

}

≥ − 1

T
logP

{�T C�+1∑
i=1

τi ≤ K2T

}
.

Using Chebyshev’s inequality, for any α ∈ (0,∞),

P

{�T C�+1∑
i=1

τi ≤ K2T

}
= P

{
e−α

∑�T C�+1
i=1 τi ≥ e−αK2T

}
≤ eαK2T E

[
e−α

∑�T C�+1
i=1 τi

]
= eαK2T e(�T C�+1) log(1/1(+α)).
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For the last equality, we have used that if τ is exponentially distributed with mean 1
then Eeaτ = 1/(1 − a) for any a ∈ (−∞,1). Combining the last two inequalities,

lim inf
T →∞ − 1

T
logE

[
1{(C,∞)}(RT /T ) · exp

{−T F(ηT )
}]

≥ sup
α∈(0,∞)

[−K2α + C log(1 + α)
]

= −C + C logC + K2 − C logK2.

Note that −C + C logC + K2 − C logK2 → ∞ as C → ∞.

4.2. The case 0 ≤ RT /T ≤ C.

4.2.1. A stochastic control representation. In this case, we adapt a standard
weak convergence argument; see [4] for details. Specifically, we first establish a
stochastic control representation for the left-hand side of (3.3) and then obtain a
lower bound for the limit as T → ∞. In the representation, all distributions can be
perturbed from their original form, but such a perturbation pays a relative entropy
cost. We distinguish the new distributions and random variables by an overbar. In
the following, the barred quantities are constructed analogously to their unbarred
counterparts. Hence, τ̄i and X̄i are chosen recursively according to stochastic ker-
nels σ̄i(·) and ᾱi(·), that is, σ̄i(·) and ᾱi(·) are conditional distributions that can de-
pend on the whole past. Specifically, σ̄i(·) depends on {X̄0, τ̄1, X̄1, τ̄2, . . . , X̄i−1}
and ᾱi(·) depends on {X̄0, τ̄1, X̄1, τ̄2, . . . , X̄i−1, τ̄i}; s̄i is defined by (1.10) using
X̄i and τ̄i ; R̄T is defined by (4.2) using s̄i ; and η̄T is defined by (4.3) using X̄i ,
τ̄i and R̄T . It will be sufficient to consider any deterministic sequence {rT } such
that 0 ≤ rT /T ≤ C, and rT /T → A for some A ∈ [0,C] as T → ∞. We restrict
consideration to controlled processes such that R̄T = rT by placing an infinite cost
penalty on controls which lead to any other outcome with positive probability. Let
1(A) denote the indicator function of a set A, and recall that our convention is
0 · ∞ = 0. By applying [4], Proposition 4.5.1, and Theorem 3.3, the following is
valid:

− 1

T
logE

[
exp

{−T F(ηT ) − T · ∞ · 1(rT �= RT )
}]

(4.4)

= − 1

T
logE

[
exp

{
−T F(ηT ) − T · ∞ · 1

({
rT −1∑
i=1

si ≤ T <

rT∑
i=1

si

}c)}]

= infE

[
F(η̄T ) + ∞ · 1

({
rT −1∑
i=1

s̄i ≤ T <

rT∑
i=1

s̄i

}c)
(4.5)

+ 1

T

rT∑
i=1

[
R(ᾱi−1‖α) + R(σ̄i‖σ)

]]
,
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where the infimum is taken over all control measures {ᾱi , σ̄i}. Since in Section 5
we will prove a similar but more involved representation formula, Lemma 5.1, we
omit the proof of this representation. Due to the restriction R̄T = rT , one can write
η̄T as

η̄T (·) = 1

T

[
rT −1∑
i=1

δX̄i−1
(·) τ̄i

q(X̄i−1)
+ δX̄rT −1

(·)
(
T −

rT −1∑
i=1

τ̄i

q(X̄i−1)

)]
.(4.6)

In the following proof, we repeatedly extract further subsequences of T . To keep
the notation concise, we abuse notation and use T to denote all subsequences. Note
also that in proving a lower bound for (4.4) it suffices to consider a subsequence
of T such that

sup
T

− 1

T
logE

[
exp

{−T F(ηT ) − T · ∞ · 1(rT �= RT )
}]

< ∞.(4.7)

We assume this condition for the rest of this subsection.
The relative entropy cost in (4.5) includes two parts, RE1

T

.= 1
T

∑rT
i=1 R(ᾱi−1‖α)

and RE2
T

.= 1
T

∑rT
i=1 R(σ̄i‖σ). We will prove that for any sequence of controls

{ᾱi , σ̄i} in (4.5)

lim inf
T →∞ E

[
F(η̄T ) + RE1

T + RE2
T

]≥ inf
η∈P(S)

[
F(η) + I (η)

]
.(4.8)

Toward this end, it is enough to show that along any subsequence of T such
that rT /T → A, we can extract a further subsequence along which (4.8) holds.
In addition, it suffices to consider only functions F that besides being non-
negative, are also lower semicontinuous and convex. This restriction is valid
since I is convex and lower semicontinuous, and follows a standard argu-
ment in the large deviation literature. The interested reader can find the details
in [8].

In light of (4.5) and (4.7), we assume without loss of generality

sup
T

E
[
F(η̄T ) + RE1

T + RE2
T

]
< ∞.(4.9)

Since the proof of (4.8) is lengthy, we analyze each term on the left-hand side
of (4.8) separately in the following subsections.

4.2.2. The term RE1
T . The cost RE1

T comes from distorting the dynamics of
the embedded Markov chain, and indeed the analysis gives a very similar con-
clusion to that of an ordinary Markov chain ([4], Chapter 8). For any probability
measure ν on S × S, we will use notation [ν]1 and [ν]2 to denote the first and
second marginals of ν. We have the following result for RE1

T .
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LEMMA 4.1. Consider any sequence of controls {ᾱi , σ̄i} in (4.5) such
that (4.9) holds. Along any subsequence of T satisfying rT /T → A, define a se-
quence of random probability measures on S × S via

μT (dx, dy)
.= 1

rT

rT∑
i=1

δX̄i−1
(dx)ᾱi−1(dy).

Then one can extract a further subsequence such that EμT converges in distribu-
tion to a probability measure μ̃ on S × S, and

lim inf
T →∞ E

[
RE1

T

]≥ AR
(
μ̃‖[μ̃]1 ⊗ α

)
.

Furthermore, if A > 0 then μ̃ satisfies

[μ̃]1 = [μ̃]2.(4.10)

PROOF. By the chain rule (Theorem 3.3) and the joint convexity of relative
entropy,

E
[
RE1

T

]= E

[
1

T

rT∑
i=1

R(ᾱi−1‖α)

]

= E

[
1

T

rT∑
i=1

R(δX̄i−1
⊗ ᾱi−1‖δX̄i−1

⊗ α)

]

≥ E

[
rT

T
R
(
μT ‖[μT ]1 ⊗ α

)]
≥ rT

T
R
(
EμT ‖[EμT ]1 ⊗ α

)
.

Since S × S is compact, for any subsequence of T there exists a further subse-
quence along which EμT converges weakly to a probability measure μ̃. Under the
Feller property of α (Condition 2.2), [EμT ]1 ⊗ α converges weakly to [μ̃]1 ⊗ α.
The lower semicontinuity of relative entropy then implies

lim inf
T →∞ E

[
RE1

T

]≥ lim inf
T →∞

rT

T
R
(
EμT ‖[EμT ]1 ⊗ α

)≥ AR
(
μ̃‖[μ̃]1 ⊗ α

)
.

This finishes the first part of Lemma 4.1. For the second part, we employ a stan-
dard martingale argument. Let Fi be the σ -algebra generated by the random vari-
ables {(X̄0, . . . , X̄i), (τ̄1, . . . , τ̄i)}. Thus, Fi is a sequence of increasing σ -algebra’s
and, since ᾱi selects the conditional distribution of X̄i , for any bounded continuous
function f on S

E

[(
f (X̄i) −

∫
S
f (y)ᾱi(dy)

)∣∣∣Fi−1

]
= 0.
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Hence, for integers 0 ≤ i < k ≤ rT − 1

E

[(
f (X̄i) −

∫
S
f (y)ᾱi(dy)

)(
f (X̄k) −

∫
S
f (y)ᾱk(dy)

)]
= 0,

and thus for any bounded continuous function f on S

E

[∫
S×S

f (x)μT (dx, dy) −
∫
S×S

f (y)μT (dx, dy)

]2

= E

[
1

rT

rT∑
i=1

f (X̄i−1) − 1

rT

rT∑
i=1

∫
S
f (y)ᾱi−1(dy)

]2

≤ 1

r2
T

rT∑
i=1

E

[
f (X̄i−1) −

∫
S
f (y)ᾱi−1(dy)

]2

≤ 4

rT
‖f ‖2∞.

Since 0 < A = limT →∞ rT /T , we have rT /T ≥ A/2 for all T large enough. Us-
ing Chebyshev’s inequality and the last display, we conclude that [μT ]1 − [μT ]2
converges to 0 in probability as T → ∞ and, therefore, [μ̃]1 = [μ̃]2 with proba-
bility 1. This concludes the second part of Lemma 4.1. �

4.2.3. The term RE2
T . We now turn to the second cost RE2

T . This cost comes
from distorting the exponential sojourn times. We introduce a function � which is
closely related to the relative entropy of exponential distributions: �(x)

.= x logx −
x + 1 for any x ≥ 0.

LEMMA 4.2. Given any sequence of controls {ᾱi , σ̄i}, fix a subsequence of
T for which the conclusions in Lemma 4.1 holds. Then we can extract a further
subsequence along which

lim inf
T →∞ E

[
RE2

T

]≥ ∫
S×R+

�(u)ξ̃ (dx, du).

Here, ξ̃ is a finite measure on S ×R+ and is related to μ̃ in Lemma 4.1 by∫
R+

uξ̃(dx, du) = A[μ̃]1(dx).(4.11)

Before proving this lemma, we define g: R+ → R by g(b)
.= − logb + b − 1.

The functions g and � are related by

g(x) = x�(1/x),

and g has the following property.
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LEMMA 4.3. Let σ be an exponential distribution with mean 1. Then

inf
{
R(γ ‖σ) :

∫
R+

uγ (du) = b

}
= g(b).(4.12)

PROOF. Let σb be the exponential distribution with mean b, that is,

σb(du) = 1

b
e−u/b du.

Then dσb

dσ
(u) = 1

b
e(1−1/b)u for u > 0. Picking any γ such that R(γ ‖σ) < ∞ and∫

R+ uγ (du) = b,

R(γ ‖σ) =
∫
R+

log
(

dγ

dσ

)
γ (du)

=
∫
R+

log
(

dγ

dσb

)
γ (du) +

∫
R+

log
(

dσb

dσ

)
γ (du)

= R(γ ‖σb) +
∫
R+

[
− logb +

(
1 − 1

b

)
u

]
γ (du)

= R(γ ‖σb) + g(b)

≥ g(b)

and the infimum in (4.12) is achieved when R(γ ‖σb) = 0, that is, γ = σb. �

PROOF OF LEMMA 4.2. Lemma 4.3 guarantees that

RE2
T ≥ 1

T

rT∑
i=1

g

(∫
uσ̄i(du)

)
.(4.13)

Recall the definition of Fi as the σ -algebra generated by the controlled process up
to time i. Since σ̄i selects the conditional distribution of τ̄i ,

E[τ̄i |Fi−1] =
∫

uσ̄i(du).

Define m̄i
.= ∫

uσ̄i(du), for i = 1, . . . , rT − 1. The definition of m̄rT requires more
work. Recalling the definition of R̄T by the equation analogous to (4.2) and the
restriction that R̄T = rT ,

T −
rT −1∑
i=1

τ̄i

q(X̄i−1)
≤ τ̄rT

q(X̄rT −1)
.

Multiplying both sides by q(X̄rT −1) and taking expectation conditioned on FrT −1,

q(X̄rT −1)

(
T −

rT −1∑
i=1

τ̄i

q(X̄i−1)

)
≤ E[τ̄rT |FrT −1] =

∫
uσ̄rT (du).
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Define

�̄T
.= q(X̄rT −1)

(
T −

rT −1∑
i=1

τ̄i

q(X̄i−1)

)
,(4.14)

and define m̄rT by

m̄rT
.=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∫
uσ̄rT (du), if �̄T ≤

∫
uσ̄rT (du) < 1,

1, if �̄T ≤ 1 ≤
∫

uσ̄rT (du),

�̄T , if 1 < �̄T ≤
∫

uσ̄rT (du),

(4.15)

that is, m̄rT is the median of the triplet (�̄T ,
∫

uσ̄rT (du),1). Since g is increasing
on (1,∞), we have g(

∫
uσ̄rT (du)) ≥ g(m̄rT ) in all three cases. Thus, by (4.13),

RE2
T ≥ 1

T

rT∑
i=1

g

(∫
uσ̄i(du)

)
≥ 1

T

rT∑
i=1

g(m̄i).(4.16)

Next, consider the measure on S ×R+ defined by

ξT (dx, du)
.= 1

T

rT∑
i=1

δX̄i−1
(dx)δ(m̄i )

−1(du)m̄i .(4.17)

The total mass of EξT is

EξT (S ×R+) = 1

T

rT∑
i=1

E[m̄i].

According to (4.9) and the assumption that F ≥ 0, we have

sup
T

E
[
RE2

T

]
< ∞.(4.18)

By (4.16) supT E[∑rT
i=1 g(m̄i)/T ] < ∞. We also have by a straightforward cal-

culation that x ≤ max{50,10g(x)/9}. Using this and the fact that rT /T ≤ C, we
have supT E[∑rT

i=1 m̄i/T ] < ∞, that is, the total mass of EξT has a bound uni-
form in T . Thus, when viewed as a sequence of measures on the compact space
S × [0,∞], EξT is tight due to the uniform boundedness of the total mass. We
denote the weak limit by ξ̃ , which is a finite measure. Since the function � is non-
negative and continuous,

lim inf
T →∞ E

[
RE2

T

] ≥ lim inf
T →∞ E

[
1

T

rT∑
i=1

g(m̄i)

]

= lim inf
T →∞ E

[∫
S×R+

�(u)ξT (dx, du)

]
(4.19)
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= lim inf
T →∞

∫
S×R+

�(u)EξT (dx, du)

≥
∫
S×R+

�(u)ξ̃ (dx, du).

We next explore the relation between ξ̃ and μ̃. In order to establish (4.11), it
suffices to show that for any bounded continuous function f on S∫

S×R+
uf (x)ξ̃ (dx, du) = A

∫
S
f (x)[μ̃]1(dx).

By the definitions of ξT and μT,∫
S×R+

uf (x)EξT (dx, du) = rT

T

∫
S
f (x)[EμT ]1(dx).(4.20)

Then (4.18) and (4.19) imply there is a uniform upper bound on∫
R+

�(u)

∫
S
f (x)EξT (dx, du).

If we consider
∫
S f (x)EξT (dx, du) as a sequence of measures on R+ with

bounded total mass, then
∫
S f (x)EξT (dx, du) converges weakly to

∫
S f (x)ξ̃ (dx,

du). Since � is superlinear, [4], Theorem A.3.19, implies that

lim
T →∞

∫
S×R+

uf (x)EξT (dx, du) =
∫
S×R+

uf (x)ξ̃ (dx, du).

Using

lim
T →∞

rT

T

∫
S
f (x)[EμT ]1(dx) = A

∫
S
f (x)[μ̃]1(dx)

and (4.20) we arrive at (4.11). �

4.2.4. The term Eη̄T .

LEMMA 4.4. Given any sequence of controls {ᾱi , σ̄i}, fix a subsequence of
T for which the conclusions in Lemma 4.2 hold. Then we can extract a further
subsequence along which

lim inf
T →∞ E

[
F(η̄T )

]≥ F(η̃)

for some probability measure η̃ on S, which is related to ξ̃ in Lemma 4.2 by

q(x)η̃(dx) = [ξ̃ ]1(dx).(4.21)
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PROOF. As a sequence of probability measures on the compact space S, we
can always extract a subsequence of T such that Eη̄T converges weakly to a proba-
bility measure on S which we denote by η̃. The convexity and lower semicontinuity
of F imply that

lim inf
T →∞ E

[
F(η̄T )

]≥ lim inf
T →∞ F(Eη̄T ) ≥ F(η̃).

By the definitions of η̄T in (4.6) and �̄T in (4.14),

q(x)Eη̄T (dx)

= q(x)

T
E

[
rT −1∑
i=1

δX̄i−1
(dx)

τ̄i

q(X̄i−1)
+ δX̄rT −1

(dx)

(
T −

rT −1∑
i=1

τ̄i

q(X̄i−1)

)]

= 1

T
E

[
rT −1∑
i=1

δX̄i−1
(dx)τ̄i + δX̄rT −1

(dx)�̄T

]

= 1

T

(
rT −1∑
i=1

E
[
E
[
δX̄i−1

(dx)τ̄i |Fi−1
]]+ E

[
δX̄rT −1

(dx)�̄T

])

= 1

T

(
rT −1∑
i=1

E
[
δX̄i−1

(dx)m̄i

]+ E
[
δX̄rT −1

(dx)�̄T

])
.

Recalling the definition of ξT in (4.17), we have

[EξT ]1(dx) = 1

T

rT∑
i=1

E
[
δX̄i−1

(dx)m̄i

]
.

This implies the total variation bound∥∥q(x)Eη̄T (dx) − [EξT ]1(dx)
∥∥

TV ≤ 1

T
E|�̄T − m̄rT |.

Recalling the definition of m̄rT in (4.15), we conclude that∥∥q(x)Eη̄T (dx) − [EξT ]1(dx)
∥∥

TV ≤ 1

T
.

By taking limits, we arrive at (4.21). �

Lemmas 4.1, 4.2 and 4.4 together imply for a sequence of controls {ᾱi , σ̄i} sat-
isfying (4.5), along any subsequence of T such that rT /T → A, we can extract a
further subsequence along which

lim inf
T →∞ E

[
F(η̄T ) + RE1

T + RE2
T

]
(4.22)

≥ F(η̃) + AR
(
μ̃‖[μ̃]1 ⊗ α

)+ ∫
S×R+

�(u)ξ̃ (dx, du),
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where η̃, μ̃ and ξ̃ satisfy the constraints (4.11), (4.21) and (4.10) if A > 0.
Recall that our goal is to prove (4.8). Hence, we need to establish the rela-

tionship between the right-hand side of (4.22) and the rate function I defined in
Section 3.1.

4.2.5. Properties of the rate function I . We prove the following lemma, for
which we adopt the convention 0 ·∞ .= 0. This is in fact the key link, showing that
the rate function that is naturally obtained by the weak convergence analysis used
to prove the upper bound in fact equals I for suitable measures, and also indicating
how to construct controls to prove the lower bound for this same collection of mea-
sures. Note that the constraints appearing in the lemma hold for the subsequence
appearing in (4.22) due to Lemmas 4.1, 4.2 and 4.4.

LEMMA 4.5. Let I (η) be defined by (3.2). Suppose that η 	 π , that μ and ξ

satisfy the constraints

q(x)η(dx) = [ξ ]1(dx) and
∫
R+

uξ(dx, du) = A[μ]1(dx),(4.23)

and that when A > 0 the constraint [μ]1 = [μ]2 is also true. Then

I (η) ≤ AR
(
μ‖[μ]1 ⊗ α

)+ ∫
S×R+

�(u)ξ(dx, du).(4.24)

Moreover,

I (η) = inf
[
AR

(
μ‖[μ]1 ⊗ α

)+ ∫
S×R+

�(u)ξ(dx, du)

]
,

where the infimum is over all possible choices of A ≥ 0, μ and ξ satisfying these
constraints.

The proof of this lemma is detailed. The reason we present it here instead of in
an Appendix is the previously mentioned fact that the construction of A, μ and ξ

that minimize the right-hand side of (4.24) indicates how to hit target measures η

that are absolutely continuous with respect to the invariant measure in the proof of
the Laplace lower bound.

PROOF. We first prove the inequality (4.24). If the right-hand side of (4.24) is
∞, there is nothing to prove. Hence, we assume it is finite. First, assume A > 0, in
which case R(μ‖[μ]1 ⊗ α) < ∞. Define

Q
.=
∫
S
q(x)π(dx),(4.25)

so that by (2.4)

π̃(dx) = q(x)π(dx)/Q.(4.26)
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Since π̃ is invariant under α, by [4], Lemma 8.6.2, [μ]1 	 π̃ . By (2.1), q is
bounded from below, and hence [μ]1 	 π . Recall that the definition of I in (3.2)
uses θ = dη/dπ . Define �

.= {x ∈ S : θ(x) = 0}. By (4.23),

[μ]1(dx) =
∫
R+ uξ2|1(du|x)

A
[ξ ]1(dx)

=
∫
R+ uξ2|1(du|x)

A
q(x)η(dx)(4.27)

=
∫
R+ uξ2|1(du|x)

A
q(x)θ(x)π(dx),

where for a measure ν on S ×R+, ν2|1 denotes the regular conditional distribution
on the second argument given the first. Thus, [μ]1(�) = 0. Now suppose that∫

S×S
θ1/2(x)θ1/2(y)q(x)α(x, dy)π(dx) = 0.

Then for π -a.e. x ∈ S \�, α(x,�) = 1, and hence (μ1 ⊗α)[(S \�)×�] = 1. On
the other hand, μ((S \ �) × �) = 0 due to [μ]1 = [μ]2. This violates the fact that
R(μ‖[μ]1 ⊗ α) < ∞. We conclude that∫

S×S
θ1/2(x)θ1/2(y)q(x)α(x, dy)π(dx) > 0.

Lemma 3.2 implies that

− log
∫
S×S

θ1/2(x)θ1/2(y)α(x, dy)π̃(dx)

= − log
∫
S×S

e(1/2)[log θ(x)+log θ(y)]α(x, dy)π̃(dx)(4.28)

≤ R(μ‖π̃ ⊗ α) − 1

2

∫
S×S

[
log θ(x) + log θ(y)

]
μ(dx, dy).

Strictly speaking, the inequality above does not fall into the framework of
Lemma 3.2 because log θ is not bounded. However, if one goes through the proof
of this lemma ([4], Proposition 1.4.2), then the above inequality is true as long as
the right-hand side is not of the form ∞ − ∞. Toward this end, it suffices to prove

1

2

∫
S×S

[
log θ(x) + log θ(y)

]
μ(dx, dy) =

∫
S

log θ(x)[μ]1(dx) < ∞.(4.29)

In the Appendix, we will prove [this being the only place where Condition 2.6 is
used] that

R
([μ]1‖π̃)< ∞.(4.30)
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For now, we assume this is true. Using (4.25), (4.26) and (4.27) to evaluate the
relative entropy,

∞ > R
([μ]1‖π̃)= ∫

S
log
(∫

R+
uξ2|1(du|x)

)
[μ]1(dx)

(4.31)

+
∫
S

log θ(x)[μ]1(dx) + log
Q

A
.

We know from (2.1) that Q ≥ K1. Also, by (4.23) and the nonnegativity of �∫
S

log
(∫

R+
uξ2|1(du|x)

)
[μ]1(dx)

= 1

A

∫
S

(∫
R+

uξ2|1(du|x)

)
log
(∫

R+
uξ2|1(du|x)

)
[ξ ]1(dx)

= 1

A

∫
S
�

(∫
R+

uξ2|1(du|x)

)
[ξ ]1(dx)

(4.32)

+ 1

A

∫
S×R+

uξ(dx, du) − 1

A

∫
S
[ξ ]1(dx)

= 1

A

∫
S
�

(∫
R+

uξ2|1(du|x)

)
[ξ ]1(dx) +

∫
S
[μ]1(dx) − 1

A

∫
S
q(x)η(dx)

≥ 1 − 1

A
K2.

The second constraint in (4.23) is used for the first equality; the definition of �

gives the second equality; both parts of (4.23) assure the third equality; finally the
nonnegativity of � is used. Thus, rearranging (4.31) gives (4.29).

The chain rule of relative entropy gives

R(μ‖π̃ ⊗ α) − 1

2

∫
S×S

[
log θ(x) + log θ(y)

]
μ(dx, dy)

= R
([μ]1‖π̃)+ ∫

S
R(μ2|1‖α)[μ]1(dx) −

∫
S

log θ(x)[μ]1(dx)(4.33)

= R
([μ]1‖π̃)+ R

(
μ‖[μ]1 ⊗ α

)− ∫
S

log θ(x)[μ]1(dx).

By (4.31) and (4.32) and the convexity of �

R
([μ]1‖π̃)− ∫

S
log θ(x)[μ]1(dx)

=
∫
S

log
(∫

R+
uξ2|1(du|x)

)
[μ]1(dx) + log

Q

A

= 1

A

∫
S
�

(∫
R+

uξ2|1(du|x)

)
[ξ ]1(dx)(4.34)



LDP FOR EMPIRICAL MEASURES 1141

+
∫
S
[μ]1(dx) − 1

A

∫
S
q(x)η(dx) + log

Q

A

≤ 1

A

∫
S×R+

�(u)ξ(dx, du) + 1 − 1

A

∫
S
q(x)η(dx) + log

Q

A
.

In summary (4.28), (4.33) and (4.34) imply

− log
∫
S×S

θ1/2(x)θ1/2(y)q(x)α(x, dy)π(dx)

= − log
∫
S×S

θ1/2(x)θ1/2(y)α(x, dy)π̃(dx) − logQ

≤ R
(
μ‖[μ]1 ⊗ α

)+ 1

A

∫
S×R+

�(u)ξ(dx, du)

+ 1 − 1

A

∫
S
q(x)η(dx) + log

1

A
.

Thus,

−
∫
S×S

θ1/2(x)θ1/2(y)q(x)α(x, dy)π(dx)

≤ − exp
{
−
(
R
(
μ‖[μ]1 ⊗ α

)+ 1

A

∫
S×R+

�(u)ξ(dx, du)

+ 1 − 1

A

∫
S
q(x)η(dx) + log

1

A

)}
.

Equation (4.24) then follows from the fact that −e−r ≤ ar + a loga − a for any
r ∈ R and a ∈ R+ by taking a = A and

r = R
(
μ‖[μ]1 ⊗ α

)+ 1

A

∫
S×R+

�(u)ξ(dx, du) + 1 − 1

A

∫
S
q(x)η(dx) + log

1

A
.

For the case when A = 0, (4.23) implies that
∫
R+ uξ(dx, du) = 0, which means

that
∫
R+ uξ2|1(du|x) = 0 [ξ ]1-a.e. Hence, by the convexity of � and q(x)η(dx) =

[ξ ]1(dx),∫
S×R+

�(u)ξ(dx, du) ≥
∫
S
�

(∫
R+

uξ2|1(du|x)

)
[ξ ]1(dx)

=
∫
S
[ξ ]1(dx)

=
∫
S
q(x)η(dx)

≥
∫
S
q(x)η(dx) −

∫
S×S

θ1/2(x)θ1/2(y)q(x)α(x, dy)π(dx)

= I (η).
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Thus, (4.24) also holds in this case, and completes the proof of the first part of
Lemma 4.5.

We now turn to the second part of Lemma 4.5. The definitions and constructions
used here will also be used to construct what are essentially optimal controls to
prove the reverse inequality in the next section, and indeed the particular forms of
the definitions are suggested by that use. In particular, Aκ(x) will correspond to a
dilation of the mean for the exponential random variables. In light of the second
part of Lemma 3.2, we define μ by

dμ

d(π̃ ⊗ α)
(x, y)

(4.35)
.= θ1/2(x)θ1/2(y)

/∫
S×S

θ1/2(x)θ1/2(y)(π̃ ⊗ α)(dx, dy).

Note that by the Cauchy–Schwarz inequality, the detailed balance condition (2.3)
and the relation between π and π̃ [see (2.4)] imply∫

S×S
θ1/2(x)θ1/2(y)(π̃ ⊗ α)(dx, dy) ≤

∫
S×S

θ(x)α(x, dy)π̃(dx) ≤ K2

Q
.

Hence, μ is well defined and [μ]1 = [μ]2. Then Lemma 3.2 implies that

− log
∫
S×S

θ1/2(x)θ1/2(y)α(x, dy)π̃(dx)

(4.36)
= R(μ‖π̃ ⊗ α) −

∫
S

log θ(x)[μ]1(dx).

If R(μ‖π̃ ⊗ α) = ∞ or − ∫S log θ(x)[μ]1(dx) = ∞, the last display implies∫
S×S

θ1/2(x)θ1/2(y)q(x)α(x, dy)π(dx) = 0.

By letting A
.= 0 and ξ(dx, du)

.= q(x)η(dx)δ0(du), then ξ and μ satisfy (4.23)
and

AR
(
μ‖[μ]1 ⊗ α

)+ ∫
S×R+

�(u)ξ(dx, du) =
∫
S
q(x)η(dx) = I (η).

Next, assume R(μ‖π̃ ⊗ α) < ∞ and − ∫S log θ(x)[μ]1(dx) < ∞. Define A by

A
.= exp

{
−
[
R(μ‖π̃ ⊗ α) −

∫
S

log θ(x)[μ]1(dx) − logQ

]}
.(4.37)

Define the measure

ρ(dx)
.= q(x)θ(x)π(dx)(4.38)

and

κ
.= d[μ]1/dρ.(4.39)
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Then for any x ∈ S \ � (recall � = {x ∈ S : θ(x) = 0})
κ(x) = d[μ]1

dρ
(x) = 1

Qθ(x)

d[μ]1

dπ̃
(x).

In addition,∫
S
κ(x) logκ(x)ρ(dx) =

∫
S

logκ(x)[μ]1(dx)

(4.40)
= R

([μ]1‖π̃)− ∫
S

log θ(x)[μ]1(dx) − logQ.

Define

b(x)
.=
{

0, for x ∈ �,

Aκ(x), for x /∈ �,
(4.41)

and

ξ(dx, du)
.= q(x)η(dx)δb(x)(du).(4.42)

Then ξ satisfies the first part of (4.23). To see that the second part of (4.23) is
satisfied, note that

[μ]1(�) = 0 =
∫
�×R+

uξ(dx, du)

and ∫
R+

uξ(dx, du) = b(x)q(x)η(dx)

= Aκ(x)q(x)θ(x)π(dx)

= A[μ]1(dx).

By using the definitions we arrive at the following, each line of which is explained
below:

AR
(
μ‖[μ]1 ⊗ α

)+ ∫
S×R+

�(u)ξ(dx, du)

= AR
(
μ‖[μ]1 ⊗ α

)+ ∫
S
�
(
b(x)

)
q(x)η(dx)

= AR
(
μ‖[μ]1 ⊗ α

)+ ∫
�

q(x)η(dx) +
∫
S\�

�
(
b(x)

)
ρ(dx)

= AR
(
μ‖[μ]1 ⊗ α

)+ ∫
S
q(x)η(dx) + A logA − A

+ A

∫
S
κ(x) logκ(x)ρ(dx)

=
∫
S
q(x)η(dx) + A logA − A
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+ A

(
R(μ‖π̃ ⊗ α) −

∫
S

log θ(x)[μ]1(dx) − logQ

)
=
∫
S
q(x)η(dx) − A.

The first equality uses (4.42) and the second uses (4.41). The third uses (4.41)
again, expands �, and uses κ

.= d[μ]1/dρ and η(�) = ρ(�) = 0. Equality four
then uses (4.40) and the fifth follows from (4.37). Note that (4.36) and (2.4) imply

A =
∫
S×S

θ1/2(x)θ1/2(y)q(x)α(x, dy)π(dx).(4.43)

Hence, we obtain

AR
(
μ‖[μ]1 ⊗ α

)+ ∫
S
�(u)ξ(dx, du) = I (η). �

The representation formula (4.4), the lower bound (4.22) and Lemma 4.5 to-
gether give

lim inf
T →∞ − 1

T
logE

[
exp

{−T F(ηT ) − T · ∞ · (1{rT /T }c (RT /T )
)}]

(4.44)
≥ inf

η∈P(S)

[
F(η) + I (η)

]
.

4.3. Combining the cases. In the last section, we showed that (4.44) is valid
for any sequence {rT } such that rT /T → A ∈ [0,C]. An argument by contradiction
shows that the bound is uniform in A. Thus,

lim inf
T →∞ − 1

T
log

{�T C�∑
rT =1

E
[
exp

{−T F(ηT ) − T · ∞ · (1{rT /T }c (RT /T )
)}]}

≥ lim inf
T →∞ − 1

T
log

{
T C ·

�T C�∨
rT =1

E
[
exp

{−T F(ηT )

− T · ∞ · (1{rT /T }c (RT /T )
)}]}

≥ inf
η∈P(S)

[
F(η) + I (η)

]
.

We now partition E[exp{−T F(ηT )}] according to the two cases to obtain the over-
all lower bound

lim inf
T →∞ − 1

T
logE

[
exp

{−T F(ηT )
}]

≥ min
{

inf
η∈P(S)

[
F(η) + I (η)

]
, [−C + C logC + K2 − C logK2]

}
.



LDP FOR EMPIRICAL MEASURES 1145

Letting C → ∞ we have the desired Laplace upper bound

lim inf
T →∞ − 1

T
logE

[
exp

{−T F(ηT )
}]≥ inf

η∈P(S)

[
F(η) + I (η)

]
.(4.45)

5. Proof of Laplace lower bound. We turn to the proof of the reverse in-
equality

lim sup
T →∞

− 1

T
logE

[
exp

{−T F(ηT )
}]≤ inf

η∈P(S)

[
F(η) + I (η)

]
.(5.1)

Let F be a nonnegative bounded and continuous function. Fix an arbitrary ε > 0
and choose η such that

F(η) + I (η) ≤ inf
ν∈P(S)

[
F(ν) + I (ν)

]+ ε.(5.2)

As pointed out in Remark 2.9, H defined in (3.1) is dense in P(S). Since I was
extended from H to P(S) via lower semicontinuous regularization, we can assume
without loss of generality that η 	 π . Define θ

.= dη/dπ . We now argue we can
further assume there exists δ > 0 such that

δ ≤ θ(x) ≤ 1

δ
(5.3)

for all x ∈ S. If ηδ .= (1 − δ)η + δπ then dηδ/dπ ≥ δ, and the continuity of F and
the convexity of I imply that the difference between F(ηδ) + I (ηδ) and F(η) +
I (η) can be made arbitrarily small.

Thus, we can assume θ is uniformly bounded from below away from zero. Let
n ∈N, and define

ηn(dx)
.= θ(x)1{θ(x)≤n}π(dx) + η({x : θ(x) > n})

π({x : θ(x) > n})1{θ(x)>n}π(dx).

Then dηn/dπ ≤ [η({x : θ(x) > n})/π({x : θ(x) > n})] ∨ n, and since η 	 π im-
plies π({x : θ(x) > n}) → 0, ηn converges weakly to η. It then follows from the
continuity of F and the definition of I and convexity of θ → −θ1/2 that we can
choose η satisfying (5.2) with 2ε replacing ε and also (5.3). Hence, we assume η

satisfies (5.2) and (5.3). Furthermore, by Lusin’s theorem ([7], Theorem 7.10), we
can also assume that θ is continuous.

The proof of the lower bound will use the following representation. The in-
fimum in the representation is taken over all control measures {ᾱi , σ̄i}, and the
properties of such measures and how η̄T and R̄T are constructed from them were
discussed immediately above the similar representation (4.4). The proof of the
lemma is given in the Appendix.

LEMMA 5.1. Let F :P(S) →R be bounded and continuous. Then

− 1

T
logE

[
exp

{−T F(ηT )
}]= infE

[
F(η̄T ) + 1

T

R̄T∑
i=1

(
R(ᾱi−1‖α) + R(σ̄i‖σ)

)]
,
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where the infimum is taken over all control measures {ᾱi , σ̄i}.

Suppose that given any measure η ∈ P(S) satisfying (5.2) and (5.3), one can
construct ᾱi and σ̄i such that given any subsequence of T , there is a further subse-
quence Tn such that

lim
Tn→∞E

[
F(η̄Tn) + 1

Tn

R̄Tn∑
i=1

(
R(ᾱi−1‖α) + R(σ̄i‖σ)

)]= F(η) + I (η).

Then Lemma 5.1 implies the Laplace lower bound (5.1). The construction of suit-
able ᾱi and σ̄i turns on many of the same constructions as those used in the proof of
the second part of Lemma 4.5. We first define μ ∈ P(S × S) as in (4.35). Then au-
tomatically [μ]1 = [μ]2, and hence if we define p as the regular conditional proba-
bility such that μ = [μ]1 ⊗p, then [μ]1 is invariant under p ([4], Lemma 8.5.1(a)).
Define ᾱi

.= p for each i, and let {X̄i} be the corresponding Markov chain. Next,
define ρ(dx)

.= q(x)η(dx) and

κ(x)
.= d[μ]1

dρ
(x) = 1

Qθ(x)

d[μ]1

dπ̃
(x).(5.4)

By (5.3), there is M < ∞ such that 1/M ≤ κ ≤ M , and due to the continuity of θ ,
κ is also continuous. Notice that

η(dx) = (
q(x)κ(x)

)−1[μ]1(dx).(5.5)

Assumption (5.3) guarantees that

− log
∫
S×S

θ1/2(x)θ1/2(y)(π̃ ⊗ α)(dx, dy) < ∞ and

−
∫
S

log θ(x)[μ]1(dx) < ∞,

and (4.36) then implies that R(μ‖π̃ ⊗ α) < ∞. Define A as in (4.43). Let σ̄i be
the exponential distribution with mean [Aκ(X̄i−1)]−1 for each i. Thus, we can
construct a Markov jump process X̄(t) using ᾱi and σ̄i instead of α and σ , and the
infinitesimal L̄ generator will be bounded and continuous and takes the form:

L̄f (x) = Aκ(x)q(x)

∫
S

[
f (y) − f (x)

]
p(x, dy).

Equation (5.5) and the fact that [μ]1 is invariant under p imply
∫
S(L̄f (x))η(dx) =

0, and η is an invariant distribution of the continuous time process X̄. We claim
that η is the unique invariant distribution of X̄. Indeed, by [6], Proposition 4.9.2,
any invariant distribution ν for X̄ satisfies

∫
S(L̄f (x))ν(dx) = 0. If we define

ν̃(dx)
.= Aκ(x)q(x)ν(dx)∫

S Aκ(x)q(x)ν(dx)
,
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then ν̃ is invariant under p. However, by Condition 2.4 and [4], Lemma 8.6.3(c),
the invariant measure under p is unique, and hence the invariant measure of X̄ is
also unique. By the definition of η̄T in (4.3),

η̄T (·) = 1

T

∫ T

0
δX̄(t)(·) dt

(5.6)

= 1

T

[
R̄T −1∑
i=1

δX̄i−1
(dx)

τ̄i

q(X̄i−1)
+ δX̄R̄T −1

(dx)

(
T −

R̄T −1∑
i=1

τ̄i

q(X̄i−1)

)]
.

Since S is compact, we can extract a subsequence of T such that η̄T converges
weakly, and by [6], Theorem 4.9.3, this weak limit is η. We claim the following
along the same subsequence.

LEMMA 5.2. E[R̄T /T ] → A, E[∑R̄T

i=1 R(σ̄i‖σ)/T ] → ∫
S �(Aκ(x)) ×

q(x)η(dx) and E[∑R̄T

i=1 δX̄i−1
(dx)/T ] → A[μ]1(dx).

PROOF. As in the proof of the upper bound, a minor nuisance is dealing with

the residual time T −∑R̄T

i=1 τ̄i . However, this is more easily controlled here since
it is bounded by an exponential with known mean. Since η̄T → η weakly, we have
for any bounded and continuous function f on the space of subprobability mea-
sures on S that limT →∞ E[f (η̄T )] = f (η). To prove the first part of the lemma,
define f by

f (ν)
.=
∫
S
κ(x)q(x)ν(dx).

Since both κ and q are bounded and continuous, f is also bounded and continuous.
Using (5.5)

f (η) =
∫
S
κ(x)q(x)η(dx) =

∫
S
[μ]1(dx) = 1.(5.7)

Thus, limT →∞ E[f (η̄T )] = 1. Now by (5.6) and the definition of R̄T

E

[∣∣∣∣∣f (η̄T ) − f

(
1

T

R̄T∑
i=1

δX̄i−1
(dx)

τ̄i

q(X̄i−1)

)∣∣∣∣∣
]

= 1

T
E

[
κ(X̄R̄T −1)q(X̄R̄T −1)

(
R̄T∑
i=1

τ̄i

q(X̄i−1)
− T

)]

≤ 1

T
E

[
κ(X̄R̄T −1)q(X̄R̄T −1)

τ̄R̄T

q(X̄R̄T −1)

]

≤ M

T
E[τ̄R̄T

] ≤ AM2

T
→ 0
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as T → ∞. Hence,

lim
T →∞E

[
f

(
1

T

R̄T∑
i=1

δX̄i−1
(dx)

τ̄i

q(X̄i−1)

)]
= 1.

Recall that Fi is the σ -algebra generated by {(X̄0, . . . , X̄i), (τ̄1, . . . , τ̄i)}. Then

E

[
f

(
1

T

R̄T∑
i=1

δX̄i−1
(dx)

τ̄i

q(X̄i−1)

)]

= 1

T
E

[
R̄T∑
i=1

κ(X̄i−1)q(X̄i−1)
τ̄i

q(X̄i−1)

]

= 1

T
E

[ ∞∑
i=1

κ(X̄i−1)τ̄i1

(
i−1∑
j=1

τ̄j

q(X̄j−1)
≤ T

)]

= 1

T

∞∑
i=1

E

[
E

[
κ(X̄i−1)τ̄i1

(
i−1∑
j=1

τ̄j

q(X̄j−1)
≤ T

)∣∣∣Fi−1

]]

= 1

T

∞∑
i=1

E

[
κ(X̄i−1)1

(
i−1∑
j=1

τ̄j

q(X̄j−1)
≤ T

)
E[τ̄i |Fi−1]

]

= 1

T

∞∑
i=1

E

[
κ(X̄i−1)1

(
i−1∑
j=1

τ̄j

q(X̄j−1)
≤ T

)
1

Aκ(X̄i−1)

]

= 1

AT
E

[ ∞∑
i=1

1

(
i−1∑
j=1

τ̄j

q(X̄j−1)
≤ T

)]

= 1

A
E

[
R̄T

T

]
.

This completes the proof of the first statement in the lemma.
The proof of the second statement is similar. Define f by

f (ν)
.=
∫
S
�
(
Aκ(x)

)
q(x)ν(dx).

Then as before,

f (η) = lim
T →∞E

[
f (ηT )

]= lim
T →∞E

[
f

(
1

T

R̄T∑
i=1

δX̄i−1
(dx)

τ̄i

q(X̄i−1)

)]
.
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Using g(x) = x�(1/x) and Lemma 4.3, we have

E

[
f

(
1

T

R̄T∑
i=1

δX̄i−1
(dx)

τ̄i

q(X̄i−1)

)]

= E

[
1

T

R̄T∑
i=1

�
(
Aκ(X̄i−1)

)
τ̄i

]

= 1

T

∞∑
i=1

E

[
�
(
Aκ(X̄i−1)

)
1

(
i−1∑
j=1

τ̄j

q(X̄j−1)
≤ T

)
E[τ̄i |Fi−1]

]

= E

[
1

T

R̄T∑
i=1

1

Aκ(X̄i−1)
�
(
Aκ(X̄i−1)

)]

= E

[
1

T

R̄T∑
i=1

g

(
1

Aκ(X̄i−1)

)]

= E

[
1

T

R̄T∑
i=1

R(σ̄i‖σ)

]
,

and the second part of the lemma follows.
The proof of the third part follows very similar lines as the first two, and is

omitted. �

Now the Laplace lower bound is straightforward. The definition of μ in (4.35),
the continuity of θ and the bound (5.3) imply x → R(p(x, ·)‖α(x, ·)) is bounded
and continuous. By Lemma 5.2 and the chain rule for relative entropy,

lim
T →∞E

[
F(η̄T ) + 1

T

R̄T∑
i=1

(
R(ᾱi−1‖α) + R(σ̄i‖σ)

)]

= lim
T →∞E

[
F(η̄T )

]+ lim
T →∞

∫
S
R
(
p(x, ·)‖α(x, ·))E[ 1

T

R̄T∑
i=1

δX̄i−1
(dx)

]

+ lim
T →∞E

[
1

T

R̄T∑
i=1

R(σ̄i‖σ)

]

= F(η) + AR
(
μ‖[μ]1 ⊗ α

)+ ∫
S
�
(
Aκ(x)

)
q(x)η(dx).

Returning to the proof of the second part of Lemma 4.5, we find that with this
choice of A, μ and κ , the rate function I (η) coincides with AR(μ‖[μ]1 ⊗ α) +



1150 P. DUPUIS AND Y. LIU∫
S �(Aκ(x))q(x)η(dx) (note that this η corresponds to a special of Lemma 4.5

where �
.= {x ∈ S : θ(x) = 0} is empty). This completes the proof of the Laplace

lower bound.

6. On the boundedness of rate function. As pointed out in the Introduction,
continuous time jump Markov processes differ from the type of processes con-
sidered by Donsker and Varadhan in [2, 3], in that the dynamics do not have a
“diffusive” component, and hence Condition 1.1 does not hold. For jump Markov
models, the process only moves when a jump occurs, and there is no continuous
change of position. For these processes, the rate function is bounded, whereas for
the processes of [2, 3] the rate function is infinity when the target measure is not
absolutely continuous with respect to the reference measure. We now consider the
source and implications of this distinction.

Consider a process satisfying all the conditions in Section 2 that has π as its
invariant distribution. In order to hit a different probability measure η ∈ P(S), we
need to perturb the original dynamics, which includes the distortion of the Markov
chain transition probability α and the distortion of the exponential holding time σ .
Each of these distortions must pay a relative entropy cost, and the minimum of
the (suitably normalized) sum of these costs asymptotically approximates the rate
function I (η). When η is singular with respect to π , the relative entropy cost from
the distortion of α can be made arbitrarily small, and the rate function is almost
entirely due to contributions coming from the distortion of σ . We will illustrate
this point via the following example.

Recall the model mentioned in the Introduction, where the state space S is [0,1],
the jump intensity is q ≡ 1, and for each x ∈ [0,1], α(x, ·) is the uniform distribu-
tion on [0,1]. The invariant distribution π is just the uniform distribution on [0,1].
Now consider a Dirac measure η

.= δ1/2 as a target measure. η is not absolutely
continuous with respect to π . However, we can approximate η weakly via a se-
quence of probability measures that are absolutely continuous with respect to π .
For each n ∈ N, define a probability measure ηn by its Radon–Nikodym derivative
θn with respect to π according to

θn(x)
.=

⎧⎪⎪⎨⎪⎪⎩
n − 1, for x ∈

(
1

2
− 1

2n
,

1

2
+ 1

2n

)
,

1

n − 1
, otherwise.

Using the formula (3.2) for rate function, we have

I
(
ηn)= 1 −

(∫ 1

0

(
θn(x)

)1/2
dx

)(∫ 1

0

(
θn(y)

)1/2
dy

)
= 1 − 4(n − 1)

n2 .

According to the definition of rate function in Section 3.1, the rate function is
bounded above by 1. However, I (ηn) → 1 as n → ∞, and one can check that
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this is true for any sequence of absolutely continuous measures converging weakly
to η. Thus, I (η) = 1.

We now consider fixed n ∈ N and examine the perturbed dynamics that can
hit the measure ηn. This is most easily understood by examining the minimizer
in the variational formula for the rate function, whose form was suggested dur-
ing the proof of the Laplace principle lower bound in Section 5. Recall that
σ̄i(·) and ᾱi(·) are perturbed dynamics for the exponential holding time and the
Markov chain, σ̄i(·) depends on {X̄0, τ̄1, X̄1, τ̄2, . . . , X̄i−1} and ᾱi(·) depends
on {X̄0, τ̄1, X̄1, τ̄2, . . . , X̄i−1, τ̄i}. τ̄i and X̄i are chosen recursively according to
stochastic kernels σ̄i(·) and ᾱi(·). Specifically, s̄i is defined by (1.10) using X̄i and
τ̄i ; R̄T is defined by (4.2) using s̄i ; and η̄T is defined by (4.3) using X̄i , τ̄i and R̄T .
Following the procedure in Section 5, we first define μ ∈ P(S × S) as in (4.35).
Thus, μ is the product measure. As before, we use [μ]1 to denote the first marginal
of μ and p to denote the regular conditional probability such that μ = [μ]1 ⊗ p.
Since μ is a product measure defined by (4.35), [μ]1 and p are in fact the same
measure and the density with respect to π can be calculated as

d[μ]1

dπ
(x) =

⎧⎪⎪⎨⎪⎪⎩
n

2
, for x ∈

(
1

2
− 1

2n
,

1

2
+ 1

2n

)
,

n

2(n − 1)
, otherwise.

(6.1)

As in Section 5 let ᾱi
.= p for each i. A direct calculation of A using formula

(4.43) shows that A = 4(n − 1)/n2. Also, κ defined in (5.4) reduces to

κ(x) =

⎧⎪⎪⎨⎪⎪⎩
n

2(n − 1)
, for x ∈

(
1

2
− 1

2n
,

1

2
+ 1

2n

)
,

n

2
, otherwise.

As in Section 5, σ̄i should be the exponential distribution with mean [Aκ(X̄i−1)]−1.
Hence, if X̄i−1 falls into (1/2 − 1/(2n),1/2 + 1/(2n)), σ̄i would be the exponen-
tial distribution with mean n/2, otherwise σ̄i would be the exponential distribution
with mean n/[2(n − 1)]. Now the perturbed Markov jump process, denoted by
X̄(t), is constructed using ᾱi and σ̄i defined as above. As proved in Lemma 5.2,
the expected value of the relative entropy cost

1

T

R̄T∑
i=1

(
R(ᾱi−1‖α) + R(σ̄i‖σ)

)
converges to

I
(
ηn)= AR

(
μ‖[μ]1 ⊗ α

)+ ∫ 1

0
�
(
Aκ(x)

)
ηn(dx)



1152 P. DUPUIS AND Y. LIU

as T → ∞. We have noted that p(x, dy) = [μ]1(dy) and α(x, dy) = π(dy), and
by using (6.1)

AR
(
μ‖[μ]1 ⊗ α

)
= A

∫ 1

0
R
(
p(x, ·)‖α(x, ·))[μ]1(dx)

= 4(n − 1)

n2

(
logn − log 2 − log(n − 1)

2

)
.

This converges to 0 as n → ∞. Hence, the relative entropy cost that comes from
the distortion of the Markov chain converges to 0. For the second term, we have∫ 1

0
�
(
Aκ(x)

)
ηn(dx) = 2(n − 1)

n2

(
log(n − 1) + 2 log 2 − logn

)− 4(n − 1)

n2 + 1,

which converges to 1 as n → ∞. Thus, as ηn approaches the target distribution η,
the relative entropy cost that comes from the distortion of Markov chain vanishes,
and the rate function becomes solely determined by the relative entropy cost that
comes from the distortion of exponential waiting times.

One can generalize the argument to more general discrete target measures,
where one utilizes the original dynamics to make sure neighborhoods of the var-
ious points are visited, and then uses the time dilation to control their relative
weight.

APPENDIX

A.1. Proof of inequality (4.30).

PROOF. Recall that R(μ‖[μ]1 ⊗ α) < ∞, where [μ]1 = [μ]2 and π̃ is in-
variant under α. Additionally, we also have Condition 2.6, that is, there exists an
integer N and a real number c ∈ (0,∞) such that

α(N)(x, ·) ≤ cπ̃(·)(A.1)

for all x ∈ S. Now let p be the regular conditional probability such that μ = [μ]1 ⊗
p. Then

R
(
μ‖[μ]1 ⊗ α

)= R
([μ]1 ⊗ p‖[μ]1 ⊗ α

)
< ∞.

The chain rule of relative entropy implies that

R
([μ]1 ⊗ p ⊗ · · · ⊗ p

N

‖[μ]1 ⊗ α ⊗ · · · ⊗ α
N

)
(A.2)

= N · R([μ]1 ⊗ p‖[μ]1 ⊗ α
)
< ∞.

Indeed, since [μ]1 is invariant under p, for any integer n the nth marginal of
[[μ]1 ⊗ p ⊗ · · · ⊗ pn−1] is[[μ]1 ⊗ p ⊗ · · · ⊗ p

n−1

]
n = [μ]1.
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Hence, (A.2) follows by induction:

R
([μ]1 ⊗ p ⊗ · · · ⊗ p

n
‖[μ]1 ⊗ α ⊗ · · · ⊗ α

n

)
= R

([μ]1 ⊗ p ⊗ · · · ⊗ p
n−1

‖[μ]1 ⊗ α ⊗ · · · ⊗ α
n−1

)
+
∫
S
R(p‖α)d

[[μ]1 ⊗ p ⊗ · · · ⊗ p
n−1

]
n

= (n − 1) · R([μ]1 ⊗ p‖[μ]1 ⊗ α
)+ ∫

S
R(p‖α)d[μ]1

= n · R([μ]1 ⊗ p‖[μ]1 ⊗ α
)
.

Let [ν]k|j denote the conditional probability of the kth argument of ν given the j th
argument of ν. Note that one can define a mapping from P(SN+1) to P(S2) such
that each ν ∈ P(SN+1) is mapped to [ν]1 ⊗ [ν]N+1|1. Since the relative entropy
for induced measures is always smaller, (A.2) implies

R
([μ]1 ⊗ p(N)‖[μ]1 ⊗ α(N))< ∞.

Now since [μ]1 is invariant under p, it is also invariant under p(N) and, therefore,
[[μ]1 ⊗ p(N)]2 = [μ]1. Using the chain rule of relative entropy again gives

R
([μ]1‖[[μ]1 ⊗ α(N)]

2

)
< ∞.

This implies (4.30), since

∞ > R
([μ]1‖[[μ]1 ⊗ α(N)]

2

)
= R

([μ]1‖π̃)− log
∫
S

d([μ]1 ⊗ α(N))2

dπ̃
[μ]1

≥ R
([μ]1‖π̃)− log c,

where c is from (A.1). �

A.2. Proof of Lemma 5.1. The proof of the representation is standard, save
for the fact that RT is random. We include a proof here for completeness.

PROOF. Define for each k ∈N+

ηk
T (·) .= 1

T

[
RT ∧k−1∑

i=1

δXi−1(·)
τi

q(Xi−1)
+ δXRT

∧k−1(·)
(
T −

RT ∧k−1∑
i=1

τi

q(Xi−1)

)]
.

For any measure νk ∈ P((S ×R+)k), we can decompose νk as

νk = ᾱ0 ⊗ σ̄1 ⊗ ᾱ1 ⊗ σ̄2 ⊗ · · · ⊗ ᾱk−1 ⊗ σ̄k.(A.3)
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Choose the barred random variables X̄i and τ̄i according to ᾱi and σ̄i as before
and define the corresponding R̄T ∧ k the following way: if

∑k
i=1 τ̄i/q(X̄i−1) > T ,

then R̄T ∧ k
.= R̄T where R̄T is the integer that satisfies

R̄T −1∑
i=1

τ̄i

q(X̄i−1)
≤ T <

R̄T∑
i=1

τ̄i

q(X̄i−1)
,

otherwise define R̄T ∧ k
.= k. We also define

η̄k
T (·) .= 1

T

[
R̄T ∧k−1∑

i=1

δX̄i−1
(·) τ̄i

q(X̄i−1)
(A.4)

+ δX̄R̄T ∧k−1
(·)
(
T −

R̄T ∧k−1∑
i=1

τ̄i

q(X̄i−1)

)]
.

If we denote the multidimensional probability measure corresponding to the orig-
inal dynamics by μk ∈ P((S ×R+)k), that is,

μk .= α(k) ×
(∏

k

σ

)
,

then applying Lemma 3.2 gives

− 1

T
logE

[
exp

{−T F
(
ηk

T

)}]
(A.5)

= inf
νk∈P((S×R+)k)

[∫
(S×R+)k

F
(
η̄k

T

)
dνk + 1

T
R
(
νk‖μk)].

By applying Theorem 3.3 repeatedly to R(νk‖μk), we obtain

R
(
νk‖μk)= E

[ k∑
i=1

(
R(ᾱi−1‖α) + R(σ̄i‖σ)

)]
.

We can thus rewrite (A.5) as

− 1

T
logE

[
exp

{−T F
(
ηk

T

)}]
(A.6)

= inf
νk∈P((S×R+)k)

E

[
F
(
η̄k

T

)+ 1

T

k∑
i=1

(
R(ᾱi−1‖α) + R(σ̄i‖σ)

)]
.

Now for each νk ∈ P((S × R+)k), we construct another measure ν̂k ∈ P((S ×
R+)k) recursively as follows: define α̂0

.= ᾱ0 and σ̂1
.= σ̄1. For all 2 ≤ i ≤ k, define

α̂i−1 and σ̂i by

(α̂i−1, σ̂i) =

⎧⎪⎪⎨⎪⎪⎩
(ᾱi−1, σ̄i), if

i−1∑
j=1

τ̄j

q(X̄j−1)
≤ T ,

(α,σ ), otherwise.
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Thus, we return to the original dynamics with zero relative entropy cost after
R̄T . Define ν̂k using α̂i and σ̂i by (A.3). From the definition (A.4), we have
E[F(η̂k

T )] = E[F(η̄k
T )], and

E

[
k∑

i=1

(
R(α̂i−1‖α) + R(σ̂i‖σ)

)]= E

[R̂T ∧k∑
i=1

(
R(α̂i−1‖α) + R(σ̂i‖σ)

)]

= E

[
R̄T ∧k∑
i=1

(
R(ᾱi−1‖α) + R(σ̄i‖σ)

)]

≤ E

[
k∑

i=1

(
R(ᾱi−1‖α) + R(σ̄i‖σ)

)]
.

Hence, we can rewrite (A.6) as

− 1

T
logE

[
exp

{−T F
(
ηk

T

)}]
(A.7)

= inf
νk∈P((S×R+)k)

E

[
F
(
η̄k

T

)+ 1

T

R̄T ∧k∑
i=1

(
R(ᾱi−1‖α) + R(σ̄i‖σ)

)]
.

Using the pointwise convergence of both RT ∧ k → RT and R̄T ∧ k → R̄T as
k → ∞, by the dominated convergence theorem

lim
k→∞− 1

T
logE

[
exp

{−T F
(
ηk

T

)}]= − 1

T
logE

[
exp

{−T F(ηT )
}]

,

lim
k→∞E

[
F
(
η̄k

T

)]= E
[
F(η̄T )

]
.

Also, by the monotone convergence theorem

lim
k→∞E

[
R̄T ∧k∑
i=1

((
R(ᾱi−1‖α) + R(σ̄i‖σ)

))]= E

[
R̄T∑
i=1

((
R(ᾱi−1‖α) + R(σ̄i‖σ)

))]
.

Hence, by taking limits on both sides of (A.7), we arrive at

− 1

T
logE

[
exp

{−T F(ηT )
}]= inf Ē

[
F(η̄T ) + 1

T

R̄T∑
i=1

((
R(ᾱi−1‖α) + R(σ̄i‖σ)

))]
,

where the infimum is taken over all controlled measures {ᾱi , σ̄i}. This proves the
lemma. �
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