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RANDOM MATRICES: UNIVERSALITY OF LOCAL SPECTRAL
STATISTICS OF NON-HERMITIAN MATRICES

BY TERENCE TAO1 AND VAN VU2

UCLA and Yale University

It is a classical result of Ginibre that the normalized bulk k-point correla-
tion functions of a complex n × n Gaussian matrix with independent entries
of mean zero and unit variance are asymptotically given by the determinan-

tal point process on C with kernel K∞(z,w) := 1
π e−|z|2/2−|w|2/2+zw̄ in the

limit n → ∞. In this paper, we show that this asymptotic law is universal
among all random n × n matrices Mn whose entries are jointly indepen-
dent, exponentially decaying, have independent real and imaginary parts and
whose moments match that of the complex Gaussian ensemble to fourth or-
der. Analogous results at the edge of the spectrum are also obtained. As an
application, we extend a central limit theorem for the number of eigenvalues
of complex Gaussian matrices in a small disk to these more general ensem-
bles.

These results are non-Hermitian analogues of some recent universality re-
sults for Hermitian Wigner matrices. However, a key new difficulty arises in
the non-Hermitian case, due to the instability of the spectrum for such ma-
trices. To resolve this issue, we the need to work with the log-determinants
log |det(Mn − z0)| rather than with the Stieltjes transform 1

n tr(Mn − z0)−1,
in order to exploit Girko’s Hermitization method. Our main tools are a four
moment theorem for these log-determinants, together with a strong concen-
tration result for the log-determinants in the Gaussian case. The latter is es-
tablished by studying the solutions of a certain nonlinear stochastic difference
equation.

With some extra consideration, we can extend our arguments to the real
case, proving universality for correlation functions of real matrices which
match the real Gaussian ensemble to the fourth order. As an application, we
show that a real n × n matrix whose entries are jointly independent, expo-
nentially decaying and whose moments match the real Gaussian ensemble to

fourth order has
√

2n
π + o(

√
n) real eigenvalues asymptotically almost surely.

1. Introduction. Let Mn be a random n × n matrix with complex entries,
which is not necessarily assumed to be Hermitian, and can be either a continuous or
discrete ensemble of matrices. Then, counting multiplicities, there are n complex
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(algebraic) eigenvalues, which we enumerate in an arbitrary fashion as

λ1(Mn), . . . , λn(Mn) ∈ C.

One can then define, for each 1 ≤ k ≤ n, the k-point correlation function

ρ(k)
n = ρ(k)

n [Mn] :Ck →R
+

of the random matrix ensemble Mn by requiring that∫
Ck

F (z1, . . . , zk)ρ
(k)
n (z1, . . . , zk) dz1 · · · dzk

(1.1)
= E

∑
1≤i1,...,ik≤n, distinct

F
(
λi1(Mn), . . . , λik (Mn)

)
for all continuous, compactly supported test functions F , where dz denotes
Lebesgue measure on the complex plane C. Note that this definition does not de-
pend on the exact order in which the eigenvalues of Mn are enumerated.

If Mn is an absolutely continuous matrix ensemble with a continuous density
function, then ρ(k) is a continuous function; but if Mn is a discrete ensemble then
ρ(k) is merely a nonnegative measure.3 In the absolutely continuous case with a
continuous density function, one can equivalently define ρ

(k)
n (z1, . . . , zk) for dis-

tinct z1, . . . , zk to be the quantity such that the probability that there is an eigen-
value of Mn in each of the disks {z : |z − zi | ≤ ε} for i = 1, . . . , k is asymptotically
(ρ

(k)
n (z1, . . . , zk) + o(1))(πε2)k in the limit ε → 0+.
We note two model cases of continuous matrix ensembles that are of interest.

The first is the real Gaussian matrix ensemble,4 in which coefficients ξij are in-
dependent and identically distributed (or i.i.d. for short) and have the distribution
N(0,1)R of the real Gaussian with mean zero and variance one. We will discuss
this case in more detail later, but for now we will focus instead on the simpler
and better understood case of the complex Gaussian matrix ensemble, in which
the ξij are i.i.d. with the distribution of a complex Gaussian N(0,1)C with mean
zero and variance one [or in other words, the probability distribution of each ξij

is 1
π
e−|z|2 dz, and the real and imaginary parts of ξij independently have the dis-

tribution N(0,1/2)R]. As is well known, the correlation functions of a complex
Gaussian matrix are given by the explicit Ginibre formula [26]

ρ(k)
n (z1, . . . , zk) = det

(
Kn(zi, zj )

)
1≤i,j≤k,(1.2)

3Here, we have abused notation by identifying a measure ρ
(k)
n (z1, . . . , zk) dz1 · · · dzk with its

density ρ
(k)
n .

4Strictly speaking, the real Gaussian matrix ensemble is only absolutely continuous with respect
to Lebesgue measure on the space of real n × n matrices, rather than on the space of complex n × n

matrices. However, both ensembles are still continuous in the sense that any individual matrix occurs
in the ensemble with probability zero.
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where Kn :C×C→C is the kernel

Kn(z,w) := 1

π
e−(|z|2+|w|2)/2

n−1∑
j=0

(zw̄)j

j ! .(1.3)

In particular, one has

ρ(1)
n (z) = Kn(z, z) = 1

π
e−|z|2

n−1∑
j=0

|z|2j

j !(1.4)

and thus (by Taylor expansion of e−|z|2 ) one has the asymptotic

ρ(1)
n (

√
nz) → 1

π
1|z|≤1

as n → ∞ for almost every z ∈ C. This gives the well-known circular law for com-
plex Gaussian matrices, namely that the empirical spectral distribution of 1√

n
Mn

converges (in expectation, at least) to the circular measure 1
π

1B(0,1) dz, where we
use B(z0, r) := {z ∈ C : |z − z0| < r} to denote an open disk in the complex plane.
Informally, this means that the eigenvalues of Mn are asymptotically uniformly
distributed on the disk B(0,

√
n). The circular law is also known to hold for many

other ensembles of matrices, and for several modes of convergence. In particular,
it holds (both in probability and in the almost sure sense) for random matrices with
i.i.d. entries having mean 0 and variance 1; see the surveys [5, 52] for further dis-
cussion of this and related results. Figures 2 and 3 later in this paper illustrate the
circular law for two model instances of i.i.d. ensembles, namely the real Gaussian
and real Bernoulli ensembles.

We also remark that from the obvious inequality

n−1∑
j=0

|z|2j

j ! ≤
∞∑

j=0

|z|2j

j ! = e|z|2

and (1.4) we have the uniform bound∣∣Kn(z, z)
∣∣≤ 1

π

for all z, and hence by positivity of ρ
(2)
n (z,w) = Kn(z, z)Kn(w,w) − |Kn(z,w)|2

we also have ∣∣Kn(z,w)
∣∣≤ 1

π
(1.5)

for all z,w. In particular, from (1.2) one has

0 ≤ ρ(k)
n,z1,...,zk

(w1, . . . ,wk) ≤ Ck(1.6)
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in the case of the complex Gaussian ensemble for all w1, . . . ,wk ∈ C, all n, and
some constant Ck depending only on k. (Indeed, from the Hadamard inequality one
can take Ck = π−kkk/2, e.g.) This uniform bound will be technically convenient
for some of our applications. We will also need an analogous bound for the real
Gaussian ensemble; see Lemma 11 below.

Our first main result is to show a universality result of the k-point correlation
functions ρ

(k)
n,z1,...,zk (w1, . . . ,wk), in the spirit of the “four moment theorems” for

Wigner matrices that first appeared in [55]. Very roughly speaking, the result is that
(when measured in the vague topology), the asymptotic behavior of these correla-
tion functions for matrices with independent entries depend only on the first four
moments of the entries, though due to our reliance on the Lindeberg exchange
method, we will also need to require these matrices to match moments with the
complex Gaussian ensemble. To make this statement more precise, we will need
some further notation.

DEFINITION 1 (Independent-entry matrices). An independent-entry matrix
ensemble is an ensemble of random n × n matrices Mn = (ξij )1≤i,j≤n, where the
ξij are independent and complex random variables, each with mean zero and vari-
ance one; we call the ξij the atom distributions of Mn. We say that the independent-
entry matrix has independent real and imaginary parts if for each 1 ≤ i, j ≤ n,
Re(ξij ), Im(ξij ) are independent. We say that the matrix obeys condition (C1) if
one has

P
(|ξij | ≥ t

)≤ C exp
(−tc

)
for some fixed C,c > 0 (independent of n) and all i, j .

If k ≥ 0, we say that two independent-entry matrix ensembles Mn = (ξij )1≤i,j≤n

and M ′
n = (ξ ′

ij )1≤i,j≤n have matching moments to order k if one has

E Re(ξij )
a Im(ξij )

b = E Re
(
ξ ′
ij

)a Im
(
ξ ′
ij

)b
,(1.7)

whenever 1 ≤ i, j ≤ n, a, b ≥ 0 and a + b ≤ k.

Our first main result is then as follows.

THEOREM 2 (Four moment theorem for complex matrices). Let Mn,M̃n be
independent-entry matrix ensembles with independent real and imaginary parts,
obeying condition (C1), such that Mn and M̃n both match moments with the com-
plex Gaussian matrix ensemble to third order, and match moments with each other
to fourth order. Let k ≥ 1 be a fixed integer, let z1, . . . , zk ∈ C be bounded (thus
|zi | ≤ C for all i = 1, . . . , k and some fixed C > 0), and let F :Ck → C be a
smooth function, which admits a decomposition of the form

F(w1, . . . ,wk) =
m∑

i=1

Fi,1(w1) · · ·Fi,k(wk)(1.8)
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for some fixed m and some smooth functions Fi,j :C → C for i = 1, . . . ,m and
j = 1, . . . , k supported on the disk {w : |w| ≤ C} obeying the derivative bounds5∣∣∇aFi,j (w)

∣∣≤ C(1.9)

for all 0 ≤ a ≤ 5, i = 1, . . . ,m, j = 1, . . . , k and w ∈ C, and some fixed C. Let
ρ

(k)
n , ρ̃

(k)
n be the correlation functions for Mn,M̃n, respectively. Then∫
Ck

F (w1, . . . ,wk)ρ
(k)
n (

√
nz1 + w1, . . . ,

√
nzk + wk)dw1 · · · dwk

=
∫
Ck

F (w1, . . . ,wk)ρ̃
(k)
n (

√
nz1 + w1, . . . ,

√
nzk + wk)dw1 · · · dwk

+ O
(
n−c)

for some absolute constant c > 0 (independent of k). Furthermore, the implicit
constant in the O(n−c) notation is uniform over all z1, . . . , zk in the bounded re-
gion {z : |z| ≤ C}.

REMARK 3. The regularity hypotheses on the test function F here are some-
what technical, but they are needed to obtain the uniform polynomial decay
O(n−c) in the conclusion, which is useful for several applications. Note that by
rescaling one could allow the bound C in (1.9) to be enlarged somewhat, to Cnc/2k ,
without impacting the conclusion [other than to degrade the O(n−c) error slightly
to O(n−c/2)]. If one is only seeking a qualitative error term of o(1), then by ap-
plying the Stone–Weierstrass theorem, one only needs F to be continuous and
compactly supported, instead of having a smooth factorization of the form (1.8);
see the proof of Corollary 7 below. Also, if F is smooth and compactly supported,
then by using a partial Fourier expansion one can again obtain a polynomial decay
rate O(n−c) (with the implied constant depending on the bounds on finitely many
derivatives of F ). It is possible to improve the value of c somewhat by adding
additional matching moment hypotheses, but then one also requires the derivative
bounds (1.9) for a larger range of exponents a; we will not quantify this variant of
Theorem 2 here. The requirement that Mn,M

′
n match the complex Gaussian en-

semble to third order can be removed if z1, . . . , zk stays a bounded distance away
from the origin, using an extremely recent result of Bourgade, Yau, and Yin [8];
see Remark 22.

Theorem 2 is motivated by the phenomenon, first observed in [55], that the
asymptotic local statistics of the spectrum of a random Hermitian matrix of Wigner
type typically depend only on the first four moments of the entries; formalizations

5See Section 3 for the definition of the a-fold gradient ∇aFi,j .
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of this phenomenon are known as four moment theorems. In particular, Corollary 7
is analogous6 to the four moment theorems in [55], Theorems 11 and 38.

REMARK 4. The hypothesis of independent real and imaginary parts is pri-
marily for reasons of notational convenience, and it is likely that this hypothesis
could be dropped from our results. Note that when Mn and M ′

n have independent
real and imaginary parts, the moment matching condition (1.7) simplifies to

E Re(ξij )
a = E Re

(
ξ ′
ij

)a
and

E Im(ξij )
b = E Im

(
ξ ′
ij

)b
for 1 ≤ i, j ≤ n and 0 ≤ a, b ≤ k.

It is also likely that the exponential decay condition in condition (C1) could be
replaced with a bound on a sufficiently high moment of the entries. We will how-
ever not pursue these refinements here. The vague convergence in the conclusion
is natural given that the ensemble Mn is permitted to be discrete (so that ρ

(k)
n could

be a discrete measure, rather than a continuous function). In analogy with the Her-
mitian theory (see, e.g., [56]), it is reasonable to conjecture that stronger modes of
convergence become available if some additional regularity hypotheses are placed
on the entries, but we will not pursue such matters here.

We now discuss some applications of Theorem 2. The first application concerns
the asymptotic behavior of the k-point correlation functions as n → ∞. In the case
when Mn is drawn from the complex Gaussian ensemble, these asymptotics have
been well understood since the work of Ginibre [26]. To recall these asymptotics,
we introduce the following functions.

DEFINITION 5 (Asymptotic kernel). For complex numbers z1, z2,w1,w2, de-
fine the kernel K∞,z1,z2(w1,w2) by the following rules:

(i) If z1 
= z2, then K∞,z1,z2(w1,w2) := 0.
(ii) If z1 = z2 and |z1| > 1, then K∞,z1,z2(w1,w2) := 0.

(iii) If z1 = z2 and |z1| < 1, then K∞,z1,z2(w1,w2) := 1
π
e−|w1|2/2−|w2|2/2+w1w̄2 .

6Thanks to more recent results by many authors [16, 20–22, 53, 56], these results are no longer the
sharpest results available in the Wigner setting, as the moment matching conditions have now largely
been removed, the exponential decay condition relaxed to a finite moment condition, and the bulk
results extended to the edge; see the discussion in [56] or the surveys [15, 28, 43, 49] for surveys for
more details. In view of these results, it is reasonable to conjecture the moment matching assumptions
in Theorem 2 or Corollary 7 may be relaxed; see Remark 22 for some very recent developments in
this direction.
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(iv) If z1 = z2 and |z1| = 1, then

K∞,z1,z2(w1,w2) := 1

π
e−|w1|2/2−|w2|2/2+w1w̄2

(
1

2
+ 1

2
erf
(−√

2(z1w̄2 + w1z̄2)
))

.

Here,

erf(z) := 2√
π

∫ z

0
e−t2

dt

is the usual error function, defined for all complex z, where the integral is over an
arbitrary contour from 0 to z. For complex numbers z1, . . . , zk,w1, . . . ,wk , define
the correlation function

ρ(k)∞,z1,...,zk
(w1, . . . ,wk) := det

(
K∞,zi ,zj

(wi,wj )
)
1≤i,j≤k.

In the model case when z1, . . . , zk all avoid the unit circle {z ∈ C : |z| = 1}, the
kernel simplifies to

K∞,zi ,zj
(wi,wj ) = 1zi=zj

1|zi |<1K∞(wi,wj ),

where

K∞(z,w) := 1

π
e−|z|2/2−|w|2/2+zw̄.

The kernel K∞ can also be interpreted as the reproducing kernel for the orthogonal
projection in L2(C) to (the closure of) the space of functions f (z) that become
holomorphic after multiplication by e|z|2/2, or equivalently to the closed span of
zke−|z|2/2 for k = 0,1, . . . .

LEMMA 6 (Kernel asymptotics). Let z1, . . . , zk,w1, . . . ,wk be fixed complex
numbers for some fixed k, and let Mn be drawn from the complex Gaussian ensem-
ble. Then we have7

ρ(k)
n (

√
nz1 + w1, . . . ,

√
nzk + wk) = ρ(k)∞,z1,...,zk

(w1, . . . ,wk) + o(1).(1.10)

If none of the z1, . . . , zk lie on the unit circle, then we may improve the error term
o(1) to O(exp(−δn)) for some fixed δ > 0.

Now suppose that z1, . . . , zk,w1, . . . ,wk are allowed to vary in n, but that
the z1, . . . ,w1, . . . ,wk remain bounded (i.e., |zi |, |wi | ≤ C for some fixed C and
all 1 ≤ i ≤ k) and the z1, . . . , zk stay bounded away from the unit circle (i.e.,
||zi | − 1| ≥ ε for some fixed ε > 0 and all 1 ≤ i ≤ k). Then one still has the asymp-
totic (1.10). In other words, the decay rate of the error term o(1) in (1.10) is uni-
form across all choices of z1, . . . , zk,w1, . . . ,wk in the ranges specified above.

7See Section 3 for the asymptotic notational conventions we will use in this paper.
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PROOF. This is a well-known asymptotic (see, e.g., [35, 37] or [7]). For sake
of completeness, we have written a proof of these standard facts at Appendix B of
the copy of this paper at arXiv:1206.1893v3. �

From this lemma, we conclude in particular that ρ
(k)∞,z1,...,zk

(w1, . . . ,wk) ≥ 0 for
all k, z1, . . . , zk,w1, . . . ,wk , which [when combined with (1.5)] yields the uniform
bound ∣∣K∞,z1,z2(w1,w2)

∣∣≤ 1

π

for all z1, z2,w1,w2 ∈ C. In particular, we have

0 ≤ ρ(k)∞,z1,...,zk
(w1, . . . ,wk) ≤ Ck(1.11)

for all w1, . . . ,wk ∈ C and some constant Ck depending only on k.
Using Theorem 2, we may extend the above asymptotics for complex Gaus-

sian matrices to more general ensembles (including some discrete ensembles), as
follows.

COROLLARY 7 (Universality for complex matrices). Let Mn be an indepen-
dent-entry matrix ensemble with independent real and imaginary parts, obeying
condition (C1), and which matches moments with the complex Gaussian matrix
ensemble to fourth order. Then for any fixed (i.e., independent of n), fixed k ≥ 1
and fixed z1, . . . , zk ∈ C, and any fixed continuous, compactly supported function
F :Ck →C, one has∫

Ck
F (w1, . . . ,wk)ρ

(k)
n (

√
nz1 + w1, . . . ,

√
nzk + wk)dw1 · · · dwk

=
∫
Ck

F (w1, . . . ,wk)ρ
(k)∞,z1,...,zk

(w1, . . . ,wk) dw1 · · · dwk + o(1).

In other words, the asymptotic (1.10) is valid in the vague topology for this ensem-
ble. If F is furthermore assumed to be smooth, then we may improve the o(1) error
term here to O(n−c) for some fixed c > 0.

PROOF. From Theorem 2 and Lemma 6, we obtain Corollary 7 in the case
when F admits a decomposition of the form given in Theorem 2 [and in this case
the o(1) error can be improved to O(n−c)]. The more general case of continuous,
compactly supported F can then be deduced by using the Stone–Weierstrass the-
orem to approximate a continuous F by an approximant F̃ of the form (1.8) [and
by using a further function of the form in Theorem 2 and (1.11) to upper bound
the error]. When F is smooth, one can replace the use of the Stone–Weierstrass
theorem by a more quantitative partial Fourier series expansion of F (extended
periodically in a suitable fashion), followed by a multiplication by a smooth cutoff
function, taking advantage of the rapid decrease of the Fourier coefficients in the
smooth case; we omit the standard details. �

http://arxiv.org/abs/arXiv:1206.1893v3
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REMARK 8. Note that in contrast to the situation in Theorem 2, the parameters
z1, . . . , zk in Corollary 7 are required to be fixed in n, as opposed to being allowed
to vary in n. Related to this, the error term o(1) in Corollary 7 is not asserted to
be uniform in the choice of z1, . . . , zk , in contrast to the uniformity in Theorem 2.
Indeed, given that the limiting correlation function ρ

(k)∞,z1,...,zk
behaves discontin-

uously in z1, . . . , zk whenever two of the zi collide, or when one of the zi crosses
the unit circle, one would not expect such uniformity in Corollary 7. Thus, while
Corollary 7 describes more explicitly the limiting behavior (in certain regimes) of
the correlation functions ρ(k), we regard Theorem 2 as the more precise statement
regarding the asymptotics of these functions.

In the Hermitian case, four moment theorems can be used to extend various facts
about the asymptotic spectral distribution of special matrix ensembles (such as the
Gaussian unitary ensemble) to other matrix ensembles which obey appropriate mo-
ment matching conditions. Similarly, by using Theorem 2, one may extend some
facts about eigenvalues of complex Gaussian matrices can now be extended to i.i.d.
matrix models that match the complex Gaussian ensemble to fourth order, although
in some “global” cases the extension is only partial in nature due to the “local” na-
ture of the four moment theorem. Rather than provide an exhaustive list of such
applications, we will present just one representative such application, namely that
of (partially) extending the following central limit theorem of Rider [39].

THEOREM 9 (Central limit theorem, Gaussian case). Let Mn be drawn from
the complex Gaussian ensemble. Let r > 0 be a real number (depending on n)
such that 1/r, r/n1/2 = o(1). Let z0 be a complex number (also depending on n)
such that |z0| ≤ (1 − ε)

√
n for some fixed ε > 0. Let NB(z0,r) be the number of

eigenvalues of Mn in the ball B(z0, r) := {z ∈ C : |z − z0| < r}. Then we have

NB(z0,r) − r2

r1/2π−1/4 → N(0,1)R

in the sense of distributions. In fact, we have the slightly stronger statement that

E
(

NB(z0,r) − r2

r1/2π−1/4

)k

→ EN(0,1)k
R

(1.12)

for all fixed natural numbers k ≥ 0.

PROOF. From the general Costin–Lebowitz central limit theorem for determi-
nantal point processes [12, 46, 47], we know that

NB(z0,r) − ENB(z0,r)

(VarNB(z0,r))
1/2 → N(0,1)R
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provided that VarNB(z0,r) → ∞; indeed, an inspection of the proof in [46] gives
the slightly stronger assertion that

E
(

NB(z0,r) − ENB(z0,r)

(VarNB(z0,r))
1/2

)k

→ EN(0,1)k
R

for any fixed k ≥ 0. Thus, it will suffice to establish the asymptotics

ENB(z0,r) = (
1 + o(1)

)
r2

and

VarNB(z0,r) = (
1 + o(1)

)
π−1/2r.

Using (1.1), (1.2), one can write the left-hand sides here as∫
B(z0,r)

Kn(z, z) dz

and ∫
B(z0,r)

Kn(z, z) dz −
∫
B(z0,r)

∫
B(z0,r)

∣∣Kn(z,w)
∣∣2 dzdw,

respectively. By Lemma 6, the former expression converges to
∫
B(z0,r)

1
π

dz = r2.
Lemma 6 also reveals that the second expression is asymptotically independent
of z0, and so one may without loss of generality take z0 = 0. But then the re-
quired asymptotic follows from [39], Theorem 1.6 (after allowing for the different
normalization for Mn in that paper). �

Using Theorem 2, we may extend this result to more general ensembles, at least
in the small radius case.

COROLLARY 10 (Central limit theorem, general case). Let Mn be an indepen-
dent-entry matrix ensemble with independent real and imaginary parts, obeying
condition (C1), such that Mn matches moments with the complex Gaussian matrix
ensemble to fourth order. Then the conclusion of Theorem 9 for Mn holds provided
that one has the additional assumption r ≤ no(1).

We prove this result in Section 6.3. The restriction to small radii r ≤ no(1) ap-
pears to be a largely technical restriction, relating to the need to take arbitrarily
high moments in order to establish a central limit theorem; see, for instance, Fig-
ure 1 for some numerical evidence that the central limit theorem should in fact hold
for larger radii as well (and for real matrices as well as complex ones). It seems
likely that one can also obtain extensions of many of the other results in [39] (or
related papers, such as [32, 38]) on Gaussian fluctuations from the circular law
from the complex Gaussian ensemble to other ensembles that match the complex
Gaussian ensemble to a sufficiently large number of moments, but we will not pur-
sue such results here. We remark that for macroscopic statistics 1

n

∑n
i=1 F(λi/

√
n)

with F fixed and analytic, such extensions (without the need for matching mo-
ments beyond the second moment) were already established in [40].
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FIG. 1. The cumulative distribution function for the number of eigenvalues in the disk B(0,
√

n/3)

of real Gaussian and real Bernoulli matrices of size 10,000 × 10,000, after normalizing the mean by
n/9 and variance by

√
n. Thanks to Ke Wang for the data and figure.

1.1. The real case and applications. There is a (more complicated) ana-
logue of Theorem 2 in which the complex entries are replaced by real ones.
This has the effect of forcing the spectrum λ1(Mn), . . . , λn(Mn) to split into
some number λ1,R(Mn), . . . , λNR[Mn],R(Mn) of real eigenvalues, together with
some number λ1,C+(Mn), . . . , λNC+[Mn],C+(Mn) of complex eigenvalues in the
upper half-plane C+ := {z ∈ C : Im(z) > 0}, as well as their complex conjugates
λ1,C+(Mn), . . . , λb,C+(Mn), where NR[Mn],NC+[Mn] denote the number of real
eigenvalues of Mn and the number of eigenvalues of Mn in the upper half-plane,
respectively (so in particular, NR[Mn]+2NC+[Mn] = n almost surely). Because of
this additional structure of the eigenvalues, it is no longer convenient to consider
the correlation functions ρ

(k)
n :Ck → R

+ as defined in (1.1), since they become
singular when one or more of the variables is real. Instead, it is more convenient
to work with the correlation functions ρ

(k,l)
n :Rk ×C

l+ → R
+, defined for k, l ≥ 0

by the formula∫
Rk

∫
C

l+
F(x1, . . . , xk, z1, . . . , zl)

× ρ(k,l)
n (x1, . . . , xk, z1, . . . , zl) dx1 · · · dxk dz1 · · · dzl

(1.13)
= E

∑
1≤i1<···<ik≤NR[Mn]

∑
1≤j1<···<jl≤NC+[Mn]

F
(
λi1,R(Mn), . . . , λik,R(Mn),

λj1,C+(Mn), . . . , λjl,C+(Mn)
)
.
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Again, the exact ordering of the eigenvalues here is unimportant. When the law
of Mn has a continuous density with respect to Lebesgue measure on real matri-
ces (which is, e.g., the case with the real Gaussian ensemble), one can interpret

ρ
(k,l)
n (x1, . . . , xk, z1, . . . , zl) for distinct x1, . . . , xk ∈ R and z1, . . . , zl ∈ C+ as the

unique real number such that, as ε → 0, the probability of simultaneously having
an eigenvalue of Mn in each of the intervals (xi − ε, xi + ε) for i = 1, . . . , k and in
each of the disks B(zj , ε) for j = 1, . . . , l is equal to(

1 + o(1)
)
ρ(k,l)

n (x1, . . . , xk, z1, . . . , zl)(2ε)k
(
πε2)l

in the limit as ε → 0.
Define C− := {z ∈ C : Im(z) < 0} and C∗ := C+ ∪ C− = C \ R. We extend

the correlation functions ρ
(k,l)
n from R

k × C
l+ to R

k × C
l∗ by requiring that the

functions be invariant with respect to conjugations of any of the l coefficients of Cl .
We then extend ρ

(k,l)
n by zero from R

k ×C
l∗ to R

k ×C
l .

When Mn is given by the real Gaussian ensemble, the correlation functions
ρ

(k,l)
n were computed by a variety of methods, for both odd and even n, in [1, 6, 7,

23, 30, 44, 45] (with the (k, l) = (1,0), (0,1) cases worked out previously in [13,
14, 34], building in turn on the foundational work of Ginibre [26]). The precise
formulae for these correlation functions are somewhat complicated and involve
Pfaffians of a certain 2 × 2 matrix kernel; see Appendix B for the formulae when
n is even, and [23, 44] for the case when n is odd. To avoid some technical issues,
we shall restrict attention to the case when n is even, although it is virtually certain
that the results here should also extend to the odd n case.

For technical reasons, we will need the following variant of (1.6).

LEMMA 11 (Uniform bound on correlation functions). Let k, l ≥ 0 be fixed
natural numbers, let n be even, and let Mn be drawn from the real Gaussian en-
semble. Then for all x1, . . . , xk ∈ R and z1, . . . , zl ≤C one has

0 ≤ ρ(k,l)
n (x1, . . . , xk, z1, . . . , zl) ≤ Ck,l

for some fixed Ck,l depending only on k, l.

This lemma follows fairly easily from the computations in [7]; we give the de-
tails in Appendix B. We will need this lemma in order to control the event of having
two real eigenvalues that are very close to each other, or a complex eigenvalue very
close to the real axis, as in those cases, one is close to a transition in which two
real eigenvalues become complex or vice versa, creating a potential instability in

the correlation functions ρ
(k,l)
n . One can in fact establish stronger level repulsion

estimates which provide some decay on ρ
(k,l)
n (x1, . . . , xk, z1, . . . , zl) as two of the

x1, . . . , xk, z1, . . . , zl get close to each other, or as one of the zi gets close to the
real axis, but we will not need such estimates here.

We then have the following analogue of Theorem 2, which is the second main
result of this paper:
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THEOREM 12 (Four moment theorem for real matrices). Let Mn,M̃n be
independent-entry matrix ensembles with real coefficients, obeying condition (C1),
such that Mn and M̃n both match moments with the real Gaussian matrix ensemble
to fourth order. Let k, l ≥ 0 be fixed integers, and let x1, . . . , xk and z1, . . . , zl ∈ C

be bounded. Assume that n is even. Let F :Rk × C
l → C be a smooth function

which admits a decomposition of the form

F(y1, . . . , yk,w1, . . . ,wl) =
m∑

i=1

Gi,1(y1) · · ·Gi,k(yk)Fi,1(w1) · · ·Fi,l(wl)

for some fixed m and some smooth functions Gi,p :R → C and Fi,j :C → C

for i = 1, . . . ,m, p = 1, . . . , k and j = 1, . . . , l supported on the interval {y ∈
R : |y| ≤ C} and disk {w ∈ C : |w| ≤ C}, respectively, obeying the derivative
bounds ∣∣∇aGi,p(y)

∣∣, ∣∣∇aFi,j (w)
∣∣≤ C

for all 0 ≤ a ≤ 5, i = 1, . . . ,m, p = 1, . . . , k, j = 1, . . . , l, y ∈ R, and w ∈ C, and
some fixed C. Let ρ

(k,l)
n , ρ̃

(k,l)
n be the correlation functions for Mn,M̃n, respec-

tively. Then∫
Rk

∫
Cl

F (y1, . . . , yk,w1, . . . ,wl)

× ρ(k,l)
n (

√
nx1 + y1, . . . ,

√
nxk + yk,√

nz1 + w1, . . . ,
√

nzl + wl) dw1 · · · dwl dy1 · · · dyk

=
∫
Rk

∫
Cl

F (y1, . . . , yk,w1, . . . ,wl)

× ρ̃(k,l)
n (

√
nx1 + y1, . . . ,

√
nxk + yk,√

nz1 + w1, . . . ,
√

nzl + wl) dw1 · · · dwl dy1 · · · dyk

+ O
(
n−c)

for some absolute constant c > 0 (independent of k, l). Furthermore, the implicit
constant in the O(n−c) notation is uniform over all x1, . . . , xk and z1, . . . , zl in the
bounded regions {x ∈ R : |x| ≤ C} and {z ∈C : |z| ≤ C}, respectively.

As will be seen in Section 6.2, the proof of Theorem 12 proceeds along the same
lines as Theorem 2, but with some additional arguments involving Lemma 11 re-
quired to prevent pairs of eigenvalues from escaping or entering the real axis due
to collisions. It is because of these additional arguments that matching to fourth
order, rather than third order, is required. It is, however, expected that the moment
conditions should be relaxed; see, for instance, Figures 2 and 3 for the close resem-
blance in spectral statistics between real Gaussian and Bernoulli matrices, which
only match to third order rather than to fourth order.



UNIVERSALITY FOR NON-HERMITIAN MATRICES 795

FIG. 2. The spectrum of a random real Gaussian 10,000 × 10,000 matrix, with additional detail
near the origin to show the concentration on the real axis. Thanks to Ke Wang for the data and figure.

REMARK 13. In [44], some explicit formulae for the correlation functions of
real Gaussian matrices in the case of odd n were given, while in [23] a relationship
between the correlation functions for odd and even n is established. In principle,
one could use either of these two results to extend Lemma 11 to the odd n case.
Once the odd case of Lemma 11 is obtained, Theorem 12 extends automatically to
this case. Due to space limitations, we do not attempt to execute this calculation
here.

We now turn to applications of Theorem 12. In the complex case, the asymp-
totics for complex Gaussian matrices given in Lemma 6 could be extended to other
independent-entry matrices using Theorem 2, yielding Corollary 7. We now de-

FIG. 3. The spectrum of a random real Bernoulli 10,000 × 10,000 matrix, with additional detail
near the origin. Thanks to Ke Wang for the data and figure.
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velop some analogous results in the real Gaussian case. We first recall the follow-
ing result of Borodin and Sinclair [7].

LEMMA 14 (Kernel asymptotics, real case). Let k, l ≥ 0 be fixed natural num-
bers, and let z be a fixed complex number. Assume either that k = 0, or that z is
real. Then there is a function ρ

(k,l)∞,z :Rk ×C
l →R

+ with the property that one has
the pointwise convergence

ρ(k,l)
n (

√
nz + y1, . . . ,

√
nz + yk,

√
nz + w1, . . . ,

√
nz + wl)

→ ρ(k,l)∞,z (y1, . . . , yk,w1, . . . ,wl)

as n → ∞, provided that Mn is drawn from the real Gaussian ensemble and n is
restricted to be even.

PROOF. See [6], Section 7, or [7], Section 8. The limit ρ
(k,l)∞,z is explicitly com-

puted in these references, although when z is real the limit is quite complicated,
being given in terms of a Pfaffian of a moderately complicated matrix kernel in-
volving the error function erf. However, when z is strictly complex the limit is

the same as in the complex Gaussian case, thus ρ
(0,l)∞,z = ρ

(l)∞,z,...,z; see [7] for fur-
ther details. It is likely that the same asymptotic also holds for odd n, by using
the explicit formulae in [44] or the relation between the odd and even n correla-
tion functions given in [23]; if the restriction to even n is similarly dropped from
Lemma 11, then Corollary 15 below can be extended to the odd n case. However,
we will not pursue this matter here. �

We can then obtain the following universality theorem for the correlation func-
tions of real matrices.

COROLLARY 15 (Universality for real matrices). Let Mn be an independent-
entry matrix ensemble with real coefficients obeying condition (C1), and which
matches moments with the real Gaussian matrix ensemble to fourth order. Assume
n is even. Let k, l ≥ 0 be fixed natural numbers, and let z be a fixed complex
number. Assume either that k = 0, or that z is real. Let F :Rk × C

l → R
+ be a

fixed continuous, compactly supported function. Then∫
Rk

∫
Cl∗

F(y1, . . . , yk,w1, . . . ,wl)

× ρ(k,l)
n (

√
nz + y1, . . . ,

√
nz + yk,√

nz + w1, . . . ,
√

nz + wl) dw1 · · · dwl dy1 · · · dyk

→
∫
Rk

∫
Cl∗

F(y1, . . . , yk,w1, . . . ,wl)

× ρ(k,l)∞,z (y1, . . . , yk,w1, . . . ,wl) dw1 · · · dwl dy1 · · · dyk,

where ρ
(k,l)∞,x1,...,xk,z1,...,zl

is as in Lemma 14.
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PROOF. In the case when Mn is drawn from the real Gaussian ensemble, this
follows from Lemmas 14 and 11, and the dominated convergence theorem. The ex-
tension to more general independent-entry matrices then follows from Theorem 12
by repeating the arguments used to prove Corollary 7. �

As in the complex case, Theorem 12 can be used to (partially) extend various-
known facts about the distribution of the eigenvalues of a real Gaussian matrices to
other real independent-entry matrices. Rather than giving an exhaustive list of such
extensions, we illustrate this with two sample applications. Let NR(Mn) denote the
number of real zeroes of a random matrix Mn. Thanks to earlier results [14, 24],
we have the following asymptotics.

THEOREM 16 (Real eigenvalues of a real Gaussian matrix). Let Mn be drawn
from the real Gaussian ensemble. Then

ENR(Mn) =
√

2n

π
+ O(1)

and

VarNR(Mn) = (2 − √
2)

√
2n

π
+ o(

√
n).

PROOF. The expectation bound was established in [14], and the variance
bound in [24]. In fact, more precise asymptotics are available for both the expec-
tation and the variance; we refer the reader to these two papers [14, 24] for further
details. �

By using the above universality results, we may partially extend this result to
more general ensembles:

COROLLARY 17 (Real eigenvalues of a real matrix). Let Mn be an indepen-
dent-entry matrix ensemble with real coefficients obeying condition (C1), and
which matches moments with the real Gaussian matrix ensemble to fourth order.
Assume n is even. Then

ENR(Mn) =
√

2n

π
+ O

(
n1/2−c)

and

VarNR(Mn) = O
(
n1−c)

for some fixed c > 0. In particular, from Chebyshev’s inequality, we have

NR(Mn) =
√

2n

π
+ O

(
n1/2−c′)

with probability 1 − O(n−c′
), for some fixed c′ > 0.
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FIG. 4. The empirical average number of real eigenvalues of 200 samples of real Gaussian and

real Bernoulli matrices of various sizes, plotted against
√

2n
π . Thanks to Ke Wang for the data and

figure.

We prove this result in Section 6.3. See Figure 4 for a numerical illustration of
this theorem.

As another quick application, we can show for many ensembles that most of the
eigenvalues are simple.

COROLLARY 18 (Most eigenvalues simple). Let Mn be an independent matrix
ensemble obeying condition (C1), and which matches moments with the real or
complex Gaussian matrix to fourth order. In the real case, assume n is even. Then
with probability 1 − O(n−c), at most O(n1−c) of the complex eigenvalues, and
O(n1/2−c) of the real eigenvalues, are repeated, for some fixed c > 0.

We establish this result in Section 6.3 also. It should in fact be the case that with
overwhelming probability, none of the eigenvalues are repeated, but this seems to
be beyond the reach of our methods.

2. Key ideas and a sketch of the proof. The proof of the four moment theo-
rem for (Hermitian) Wigner ensembles in [55] is based on the Lindeberg exchange
strategy, in which one shows that various statistics of ensembles are stable with
respect to the swapping of one or two of the coefficients of that ensemble. The
original argument in [55] was based on a swapping analysis of individual eigen-
values λi(Mn), which was somewhat complicated technically; but in [21, 31] it was
observed that one could work instead with the simpler swapping analysis of resol-
vents8 (or Green’s functions) R(z) := (Wn − z)−1, particularly if one was mainly

8Here and in the sequel, we adopt the abbreviation z for the scalar multiple zI of the identity
matrix.
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focused on obtaining a four moment theorem for correlation functions, rather than
for individual eigenvalues (which in any event are not natural to work with in the
non-Hermitian case). In all of these arguments for Wigner matrices, a key role was
played by the local semicircle law, which could in turn be proven by exploiting
concentration results for the Stieltjes transform s(z) := 1

n
trace(Wn − z)−1 of a

Wigner matrix. Again, we refer the reader to the preceding surveys for details.
Our strategy of proof of Theorem 2 and Theorem 12 is broadly analogous to

that in the Hermitian case, in that it relies on a four moment theorem (Theorem 25
below) and on a local circular law (Theorem 20 below). However, this is highly
nontrivial to execute this plan. We are going to need a number of new ideas, coming
from different fields of mathematics, and a fair amount of delicate analysis using
advanced sharp concentration tools.

To start, there is an essential difference between handling non-Hermitian and
Hermitian matrices, namely that the spectrum of a non-Hermitian matrix is highly
unstable (see [3] for a discussion). Due to this difficulty, even the (global) circu-
lar law, which is the non-Hermitian analogue of Wigner semi-circle law, required
several decades of effort to prove, and was solved completely only recently (see
the surveys [5, 52] for further discussion). For this reason, it is no longer practi-
cal to make the resolvent (Mn − z)−1 [and the closely related Stieltjes transform
1
n

trace(Mn − z)−1] the principal object of study. Instead, following the founda-
tional works of Girko [27] and Brown [10], we shall focus on the log-determinant

log
∣∣det(Mn − z)

∣∣
for a complex number parameter z.

The log-determinant is connected to the eigenvalues of the i.i.d. matrix Mn via
the obvious identity

log
∣∣det(Mn − z)

∣∣= n∑
i=1

log
∣∣λi(Mn) − z

∣∣.(2.1)

In order to restrict to a local region, our idea is to use Jensen’s formula. Suppose
that f is an analytic function in a region in the complex plane which contains the
closed disk D of radius r about the origin, a1, a2, . . . , an are the zeros of f in the
interior of D (counting multiplicity), and f (0) 
= 0, then

log
∣∣f (0)

∣∣= k∑
i=1

log
|ai |
r

+ 1

2π

∫ 2π

0
log
∣∣f (re√−1θ )∣∣dθ.

Applied Jensen’s formula to (2.1), we obtain

log
∣∣det(Mn − z0)

∣∣= − ∑
1≤i≤n : λi(Mn)∈B(z0,r)

log
r

|λi(Mn) − z0|
(2.2)

+ 1

2π

∫ 2π

0
log
∣∣det

(
Mn − z0 − re

√−1θ )∣∣dθ
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for any ball B(z0, r) (with the convention that both sides are equal to −∞ when
z0 is an eigenvalue of Mn).

From (2.2), we see (in principle, at least) that information on the (joint) dis-
tribution of the log-determinants log |det(Mn − z)| for various values of z should
lead to information on the eigenvalues of Mn, and in particular on the k-point cor-
relation functions ρ

(k)
n of Mn. As Jensen formula is a classical tool in complex

analysis, this step looks quite robust and would potentially find applications in the
study of local properties of many other random processes.

On the other hand, we can also write the log-determinant in terms of the Her-
mitian 2n × 2n random matrix

Wn,z := 1√
n

(
0 Mn − z

(Mn − z)∗ 0

)
(2.3)

via the easily verified identity

log
∣∣det(Mn − z)

∣∣= 1
2 log

∣∣detWn,z

∣∣+ 1
2n logn.(2.4)

This observation is known as the Girko Hermitization trick, and in principle re-
duces the spectral theory of non-Hermitian matrices to the spectral theory of Her-
mitian matrices.

The log-determinant of Wn,z is in turn related to other spectral information
of Wn,z, such as the Stieltjes transform9

sWn,z(E + √−1η) := 1

2n
trace

(
(Wn,z − E − √−1η)−1)

of Wn,z, for instance, via the identity

log
∣∣detWn,z

∣∣= log
∣∣det(Wn,z − √−1T )

∣∣− 2n Im
∫ T

0
sWn,z(

√−1η)dη,(2.5)

valid for arbitrary T > 0. Thus, in principle at least, information on the distribution
of the Stieltjes transform sWn,z will imply information on the log-determinant of
Wn,z, and hence on Mn − z, which in turn gives information on the eigenvalue
distribution of Mn. This is the route taken, for instance, to establish the circular
law for i.i.d. matrices; see [5, 52] for further discussion. There is a nontrivial issue
with the possible divergence or instability of the integral in (2.5) near η = 0, but it
is now well understood how to control this issue via a regularization or truncation
of this integral, provided that one has adequate bounds on the least singular value
of Wn,z; again, see [5, 52] for further discussion. Fortunately, we and many other
researchers have proved such bounds in previous papers, using methods from a
seemingly unrelated area of Additive Combinatorics (see Proposition 27 below).

9We use
√−1 to denote the standard imaginary unit, in order to free up the symbol i to be an index

of summation.
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There is a significant technical issue arising from the fact that formulae such as
(2.5) or (2.2) require one to control the value of various random functions, such as
log-determinants or Stieltjes transforms, for an uncountable number of choices of
parameters such as z and η, so that one can no longer directly use union bound to
control exceptional events when the expected control on these quantities fails. To
overcome this, we appeal to the Monte Carlo method, frequently used in combi-
natorics and theoretical compute science. This method enables us to use random
sampling arguments to replace many of these integral expressions by discrete, ran-
dom, approximations, to which the union bound can be safely applied (see Sec-
tion 5).

The application of the Monte Carlo method (Lemma 36), on the other hand, is
far from straightforward, since in certain situations (see Section 6), the variance is
too high and so the bound implied by Lemma 36 becomes rather weak. We handle
this situation by a variance reduction argument, exploiting analytical properties of
the relevant functions. This step also looks robust and may be useful for practition-
ers of the Monte Carlo method in other fields.

After these steps, the rest of the proof essentially boils down to error control,
in form of a sharp concentration inequality (Theorem 33), which will be done by
analyzing a delicate (and rather unstable) random process, using recent martingale
inequalities and various ad hoc ideas.

REMARK 19. For Hermitian ensembles, swapping methods (such as the four
moment theorem) are not the only way to obtain universality results; there is also
an important class of methods (such as the local relaxation flow method) that are
based on analysing the effect of a Dyson-type Brownian motion on the spectrum of
a random matrix ensemble; see, for example, [15]. However, there is a significant
obstruction to adapting such methods to the non-Hermitian setting, because the
equations of the analogue to Dyson Brownian motion either10 couple together the
eigenvectors and the eigenvalues in a complicated fashion, or need to be phrased
in terms of a triangular form of the matrix, rather than a diagonal one (cf. [35]).
We were unable to resolve these difficulties in the non-Hermitian case, and rely
solely on swapping methods instead; unfortunately, this then requires us to place
moment matching hypotheses on our matrix ensembles. It seems of interest to
develop further tools that are able to remove these moment matching hypotheses
in non-Hermitian settings.

10One can explain this by observing that in the Hermitian case, the eigenvalues determine the matrix
up to a Un(C) symmetry, but in the non-Hermitian case the symmetry group is now the much larger
group GLn(C). Dyson Brownian motion is Un(C)-invariant, but is not GLn(C)-invariant, which is
why this motion can be reduced to dynamics purely on eigenvalues in the Hermitian case but not in
the non-Hermitian one.
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2.1. Key propositions. The proof of Theorem 2 relies on two key facts, both
of which may be of independent interest. The first is a “local circular law.” Given
a subset 
 of the complex plane, let

N
 = N
[Mn] := ∣∣{1 ≤ i ≤ n :λi(Mn) ∈ 

}∣∣

denote the number of eigenvalues of Mn in 
.

THEOREM 20 (Local circular law). Let Mn = (ξij )1≤i,j≤n be an independent-
entry matrix with independent real and imaginary parts obeying condition (C1),
and which matches either the real or complex Gaussian matrix to third order. Then
for any fixed C > 0, one has with overwhelming probability11 that

NB(z0,r) =
∫
B(z0,r)

1

π
1|z|≤√

n dz + O
(
no(1)r

)
(2.6)

uniformly for all z0 ∈ B(0,C
√

n) and all r ≥ 1. In particular, we have

NB(z0,r) ≤ no(1)r2(2.7)

with overwhelming probability, uniformly for all z0 ∈ B(0,C
√

n) and all r ≥ 1.

REMARK 21. The bound (2.6) is probably not best possible, even if one ig-
nores the no(1) term. In the complex Gaussian case, it has been shown [39] that the
variance of NB(z0,r) is actually of order r , suggesting a fluctuation of O(no(1)r1/2)

rather than O(no(1)r); the closely related results in Theorem 9 and Corollary 10
also support this prediction. Also notice that we assume only three matching mo-
ments in this theorem, so the statement applies, for instance, to random sign matri-
ces (which match the real Gaussian ensemble to third order). For our applications
to Theorems 2, 12, we do not need the full strength (2.6) of the above theorem; the
weaker bound (2.7) will suffice.

REMARK 22. Very recently, Bourgade, Yau and Yin [8] have established a
variant of Theorem 20 (and also Theorem 25) which does not require matching
to third order, but with the disk B(z0, r) assumed to lie a distance at least ε

√
n

from the circle {|z| = √
n} for some fixed ε > 0. By using the main result of [8]

as a substitute for Theorem 20 (and also Theorem 25), we may similarly remove
the third-order matching hypotheses from Theorem 2, at least in the case when
z1, . . . , zk stay a distance ε

√
n from the circle {|z| = √

n}. Since the initial release
of this paper, an alternate proof of Theorem 20 (in the case when one matches
the complex Gaussian ensemble to third order, as opposed to the real Gaussian
ensemble) which works both in the bulk and in the edge was given in [9].

11See Section 3 for a definition of this term, and for the definition of asymptotic notation such as
o(1) and .
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The second key fact is a “four moment theorem” for the log-determinants
log |det(Mn − z)|:

THEOREM 23 (Four moment theorem for determinants). Let c0 > 0 be a suffi-
ciently small absolute constant. Let Mn,M

′
n be two independent random matrices

with independent real and imaginary parts obeying condition (C1), which match
each other to fourth order, and which both match the real Gaussian matrix (or both
match the complex Gaussian matrix) to third order. Let 1 ≤ k ≤ nc0 , let C > 0 be
fixed, and let z1, . . . , zk ∈ B(0,C

√
n). Let G :Rk →C be a smooth function obey-

ing the derivative bounds ∣∣∇jG(x1, . . . , xk)
∣∣ nc0

for all j = 0, . . . ,5 and x1, . . . , xk ∈ R, where ∇ denotes the gradient in R
k . Then

we have

EG
(
log
∣∣det(Mn − z1)

∣∣, . . . , log
∣∣det(Mn − zk)

∣∣)
= EG

(
log
∣∣det

(
M ′

n − z1
)∣∣, . . . , log

∣∣det
(
M ′

n − zk

)∣∣)+ O
(
n−c0

)
with the convention that the expression G(log |det(Mn − z1)|, . . . , log |det(Mn −
zk)|) vanishes if one of the z1, . . . , zk is an eigenvalue of Mn, and similarly for the
expression G(log |det(M ′

n − z1)|, . . . , log |det(M ′
n − zk)|).

The proof of Theorem 2 follows fairly easily from Theorem 20 [in fact, we will
only need the weaker conclusion (2.7)] and Theorem 23 [and (1.10)], using the
well-known connection between spectral statistics and the log-determinant which
goes back to the work of Girko [27] and Brown [10], and which was mentioned
previously in this Introduction; we give this implication in Section 6. A slightly
more sophisticated version of the same argument also works to give Theorem 12;
we give this implication in Section 6.2.

It remains to establish the local circular law (Theorem 20) and the four mo-
ment theorem for log-determinants (Theorem 23). The key lemma in the estab-
lishment of the local circular law is the following concentration result for the log-
determinant.

DEFINITION 24 (Concentration). Let n > 1 be a large parameter, and let X

be a real or complex random variable depending on n. We say that X concentrates
around M for some deterministic scalar M (depending on n) if one has

X = M + O
(
no(1))

with overwhelming probability. Equivalently, for every ε,A > 0 independent of n,
one has X = M + O(nε) outside of an event of probability O(n−A). We say that
X concentrates if it concentrates around some M .
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THEOREM 25 (Concentration bound on log-determinant). Let Mn =
(ξij )1≤i,j≤n be an independent-entry matrix obeying condition (C1) and matching
the real or complex Gaussian ensemble to third order. Then for any fixed C > 0,
and any z0 ∈ B(0,C), log |det(Mn − z0

√
n)| concentrates around 1

2n logn +
1
2n(|z0|2 − 1) for |z0| ≤ 1 and around 1

2n logn + n log |z0| for |z0| ≥ 1, uniformly
in z0.

REMARK 26. The reason we require only three moments in this theorem in-
stead of four (as in the previous theorem) is that in this theorem the error in Defi-
nition 24 is allowed to be a positive power of n while in the previous one it needs
to be a negative power. We remark that this theorem is consistent with (2.1) and
the circular law; indeed, the quantity

∫
B(0,1)

1
π

log |z − z0|dz can be computed

to be equal to 1
2(|z0|2 − 1) when |z0| ≤ 1 and log |z0| when |z0| ≥ 1. As in Re-

mark 22, a variant of Theorem 25 without the third order hypothesis, but requiring
z0 bounded away from the circle {|z| = 1}, was recently given in [8].

We give the derivation of Theorem 20 from Theorem 25 in Section 5. The main
tools are Jensen’s formula (2.2) and a random sampling argument to approximate
the integral in (2.2) by a Monte Carlo type sum, which can then be estimated by
Theorem 25.

It remains to establish Theorem 23 and Theorem 25. For both of these theorems,
we will work with the Hermitian matrix Wn,z defined in (2.3), taking advantage of
the identity (2.4). In order to manipulate quantities such as the log-determinant
of Wn,z efficiently, we will need some basic estimates on the spectrum of this
operator (as well as on related objects, such as resolvent coefficients). We first
need a lower bound on the least singular value that is already in the literature.

PROPOSITION 27 (Least singular value). Let Mn be an independent-entry ma-
trix ensemble with independent real and imaginary parts, obeying condition (C1),
and let z0 ∈ B(0,C

√
n) for some fixed C > 0. Then with overwhelming probabil-

ity, one has

inf
1≤i≤n

∣∣λi(Wn,z)
∣∣≥ n− logn.

Furthermore, for any fixed c0 > 0 one has

P
(

inf
1≤i≤n

∣∣λi(Wn,z)
∣∣≤ n−1/2−c0

)
 n−c0/2.

The bounds in the tail probability are uniform in z0.

PROOF. Note from (2.3) that inf1≤i≤n |λi(Wn,z)| is the least singular value of
1√
n
(Mn − z). The first bound then follows from [51], Theorem 2.5 (and can also

be deduced from the second bound). The lower bound n− logn can be improved to



UNIVERSALITY FOR NON-HERMITIAN MATRICES 805

any bound decaying faster than a polynomial, but for our applications any lower
bound of the form exp(−no(1)) will suffice. The second bound follows from [54],
Theorem 3.2 (and can also be essentially derived from the results in [41], after
adapting those results to the case of random matrices whose entries are uncentered
[i.e., can have nonzero mean]). We remark that in the z0 case, significantly sharper
bounds can be obtained; see [41] for details. �

REMARK 28. The proof of this bound relies heavily on the so-called inverse
Littlewood–Offord theory introduced by the authors in [59], which was motivated
by Additive Combinatorics (see [50], Chapter 7), a seemingly unrelated area. In-
terestingly, this is, at this point, the only way to obtain good lower bound on the
least singular values of random matrices when the ensemble is discrete (see also
[41, 42, 52] for more results and discussion).

Next, we establish some bounds on the counting function

NI := ∣∣{1 ≤ i ≤ n :λi(Wn,z) ∈ I
}∣∣

and on coefficients R(
√−1η)ij of the resolvents R(

√−1η) := (Wn,z − √−1η)−1

on the imaginary axis.

PROPOSITION 29 (Crude upper bound on NI ). Let Mn be an independent-
entry matrix ensemble with independent real and imaginary parts, obeying condi-
tion (C1). Let C > 0 be fixed, and let z0 ∈ B(0,C

√
n). Then with overwhelming

probability, one has

NI  no(1)(1 + n|I |)
for all intervals I . The bounds in the tail probability [and in the o(1) exponent]
are uniform in z0.

REMARK 30. It is likely that one can strengthen Proposition 29 to a “local
distorted quarter-circular law” that gives more accurate upper and lower bounds
on NI , analogous to the local semicircular law from [17–19] (or, for that matter,
the local circular law given by Theorem 20). However, we will not need such
improvements here.

PROPOSITION 31 (Resolvent bounds). Let Mn be an independent-entry ma-
trix ensemble with independent real and imaginary parts, obeying condition (C1).
Let C > 0 be fixed, and let z0 ∈ B(0,C

√
n). Then with overwhelming probability,

one has ∣∣R(
√−1η)ij

∣∣ no(1)

(
1 + 1

nη

)
for all η > 0 and all 1 ≤ i, j ≤ n.
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REMARK 32. One can also establish similar bounds on the resolvent (as well
as closely related delocalization bounds on eigenvectors) for more general spec-
tral parameters E + √−1η. However, in our application we will only need the
resolvent bounds in the E = 0 case.

Propositions 29 and 31 are proven by standard Stieltjes transform techniques,
based on analysis of the self-consistent equation of Wn,z as studied, for instance,
by Bai [3], combined with concentration of measure results on quadratic forms.
The arguments are well established in the literature; indeed, the z = 0 case of
these theorems essentially appeared in [21, 57], while the analogous estimates for
Wigner matrices appeared in [17–19, 55]. As the proofs of these results are fairly
routine modifications of existing arguments in the literature, we will place the
proof of these propositions in Appendix A. We remark that in the very recent
paper [8], some stronger eigenvalue rigidity estimates for Wn,z are obtained (at
least for z staying away from the unit circle {|z| = 1}), which among other things
allows one to prove variants of Theorem 25 and Theorem 20 without the moment
matching hypothesis, and without the need to study the Gaussian case separately
(see Theorem 33 below).

One can use Propositions 27, 29, 31 to regularize the log-determinant of Wn,z,
and then show that this log-determinant is quite stable with respect to swapping
(real and imaginary parts of) individual entries of the Mn,z, so long as one keeps the
matching moments assumption. In particular, one can now establish Theorem 23
without much difficulty, using standard resolvent perturbation arguments; see Sec-
tion 8. A similar argument, which we give in Section 10, reduces Theorem 25 to
the Gaussian case. Thus, after all these works, the remaining task is to prove:

THEOREM 33. Theorem 25 holds when Mn is drawn from the real or complex
Gaussian ensemble.

We prove this theorem in Section 9. This section is the most technically in-
volved part of the paper. The starting point is to use an idea from our previous pa-
per [58], which studied the limiting distribution of the log-determinant of a shifted
GUE matrix. In that paper, the first step was to conjugate the GUE matrix into the
Trotter tridiagonal form [60], so that the log-determinant could be computed in
terms of the solution to a certain linear stochastic difference equation. In the case
in this paper, the analogue of the Trotter tridiagonal form is a Hessenberg matrix
form (i.e., a matrix form which vanishes above the upper diagonal), which (after
some linear algebraic transformations) can be used to express the log-determinant
log |det(Mn − z0

√
n)| in terms of the solution to a certain nonlinear stochastic dif-

ference equation. This Hessenberg form of the complex Gaussian ensemble was
introduced in [33], although the difference equation we derive is different from
the one used in that paper. To obtain the desired level of concentration in the
log-determinant, the main difficulty is then to satisfactorily control the interplay
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between the diffusive components of this stochastic difference equation, and the
stable and unstable equilibria of the nonlinearity, and in particular to show that
the deviation of the solution from the stable equilibrium behaves like a martin-
gale. This then allows us to deduce the desired concentration from a martingale
concentration result (see Proposition 35 below).

3. Notation. Throughout this paper, n is a natural number parameter going
off to infinity. A quantity is said to be fixed if it does not depend on n. We write
X = O(Y), X  Y , Y = 
(X), or Y � X if one has |X| ≤ CY for some fixed C,
and X = o(Y ) if one has X/Y → 0 as n → ∞. Absolute constants such as C0
or c0 are always understood to be fixed.

We say that an event E occurs with overwhelming probability if it occurs with
probability 1 − O(n−A) for all fixed A > 0. We use 1E to denote the indicator
of E, thus 1E equals 1 when E is true and 0 when E is false. We also write 1
(x)

for 1x∈
.
As we will be using two-dimensional integration on the complex plane C :=

{z = x + √−1y :x, y ∈ R} far more often than we will be using contour integra-
tion, we use dz = dx dy to denote Lebesgue measure on the complex numbers,
rather than the complex line element dx + √−1dy.

We use N(μ,σ 2)R to denote a real Gaussian distribution of mean μ and vari-
ance σ 2, so that the probability distribution is given by 1√

2πσ 2
e−(x−μ)2/2σ 2

dx.

Similarly, we let N(μ,σ 2)C denote the complex Gaussian distribution of μ and
variance σ 2, so that the probability distribution is given by 1

πσ 2 e−|z−μ|2/σ 2
dz.

Of course, the two distributions are closely related: the real and imaginary parts of
N(μ,σ 2)C are independent copies of N(Reμ,σ 2/2)R and N(Imμ,σ 2/2)R, re-
spectively. In a similar spirit, for any natural number, we use χi,R to denote the real

χ distribution with i degrees of freedom, thus χi,R ≡
√

ξ2
1 + · · · + ξ2

i for indepen-
dent copies ξ1, . . . , ξi of N(0,1)R. Similarly, we use χi,C to denote the complex

χ distribution with i degrees of freedom, thus χi,C ≡
√

ξ2
1 + · · · + ξ2

i for indepen-
dent copies ξ1, . . . , ξi of N(0,1)C. Again, the two distributions are closely related:
one has χi,C ≡ 1√

2
χ2i,R for all i.

If F :Ck → C is a smooth function, we use ∇F(z1, . . . , zk) to denote
the 2k-dimensional vector whose components are the partial derivatives

∂F
∂ Re zi

(z1, . . . , zk), ∂F
∂ Im zi

(z1, . . . , zk) for i = 1, . . . , k. Iterating this, we can de-
fine ∇aF (z1, . . . , zk) for any natural number a as a tensor with (2k)a coefficients,
each of which is an a-fold partial derivative of F at z1, . . . , zk . The magnitude
|∇aF (z1, . . . , zk)| is then defined as the �2 norm of these coefficients; similarly
for functions defined on R

k instead of Ck .

4. A concentration inequality. In this section, we recall a martingale
type concentration inequality which will be useful in our arguments. Let Y =
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Y(ξ1, . . . , ξn) be a random variable depending on independent atom variables
ξi ∈ C. For 1 ≤ i ≤ n and ξ = (ξ1, . . . , ξn) ∈C

n, define the martingale differences

Ci(ξ) := ∣∣E(Y |ξ1, . . . , ξi) − E(Y |ξ1, . . . , ξi−1)
∣∣.(4.1)

The classical Azuma’s inequality (see, e.g., [2]) states that if Ci ≤ αi with prob-
ability one, then

P

(
|Y − EY | ≥ λ

√√√√ n∑
i=1

α2
i

)
= O

(
exp
(−


(
λ2))).

In applications, the assumption that Ci ≤ αi with probability one sometimes
fails. However, we can overcome this using a trick from [61]. In particular, the
following is a simple variant of [61], Lemma 3.1.

PROPOSITION 34. For any αi ≥ 0, we have the inequality

P

(
|Y − EY | ≥ λ

√√√√ n∑
i=1

α2
i

)
= O

(
exp
(−


(
λ2)))+ n∑

i=1

P
(
Ci(ξ) ≥ αi

)
.

PROOF. For each ξ , let iξ be the first index where Ci(ξ) ≥ αi . Thus, the sets
Bi := {ξ |iξ = i} are disjoint. Define a function Y ′(ξ) of ξ which agrees with Y(ξ)

for ξ in the complement of
⋃

i Bi , with Y ′(ξ) := EBi
Y if ξ ∈ Bi . It is clear that Y ′

and Y has the same mean and

P
(
Y 
= Y ′)≤ n∑

i=1

P
(
Ci(ξ) ≥ αi

)
.

Moreover, Y ′ satisfies the condition of Azuma’s inequality, so

P

(∣∣Y ′ − EY ′∣∣≥ λ

√√√√ n∑
i=1

α2
i

)
 exp

(−

(
λ2))

and the bound follows. �

We have the following useful corollary.

PROPOSITION 35 (Martingale concentration). Let ξ1, . . . , ξn be independent
complex random variables of mean zero and |ξi | = no(1) with overwhelming
probability for all i. Let α1, . . . , αn > 0 be positive real numbers, and for each
i = 1, . . . , n, let ci(ξ1, . . . , ξi−1) be a complex random variable depending only on
ξ1, . . . , ξi−1 obeying the bound∣∣ci(ξ1, . . . , ξi−1)

∣∣≤ αi
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with overwhelming probability. Define Y :=∑n
i=1 ci(ξ1, . . . , ξi−1)ξi . Then

|Y |  no(1)

(
n∑

i=1

α2
i

)1/2

with overwhelming probability.

PROOF. Let Ci(ξ) be the martingale difference (4.1). It is easy to see that
Ci(ξ) = |ci(ξ1, . . . , ξi−1)ξi |. By the assumptions, Ci(ξ) ≤ no(1)αi with over-
whelming probability. Now apply Proposition 34 with a suitable choice of pa-
rameter λ = no(1). �

5. From log-determinant concentration to the local circular law. In this
section, we prove Theorem 20 using Theorem 25. The first step is to deduce the
crude bound (2.7) from Theorem 25. We first make some basic reductions. By a
covering argument and the union bound it suffices to establish the claim for r = 1
and for a fixed z0 ∈ B(0,2C

√
n).

The main tool will be Jensen’s formula (2.2). Applying this to the disk B(z0,2),
we see in particular that

NB(z0,1)

(5.1)  1

2π

∫ 2π

0

(
log
∣∣det

(
Mn − z0 − 2e

√−1θ )∣∣− log
∣∣det(Mn − z0)

∣∣)dθ.

Let A ≥ 1 be an arbitrary fixed quantity. In view of (5.1), it suffices to show that

1

2π

∫ 2π

0

(
log
∣∣det

(
Mn − z0 − 2e

√−1θ )∣∣− log
∣∣det(Mn − z0)

∣∣)dθ = O
(
nε)

with probability 1 − O(n−A).
We will control this integral12 by a Monte Carlo sum, using the following stan-

dard sampling lemma.

LEMMA 36 (Monte Carlo sampling lemma). Let (X,μ) be a probabil-
ity space, and let F :X → C be a square-integrable function. Let m ≥ 1, let
x1, . . . , xm be drawn independently at random from X with distribution μ, and
let S be the empirical average

S := 1

m

(
F(x1) + · · · + F(xm)

)
.

12One can also control this integral by a Riemann sum, using an argument similar to that used to
prove Theorem 20 below. On the other hand, we will use Lemma 36 again in Section 6, and one
can view the arguments below as a simplified warmup for the more complicated arguments in that
section.
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Then S has mean
∫
X F dμ and variance

∫
X(F − ∫

X F dμ)2 dμ. In particular, by
Chebyshev’s inequality, one has

P
(∣∣∣∣S −

∫
X

F dμ

∣∣∣∣≥ λ

)
≤ 1

mλ2

∫
X

(
F −

∫
X

F dμ

)2
dμ

for any λ > 0, or equivalently, for any δ > 0 one has with probability at least 1 − δ

that ∣∣∣∣S −
∫
X

F dμ

∣∣∣∣≤ 1√
mδ

(∫
X

(
F −

∫
X

F dμ

)2

dμ

)1/2

.

PROOF. The random variables F(xi) for i = 1, . . . ,m are jointly independent
with mean

∫
X F dμ and variance 1

m

∫
X(F − ∫

X F dμ)2 dμ. Averaging these vari-
ables, we obtain the claim. �

We apply this lemma to the probability space X := [0,2π ] with uniform mea-
sure 1

2π
dθ , and to the function

F(θ) := log
∣∣det

(
Mn − z0 − 2e

√−1θ )∣∣− log
∣∣det(Mn − z0)

∣∣.
Observe that for any complex number z, the function log |z − 2e

√−1θ | has an
L2(X) norm of O(1). Thus, by the triangle inequality and (2.1), we have the crude
bound ∫

X

(
F −

∫
X

F dμ

)2

dμ  n2.

We set δ := n−A and m := nA+2. Let θ1, . . . , θm be drawn independently uniformly
at random from X (and independently of Mn) and set � := (θ1, . . . , θm). Let E1
denote the event that the inequality∣∣∣∣S −

∫
X

F dμ

∣∣∣∣≤ 1√
mδ

(∫
X

(
F −

∫
X

F dμ

)2

dμ

)1/2

holds, and let E2 denote the event that the inequality∣∣log
∣∣det

(
M − z0 − 2e

√−1θj
)∣∣− log

∣∣det(Mn − z0)
∣∣∣∣≤ nε

holds for all j = 1, . . . ,m. Call a pair (M,�) is good if E1 and E2 both hold. It
suffices to show that the probability that a pair (M,�) (with M = Mn) is good is
1 − O(n−A).

By Lemma 36, for each fixed M , the probability that E1 fails is at most δ =
n−A. Moreover, by Theorem 25, we see that for each fixed θi , the probability
that | log |det(M − z0 − 2e

√−1θj )| − log |det(Mn − z0)|| ≤ nε fails is less than
O(n−2A−2). Thus, by the union bound, the probability that (M,�) is not good
(over the product space Mn × Xm) is at most

n−A + m × O
(
n−2A−2)= O

(
n−A),

concluding the proof of (2.7).
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Now we are ready to prove Theorem 20. We assume r ≥ 10 as the claim
follows trivially from Theorem 25 otherwise. Consider the circle Cz0,r := {z ∈
C : |z − z0| = r}. By the pigeonhole principle, there is some 0 ≤ j ≤ n such that
the 1

n3 -neighborhood of the circle Cj := Cz0,rj with rj := r − j

n2 contains no eigen-
values of Mn (notice that these neighborhoods are disjoint). If j is such an index,
we see from (2.1) that the function

F(θ) := log
∣∣det

(
Mn − z0 − rj e

−√−1θ )∣∣− log
∣∣det(Mn − z0)

∣∣
then has a Lipschitz norm of O(nO(1)) on [0,2π ]. Setting m := nA+2 for a suf-
ficiently large constant A, we then see from quadrature that the Riemann sum
1
m

∑m
k=1 F(2πk/m) approximates the integral 1

2π

∫ 2π
0 F(θ) dθ within an additive

error at most no(1). By (2.2), we conclude that∑
|λi−z0|<rj

log
rj

|λi − z0| = 1

m

m∑
k=1

F(k/m) + O
(
no(1)).

On the other hand, from Theorem 25 (after applying rescaling by
√

n) and the
union bound we see that with overwhelming probability, we have

F(k/m) = G
(
z0 + rj e

√−12πk/m)− G(z0) + O
(
no(1))

for all 1 ≤ k ≤ m, where G(z) is defined as 1
2(|z|2 − n) for |z| ≤ √

n, and n log |z|√
n

for |z| ≥ √
n. Applying quadrature again, we conclude (for A large enough) that

G(z0) = − ∑
|λi−z0|<rj

log
rj

|λi − z0| + 1

2π

∫ 2π

0
G
(
z0 + rj e

√−1θ )dθ + O
(
no(1)).

A similar argument (replacing r by r − 1) shows that with overwhelming proba-
bility, there exists 0 ≤ j ′ ≤ n such that

G(z0) = − ∑
|λi−z0|<rj ′−1

log
rj ′ − 1

|λi − z0|

+ 1

2π

∫ 2π

0
G
(
z0 + (rj ′ − 1)e

√−1θ )dθ + O
(
no(1)).

Also, from (2.7) and a simple covering argument, we know that with overwhelming
probability, there are at most O(no(1)r) eigenvalues in the annular region between

Cz0,rj ′−1 and Cz0,r , and in this region, the quantities log rj
|λi−z0| and log

rj ′−1
|λi−z0| have

magnitude O(1/r). We may thus subtract the above two estimates and conclude
that

0 = −N(z0, r) log
rj

r ′
j − 1

+ 1

2π

∫ 2π

0
G
(
z0 + rj e

√−1θ )dθ

(5.2)

− 1

2π

∫ 2π

0
G
(
z0 + (rj ′ − 1)e

√−1θ )dθ + O
(
no(1)).
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On the other hand, from applying Green’s theorem13∫



F(z)�G(z) − �G(z)F (z) dz =
∫
∂


F (z)
∂

∂n
G(z) − ∂

∂n
F(z)G(z)

to the domain 
 := B(z0, rj ) \ B(z0, ε) with F(z) := log rj
|z−z0| , and then sending

ε → 0, one sees that

G(z0) = − 1

2π

∫
B(z0,rj )

�G(z) log
rj

|z − z0| dz + 1

2π

∫ 2π

0
G
(
z0 + rj e

√−1θ )dθ,

where � is the usual Laplacian on C; one easily computes that �G(z) = 21|z|≤√
n,

and thus

G(z0) = − 1

π

∫
B(z0,rj )

1|z|≤√
n log

rj

|z − z0| dz + 1

2π

∫ 2π

0
G
(
z0 + rj e

√−1θ )dθ.

Similarly, one has

G(z0) = − 1

π

∫
B(z0,rj ′−1)

1|z|≤√
n log

rj ′ − 1

|z − z0| dz

+ 1

2π

∫ 2π

0
G
(
z0 + (rj ′ − 1)e

√−1θ )dθ.

Subtracting, and observing that the integrands 1|z|≤√
n log rj

|z−z0| , 1|z|≤√
n log

rj ′−1
|z−z0|

have magnitude O(1/r) in the annular region between Cz0,rj ′−1 and Cz0,r , we
conclude that

0 = −
∫
B(z0,r)

1

π
1|z|≤√

n dz × log
rj

r ′
j − 1

+ 1

2π

∫ 2π

0
G
(
z0 + rj e

√−1θ )dθ

− 1

2π

∫ 2π

0
G
(
z0 + (rj ′ − 1)e

√−1θ )dθ + O
(
no(1)).

Comparing this with (5.2), we conclude with overwhelming probability that(
NB(z0,r) −

∫
B(z0,r)

1

π
1|z|≤√

n dz

)
× log

rj

r ′
j − 1

= O
(
no(1)).

Since log rj
r ′
j−1 is comparable to 1/r , we obtain (2.6) as desired.

6. Reduction to the four moment theorem and log-determinant concentra-
tion. We now begin the task of proving Theorem 2 and Theorem 12, by reducing
it the four moment theorem for determinants (Theorem 23) and the local circular
law (Proposition 20). In the preceding section, of course, the local circular law has
been reduced in turn to the concentration of the log-determinant (Theorem 25).

13The function G has a mild singularity on the circle |z| = √
n, but one can verify that as the

first derivatives of G remain continuous across this circle, there is no difficulty in applying Green’s
theorem even when B(z0, rj ) crosses this circle.
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6.1. The complex case. We begin with Theorem 2, deferring the slightly more
complicated argument for Theorem 12 to the end of this section.

Let Mn,M̃n be as in Theorem 2. Call a statistic S(Mn) of (the law of) a random
matrix Mn asymptotically (Mn, M̃n) insensitive, or insensitive for short, if we have

S(Mn) − S(M̃n) = O
(
n−c)

for some fixed c > 0. Our objective is then to show that the statistic∫
Ck

F (w1, . . . ,wk)ρ
(k)
n (

√
nz1 + w1, . . . ,

√
nzk + wk)dw1 · · · dwk(6.1)

is insensitive for all fixed k ≥ 1 and all F of the form (1.8) for some fixed m ≥ 1.
Fix k; we may assume inductively that the claim has already been proven for all

smaller k. By linearity we may take m = 1, thus we may assume that F takes the
tensor product form

F(w1, . . . ,wk) = F1(w1) · · ·Fk(wk)(6.2)

for some smooth, compactly supported F1, . . . ,Fk :C → C supported on a fixed
ball, with bounds on derivatives up to second order.

Henceforth, we assume that F is in tensor product form (6.2). By (1.1) and the
inclusion–exclusion formula, we may thus write (6.1) in this case as

E
k∏

j=1

Xzj ,Fj
(6.3)

plus a fixed finite number of lower order terms that are of the form (6.1) for a
smaller value of k (and a different choice of Fj ), where Xzj ,Fj

is the linear statistic

Xzj ,Fj
:=

n∑
i=1

Fj

(
λi(Mn) − √

nzj

)
.

By the induction hypothesis, it thus suffices to show that the expression (6.3) is
insensitive.

Using the local circular law (Proposition 20), we see that for any 1 ≤ j ≤ k, one
has Xzj ,Fj

= O(no(1)) with overwhelming probability. Thus, one can truncate the
product function ζ1, . . . , ζk �→ ζ1 · · · ζk and write

E
k∏

j=1

Xzj ,Fj
= EG(Xz1,F1, . . . ,Xzk,Fk

) + O
(
n−B)

for any fixed B , where G is a smooth truncation of the product function
ζ1, . . . , ζk �→ ζ1 · · · ζk to the region ζ1, . . . , ζk = no(1). Thus, it suffices to show
that the quantity

EG(Xz1,F1, . . . ,Xzk,Fk
)(6.4)
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is insensitive whenever G :Ck →C is a smooth function obeying the bounds∣∣∇jG(ζ1, . . . , ζk)
∣∣≤ no(1)(6.5)

for all fixed j and all ζ1, . . . , ζk ∈ C.
Fix G. As is standard in the spectral theory of random non-Hermitian matri-

ces (cf. [10, 27]), we now express the linear statistics Xzj ,Fj
in terms of the log-

determinant (2.1). By Green’s theorem, we have

Xzj ,Fj
=
∫
C

log
∣∣det(Mn − z)

∣∣Hj(z) dz,(6.6)

where Hj :C→C is the function

Hj(z) := − 1

2π
�Fj(z − √

nzj )

and � is the Laplacian on C. From the derivative and support bounds on Fj , we
see that Hj is supported on B(

√
nzj ,C) and is bounded.

Naively, to control (6.6), one would apply Lemma 36 with the function
log |det(Mn − z)|Hj(z). Unfortunately, the variance of this expression is too large,
due to the contributions of the eigenvalues far away from

√
nzj . To cancel14 off

these contributions, we exploit the fact that Hj(z), being the Laplacian of a smooth
compactly supported function, is orthogonal to all harmonic functions, and in par-
ticular to all (real-)linear functions:∫

C

(
a + b Re(z) + c Im(z)

)
Hj(z) dz = 0.

(Recall that we use dz to denote Lebesgue measure on C.) We will need a reference
element wj,0 drawn uniformly at random from B(

√
nzj ,1) (independently of Mn

and the wj,i ), and let L(z) = Lj(z) denote the random linear function which equals
log |det(Mn − z)| for z = wj,0,wj,0 + 1,wj,0 + √−1. More explicitly, one has

L(z) := log
∣∣det(Mn − wj,0)

∣∣
+ (log

∣∣det(Mn − wj,0 − 1)
∣∣− log

∣∣det(Mn − wj,0)
∣∣)Re(z − wj,0)

(6.7)
+ (log

∣∣det(Mn − wj,0 − √−1)
∣∣− log

∣∣det(Mn − wj,0)
∣∣)

× Im(z − wj,0).

REMARK 37. There is some freedom in how to select L(z); for instance, it
is arguably more natural to replace the coefficients log |det(Mn − wj,0 − 1)| −
log |det(Mn − wj,0)| and log |det(Mn − wj,0 − √−1)| − log |det(Mn − wj,0)|
in the above formula by the Taylor coefficients d

dt
log |det(Mn − wj,0 − t)||t=0

14It is natural to expect that these nonlocal contributions can be canceled, since the statistics Xzi,Fi

are clearly local in nature.
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and d
dt

log |det(Mn − wj,0 − √−1t)||t=0 instead. However, this would require
extending the four moment theorem for log-determinants to derivatives of log-
determinants, which can be done but will not be pursued here.

Subtracting off L(z), we have

Xzj ,Fj
=
∫
C

Kj(z) dz,(6.8)

where Kj :C→C is the random function

Kj(z) := (
log
∣∣det(Mn − z)

∣∣− L(z)
)
Hj(z).(6.9)

Let us control the L2 norm

‖Kj‖L2 :=
(∫

C

∣∣Kj(z)
∣∣2 dz

)1/2

of this quantity.

LEMMA 38. For any ε > 0, one has

‖Kj‖L2  nε+o(1)(6.10)

with probability 1 − O(n−ε) and all 1 ≤ j ≤ k.

PROOF. By the union bound, it suffices to prove the claim for a single k. We
can split Kj =∑n

i=1 Kj,i(z), where

Kj,i(z) := (
log
∣∣λi(Mn) − z

∣∣− Li(z)
)
Hj(z)

and Li :C → C is the random linear function that equals log |λi(Mn) − z| when
z = wj,0,wj,0 + 1,wj,0 + √−1. By the triangle inequality, we thus have

‖Kj‖L2 ≤
n∑

i=1

‖Kj,i‖L2 .

Thanks to Proposition 20, we know with overwhelming probability that one has

NB(zj

√
n,r)  no(1)r2(6.11)

for all r . Let us condition on the event that this holds, and then freeze Mn (so that
the only remaining source of randomness is wj,0). In particular, the eigenvalues
λi(Mn) are now deterministic.

Let C0 > 1 be such that Hj is supported in B(z0
√

n,C0). If 1 ≤ i ≤ n

is such that λi(Mn) ∈ B(zj

√
n,2C0), then a short computation (based on the

square-integrability of the logarithm function) shows that the expected value of
‖Kj,i‖L2 (averaged over all choices of wj,0) is O(1). On the other hand, if
λi(Mn) /∈ B(zj

√
n,2C0), then the second derivatives of log |λi(Mn) − z| has size

O(1/|λi(Mn) − zj

√
n|2) on B(zj

√
n,2C0). From this and Taylor expansion, one
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sees that the function log |λi(Mn) − z| − Li(z) has magnitude O(1/|λi(Mn) −
zj

√
n|2) on this ball, and so ‖Kj,i‖L2 has this size as well. Summing, we conclude

that the (conditional) expected value of ‖Kj‖L2 is at most


n∑

i=1

1

1 + |λi(Mn) − zj

√
n|2 .(6.12)

We claim that the summation in (6.12) has magnitude O(no(1)) with overwhelm-
ing probability, which will give the claim from Markov’s inequality. To see this,
first observe that the eigenvalues λi(Mn) with |λi(Mn) − zj

√
n| ≥ √

n certainly
contribute at most O(1) in total to the above sum. Next, from (6.11) we see
that with overwhelming probability that there are only O(no(1)) eigenvalues with
|λi(Mn) − zj

√
n| ≤ 1, giving another contribution of O(no(1)) to the above sum.

Similarly, for any 2k between 1 and
√

n, another application of (6.11) reveals
that the eigenvalues with 2k ≤ |λi(Mn) − zj

√
n| < 2k+1 contribute another term

of O(no(1)) to the above sum with overwhelming probability. As there are only
O(log

√
n) = O(no(1)) possible choices for k, the claim then follows by summing

all the contributions estimated above. �

Now let ε > 0 be a sufficiently small fixed constant that will be chosen later.
Set m := �n10ε�, and for each 1 ≤ j ≤ k let wj,1, . . . ,wj,m be drawn uniformly at
random from B(

√
nzj ,C0) (independently of Mn and wj,0). By (6.10), (6.8) and

Lemma 36, we see that with probability 1 − O(n−ε), one has

Xzj ,Fj
= πC2

0

m

m∑
i=1

Kj(wj,i) + O
(
n−3ε+o(1)).

In particular, from (6.5) we see that with probability 1 − O(n−ε), one has

G(Xz1,F1, . . . ,Xzk,Fk
) = G

((
πC2

0

m

m∑
i=1

Kj(wj,i)

)
1≤j≤k

)
+ O

(
n−3ε+o(1))

and hence

EG(Xz1,F1, . . . ,Xzk,Fk
) = EG

((
πC2

0

m

m∑
i=1

Kj(wj,i)

)
1≤j≤k

)
+ O

(
n−ε+o(1)).

Thus, to show that (6.4) is insensitive, it suffices to show that

EG

((
πC2

0

m

m∑
i=1

Kj(wj,i)

)
1≤j≤k

)

is insensitive, uniformly for all deterministic choices of wj,0 ∈ B(
√

nzj ,1) and
wj,i ∈ B(

√
nzj ,C0) for 1 ≤ j ≤ k and 1 ≤ i ≤ m. But this follows from the four

moment theorem (Theorem 23), if ε is small enough; indeed, once the wj,0,wj,i
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are conditioned to be deterministic, we see from (6.9), (6.7) that the quantities
Kj(wj,i) can be expressed as deterministic linear combinations of a bounded num-
ber of log-determinants log |det(Mn − z)|, with coefficients uniformly bounded
in n [recall that wj,i − wj,0 = O(C0) and that the Hj are uniformly bounded].
This concludes the derivation of Theorem 2 from Theorem 23 and Proposition 20.

6.2. The real case. We now turn to the proof of Theorem 12. Let Mn be as in
Theorem 12, and let M̃n be a real Gaussian matrix. Our task is to show that that
the quantity∫

Rk

∫
Cm

F (y1, . . . , yk,w1, . . . ,wl)

× ρ(k,l)
n (

√
nx1 + y1, . . . ,

√
nxk + yk,(6.13)

√
nz1 + w1, . . . ,

√
nzl + wl) dw1 · · · dwl dy1 · · · dyk

is insensitive whenever k, l ≥ 0 are fixed, x1, . . . , xk ∈ R and z1, . . . , zl ∈ C are
bounded, and F decomposes as in Theorem 12.

By induction on k+ l, much as in the complex case, and separating the spectrum
into contributions from R,C+,C−, it thus suffices to show that the quantity

E

(
k∏

i=1

Xxi,Fi ,R

)(
l∏

j=1

Xzj ,Gj ,C+

)(
l′∏

j ′=1

Xz′
j ′ ,G′

j ′ ,C−

)
(6.14)

is insensitive, where k, l, l′ are fixed, x1, . . . , xk ∈R and z1, . . . , zl, z
′
1, . . . , z

′
l′ ∈ C

are bounded,

Xx,F,R := ∑
1≤i≤n : λi(Mn)∈R

F
(
λi(Mn) − √

nx
)

and

Xz,G,C± := ∑
1≤i≤n : λi(Mn)∈C±

G
(
λi(Mn) − √

nz
)

and the Fi :R → C, Gj :C → C, G′
j ′ :C → C are smooth functions supported on

bounded sets obeying the bounds∣∣∇aFi(x)
∣∣, ∣∣∇aGj (z)

∣∣, ∣∣∇aG′
j ′(z)

∣∣≤ C

for all 0 ≤ a ≤ 5, x ∈ R, z ∈ C. Indeed, one can express any statistic of the
form (6.13) as a linear combination of a bounded number of statistics of the
form (6.14), plus a bounded number of additional statistics of the form (6.13) with
smaller values of k + l.

As the spectrum is symmetric around the real axis, one has

Xz,G,C− = Xz̄,G̃,C+,
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where G̃(z) := G(z̄). Thus, we may concatenate the Gj with the G′
j ′ , and assume

without loss of generality that l′ = 0, thus we are now seeking to establish the
insensitivity of

E

(
k∏

i=1

Xxi,Fi ,R

)(
l∏

j=1

Xzj ,Gj ,C+

)
.(6.15)

On the other hand, by repeating the remainder of the arguments for the complex
case with essentially no changes, we can show that the quantity

E
m∏

p=1

Xzp,Hp(6.16)

is insensitive for any fixed m, any bounded complex numbers z1, . . . , zm, and any
smooth Hp :C→C supported in a bounded set and obeying the bounds∣∣∇aHp(z)

∣∣≤ C

for all 0 ≤ a ≤ 5 and z ∈ C, where

Xz,H := ∑
1≤i≤n

H
(
λi(Mn) − z

)
.

Thus, the remaining task is to deduce the insensitivity of (6.15) from the insensi-
tivity of (6.16).

Specializing (6.16) to the case when zp = z is independent of p, and Hp = H

is real-valued, we see that

EXm
z,H

is insensitive for any m. In particular, we see from (the smooth version of)
Urysohn’s lemma and Lemma 11 that we have the bound

ENm
B(z

√
n,C)

 1(6.17)

for any fixed radius C and any bounded complex number z, where N
 = N
[Mn]
denotes the number of eigenvalues of Mn in 
. Among other things, this implies
that

E|Xxi,Fi ,R|A,E|Xyj ,Gj ,C+|A  1(6.18)

for any fixed A and all i, j .
To proceed further, we need a level repulsion result.

LEMMA 39 (Weak level repulsion). Let C > 0 be fixed, x ∈ R be bounded,
and ε be such that n−c0 ≤ ε ≤ C for a sufficiently small fixed c0 > 0, and let Ex,C,ε

be the event that there are two eigenvalues λi(Mn), λj (Mn) in the strip Sx,C,ε :=
{z ∈ B(x

√
n,C) : Im(z) ≤ ε} with i 
= j such that |λi(Mn) − λj (Mn)| ≤ 2ε. Then

P(Ex,C,ε)  ε, where the implied constant in the  notation is independent of ε.
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PROOF. In this proof, all implied constants in the  notation are understood
to be independent of ε. By a covering argument, it suffices to show that

P(NB(x
√

n+t,10ε) ≥ 2)  ε2

uniformly for all t = O(1).
Let H be a nonnegative bump function supported on B(t,20ε) that equals one

on B(t,10ε). Then the expression X2
x,H − Xx,H 2 is nonnegative, and is at least 2

when NB(x
√

n+t,10ε) ≥ 2. Thus, by Markov’s inequality it suffices to show that

EX2
x,H − Xx,H 2  ε2.

By the insensitivity of (6.16) and the lower bound on ε, it suffices to verify
the claim when Mn is drawn from the real Gaussian distribution. [Note that the
derivatives of H,H 2 can be as large as O(ε−O(1)), causing additional factors of
O(ε−O(1)) to appear in the error term created when swapping Mn with the real
Gaussian ensemble, but the n−c gain coming from the insensitivity will counteract
this if c0 is small enough.]

We split

Xx,H = Xx,H,R + 2Xx,H,C+

and similarly for H 2. It will suffice to establish the estimates

EX2
x,H,R − Xx,H 2,R  ε2,(6.19)

EXx,H,RXx,H,C+  ε2(6.20)

and

EX2
x,H,C+  ε2.(6.21)

The left-hand sides of (6.19), (6.20), (6.21) may be expanded as∫
R

∫
R

ρ(2,0)
n

(
x
√

n + y, x
√

n + y′)H(y)H
(
y′)dy dy′,∫

R

∫
C+

ρ(1,1)
n (x

√
n + y, x

√
n + z)H(y)H(z) dy dz

and ∫
C+

ρ(0,1)
n (x

√
n + z)H 2(z) dz

+ 2
∫
C+

∫
C+

ρ(0,2)
n (x

√
n + z, x

√
n + w)H(z)H(w)dzdw,

respectively. Using Lemma 11, we see that these expressions are O(ε2) as re-
quired. �
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REMARK 40. In fact, a closer inspection of the explicit form of the correlation
functions reveals that one can gain some additional powers of ε here, giving a
stronger amount of level repulsion, but for our purposes any bound that goes to
zero as ε → 0 will suffice.

From the symmetry of the spectrum, we observe that if Ex,C,ε does not hold,
then there cannot be any strictly complex eigenvalue λi(Mn) in the strip Sx,C,ε ,
since in that case λi(Mn) would be distinct eigenvalue in the strip at a distance at
most 2ε from λi(Mn). In particular, we see that

P(NSx,C,ε\[x√
n−C,x

√
n+C] = 0) = 1 − O(ε).(6.22)

Informally, this estimate tells us that we can usually thicken the interval [x√
n −

C,x
√

n + C] to the strip Sx,C,ε without encountering any additional spectrum.
Fix ε := n−c0 for some sufficiently small fixed c0 > 0. We can use (6.22) to sim-

plify the expression (6.15) in two ways. First, thanks to (6.22), (6.18) and Hölder’s
inequality, we may replace each of the Gj in (6.14) with a function G̃j that van-
ishes on the strip {z − zj : | Im(z)| ≤ ε}, while only picking up an error of O(εc)

for some fixed c > 0, which will be acceptable from the choice of ε. By discarding
the component of G̃j below the strip, we may then assume G̃j is supported on the
half-space C+ − zj . In particular, we have

Xzj ,G̃j ,C+ = Xzj ,G̃j
.

Also, by performing a smooth truncation, we see that we have the derivative
bounds ∇aG̃j = O(ε−O(1)) for all 0 ≤ a ≤ 5.

Second, by another application of (6.22), (6.18), and Hölder’s inequality, we
may “thicken” each factor Xxi,Fi ,R by replacing it with Xxi,F̃i

, where F̃i :C →C is
a smooth extension of Fi that is supported on the strip {z : | Im(z)| ≤ ε}, while only
acquiring an error of O(εc) for some fixed c > 0. Again, we have the derivative
bounds ∇aF̃i = O(ε−O(1)) for 0 ≤ a ≤ 5. From the insensitivity of (6.16) [and
using the n−c gain coming from insensitivity to absorb all O(ε−O(1)) losses from
the derivative bounds], we see that

E

(
k∏

i=1

Xxi,F̃i

)(
l∏

j=1

Xzj ,G̃j

)
(6.23)

is insensitive, which by the preceding discussion yields (for c0 small enough)
that (6.15) is insensitive also, as required. This concludes the derivation of The-
orem 12 from Theorem 23 and Proposition 20.

6.3. Quick applications. As quick consequences of Theorems 2 and 12, we
now prove Corollaries 10, 17 and 18.

We first prove we prove Corollary 18. Let Mn be as in that theorem. Set ε :=
n−c0 for some sufficiently small c0 > 0. A routine modification of the proof of
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Lemma 39 (or, alternatively, Theorem 12 combined with Lemma 11) shows that
for any z ∈ B(0,O(

√
n)), one has

E
(

0
NB(z,ε)

)
2  ε4,

when | Im z| ≥ ε, if c0 is small enough; in particular, the expected number of
eigenvalues in B(z, ε) which are repeated is O(ε4). We then cover B(0,3

√
n)

by O(n/ε2) balls B(z, ε) with | Im z| ≥ ε, together with the strip {z : | Im z| ≤ ε}.
By (6.22) (or Theorem 12 and Lemma 11) and linearity of expectation, the strip
contains O(ε

√
n) eigenvalues. By [4, 25], the spectral radius of Mn is known to

equal (1 + o(1))
√

n with overwhelming probability.15 We conclude that the ex-
pected number of repeated complex eigenvalues is at most

O
(
n/ε2)× O

(
ε4)+ O(ε

√
n) + O

(
n−100),

which becomes O(n1−c) for some fixed c > 0; a similar argument gives a bound
of O(n1/2−c) for the expected number of repeated real eigenvalues. The claim now
follows from Markov’s inequality.

Now we prove Corollary 17. Let Mn be as in that theorem. As mentioned previ-
ously, the spectral radius of Mn is known to equal (1 + o(1))

√
n with overwhelm-

ing probability. In particular, we have

ENR(Mn) = EN[−3
√

n,3
√

n](Mn) + O
(
n−100)

(say). By the smooth form of Urysohn’s lemma, we can select fixed smooth, non-
negative functions F−,F+ such that we have the pointwise bounds

1[−2,2] ≤ F− ≤ 1[−3,3] ≤ F+ ≤ 1[−4,4].

By definition of ρ(1,0), we observe that

EN[−2
√

n,2
√

n](Mn) ≤
∫
R

ρ(1,0)(x)F−(x/
√

n)dx

≤ EN[−3
√

n,3
√

n](Mn)

≤
∫
R

ρ(1,0)(x)F+(x/
√

n)dx

≤ EN[−4
√

n,4
√

n](Mn).

By smoothly partitioning F±(x/
√

n) into O(
√

n) pieces supported on intervals of
size O(1), and applying Theorem 12 to each piece, we see upon summing that the
two integrals above are only modified by O(n1/2−c) for some fixed c > 0 if we

15Actually, for this argument, the easier bound of O(1) would suffice, which can be obtained by
a variety of methods, for example, by an epsilon net argument or by Talagrand’s inequality [48].
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replace Mn with a real Gaussian matrix M ′
n. On the other hand, when M ′

n is real
Gaussian we see from Theorem 16 (and the spectral radius bound) that

EN[−2
√

n,2
√

n]
(
M ′

n

)
, EN[−4

√
n,4

√
n]
(
M ′

n

)=
√

2n

π
+ O(1).

Putting these bounds together, we obtain the expectation claim of Corollary 17.
The variance claim is similar. Indeed, we have

ENR(Mn)
2 = EN[−3

√
n,3

√
n](Mn)

2 + O
(
n−90)

(say) and

EN[−2
√

n,2
√

n](Mn)
2 ≤

∫
R

ρ(1,0)(x)F−(x/
√

n)2 dx

+
∫
R

∫
R

ρ(2,0)(x, y)F−(x/
√

n)F−(y/
√

n)dx dy

≤ EN[−3
√

n,3
√

n](Mn)
2

≤
∫
R

ρ(1,0)(x)F+(x/
√

n)2 dx

+
∫
R

∫
R

ρ(2,0)(x, y)F+(x/
√

n)F+(y/
√

n)dx dy

≤ EN[−4
√

n,4
√

n](Mn)
2.

From Theorem 12 and smooth decomposition, we see that all of the above inte-
grals vary by O(n1−c) at most for some fixed c > 0 if Mn is replaced with a real
Gaussian matrix, and then the variance claim can be deduced from Theorem 16
and the spectral radius bound as before.

REMARK 41. A similar argument shows that in the complex case, the ex-
pected number of real eigenvalues is O(n1/2−c), which can be improved to
O(n−A) for any A > 0 if one assumes sufficiently many matching moments de-
pending on A. Of course, one expects typically in this case that there are no real
eigenvalues whatsoever (and this is almost surely the case when the matrix ensem-
ble is continuous), but this is beyond the ability of our current methods to establish
in the case of discrete complex matrices.

Finally, we prove Corollary 10. Let Mn,z0, r be as in that theorem, and let M̃n

be drawn from the complex Gaussian matrix ensemble. Let ε = o(1) be a slowly
decaying function of n to be chosen later. Let R be any rectangle in B(0,100

√
n)

of side length 1 × n−ε , and let 3R be the rectangle with the same center as R

but three times the side lengths. By the smooth form of Urysohn’s lemma, we can
construct a smooth function F :C→R

+ with the pointwise bounds

1R ≤ F ≤ 13R
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such that |∇jF |  njε for all 0 ≤ j ≤ 5. Applying Corollary 15 (to n−5εF ), we
conclude that ∫

C

F(z)ρ(1)
n (z) dz =

∫
C

F(z)ρ̃(1)
n (z) dz + O

(
n−c+5ε)

for some absolute constant c. On the other hand, from (1.5) we see that∫
C

F(z)ρ̃
(1)
n (z) dz  n−ε , since 3R has area O(n−ε). Since ε = o(1), we conclude

that ∫
C

F(z)ρ(1)
n (z) dz  n−ε

and in particular that

ENR(Mn)  n−ε.(6.24)

A similar argument (with larger values of k) gives

ENR1(Mn) · · ·NRk
(Mn)  n−kε,(6.25)

whenever k is fixed and R1, . . . ,Rk are 1 × n−ε rectangles (possibly overlapping)
in B(0,100

√
n).

Now let G :C → R
+ be a smooth function supported on B(z0, r + n−ε) which

equals 1 on B(z0, r) and has the derivative bounds |∇jG|  njε for all 0 ≤ j ≤ 5.
By covering the annulus B(z0, r +n−ε)\B(z0, r) by O(r) rectangles of dimension
1 × n−ε , we see from (6.24) that

ENB(z0,r+n−ε)\B(z0,r)(Mn)  rn−ε

and similarly from (6.25) one has

ENB(z0,r+n−ε)\B(z0,r)(Mn)
k  rkn−kε

for any fixed k. Since we are assuming r ≤ no(1), we conclude (if ε decays to zero
sufficiently slowly) that

ENB(z0,r+n−ε)\B(z0,r)(Mn)
k = o(1)

for all k. In particular, if we introduce the linear statistic

X :=
∑n

i=1 G(λi(Mn)) − r2

r1/2π−1/4(6.26)

we see from the triangle inequality that the asymptotics

E
(

NB(z0,r) − r2

r1/2π−1/4

)k

→ EN(0,1)k
R

for all fixed k ≥ 0 are equivalent to the asymptotics

EXk → EN(0,1)k
R
.
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Let X̃ be the analogue of X for M̃n. From Theorem 9 and the preceding arguments,
we have

EX̃k → EN(0,1)k
R

and so it will suffice to show that

EXk − EX̃k = o(1)

for all fixed k ≥ 1. By (6.26) and the hypotheses that 1 ≤ r ≤ no(1) and ε = o(1),
it will suffice to show that

E

(
n∑

i=1

G
(
λi(Mn)

))k

− E

(
n∑

i=1

G
(
λi(M̃n)

))k

= O
(
rO(k)n−c+O(kε))

for all fixed k ≥ 0 and some fixed c > 0 (which will in fact turn out to be uni-
form in k, although we will not need this fact). Expanding out the kth powers and
collecting terms16 depending on the multiplicities of the i indices, we see that it
suffices to show that

E
∑

1≤i1<···<ik′≤n

Ga1
(
λi1(Mn)

) · · ·Gak′ (λik′ (Mn)
)

− Ga1
(
λi1(M̃n)

) · · ·Gak′ (λik′ (M̃n)
)

= O
(
rO(k)n−c+O(kε))

for all fixed k′, a1, . . . , ak′ ≥ 1 and some fixed c > 0, where k := a1 + · · · + ak′ .
But the left-hand side can be rewritten using (1.1) as∫

Ck

(
k∏

j=1

G(zj )
aj

)(
ρ(k)

n (z1, . . . , zk) − ρ̃(k)
n (z1, . . . , zk)

)
dz1 · · · dzk.

One can smoothly decompose (
∏k

j=1 G(zj )
aj ) as the sum of O(rO(k)nO(ε))

smooth functions supported on balls of bounded radius, whose derivatives up to
fifth order are all uniformly bounded. Applying Theorem 2 to each such function
and summing, one obtains the claim.

REMARK 42. The main reason why the radius r was restricted to be O(no(1))

was because of the need to obtain asymptotics for kth moments for arbitrary
fixed k. For any given k, the above arguments show that one obtains the right
asymptotics for all r ≤ nc/k for some absolute constant c > 0. If one increases the
number of matching moment assumptions, one can increase the value of k, but we
were unable to find an argument that allowed one to take r as large as nα for some
fixed α > 0 independent of k, even after assuming a large number of matching
moments.

16The observant reader will note that this step is inverting one of the first steps in the proof of
Theorem 2 given previously, and one could shorten the total length of the argument here if desired
by skipping directly to that point of the proof of Theorem 2 and continuing onward from there.
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7. Resolvent swapping. In this section, we recall some facts about the stabil-
ity of the resolvent of Hermitian matrices with respect to permutation in just one
or two entries, in order to perform swapping arguments. Such swapping arguments
were introduced to random matrix theory in [11], and first applied to establish uni-
versality results for local spectral statistics in [55]. In [21], it was observed that
the stability analysis of such swapping was particularly simple if one worked with
the resolvents (or Green’s function) rather than with individual eigenvalues. Our
formalization of this analysis here is drawn from [58]. We will use this resolvent
swapping analysis twice in this paper; once to establish the four moment theorem
for the determinant (Theorem 23) in Section 8, and once to deduce concentra-
tion of the log-determinant for i.i.d. matrices (Theorem 25) from concentration for
Gaussian matrices (Theorem 33) in Section 10.

We will need the matrix norm

‖A‖(∞,1) = sup
1≤i,j≤n

|aij |

and the following definition.

DEFINITION 43 (Elementary matrix). An elementary matrix is a matrix which
has one of the following forms:

V = eae
∗
a, eae

∗
b + ebe

∗
a,

√−1eae
∗
b − √−1ebe

∗
a(7.1)

with 1 ≤ a, b ≤ n distinct, where e1, . . . , en is the standard basis of Cn.

Let M0 be a Hermitian matrix, let z = E+ iη be a complex number, and let V be
an elementary matrix. We then introduce, for each t ∈ R, the Hermitian matrices

Mt := M0 + 1√
n
tV,

the resolvents

Rt = Rt(E + iη) := (Mt − E − iη)−1(7.2)

and the Stieltjes transform

st := st (E + iη) := 1

n
traceRt(E + iη).

We have the following Neumann series expansion.

LEMMA 44 (Neumann series). Let M0 be a Hermitian n×n matrix, let E ∈ R,
η > 0, and t ∈R, and let V be an elementary matrix. Suppose one has

|t |‖R0‖(∞,1) = o(
√

n).(7.3)
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Then one has the Neumann series formula

Rt = R0 +
∞∑

j=1

(
− t√

n

)j

(R0V )jR0(7.4)

with the right-hand side being absolutely convergent, where Rt is defined by (7.2).
Furthermore, we have

‖Rt‖(∞,1) ≤ (1 + o(1)
)‖R0‖(∞,1).(7.5)

In practice, we will have t = nO(c0) (from a decay hypothesis on the atom dis-
tribution) and ‖R0‖(∞,1) = nO(c0) (from eigenvector delocalization and a level re-
pulsion hypothesis), where c0 > 0 is a small constant, so (7.3) is quite a mild
condition.

PROOF OF LEMMA 44. See [58], Lemma 12. �

We now can describe the dependence of st on t :

PROPOSITION 45 (Taylor expansion of st ). Let the notation be as above, and
suppose that (7.3) holds. Let k ≥ 1 be fixed. Then one has

st = s0 +
k∑

j=1

n−j/2cj t
j

(7.6)

+ O

(
n−(k+1)/2|t |k+1‖R0‖k+1

(∞,1) min
(
‖R0‖(∞,1),

1

nη

))
,

where the coefficients cj are independent of t and obey the bounds

|cj |  ‖R0‖j
(∞,1) min

(
‖R0‖(∞,1),

1

nη

)
(7.7)

for all 1 ≤ j ≤ k.

PROOF. See [58], Proposition 13. �

8. Proof of the four moment theorem. We now prove Theorem 23.
We begin with some simple reductions. Observe that each entry ξij of Mn has

size at most O(no(1)) with overwhelming probability. Thus, by modifying the dis-
tributions of the ξij slightly (taking care to retain the moment matching property17)
and assume that all entries surely have size O(no(1)). Thus,

‖Mn‖(∞,1),
∥∥M ′

n

∥∥
(∞,1)  no(1).(8.1)

17Alternatively, one can allow the moments to deviate from each other by, say, O(n−100), which
one can verify will not affect the argument. See [3], Chapter 2, or [36], Appendix A, for details.
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We may also assume that G is bounded by 1 rather than by nc0 , since the general
claim then follows by normalizing G and shrinking c0 as necessary; thus,∣∣G(x1, . . . , xk)

∣∣≤ 1(8.2)

for all x1, . . . , xk ∈ R.
Fix Mn,M

′
n. Recall that a statistic S is asymptotically (Mn,M

′
n)-insensitive, or

insensitive for short, if one has∣∣S(Mn) − S
(
M ′

n

)∣∣ n−c

for some fixed c > 0. By shrinking c0 if necessary, our task is thus to show that the
quantity

EG
(
log
∣∣det(Mn − z1)

∣∣, . . . , log
∣∣det(Mn − zk)

∣∣)
is insensitive.

The next step is to use (2.4) to replace the log-determinants log |det(Mn − z)|
with the log-determinants log |detWn,z|, where the Wn,z are defined by (2.3). After
translating and rescaling the function G, we thus see that it suffices to show that

EG
(
log
∣∣det(Wn,z1)

∣∣, . . . , log
∣∣det(Wn,zk

)
∣∣)

is insensitive.
We observe the identity

log
∣∣det(Wn,zj

)
∣∣= log

∣∣det(Wn,zj
− √−1T )

∣∣− n Im
∫ T

0
sj (

√−1η)dη

for any T > 0 for all 1 ≤ j ≤ k, where sj (z) := 1
n

trace(Wn,zj
− z)−1 is the Stielt-

jes transform, as can be seen by writing everything in terms of the eigenvalues
of Wn,zj

. If we set T := n100, then we see that

log
∣∣det(Wn,zj

− √−1T )
∣∣= n logT + log

∣∣det
(
1 − n−100Wn,zj

)∣∣
= n logT + O

(
n−10)

(say), thanks to (8.1) and the hypothesis that zj lies in B(0, (1 − δ)
√

n). Thus, by
translating G again, it suffices to show that the quantity

EG

((
n Im

∫ n100

0
sj (

√−1η)dη

)k

j=1

)
is insensitive.

We need to truncate away from the event that Wn,zj
has an eigenvalue too close

to zero. Let χ :R → R be a smooth cutoff to the region |x| ≤ n3c0 that equals 1
for |x| ≤ n3c0/2. From Proposition 27 and the union bound, we have with prob-
ability 1 − O(n−c0+o(1)) that there are no eigenvalues of Wn,zj

in the interval
[−n1−2c0, n−1−2c0] for all 1 ≤ j ≤ k. Combining this with Proposition 29 and a
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dyadic decomposition, we conclude that with probability 1 − O(n−c0+o(1)) one
has ∣∣Im sj

(√−1n−1−4c0
)∣∣ n2c0+o(1)

for all 1 ≤ j ≤ k. In particular, one has

χ
(
Im sj

(√−1n−1−4c0
))= 1

with overwhelming probability.
In view of this fact and (8.2), it suffices to show that the quantity

EG

(
n Im

∫ n100

0
sj (

√−1η)dη

)
χ
((

Im sj
(√−1n−1−4c0

))k
j=1

)
(8.3)

is insensitive.
Call a statistic S very highly insensitive if one has∣∣S(Mn) − S

(
M ′

n

)∣∣ n−2−c

for some fixed c > 0. By swapping the real and imaginary parts of the components
of Mn with those of M ′

n one at a time, we see from telescoping series that it will
suffice to show that (8.3) is very highly insensitive whenever Mn and M ′

n are iden-
tical in all but one entry, and in that entry either the real parts are identical, or the
imaginary parts are identical.

Fix Mn,M
′
n as indicated. Then for each 1 ≤ j ≤ k, one has

Wn,zj
= Wn,zj ,0 + 1√

n
ξV,

W ′
n,zj

= Wn,zj ,0 + 1√
n
ξ ′V,

where ξ, ξ ′ are real random variables that match to order 4 and have the magnitude
bound

|ξ |, ∣∣ξ ′∣∣ no(1),(8.4)

V is an elementary matrix, and Wn,zj ,0 is a random Hermitian matrix independent
of both ξ and ξ ′. To emphasize this representation, and to bring the notation closer
to that of the preceding section, we rewrite sj as s

(j)
ξ , where

s
(j)
t (z) := 1

2n
traceR

(j)
t (z)

and

R
(j)
t (z) :=

(
Wn,zj ,0 + 1√

n
tV − z

)−1

.
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Our task is now to show that the quantity

EG

(
n Im

∫ n100

0
s
(j)
ξ (

√−1η)dη

)
χ
((

Im s
(j)
ξ

(√−1n−1−4c0
))k

j=1

)
(8.5)

only changes by O(n−2−c) when ξ is replaced by ξ ′.
We now place some bounds on R

(j)
t (z).

LEMMA 46 (Eigenvector delocalization). Let 1 ≤ j ≤ k, and suppose that we
are in the event that χ(Im sj (

√−1n−1−4c0)) is nonzero. Then with overwhelming
probability, one has

sup
η>0

∥∥R(j)
ξ (

√−1η)
∥∥
(∞,1)  nO(c0)(8.6)

and hence [by Lemma 44 and (8.4), swapping the roles of ξ and 0]

sup
η>0

∥∥R(j)
0 (

√−1η)
∥∥
(∞,1)  nO(c0).(8.7)

The bounds in the above lemma are similar to those from Proposition 31 (and
Proposition 31 will be used in the proof of the lemma), but the point here is that the
bounds remain uniform in the limit η → 0, whereas the bounds in Proposition 31
blow up at that limit.

PROOF OF LEMMA 46. By hypothesis and the support of χ , one has∣∣Im s
(j)
ξ

(√−1n−1−4c0
)∣∣ n−3c0 .

The left-hand side can be expanded as

n−2−4c0

n∑
i=1

1

λi(Wn,zj
)2 + n−2−8c0

and so we obtain the lower bound

λi(Wn,zj
) � n−1−c0/2(8.8)

for all i.
From Proposition 31, one already has

sup
η>1/n

∥∥R(j)
ξ (

√−1η)
∥∥
(∞,1)  no(1)

with overwhelming probability. In particular, for each 1 ≤ j ≤ k and η > 1/n, one
has

η

n

n∑
i=1

|e∗
j ui |2

λi(Wn,zj
)2 + η2  no(1).
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Combining this with (8.8), we see that

η

n

n∑
i=1

|e∗
l ui |2

λi(Wn,zj
)2 + η2  nO(c0)

for all η > 0, 1 ≤ j ≤ k, and 1 ≤ l ≤ n. By dyadic summation, we conclude that
n∑

i=1

|e∗
l ui |2

(λi(Wn,zj
)2 + η2)1/2  nO(c0)

for all η > 1/n, and thus by Cauchy–Schwarz one has∣∣∣∣∣1n
n∑

i=1

(e∗
l ui)(e∗

mui)

λi(Wn,zj
) − √−1η

∣∣∣∣∣ nO(c0)

for all η > 0 and 1 ≤ j ≤ k and 1 ≤ l,m ≤ n. But the left-hand side is the lm

coefficient of R
(j)
ξ (

√−1η), and the claim follows. �

We now condition to the event that (8.7) holds for all 1 ≤ j ≤ k; Lemma 46
ensures us that the error in doing so is OA(n−A) for any A. Then by Proposition 45,
we have

s
(j)
ξ (

√−1η) = s
(j)
0 (

√−1η) +
4∑

i=1

ξ in−i/2c
(j)
i (η) + O

(
n−5/2+O(c0)

)
min

(
1,

1

nη

)
for each j and all η > 0, and similarly with ξ replaced by ξ̃ , where the coefficients
c
(j)
i enjoy the bounds ∣∣c(j)

i

∣∣ nO(c0) min
(

1,
1

nη

)
.

From this and Taylor expansion, we see that the expression

G

(
n Im

∫ n100

0
sξ (

√−1η)dη

)
χ
(
Im sξ

(
E + √−1n−1−4c0

))
is equal to a polynomial of degree at most 4 in η with coefficients independent
of η, plus an error of O(n−5/2+O(c0)), which gives the claim for c0 small enough.

REMARK 47. If one assumes more than four matching moments, one can im-
prove the final constant c in the conclusion of Theorem 23. However, it appears
that one cannot make c arbitrarily large with this method, basically because the
Taylor expansion becomes unfavorable when c0 is too large.

9. Concentration of log-determinant for Gaussian matrices. In this sec-
tion, we establish Theorem 33. Fix z0 ∈ B(0,C); all our implied constants will
be uniform in z0. Define α to be the quantity α := 1

2(|z0|2 − 1) if |z0| ≤ 1, and
α := log |z0| if |z0| ≥ 1. Our task is to show that log |det(Mn − z0

√
n)| concen-

trates around 1
2n logn + αn.



UNIVERSALITY FOR NON-HERMITIAN MATRICES 831

9.1. The upper bound. In this section, we prove that with overwhelming prob-
ability

log
∣∣det(Mn − z0

√
n)
∣∣≤ 1

2n logn + αn + no(1),

which is the upper bound of what we need. In fact, the statement (which is based on
the second moment method) holds for general random matrices with non-Gaussian
entries.

PROPOSITION 48 (Upper bound on log-determinant). Let Mn = (ξij )1≤i,j≤n

be a random matrix with independent entries having mean zero and variance one.
Then for any z0 ∈ C, one has

log
∣∣det(Mn − z0

√
n)
∣∣≤ 1

2n logn + αn + O
(
no(1))

with overwhelming probability.

The key is the following lemma.

LEMMA 49. Let Mn = (ξij )1≤i,j≤n be a random matrix as above. Then for
any z0 ∈ C, one has

E
∣∣det(Mn − z0

√
n)
∣∣2 ≤ n! exp

(|z0|2n)(9.1)

for all z0. When |z0| ≥ 1, we have the variant bound

E
∣∣det(Mn − z0

√
n)
∣∣2 ≤ nn+1|z0|2n.(9.2)

PROOF. By cofactor expansion, one has

det(Mn − z0
√

n) = ∑
σ∈Sn

sgn(σ )

n∏
i=1

(ξiσ (i) − z0
√

n1σ(i)=i),

where Sn is the set of permutations on {1, . . . , n}. We can rewrite this expression
as ∑

A⊂{1,...,n}

∑
σ∈Sn,A

FA,σ ,

where Sn,A is the set of permutations σ ∈ Sn that fix A, thus σ(i) = i for all i ∈ A,
and

FA,σ := (−z0
√

n)|A| ∏
i /∈A

ξiσ(i).

As the ξij are jointly independent and have mean zero, we see that EFA,σFA′,σ ′ = 0
whenever (A,σ ) 
= (A′, σ ′). Also, as the ξij also have unit variance, we have
E|FA,σ |2 = |z0|2|A|n|A|. We conclude that

E
∣∣det(Mn − z0

√
n)
∣∣2 = ∑

A⊂{1,...,n}

∑
σ∈Sn,A

|z0|2|A|n|A|.
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Write j = |A|. For each choice of j = 0, . . . , n, there are n!
j !(n−j)! choices for A,

and (n − j)! choices for σ . We conclude that

E
∣∣det(Mn − z0

√
n)
∣∣2 = n!

n∑
j=0

|z0|2jnj

j ! .

(This formula is well known in the literature; see, e.g., [13], Theorem 3.1.) Since

∞∑
j=0

|z0|2jnj

j ! = exp
(|z0|2n)

we obtain (9.1).

Now suppose that |z0| ≥ 1, then the terms |z0|2j nj

j ! are nondecreasing in j , and

are thus each bounded by |z0|2nnn/n!, and (9.2) follows. �

From Lemma 49 and Stirling’s formula, we see that

E
∣∣det(Mn − z0

√
n)
∣∣2 ≤ exp

(
n logn + 2αn + O

(
no(1)))

and thus by Markov’s inequality we see that∣∣det(Mn − z0
√

n)
∣∣2 ≤ exp

(
n logn + 2αn + O

(
no(1)))

with overwhelming probability, which gives Proposition 48 as desired.

9.2. Hessenberg form. To complete the proof of Theorem 33, we need to show
the lower bound

log
∣∣det(Mn − z0

√
n)
∣∣≥ 1

2n logn + αn − O
(
no(1))

with overwhelming probability. As we shall see later, the fact that we only seek
a one-sided bound now instead of a two-sided one will lead to some convenient
simplifications to the argument.18

Now we will make essential use of the fact that the entries are Gaussian. The
first step is to conjugate a complex Gaussian matrix into an almost lower-triangular
form first observed in [33], in the spirit of the tridiagonalization of GUE matrices
first observed by Trotter [60], as follows.

18If one really wished, one could adapt the arguments below to also give the upper bound, giving an
alternate proof of Proposition 48, but this argument would be more complicated than the proof given
in the previous section, and we will not pursue it here.
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PROPOSITION 50 (Hessenberg matrix form). [33] Let Mn be a complex Gaus-
sian matrix, and let M ′

n be the random matrix

M ′
n =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ξ11 χn−1,C 0 0 · · · 0

ξ21 ξ22 χn−2,C 0 · · · 0

ξ31 ξ32 ξ33 χn−3,C · · · 0
...

...
...

...
. . .

...

ξ(n−1)1 ξ(n−1)2 ξ(n−1)3 ξ(n−1)4 · · · χ1,C

ξn1 ξn2 ξn3 ξn4 · · · ξnn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where ξij for 1 ≤ j ≤ i ≤ n are i.i.d. copies of the complex Gaussian N(0,1)C, and
for each 1 ≤ i ≤ n−1, χi,C is a complex χ distribution of i degrees of freedom (see
Section 3 for definitions), with the ξij and χi,C being jointly independent. Then the
spectrum of Mn has the same distribution as the spectrum of M ′

n.
The same result holds when Mn is a real Gaussian matrix, except that ξij are

now i.i.d. copies of the real Gaussian N(0,1)R, and the χi,C are replaced with real
χ distributions χi,R with i degrees of freedom.

PROOF. This result appears in [33], Section 2, but for the convenience of the
reader we supply a proof here. We establish the complex case only, as the real case
is similar, making the obvious changes (such as replacing the unitary matrices in
the argument below by orthogonal matrices instead).

The idea will be to exploit the unitary invariance of complex Gaussian vectors
by taking a complex Gaussian matrix Mn and conjugating it by unitary matrices
(which will depend on Mn) until one arrives at a matrix with the distribution of M ′

n.
Write the first row of Mn as (ξ11, . . . , ξ1n). Then there is a unitary transfor-

mation U1 that preserves the first basis vector e1, and maps (ξ11, . . . , ξ1n) to
(ξ11, χn−1,C,0, . . . ,0), where χn−1,C is a complex χ distribution with n − 1 de-
grees of freedom. If we then conjugate Mn by U1, and use the fact that the con-
jugate of a Gaussian vector by a unitary matrix that is independent of that vector,
remains distributed as a Gaussian vector, we see that the conjugate U1MnU

∗
1 to a

matrix takes the form ⎛⎜⎜⎜⎝
ξ11 χn−1,C 0 · · · 0

ξ21 ξ22 ξ23 · · · ξ2n
...

...
...

. . .
...

ξn1 ξn2 ξn3 · · · ξnn

⎞⎟⎟⎟⎠ ,

where the ξij coefficients appearing in this matrix are i.i.d. copies of N(0,1)C (and
are not necessarily equal to the corresponding coefficients of Mn), and χn−1,C is
independent of all of the ξij .

We may then find another unitary transformation U2 that preserves e1 and e2,
and maps the second row (ξ21, . . . , ξ2n) of U1MnU

∗
1 to (ξ21, ξ22, χn−2,C,0, . . . ,0),
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where χn−2,C is distributed by the complex χ distribution with n − 2 degrees of
freedom. Conjugating U1MnU

∗
1 by U2, we arrive at a matrix of the form⎛⎜⎜⎜⎜⎜⎜⎝

ξ11 χn−1,C 0 0 · · · 0

ξ21 ξ22 χn−2,C 0 · · · 0

ξ31 ξ32 ξ33 ξ34 · · · ξ3n
...

...
...

...
. . .

...

ξn1 ξn2 ξn3 · · · ξnn

⎞⎟⎟⎟⎟⎟⎟⎠ ,

where the ξij coefficients appearing in this matrix are again i.i.d. copies of
N(0,1)C (though they are not necessarily identical to their counterparts in the
previous matrix U1MnU

∗
1 ), and χn−1,C and χn−2,C are independent of each other

and of the ξij . Iterating this procedure a total of n − 1 times, we obtain the claim.
�

We now use this conjugated form of the complex Gaussian matrix Mn to de-
scribe the characteristic polynomial det(Mn − z0

√
n).

PROPOSITION 51. Let z0 be a complex number, and let Mn be a complex
Gaussian matrix. Let χ1,C, . . . , χn−1,C be a sequence of independent random vari-
ables distributed according to the complex χ distributions with 1, . . . , n − 1 de-
grees of freedom, respectively. Let ξ1, . . . , ξn be another sequence of independent
random variables distributed according to the complex Gaussian N(0,1)C, and in-
dependent of the χi . Define the sequence a1, . . . , an of complex random variables
recursively by setting

a1 := ξ1 − z0
√

n(9.3)

and

ai+1 := −z0
√

nai√
|ai |2 + χ2

n−i,C

+ ξi+1(9.4)

for i = 1, . . . , n − 1. (Note that the ai are almost surely well defined.) Then the
random variable (

n−1∏
i=1

√
|ai |2 + χ2

n−i,C

)
an

has the same distribution as det(Mn − z0
√

n).
The same conclusions hold when Mn is a real Gaussian matrix, after replacing

ξi with copies of the real Gaussian N(0,1)C, and replacing χi,C with a real χ

distribution χi,R with i degrees of freedom.
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We remark that in [33] a slightly different stochastic equation (a Hilbert space
variant of the Pólya urn process) for the determinants det(Mn −z0

√
n) were given,

in which the value of each determinant was influenced by a Gaussian variable
whose variance depended on all of the determinants of the top left k × k minors
for k = 1, . . . , n − 1. In contrast, the recurrence here is more explicitly Markovian
in the sense that the state ai+1 of the recursion at time i +1 only depends (stochas-
tically) on the state ai at the immediately preceding time. We will rely heavily on
the Markovian nature of the process in the subsequent analysis.

PROOF OF PROPOSITION 51. Again, we argue for the complex Gaussian case
only, as the real Gaussian case proceeds similarly with the obvious modifications.

By Proposition 50, det(Mn − z0
√

n) has the same distribution as det(M ′
n −

z0
√

n). The strategy is then to manipulate M ′
n − z0

√
n by elementary column op-

erations that preserve the determinant, until it becomes a lower triangular matrix

whose diagonal entries have the joint distribution of (
√

|ai |2 + χ2
n−i,C)n−1

i=1 , an, at
which point the claim follows.

We turn to the details. Writing ξ1 := ξ11, we see that M ′
n − z0

√
n can be written

as ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1 χn−1,C 0 0 · · · 0

ξ21 ξ22 − z0
√

n χn−2,C 0 · · · 0

ξ31 ξ32 ξ33 − z0
√

n χn−3,C · · · 0
...

...
...

...
. . .

...

ξ(n−1)1 ξ(n−1)2 ξ(n−1)3 ξ(n−1)4 · · · χ1,C

ξn1 ξn2 ξn3 ξn4 · · · ξnn − z0
√

n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Note that there is a unitary matrix U1 whose action on row vectors (multiplying on

the right) maps (a1, χn−1,C,0, . . . ,0) to (
√

|a1|2 + χ2
n−1,C,0, . . . ,0), and which

only modifies the first two coefficients of a row vector. This corresponds to a col-
umn operation that modifies the first two columns of a matrix in a unitary fashion
(by multiplying that matrix on the right by U1). Because complex Gaussian vectors
remain Gaussian after unitary transformations, we see (after a brief computation)
that this transformation maps the second row (ξ21, ξ22 − z0

√
n,χn−2,C,0, . . . ,0)

of the above matrix to a vector of the form(
∗,

−z0
√

na1√
|a1|2 + χ2

n−1,C

+ ξ2, χn−2,C, . . . ,0
)
,

where ξ2 is a complex Gaussian (formed by some combination of ξ21 and ξ22)
and ∗ is a quantity whose exact value will not be relevant for us. By (9.4), we
may denote the second coefficient of this vector by a2. The remaining rows of
the matrix have their distribution unchanged by the unitary matrix U1, because
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their first two entries form a complex Gaussian vector. Thus, after applying the U1
column operation to the above matrix, we arrive at a matrix with the distribution⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
|a1|2 + χ2

n−1,C 0 0 0 · · · 0

∗ a2 χn−2,C 0 · · · 0

ξ31 ξ32 ξ33 − z0
√

n χn−3,C · · · 0
...

...
...

...
. . .

...

ξ(n−1)1 ξ(n−1)2 ξ(n−1)3 ξ(n−1)4 · · · χ1,C

ξn1 ξn2 ξn3 ξn4 · · · ξnn − z0
√

n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where the ξij here are i.i.d. copies of N(0,1)C that are independent of a1, a2
and the χi,C (and which are not necessarily identical to their counterparts in the
previous matrix under consideration). Of course, the determinant of this matrix has
the same distribution as the determinant of the preceding matrix.

In a similar fashion, we may find a unitary matrix U2 whose action on row vec-

tors maps (∗, a1, χn−2,C,0, . . . ,0) to (∗,
√

|a2|2 + χ2
n−2,C,0, . . . ,0), and which

only modifies the second and third coefficients of a row vector. Applying the as-
sociated column operation, and arguing as before, we arrive at a matrix with the
distribution⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
|a1|2 + χ2

n−1,C 0 0 0 · · · 0

∗
√

|a2|2 + χ2
n−2,C 0 0 · · · 0

∗ ∗ a3 χn−3,C · · · 0
...

...
...

...
. . .

...

ξ(n−1)1 ξ(n−1)2 ξ(n−1)3 ξ(n−1)4 · · · χ1,C

ξn1 ξn2 ξn3 ξn4 · · · ξnn − z0
√

n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where again the values of the entries marked ∗ are not relevant for us. Iterating
this procedure a total of n − 1 times, we finally arrive at a lower triangular matrix
whose diagonal entries have the distribution of(√

|a1|2 + χ2
n−1,C,

√
|a2|2 + χ2

n−2,C, . . . ,
√

|an−1|2 + χ2
1,C, an

)
and whose determinant has the same distribution as that of M ′

n − z0
√

n or Mn −
z0

√
n. The claim follows. �

9.3. A nonlinear stochastic difference equation. For the sake of exposition, we
now specialize to the complex Gaussian case; the case when Mn is a real Gaussian
is similar and we will indicate at various junctures what changes need to be made.

From Proposition 51, we see that log |det(Mn − z0
√

n)| has the same distribu-
tion as

1

2

n−1∑
i=1

log
(|ai |2 + χ2

n−i,C

)+ log |an|.(9.5)
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It thus suffices to establish the lower bound

1

2

n−1∑
i=1

log
(|ai |2 + χ2

n−i,C

)+ log |an| ≥ 1

2
n logn + αn − no(1)(9.6)

with overwhelming probability.
We first note that as the distribution of log |det(Mn − z0

√
n)| is invariant with

respect to phase rotation z0 �→ z0e
√−1θ , we may assume without loss of generality

that z0 is real and nonpositive, thus

ai+1 := |z0|√nai√
|ai |2 + χ2

n−i,C

+ ξi+1.(9.7)

REMARK 52. In the real Gaussian case, one does not have phase rotation
invariance. However, by making the change of variables a′

i := aie
−√−1iθ one can

obtain the variant

a′
i+1 := |z0|√na′

i√
|ai |2 + χ2

n−i,R

+ ξ ′
i+1(9.8)

to (9.7), where ξ ′
i+1 := e−√−1iθ ξi+1. It will turn out that this recurrence is simi-

lar enough to (9.7) that the arguments below used to study (9.7) can be adapted
to (9.8); the ξ ′

i are no longer identically distributed, but they still have mean zero,
variance one, and are jointly independent, and this is all that is needed in the argu-
ments that follow.

The random variable χ2
n−i,C has mean n − i and variance n − i. As such, it is

natural to make the change of variables

χn−i,C =: n − i + √
n − iηn−i ,

where the η1, . . . , ηn−1 have mean zero, variance one and are independent of each
other and of the ξi .

REMARK 53. For real Gaussian matrices, the situation is very similar, except
that the error terms ηn−i now have variance two instead of one. However, this
will not significantly affect the concentration results for the log-determinant in this
paper. (This will however presumably affect any central limit theorems one could
establish for the log-determinant, in analogy with [58], though we will not pursue
such theorems here.)

We now pause to perform a technical truncation. As the ξi are distributed in a
Gaussian fashion, we know that

sup
1≤i≤n

|ξi | ≤ no(1)(9.9)
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with overwhelming probability. Similarly, standard asymptotics for chi-square dis-
tributions also give the bound

sup
1≤i<n

|ηi | ≤ no(1)(9.10)

with overwhelming probability (this bound also follows from Proposition 35).
We may now condition on the event that (9.9), (9.10) hold [for a suitable

choice of the o(1) decay exponent]. Importantly, the joint independence of the
ξ1, . . . , ξn, η1, . . . , ηn−1 remain unchanged by this conditioning. Of course, the
distribution of the ξi and ηi will be slightly distorted by this conditioning, but
this will not cause a difficulty in practice, as the mean, variances, and higher mo-
ments of these variables are only modified by O(n−100) (say) at most, and also we
will at key junctures in the proof be able to undo the conditioning (after accepting
an event of negligible probability) in order to restore the original distributions of
ξi and ηi if needed.

We return to the task of proving (9.6). We write (9.7) as

ai+1 := |z0|√nai√
|ai |2 + n − i + √

n − iηn−i

+ ξi+1.(9.11)

We will treat this as a nonlinear stochastic difference equation in the ai . If we ig-
nore the diffusion terms ηn−i , ξi+1, we see that (9.11) is governed by the dynamics
of the maps

a �→ |z0|√na√
|a|2 + n − i

(9.12)

as i increases from 1 to n − 1. In the regime i < (1 − |z0|2)n, we see that this
map has a stable fixed point at zero, while in the regime i > (1 − |z0|2)n, this map

has an unstable fixed point at zero and a fixed circle at |a| =
√

|z0|2n − (n − i).

This suggests that |ai | should concentrate somehow around 0 for i ≤ (1 − |z0|2)n
and around

√
|z0|2n − (n − i) for i ≥ (1 − |z0|2)n. In particular, this leads to the

heuristic

|ai |2 + χ2
n−i,C ≈ max

(
n − i, |z0|2n).

Note from the integral test that

1

2

n−1∑
i=1

log max
(
n − i, |z0|2n)

= 1

2

∫ n

1
log max

(
n − t, |z0|2n)dt + O

(
no(1))(9.13)

= 1

2
n logn + αn + O

(
no(1)),
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where the second identity follows from a routine integration (treating the cases
|z0| ≤ 1 and |z0| ≥ 1 separately). This gives heuristic support for the desired
bound (9.6).

We now make the above analysis rigorous. Because we are only seeking a lower
bound (9.6), the main task will be to obtain lower bounds that are roughly of the
form

|ai |2 + χ2
n−i,C � max

(
n − i, |z0|2n)

with overwhelming probability. In the “early regime” i ≤ (1 − |z0|2)n, we will
be able to achieve this easily from the trivial bound |ai | ≥ 0. In the “late regime”
i ≥ (1 − |z0|2)n, the main difficulty is then to show (with overwhelming probabil-
ity) that ai avoids the unstable fixed point at zero, and instead is essentially at least

as far away from the origin as the fixed circle |a| =
√

|z0|2n − (n − i).
We turn to the details. We begin with a crude bound on the magnitude of the

quantities ai .

LEMMA 54 (Crude lower bound). Almost surely [after conditioning to (9.9)
and (9.10)], one has

sup
1≤i≤n

|ai | ≤ (1 + |z0|)√n(9.14)

and with overwhelming probability

inf
1≤i≤n

|ai | ≥ exp
(−no(1)).(9.15)

PROOF. From (9.3), (9.9), we see that we have

|a1| ≤ 2
√

n.

From (9.7) (trivially bounding χn−i from below by zero), we have

|ai+1| ≤ |z0|√n + |ξi+1|
and so the bound (9.14) follows from (9.9) and the assumption that |z0| ≤ 1.

Now we prove (9.15). Let A ≥ 0 be fixed. Observe that ξ1 has a bounded density
function [even after conditioning on (9.9)], so from (9.3) we have

|a1| ≥ n−A

with probability19 1 − O(n−2A). In a similar spirit, for any i = 1, . . . , n − 1,
ξi+1 has a bounded density function, so from (9.7) or (9.11) (after temporarily
conditioning ai and ηn−i to be fixed) that

|ai+1| ≥ n−A

19In the real Gaussian case, the n−2A factor worsens to n−A, but this does not impact the final
conclusion.
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with probability 1 − O(n−2A). By the union bound, we conclude that

inf
1≤i≤n

|ai | ≥ n−A

with probability 1 − O(n−2A+1). Diagonalizing in A, we obtain the claim. �

From this lemma, we conclude that

log |ai | = no(1)(9.16)

with overwhelming probability for each 1 ≤ i ≤ n. To show (9.6), it thus suffices
to establish, for each fixed ε > 0, that

1

2

n−1∑
i=1

log
(|ai |2 + χ2

n−i,C

)≥ 1

2
n logn + αn − O

(
nO(ε))

with overwhelming probability, where the implied constant in the O(ε) notation is
understood to be independent of ε of course.

In view of (9.13), it will suffice to show that∑
nε<i≤n−nε

(
log
(|ai |2 + χ2

n−i,C

)− log max
(
n − i, |z0|2n))≥ −O

(
nO(ε))(9.17)

with overwhelming probability, as the contributions of the i within nε of 1 or n

can be controlled by O(nε+o(1)) thanks to Lemma 54.

9.4. Lower bound at early times. We partition
∑

nε<i≤n−nε (log(|ai |2 +
χ2

n−i,C) − log max(n − i, |z0|2n)) into two parts, according to the heuristics fol-
lowing (9.12). The following simple lemma handles the first part of the partition.

LEMMA 55 (Concentration at early times). One has∑
nε<i≤min((1−|z0|2)n+|z0|n1/2+ε,n−nε)

log
(|ai |2 + χ2

n−i,C

)− log max
(
n − i, |z0|2n)

≥ −O
(
nO(ε))

with overwhelming probability.

PROOF. We abbreviate the summation as
∑

i . The key observation here is that
we need only a lower bound, so we can use the trivial inequality

log
(|ai |2 + χn−i,C

)≥ logχn−i,C.

It suffices to show that∑
i

∣∣log(n − i) − log max
(
n − i, |z0|2n)∣∣= O

(
nO(ε))(9.18)
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and ∑
i

logχ2
n−i,C − log(n − i) = O

(
nO(ε))(9.19)

with overwhelming probability.
We first verify (9.18). The summand is only nonzero when i = (1 − |z0|2)n + j

for some 0 < j ≤ min(|z0|n1/2+ε, |z0|2n−nε), and so one can bound the left-hand
side of (9.18) by ∑

0<j≤min(|z0|n1/2+ε,|z0|2n−nε)

∣∣log
(|z0|2n − j

)− log
(|z0|2n)∣∣.

When j ≤ |z0|2n − nε , we may bound∣∣log
(|z0|2n − j

)− log
(|z0|2n)∣∣ no(1) j

|z0|2n
and the claim then follows by summing over all 0 < j ≤ |z0|n1/2+ε .

Now we verify (9.19), which is quite standard. Writing χ2
n−i,C = n − i +√

n − iηn−i , we can write the left-hand side of (9.19) as∑
i

log
(

1 + ηn−i√
n − i

)
.

From Taylor expansion and (9.10) we then have

log
(

1 + ηn−i

n − i

)
= ηn−i√

n − i
+ O

(
no(1)

n − i

)
.

The sum of the error term is acceptable, so it suffices to show that∑
i

ηn−i√
n − i

= O
(
nO(ε))

with overwhelming probability. But this follows20 from Proposition 35. �

REMARK 56. Following the heuristics after (9.12), it would be more natural
to consider nε ≤ i ≤ (1 − |z0|2)n. The extra term |z0|n1/2+ε in the upper bound of
i is needed for a technical reason which will be clear in the analysis of larger i (see
Lemma 58).

20Strictly speaking, Proposition 35 does not apply directly because the mean of the random variables
ηn−i deviates very slightly from zero when the conditioning (9.10) is applied. However, one can first
apply Proposition 35 to the unconditioned variables ηn−i , and then apply the conditioning (9.10) that
is in force elsewhere in this argument, noting that such conditioning does not affect the property of
an event occurring with overwhelming probability.
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9.5. Concentration at late times. Define

i0 := max
(
nε,
(
1 − |z0|2)n + |z0|n1/2+ε).(9.20)

In view of Lemma 55, we see that to prove (9.17) it now suffices to establish the
lower bound ∑

i0<i≤n−nε

log
(|ai |2 + χ2

n−i,C

)− log
(|z0|2n)= O

(
nO(ε))(9.21)

with overwhelming probability. In fact, we only need the lower bound from (9.21),
but the argument given here gives the matching upper bound as well with no addi-
tional effort.

Let us first deal with the easy case when

|z0| < n−1/2+400ε(9.22)

(say). In this case, there are only O(n800ε) terms in the sum, and from Lemma 54
(discarding the nonnegative χ2

n−i,C term) each term is at least −O(no(1)), so the
claim (9.21) follows immediately. [Note that the summation is in fact empty un-
less |z0| ≥ n−1/2+ε/2, so the log(|z0|2n) term is O(no(1)).] Thus, in the arguments
below we can assume that

|z0| ≥ n−1/2+400ε.(9.23)

Observe from (9.7) that

log
(|ai |2 + χ2

n−i,C

)− log
(|z0|2n)= log

|ai+1 − ξi+1|2
|ai |2 .

From telescoping series and (9.16) we have∑
i0<i≤n−nε

log
|ai+1|2
|ai |2 = O

(
no(1))

with overwhelming probability, so by the triangle inequality it suffices to show that∑
i0<i≤n−nε

log
|ai+1 − ξi+1|2

|ai+1|2 = O
(
nO(ε))

with overwhelming probability. We can rewrite

|ai+1 − ξi+1|2
|ai+1|2 =

∣∣∣∣1 + ξi+1

a′
i

∣∣∣∣−2

,

where

a′
i := ai+1 − ξi+1 = |z0|√nai√

|ai |2 + χn−1,C

.(9.24)
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It suffices to show that ∑
i0<i≤n−nε

log
∣∣∣∣1 + ξi+1

a′
i

∣∣∣∣= O
(
nO(ε))

with overwhelming probability.
The heart of the matter will be the following lemma.

LEMMA 57. With overwhelming probability∣∣a′
i

∣∣� n−100ε(i − (1 − |z0|2)n)1/2(9.25)

holds for all i0 < i ≤ n − nε .

Assuming this lemma for the moment, we can then use it to conclude the proof
as follows. For any i0 < i ≤ n − nε , one has(

i − (1 − |z0|2)n)1/2
>
(
i0 − (1 − |z0|2)n)1/2 ≥ (|z0|n1/2+ε)1/2 ≥ n200ε(9.26)

by (9.20) and (9.23), and thus by Lemma 57∣∣a′
i

∣∣� n100ε

with overwhelming probability. From this and (9.9), we see that∣∣∣∣ξi+1

a′
i

∣∣∣∣= o(1);

indeed, the same argument gives the more precise bound∣∣∣∣ξi+1

a′
i

∣∣∣∣ nO(ε)(i − (1 − |z0|2)n)−1/2
.

Performing a Taylor expansion (up to the second-order term), we conclude that

log
∣∣∣∣1 + ξi+1

a′
i

∣∣∣∣= Re ξi+1/a
′
i + O

(
nO(ε)(i − (1 − |z0|2)n)−1)

with overwhelming probability.
The error terms O(nO(ε)(i − (1 − |z0|2)n)−1) sum to O(nO(ε)), so it suffices to

show that ∑
i0<i≤n−nε

ξi+1

a′
i

= O
(
nO(ε))(9.27)

with overwhelming probability. But from (9.25), one has

1

a′
i

= O(nO(ε)(i − (1 − |z0|2n)−1/2)
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with overwhelming probability. Also, the coefficient 1
a′
i

depends on ξ1, . . . , ξi and

χ1,C, . . . , χn,C and is independent of ξi+1, . . . , ξn, so the sum in (9.27) becomes a
martingale sum.21 The claim then follows from Proposition 35.

It remains to prove (9.25). From (9.7), (9.24), (9.9), we have

a′
i = ai+1 − ξi+1 = ai+1 + O

(
no(1))

and so by (9.26) it will suffice to establish the bound

|ai | � n−99ε(i − (1 − |z0|2)n)1/2(9.28)

with overwhelming probability for each i0 < i ≤ n − nε + 1.
In order to prove (9.28), let us first establish a preliminary largeness result on ai ,

which uses the diffusive term ξi+1 in (9.7) to push this random variable away from
the unstable equilibrium 0 of the map (9.12).

LEMMA 58 (Initial largeness). With overwhelming probability, one has

sup
max(i0−(1/2)|z0|n1/2+ε,0)≤i≤i0

|ai | > A,(9.29)

where A is the quantity

A := |z0|1/2n1/4+ε/10.

PROOF. Suppose first that

i0 − 1
2 |z0|n1/2+ε ≤ 0.

By (9.20), this implies that |z0| � 1, and then from (9.3), (9.9) we have |a1| �
n1/2, which certainly gives (9.29) in this case. Thus, we may assume that

i0 − 1
2 |z0|n1/2+ε > 0.

It will suffice to show that, for each integer

i0 − 1
2 |z0|n1/2+ε ≤ i1 ≤ i0

and each fixed (i.e., conditioned) choice of ξ1, . . . , ξi1 and χn−1,C, . . . , χn−i1 , one
has

sup
i1≤i≤i1+|z0|n1/2+ε/2

|ai | > A(9.30)

with conditional probability at least q for some fixed q > 0. Indeed, we can

choose in the interval [i0 − 1
2 |z0|n1/2+ε, i0 −|z0|n1/2+ε/2] at least nε/2

100 initial points

21Again, strictly speaking one should apply Proposition 35 to the unconditioned variables and then
apply the conditioning (9.9), (9.10), as in Lemma 55.
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i1, . . . , im so that the distance between any two of them is at least |z0|n1/2+ε/2. If
we let Ej for j = 1, . . . ,m be the event that (9.30) holds with i1 replaced by ij ,
then the above claim asserts that after conditioning on the failure of the events
E1, . . . ,Ej−1, the event Ej holds with conditional probability at least q . Multi-
plying the conditional probabilities together, we then obtain (9.29) with a failure
probability of at most

(1 − q)n
ε/2/4,

which is O(n−A) for any fixed A > 0 as required.
Fix i0 − 1

2 |z0|n1/2+ε ≤ i1 ≤ i0 and ξ1, . . . , ξi1 and χn−1,C, . . . , χn−i1,C; all prob-
abilities in this argument are now understood to be conditioned on these choices.
The quantity ai1 is now deterministic, and we may of course assume that

|ai1 | ≤ A(9.31)

as the claim is trivial otherwise. We may also condition on the event that (9.10)
hold. Let i2 := �i1 + |z0|n1/2+ε/2�. Our goal is to show that

P
(

sup
i1≤i≤i2

|ai | > A
)

� 1.

For technical reasons [having to do with the contractive nature of the recur-
sion (9.7) when ai becomes large], it will be convenient to replace the random
process ai by a slightly truncated random process ãi for i0 ≤ i ≤ i1, which is de-
fined by setting ãi1 := ai1 and

ãi+1 := |z0|√nãi√
min(|ãi |,A)2 + χ2

n−i,C

+ ξi+1(9.32)

for i1 ≤ i < i2. From an induction on the upper range i2 of the i parameter, we see
that

sup
i1≤i≤i2

|ai | ≤ A ⇐⇒ sup
i1≤i≤i2

|ãi | ≤ A

and in particular

|ãi2 | > A �⇒ sup
i1≤i≤i2

|ai | > A.

Thus, it will suffice to show that

P
(|ãi2 | > A

)� 1.(9.33)

By a standard Paley–Zygmund type argument, it will suffice to obtain the lower
bound

E|ãi2 |2 � |z0|n1/2+ε/2(9.34)
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on the second moment, and the upper bound

E|ãi2 |4  |z0|2n1+ε + |z0|n1/2+ε/2E|ãi2 |2(9.35)

on the fourth moment. Indeed, if p denotes the probability in (9.33), then from
Hölder’s inequality one has

E|ãi2 |2  A2 + p1/2(E|ãi2 |4
)1/2

and then from (9.35) and (9.34) (and the definition of A) we obtain p � 1 as
required.

It remains to establish (9.34) and (9.35). For this, we will use (9.32) to track the
growth of the moments E|ãi |2,E|ãi |4 as i increases from i1 to i2.

Let i1 ≤ i < i2. From (9.32), we thus have

E|ãi+1|2 = E
∣∣∣∣ |z0|√nãi√

min(|ãi |,A)2 + n − i + √
n − iηn−i

+ ξi+1

∣∣∣∣2
The quantity ξi+1 has mean O(n−100), variance 1 + O(n−100) [the O(n−100) er-
rors arising from our conditioning to (9.9)], and is independent of the other random
variables on the right-hand side. Thus [using (9.14)], we have

E|ãi+1|2 = E
∣∣∣∣ |z0|√nãi√

min(|ãi |,A)2 + n − i + √
n − iηn−i)

∣∣∣∣2 + 1 + O
(
n−90).

Upper bounding min(|ãi |,A) by A and n − i by |z0|2√n − |z0|n1/2+ε/2, and us-
ing (9.10) (which we recall that we have conditioned on), we conclude that

min
(|ãi |,A)2 + n − i + √

n − iηn−i ≤ |z0|2n.

This implies that

E|ãi+1|2 ≥ E|ãi |2 + 1 + O
(
n−90).(9.36)

Iterating this � |z0|n1/2+ε/2 times, we obtain (9.34) as required.
Now we turn to (9.35). Again, we let i1 ≤ i < i2. From (9.32), we have

E|ãi+1|4 = E
∣∣∣∣ |z0|√nãi√

min(|ãi |,A)2 + n − i + √
n − iηn−i

+ ξi+1

∣∣∣∣4.
Expanding out the left-hand side using the independence and moment properties
of ξi+1, we can estimate the above expression as

E
∣∣∣∣ |z0|√nãi√

min(|ãi |,A)2 + n − i + √
n − iηn−i

∣∣∣∣4

+ O

(
E
∣∣∣∣ |z0|√nãi√

min(|ãi |,A)2 + n − i + √
n − iηn−i

∣∣∣∣2 + 1
)
.
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Using (9.9), (9.10) and the bound n − i ≥ |z0|2n − O(|z0|n1/2+ε), and discarding
the nonnegative min(|ãi |,A)2 term, we then obtain the upper bound

E|ãi+1|4 ≤ (1 + O
(|z0|−1n−1/2+ε))E|ãi |4 + O

(
E|ãi |2 + 1

)
,(9.37)

via a routine calculation. From (9.36), we have

E|ãi |2  E|ãi2 |2.
From (9.31), we also have

E|ãi1 |4  |z0|2n1+ε;
if we then iterate (9.37) O(|z0|n1/2+ε/2) times, we obtain (9.35) as desired. �

Now we need to use the repulsive properties of (9.12) near the origin to propa-
gate this initial largeness to later values of i. The key proposition is the following.

PROPOSITION 59. Let i0 ≤ i1 ≤ i2 ≤ n − nε/2. Let Ei1,i2 be the event that

|ai | ≤ 1
2

√
i − (1 − |z0|2)n for all i1 ≤ i ≤ i2. Then we have with overwhelming

probability that

|ai2 |1Ei1,i2
≥
(

1 + ci1 − (1 − |z0|2)n
|z0|2n

)i2−i1(|ai1 | + O
(
no(1)

√
i − i1

))
1Ei1,i2

for some constant c > 0.

PROOF. The probability in question will be computed over the product space
generated by ξi, ηi with i1 < i ≤ i2, conditioning all the other ξi, ηi to be fixed. In
particular, ai1 is now deterministic.

For any i1 ≤ i < i2, we see from (9.11) that

ai+1 = βiai + ξi+1,(9.38)

where βi is the positive real number

βi := |z0|√n√
|ai |2 + n − i + √

n − iηn−i

.

Next, from iterating (9.38) we have

ai2 = γi1,i2

(
ai1 + ∑

i1≤i<i2

δi1,iξi+1

)
,

where γi1,i2 := βi1 · · ·βi2−1 and δi1,i := β−1
i1

· · ·β−1
i .

As the event Ei1,i contains Ei1,i2 for i1 ≤ i < i2, we have

ai21Ei1,i2
= γi1,i21Ei1,i2

(
ai1 + ∑

i1≤i<i2

δi1,iξi+11Ei1,i

)
.(9.39)
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Notice that if Ei1,i holds, then

|ai |2 ≤ 1
4

(
i − (1 − |z0|2)n),

which is equivalent to

|ai |2 + n − i ≤ |z0|2n − 3
4

(
i − (1 − |z0|2)n).

On the other hand, since

i − (1 − |z0|2)n ≥ i1 − (1 − |z0|2)n ≥ |z0|n1/2+ε/2

and n − i ≤ |z0|2n, we deduce from (9.10) that

|ai |2 + n − i + √
n − iηn−i ≤ |z0|2n − 1

2

(
i − (1 − |z0|2)n)

(say) if n is large enough. This gives a bound of the form

βi ≥ 1 + c
i − (1 − |z0|2)n

|z0|2n ≥ 1 + c
i1 − (1 − |z0|2)n

|z0|2n
for some absolute constants c > 0.

From the definition of γi , we conclude the lower bound

|γi1,i2 |1Ei1,i2
≥
(

1 + c
i1 − (1 − |z0|2)n

|z0|2n
)i2−i1

1Ei1,i2
(9.40)

and the upper bound

|δi1,i |1Ei1,i
≤ 1Ei1,i

≤ 1.(9.41)

Let us now make a critical observation that the random variable δi1,i1Ei1,i

depends on ξ2, . . . , ξi (and on the χ1,C, . . . , χn−1,C) but is independent of
ξi+1, . . . , ξn. This enables us to apply Proposition 35, from which we can con-
clude that with overwhelming probability∑

i1≤i<i2

δi1,i1Ei1,i
ξi+1 = O

(
no(1)|i2 − i1|1/2)= O

(
no(1)

√
i2 − i1

)
,(9.42)

concluding the proof. �

COROLLARY 60. Assume that |ai1 | ≥ nε/100T 1/2 where

T :=
⌊ |z0|2n
i1 − (1 − |z0|2)n log2 n

⌋
.

Then 1Ei1,i1+T
= 0 holds with overwhelming probability.
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PROOF. Assume, for contradiction, that there is a fixed A such that P(1ET
) ≥

n−A. By the previous lemma, we can assume that

|ai1+T |1Ei1,i1+T
≥
(

1 + ci1 − (1 − |z0|2)n
|z0|2n

)T (|ai1 | + O
(
no(1)

√
T
)
1Ei1,i1+T

)
holds with probability at least 1 − n−2A. Taking expectations, we conclude

E|ai1+T | ≥ E|ai1+T |1Ei1,i1+T

≥
(

1 + ci1 − (1 − |z0|2)n
|z0|2n

)T (
E|ai1 | + O

(
no(1)

√
T
))(

n−A − n−2A).
Since |ai1 | ≥ nε/100T 1/2 and (1+ ci1−(1−|z0|2)n

|z0|2n )T ≥ exp(c log2 n) for some fixed

c > 0 by the definition of T , the RHS is bounded from below by

n−A exp
(
c log2 n

)� n.

On the other hand, from Lemma 54 we have that

E|ai1+T | ≤ (1 + |z0|)√n  √
n,

yielding the desired contradiction. �

Next, we observe that ai cannot drop in magnitude too quickly once it is some-
what small [assuming the hypotheses (9.9), (9.10), of course].

LEMMA 61. If |ai | ≤ 1
2

√
i − (1 − |z0|2)n then |ai | ≥ |ai−1| − no(1).

PROOF. From (9.7), we have

ai − ξi = |z0|√n√
|ai−1|2 + χn−i+1,C

ai−1

and hence

|z0|2n
|ai−1|2 + χn−i+1,C

|ai−1|2 = |ai − ξi |2.

We can rearrange this as

|ai−1|2 = χn−i+1,C

|z0|2n − |ai − ξi |2 |ai − ξi |2.
By (9.10), we have

χn−i+1,C = n − i + O
(√

n − ino(1))= n − i + O
(
no(1)|z0|√n

)
,

using the fact that in this range n − i ≤ |z0|2n.
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From the assumption of the lemma, we have that

|ai − ξi |2 ≤ 1
4

(
i − (1 − |z0|2)n)+ O

(
no(1)

√
i − (1 − |z0|2)n)

and thus

χn−i+1,C − |z0|2n + |ai − ξi |2

≤ −3
4

(
i − (1 − |z0|2)n)+ O

(
no(1)|z0|√n

)+ O
(
no(1)

√
i − (1 − |z0|2)n).

As i − (1 − |z0|2n) ≥ |z0|n1/2+ε , we see that the right-hand side is negative for
n large enough, thus

χn−i+1,C

|z0|2n − |ai − ξi |2 ≤ 1.

We thus have

|ai−1| ≤ |ai − ξi1 |,
which implies from (9.9) that |ai | ≥ |ai−1| − no(1) as desired. �

We can now prove the lower bound (9.28) with overwhelming probability as
follows. We first condition on the event that the conclusion of Lemma 58 holds.
Now assume that there is some i0 < i ≤ n − nε such that

|ai | ≤ 1
3

√
i − (1 − |z0|2)n.

Let i2 be the first such index. In particular,

|ai2 | ≤ 1
3

√
i2 − (1 − |z0|2)n ≤ 1

2

√
i2 − (1 − |z0|2)n.(9.43)

By Lemma 58, we can then locate an index max(i0 − 1
2 |z0|n1/2+ε,0)+ 1 ≤ i1 < i2

such that |ai | ≤ 1
2

√
i − (1 − |z0|2)n for all i1 ≤ i ≤ i2 (or in other words, Ei1,i2

holds) and

|ai1−1| > 1
2

√
i1 − 1 − (1 − |z0|2)n.

From Lemma 61, this implies in particular that

|ai1 | ≥ 0.499
√

i1 − (1 − |z0|2)n.(9.44)

From the above discussion and the union bound, it thus suffices to show that
for any given i0 ≤ i1 < i2 ≤ n − nε , the event that (9.43) and (9.44) and Ei1,i2 all
simultaneously hold, is false with overwhelming probability.
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Fix i1, i2. If i2 − i1 > T then by Corollary 60, 1Ei1,i2
= 0 with overwhelming

probability and we are done. In the other case i2 − i1 ≤ T , by Proposition 59, we
have with overwhelming probability

|ai2 |1Ei1,i2(9.45)

≥
(

1 + ci1 − (1 − |z0|2)n
|z0|2n

)i2−i1(|ai1 | + O
(
no(1)

√
i − i1

))
1Ei1,i2

.

It now suffices to verify that if |ai1 | ≥ 0.499
√

i1 − (1 − |z0|2)n, Ei1,i2 holds, and

|ai2 | ≤ 1
3

√
i2 − (1 − |z0|2)n, then the above inequality is violated. Notice that since

i2 − i1 ≤ T = |z0|2n
i1−(1−|z0|2n)

log2 n and i1 − (1 − |z0|2)n � |z0|n1/2+ε , we have

|ai1 | + O
(
no(1)

√
i2 − i1

)≥ 0.499
√

i1 − (1 − |z0|2)n − O
(
no(1)T 1/2)

≥ 5
12

√
i1 − (1 − |z0|2)n.

As Ei1,i2 holds, it follows that the RHS of (9.45) is at least

5
12

√
i1 − (1 − |z0|2)n > 1

3

√
i2 − (1 − |z0|2n)

again thanks to the fact that i2 − i1 ≤ T = o(i1 − (1 − |z0|2)n). Our proof is com-
plete.

REMARK 62. All the above arguments go through without difficulty in the
real case, using (9.8) instead of (9.7), replacing ai, ξi, χi,C by a′

i , ξ
′
i , χi,R, respec-

tively; we leave the details to the interested reader.

10. Concentration of log-determinant for i.i.d. matrices. Now that we have
established concentration of the log-determinant in the special case of real and
complex Gaussian matrices (Theorem 33), we are now ready to apply the resolvent
swapping machinery from Section 7 to obtain concentration for more general i.i.d.
matrices (Theorem 25).

Fix δ, z0. Let Wn,z0 be defined as in (2.3). As in the previous section, set α equal
to 1

2(|z0|2 − 1) if |z0| ≤ 1, and log |z0| if |z0| ≥ 1. It suffices to show that

log
∣∣det(Wn,z0)

∣∣= 2nα + O
(
no(1))

with overwhelming probability, uniformly in z0. We may assume without loss of
generality that all entries of Mn are O(no(1)).

We observe the identity

log
∣∣det(Wn,z0)

∣∣= log
∣∣det(Wn,z0 − √−1T )

∣∣− n Im
∫ T

0
s(

√−1η)dη
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for any T > 0, where s(z) := 1
n

trace(Wn,z0 − z)−1 is the Stieltjes transform, as
can be seen by writing everything in terms of the eigenvalues of Wn,z0 . If we set
T := n100, then we see that

log
∣∣det(Wn,z0 − √−1T )

∣∣= n logT + log
∣∣det

(
1 − n−100Wn,z0

)∣∣
= n logT + O

(
n−10)

(say), thanks to (8.1) and the hypothesis that |zj | ≤ √
n. Thus, it suffices to show

that

n Im
∫ T

0
s(

√−1η)dη = n logT − 2nα + O
(
no(1))

with overwhelming probability.
Now we eliminate the contribution of very small η.

LEMMA 63. One has

n Im
∫ 1/n

0
s(

√−1η)dη = O
(
no(1))

with overwhelming probability.

PROOF. From Proposition 31, we see with overwhelming probability that∣∣s(√−1η)
∣∣ no(1)

(
1 + 1

nη

)
for all η > 0. This already handles the portion of the integral where η > n−2 logn

(say). For the remaining portion when 0 < η ≤ n−2 logn, we observe from Propo-
sition 27 that with overwhelming probability, all eigenvalues of Wn,z0 are at least
n− logn in magnitude, which implies that s(

√−1η) = O(n1+logn) for all such η,
and the claim follows. �

Set X := n Im
∫ T

1/n s(
√−1η)dη and X∗ := n logT − 2nα. Fix arbitrary con-

stants A,ε > 0. In view of the above lemma, it suffices to show that

P
(|X − X∗| ≥ nε) n−A.

By Markov’s inequality, it suffices to show that for j = 2�A/ε�
E(X − X∗)j = O

(
njε/2).(10.1)

Without loss of generality, we may assume j to be large, for example, j > 5.
By Theorem 33, we know that a stronger bound

E
(
X′ − X∗

)j ≤ nε(10.2)
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holds for the same range of j (for n sufficiently large depending on ε and j ), where
X′ is defined as in X but with Mn replaced by a random real or complex Gaussian
matrix M ′

n that matches Mn to third order.
We now execute the following swapping process. Start with the random Gaus-

sian matrix M ′
n and in each step swap either the real or imaginary part of a Gaus-

sian entry of M ′
n to the associated real or imaginary part of the corresponding

entry of Mn. The exact order in which we perform this swapping is not important,
so long as it is chosen in advance; for instance, one could use lexicographical or-
dering, swapping the real part and then the imaginary part for each entry in turn.
Let M [k]

n , 0 ≤ k ≤ 2n2, be the resulting random matrix at time k and define X[k]
accordingly. We will show, by induction on k, that

E
(
X[k] − X∗

)j ≤
(

1 + k

n2+ε/8j

)
nε(10.3)

for n sufficiently large depending on ε and j (but not on k). Note that the base case
k = 0 of (10.3) holds thanks to (10.2), while the case k = 2n2 implies (10.1) with
some room to spare.

For technical reasons, it is convenient to assume that |ξ |, |ξ ′| = no(1) with prob-
ability one. This can be done replacing all entries ξij by ξij I|ξij |≤logB n and ξ ′

ij by

ξ ′
ij I|ξ ′

ij |≤logB n, where B is a sufficiently large constant so that with overwhelming

probability |ξij | + |ξ ′
ij | < logB n for all i, j . It is clear that any event that holds

with overwhelming probability in the truncated model also holds with overwhelm-
ing probability in the original one. Thus, we can reduce to the truncated case. At
this point, we would like to point out that the truncation does change the mo-
ments of the entries, but by a very small amount that will only introduce negligible
factors such as O(n−100) to the swapping argument. Abusing the notion slightly,
from now on we still work with ξ and ξ ′ but under the extra assumption that with
probability one |ξ |, |ξ ′| ≤ logB n = no(1).

Fix a step 0 ≤ k < 2n2, and consider the difference

Dk := E
(
X[k+1] − X∗

)j − E
(
X[k] − X∗

)j
(10.4)

=
∫

E
([(

X[k+1] − X∗
)j − (X[k] − X∗

)j ]∣∣M0
)
dM0,

where M0 is obtained from X[k+1] by putting 0 at the swapping position (in other
words, M0 is the common part of M [k] and M [k+1]), and dM0 is the law of M0.
Once conditioned on M0, we can simplify the notation by replacing X[k] and
X[k+1] by Xξ and Xξ ′ , respectively.

It is important to notice that since η ≥ 1/n, we can bound |sξ (
√−1η)| crudely

by n with probability one (for any matrix M [k]
n ). As T = n100, this implies that

|X[k]|  n102 and ∣∣(X[k] − X∗
)j − (X[k+1] − X∗

)j ∣∣ n102j(10.5)
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for any j , with probability one.
By Proposition 31, we see with overwhelming probability that∥∥Rξ(

√−1η)
∥∥
(∞,1)  no(1)

for all η ≥ n−1. In this case, by Lemma 44 and (8.4)∥∥R0(
√−1η)

∥∥
(∞,1)  no(1)(10.6)

for all such η.
If (10.6) holds, we say that M0 is good. The contribution from bad M0 in the

RHS of (10.4) is very small. Indeed, by Proposition 31, we can assume that M0 is
bad with probability at most n−102j−100. By the upper bound (10.5), the integral
(in Dk) over the bad M0 is at most

n−102j−100n102j = n−100.(10.7)

Let us now condition on a good M0. By Proposition 45, we have

sξ (
√−1η) = s0 +

3∑
i=1

ξ in−i/2ci(η) + O

(
n−2+o(1) 1

nη

)
,(10.8)

where the coefficient ci(η) is independent of ξ and enjoys the bound |ci(η)| 
no(1) 1

nη
.

Multiplying by n and taking the integral over η, we obtain,

Xξ = X0 + P(ξ) + O
(
n−2+o(1)),(10.9)

where P =∑3
i=1 ξ in−i/2 di is a polynomial in ξ with coefficients di = O(no(1)),

and X0 is a quantity independent of ξ . As |ξ | = no(1) with probability one, it fol-
lows that |Xξ − X0| = n−1/2+o(1) with probability one. Furthermore,

Xξ − X∗ = (X0 − X∗) + P(ξ) + O
(
n−2+o(1)).(10.10)

We raise this equation to the power j , focusing on those terms of order ξ4 or
more. As di = O(no(1)), using the fact that |ξ | ≤ no(1) with probability one and
j > 5, we have

(Xξ − X∗)j = Pj (ξ) + O

(
n−2+o(1)

j−1∑
l=1

|X0 − X∗|l + n−5/2+o(1)

)
,(10.11)

where Pj is a polynomial of degree at most 3. Therefore,

E(Xξ − X∗)j
(10.12)

= EPj (ξ) + O

(
n−2+o(1)

j−1∑
k=1

|X0 − X∗|k + n−5/2+o(1)

)
.
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Similarly,

E(Xξ ′ − X∗)j
(10.13)

= EPj

(
ξ ′)+ O

(
n−2+o(1)

j−1∑
k=1

|X0 − X∗|k + n−5/2+o(1)

)
.

Here, the expectations are with respect to ξ and ξ ′ (as we already conditioned
on a good M0.) It follows that

E(Xξ − X∗)j − E(Xξ ′ − X∗)j

= E
(
Pj (ξ) − Pj

(
ξ ′))(10.14)

+ O

(
n−2+o(1)

j−1∑
k=1

|X0 − X∗|k + n−5/2+o(1)

)
.

As already pointed out, the first three moments of ξ and ξ ′ do not entirely match
due to the truncation. However, by fixing B large enough, we can assume that the
truncation changes each moment by at most n−C for some sufficiently large C [we
need C to be larger than the absolute value of the coefficients of Pj , which are of
size O(nO(1)), again thanks to the fact that |sξ (

√−1η)| ≤ n with probability one].
This yields

E(Xξ − X∗)j − E(Xξ ′ − X∗)j
(10.15)

= O

(
n−2+o(1)

j−1∑
k=1

|X0 − X∗|k + n−5/2+o(1)

)
.

But |Xξ − X0| ≤ n−1/2+o(1) with probability one, so (10.4) implies

E(Xξ − X∗)j − E(Xξ ′ − X∗)j
(10.16)

= O

(
n−2+o(1)

j−1∑
k=1

E|Xξ − X∗|k + n−5/2+o(1)

)
.

The right-hand side of (10.16) can be bounded as

O
(
n−2+o(1) min

{
E
∣∣Xξ − X∗∣∣jn−ε/4j , nε/2}),(10.17)

where the bound comes from considering two cases E|Xξ −X∗|j being not smaller
or smaller than nε/2, and the Holder inequality.

Thus, conditioned on a good M0, we have∣∣E(Xξ − X∗)j − E(Xξ ′ − X∗)j
∣∣ n−2+o(1) min

{∣∣Xξ − X∗∣∣jn−ε/4j , nε/2}.
Taking into account (10.7), we conclude

Dk  n−100 + n−2−ε/4j E|Xξ − X∗|j + n−2+ε/2+o(1)

and the desired bound (10.3) on E(X[k+1] − X∗)j follows easily by the induction
hypothesis.
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APPENDIX A: SPECTRAL PROPERTIES OF Wn,z

In this appendix, we prove Propositions 29 and 31. We fix Mn, C, z0 as in these
propositions. By truncation, we may assume that all the coefficients of Mn have
magnitude O(no(1)).

A.1. Crude upper bound. We begin with Proposition 29, which we will
prove by modifying the argument from [55], Appendix C, and [57], Proposi-
tion 28. Write I = [E − η,E + η]. It suffices to establish the claim in the case
1/n ≤ η ≤ 1, as the general case then follows from this case (and from the trivial
bound NI ≤ 2n). By rounding η to the nearest integer power of two, and using the
union bound, it suffices to establish the claim for a single η in this range, which
we now fix. Similarly, we may round E to a multiple of η; since the claim is easy
for (say) |E| ≥ n10; we see from the union bound that it suffices to establish the
claim for a single E, which we now also fix. By symmetry, we may take E ≥ 0.

By a diagonalization argument, it will suffice to show for each fixed c > 0 that
one has

N[E−η,E+η] ≤ n1+cη

with overwhelming probability. Accordingly, we assume for contradiction that

N[E−η,E+η] > n1+cη.(A.1)

We use the Stieltjes transform

s(E + √−1η) = 1

2n
trace(Wn,z − E − √−1η)−1.

Then

Im s(E + √−1η) = 1

2n

2n∑
j=1

η

(λj (Wn,z) − E)2 + η2

from (A.1) we thus have

Im s(E + √−1η) � nc.

In particular, since

s(E + √−1η) = 1

2n

2n∑
j=1

R(E + √−1η)jj

we see from the pigeonhole principle that we have∣∣R(E + √−1η)jj
∣∣� nc(A.2)

for some 1 ≤ j ≤ 2n. By the union bound, it suffices to show that for each j , the
hypothesis (A.2) [combined with (A.1)] leads to a contradiction with overwhelm-
ing probability.
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Fix j ; by symmetry, we may take j = 2n, thus∣∣R(E + √−1η)2n,2n

∣∣� nc.(A.3)

We expand Wn,z as

Wn,z =
(

W ′
n,z X

X∗ 0

)
,

where W ′
n,z is the 2n − 1 × 2n − 1 Hermitian matrix

W ′
n,z :=

⎛⎜⎜⎜⎜⎝
0 0

1√
n
(Mn−1 − z)

0 0 Z
1√
n
(Mn−1 − z)∗ Z∗ 0

⎞⎟⎟⎟⎟⎠ ,

where Mn−1 is the top left n − 1 × n − 1 minor of Mn, Z is the n − 1-dimensional
row vector with entries 1√

n
ξnj for j = 1, . . . , n − 1, X is the 2n-dimensional col-

umn vector

X :=

⎛⎜⎜⎝
X′

1√
n
(ξnn − z)

0

⎞⎟⎟⎠
and X′ is the n − 1-dimensional column vector with entries 1√

n
ξjn for j =

1, . . . , n − 1.
By Schur’s complement, the resolvent coefficient R(E + √−1η)2n,2n can be

expressed as

R(E + √−1η)2n,2n = 1

−E − √−1η − Yn

,(A.4)

where Yn is the expression

Yn := X∗(W ′
n,z − E − √−1η

)−1
X.

By (A.3), we conclude that

|E + √−1η + Yn|  n−c

as Yn has a nonnegative imaginary part, we conclude that

ImYn  n−c.(A.5)

Next, we apply the singular value decomposition to the n × n − 1 matrix( 1√
n
(Mn−1−z)

Z

)
, generating an orthonormal basis of n right singular vectors

u1, . . . , un in C
n, and an orthonormal basis of n − 1 left singular vectors in C

n−1,
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associated to singular values σ1, . . . , σn (with σn = 0). Then W ′
n,z is conjugate to

the direct sum

W ′
n,z ≡

n−1⊕
j=1

(
0 σj

σj 0

)
⊕ (0 )

and thus(
W ′

n,z − E − √−1η
)−1

≡
n−1⊕
j=1

1

σ 2
j − (E + √−1η)2

(
E + √−1η σj

σj E + √−1η

)
⊕
( 1

E + √−1η

)
and thus

ImYn =
n−1∑
j=1

Im
E + √−1η

σ 2
j − (E + √−1η)2

∣∣X̃∗uj

∣∣2

= 1

2

n−1∑
j=1

∑
ε=±1

1

εσj − (E + √−1η)

∣∣X̃∗uj

∣∣2

= η

2

n−1∑
j=1

∑
ε=±1

1

|E − εσj |2 + η2

∣∣X̃∗uj

∣∣2,
where

X̃ :=
⎛⎝ X′

1√
n
(ξnn − z)

⎞⎠
is the top half of X.

By (A.1) and the Cauchy interlacing law, we may find an interval [j−, j+] of
length j+ − j− � n1+cη such that |σj − E| ≤ η for all j− ≤ j ≤ j+. We conclude
that ∑

j−≤j≤j+

∣∣X̃∗uj

∣∣2  n−cη.

At this point, we will follow [19] and invoke a concentration estimate for
quadratic forms essentially due to Hanson and Wright [29, 62].

PROPOSITION 64 (Concentration). Let ξ1, . . . , ξn be i.i.d. complex random
variables with mean zero, variance one, and bounded in magnitude by K for some
K ≥ 1. Let X ∈ C

n be a random vector of the form Y + Z, where

Y := 1

n1/2

⎛⎜⎝ ξ1
...

ξn

⎞⎟⎠
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and Z is a random vector independent of Y . Let A = (aij )1≤i,j≤n be a random
complex matrix that is also independent of Y . Then with overwhelming probability
one has

X∗AX = 1

n
traceA + Z∗AZ

+ O

(
K2 log2 n

(
1

n
‖A‖F + 1√

n
‖AZ‖ + 1√

n

∥∥A∗Z
∥∥)),

where ‖A‖F := (
∑

1≤i,j≤n |aij |2)1/2 is the Frobenius norm of A.

We remark that for our applications, one could also use Talagrand’s concentra-
tion inequality [48] as a substitute for this concentration inequality, at the cost of a
slight degradation in the bounds; see, for example, [55].

PROOF OF PROPOSITION 64. By conditioning, we may assume that Z,A are
deterministic (the failure probability in our estimates will be uniform in the choice
of Z,A). Let ξ̃i := ξi/K . From [19], Proposition 4.5, we have∑

1≤i,j≤n

aij ξ̃i ξ̃j = ∑
1≤i,j≤n

aij Eξ̃i ξ̃j + O
(‖A‖F log2 n

)
with overwhelming probability. Multiplying by K2/n and noting that Eξiξj =
1i=j , we conclude that

Y ∗AY = 1

n
traceA + O

(
K2 log2 n

n
‖A‖F

)
with overwhelming probability. Meanwhile, from the Chernoff inequality we see
that

Y ∗AZ = O

(
K log2 n√

n
‖AZ‖

)
and similarly

Z∗AY = O

(
K log2 n√

n

∥∥A∗Z
∥∥)

with overwhelming probability. The claim follows. �

Applying Proposition 64 (with A equal to the projection matrix A :=∑
j−≤j≤j+ uju

∗
j ), one has∑
j−≤j≤j+

∣∣X̃∗uj

∣∣2 = j+ − j− + 1

n
+
∥∥∥∥ z√

n
π(en)

∥∥∥∥2

+ O
(
n−1+o(1)(j+ − j− + 1)1/2)

+ O

(
n−1/2+o(1)

∥∥∥∥ z√
n
π(en)

∥∥∥∥)
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with overwhelming probability. By the arithmetic mean–geometric mean inequal-
ity, one has ‖ z√

n
π(en)‖2 + O(n−1/2+o(1)‖ z√

n
π(en)‖) ≥ −n−1+o(1), and we con-

clude that ∑
j−≤j≤j+

∣∣X̃∗uj

∣∣2 � ncη

with overwhelming probability (conditioning on Mn−1,Z). Undoing the condi-
tioning, we thus obtain a contradiction with overwhelming probability, and Propo-
sition 29 follows.

A.2. Resolvent bounds. We now prove Proposition 31, by using a more com-
plicated variant of the arguments above. We first take advantage of the fact that the
spectral parameter

√−1η is on the imaginary axis to make some minor simplifi-
cations. Namely, we have

R(
√−1η) = (Wn,z − √−1η)−1

= Wn,z

(
W 2

n,z + η2)−1 + √−1η
(
W 2

n,z + η2)−1
.

Note from (2.3) that W 2
n,z + η2 is block-diagonal, and thus Wn,z(W

2
n,z + η2)−1

vanishes on the diagonal. We conclude that R(
√−1η)jj and s(

√−1η) are purely
imaginary (with nonnegative imaginary part) for 1 ≤ j ≤ n, with

Im s(
√−1η) = η

2n
trace

(
W 2

n,z + η2)−1

(A.6)
= η

n
trace

(
(Mn − z)∗(Mn − z) + η2)−1

.

Now we observe that it suffices to verify the claim for η ≥ n−1+c for each
fixed c. To see this, observe that

ImR(
√−1η)jj = η

2n∑
k=1

|uk,j |2
λi(Wn,z)2 + η2

for any 1 ≤ j ≤ 2n, where u1, . . . , u2n are an orthonormal basis of eigenvectors
for Wn,z, and uk,j is the j th coefficient of uk . Thus, if we can obtain Proposition 31
for η ≥ n−1+c, we conclude with overwhelming probability that

η

2n∑
k=1

|uk,j |2
λk(Wn,z)2 + η2  no(1)(A.7)

for all η ≥ n−1+c, and hence that∑
1≤k≤2n : λk(Wn,z)≤η

|uk,j |2  no(1)η
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for all η ≥ n−1+c. This implies that∑
1≤k≤2n : λk(Wn,z)≤η

|uk,j |2  no(1)(η + n−1+c)
for all η > 0. By dyadic summation [using the crude upper bound λk(Wn,z) =
O(nO(1))], this implies that

2n∑
k=1

|uk,j |2
(λk(Wn,z)2 + η2)1/2  nc+o(1)

(
1 + 1

nη

)
for all η > 0. Similarly, with uk,j replaced by uk,i . By Cauchy–Schwarz, we con-
clude that ∣∣∣∣∣

2n∑
k=1

uk,juk,i

λk(Wn,z) − √−1η

∣∣∣∣∣ nc+o(1)

(
1 + 1

nη

)

for any η > 0. The left-hand side is R(
√−1η)ij . The claim then follows by using

a diagonalization argument.
A similar argument reveals that we may assume without loss of generality that

η is an integer power of two. Note that the above argument shows that one only
needs to verify the diagonal case i = j ; by symmetry and the union bound we may
take i = j = 2n. The claim is trivially verified for η ≥ n10 (say), so we may assume
that η lies between n−1+c and n10; by the union bound, we may now consider η as
fixed. By diagonalization (and the imaginary nature of the resolvent), it will now
suffice to show that

ImR(
√−1η)2n,2n  nc+o(1)(A.8)

with overwhelming probability.
From (A.4) [and the fact that R(

√−1η)2n,2n is imaginary], we have

ImR(
√−1η)2n,2n = 1

η + ImYn

,(A.9)

where

Yn := X∗(W ′
n,z − √−1η

)−1
X.

From the block-diagonal nature of W ′
n,z as before, we see that Yn is purely imagi-

nary, with nonnegative imaginary part; indeed, we have

ImYn = ηX̃∗(AA∗ + η2)−1
X̃,(A.10)

where A is the n × n − 1 matrix

A :=
(

Mn−1 − z

Y

)
.
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Thus, we have the crude bound

ImR(
√−1η)2n,2n ≤ 1

η
,(A.11)

which already takes care of the case when η is large (e.g., η ≥ n−c).
On the other hand, we see from Proposition 64 that with overwhelming proba-

bility one has

X̃∗(AA∗ + η2)−1
X̃ = 1

n
trace

(
AA∗ + η2)−1 + |z|2

n
e∗
n

(
AA∗ + η2)−1

en

+ O
(
n−1+o(1)

∥∥(AA∗ + η2)−1∥∥
F

)
+ O

(
n−1+o(1)|z|∥∥(AA∗ + η2)−1

en

∥∥).
From the spectral theorem, one has∥∥(AA∗ + η2)−1

en

∥∥≤ (e∗
n

(
AA∗ + η2)−1

en

)1/2
η−1

and thus by Young’s inequality (or the arithmetic mean–geometric mean inequal-
ity)

n−1+o(1)|z|∥∥(AA∗ + η2)−1
en

∥∥= o

( |z|2
n

e∗
n

(
AA∗ + η2)−1

en

)
+ O

(
n−1+o(1)η−2).

Also, we may expand

∥∥(AA∗ + η2)−1∥∥
F =

(
n∑

j=1

1

(σj (A)2 + η2)2

)1/2

,

where σ1(A), . . . , σn(A) are the n singular values of A (thus one of these singular
values is automatically zero). From Proposition 29 and the Cauchy interlacing law,
we see with overwhelming probability that for any interval [−r, r], the number of
singular values of A in this interval is O(no(1)(1 + nr)). From dyadic summation,
we then see that ∥∥(AA∗ + η2)−1∥∥

F  no(1)(nη)1/2/η2.(A.12)

Similarly, one has

trace
(
AA∗ + η2)−1 =

n∑
j=1

1

σj (A)2 + η2

and thus by interlacing

trace
(
AA∗ + η2)−1 =

n∑
j=1

1

σj (Mn − z)2 + η2 + O

(
1

η2

)
.
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But from (A.6) we have
n∑

j=1

1

σj (Mn − z)2 + η2 = n

η
s(

√−1η)

and thus
η

n
trace

(
AA∗ + η2)−1 = s(

√−1η) + O

(
1

nη

)
.(A.13)

Putting all this together with (A.10), we see that with overwhelming probability
one has

ImYn = Im s(
√−1η) + (1 + o(1)

) |z|2
n

ηe∗
n

(
AA∗ + η2)−1

en

+ O

(
no(1)

nη

)
+ O

(
no(1)

√
nη

)
,

which, in view of the lower bound η ≥ n−1+c, simplifies to

ImYn = Im s(
√−1η) + (1 + o(1)

) |z|2
n

ηe∗
n

(
AA∗ + η2)−1

en + o(1).(A.14)

Now we evaluate the expression e∗
n(AA∗ + η2)−1en. Observe that

AA∗ + η2 =
(

(Mn−1 − z)(Mn−1 − z)∗ + η2 (Mn−1 − z)Y ∗

Y(Mn−1 − z)∗ YY ∗ + η2

)
.

By Schur’s complement, we thus have

e∗
n

(
AA∗ + η2)−1

en

= 1/
(
YY ∗ + η2

− Y(Mn−1 − z)∗
(
(Mn−1 − z)(Mn−1 − z)∗ + η2)−1

(Mn−1 − z)Y ∗).
One can simplify this using the identity

B∗(BB∗ + η2)−1
B = 1 − η2(B∗B + η2)−1

,

valid for any matrix B [which can be seen either from the singular value decom-
position, or by multiplying both sides of the identity by (B∗B + η2)] to conclude
that

ηe∗
n

(
AA∗ + η2)−1

en = 1

η + ηY ((Mn−1 − z)∗(Mn−1 − z) + η2)−1Y ∗ .

Applying Lemma 64, we see with overwhelming probability that

ηY
(
(Mn−1 − z)∗(Mn−1 − z) + η2)−1

Y ∗

= η

n
trace

(
(Mn−1 − z)∗(Mn−1 − z) + η2)−1

+ O
(
n−1+o(1)η

∥∥(Mn−1 − z)∗(Mn−1 − z) + η2∥∥
F

)
.
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By mimicking the proof of (A.12), one has∥∥(Mn−1 − z)∗(Mn−1 − z) + η2∥∥
F  no(1)(nη)1/2/η2

with overwhelming probability. Similarly, by mimicking the proof of (A.13), one
has

η

n
trace

(
(Mn−1 − z)∗(Mn−1 − z) + η2)−1

= Im s(
√−1η) + O

(
1

nη

)
.

Putting these bounds together, we conclude that

ηe∗
n

(
AA∗ + η2)−1

en = 1

η + Im s(
√−1η) + o(1)

with overwhelming probability; inserting this back into (A.14) and (A.9) we con-
clude that

ImR(
√−1η)2n,2n

= 1
/(

η + Im s(
√−1η)(A.15)

+ (1 + o(1)
) |z|2/n

η + Im s(
√−1η) + o(1)

+ o(1)

)
with overwhelming probability.

Suppose now that |z|2/n ≥ 1/2. Then we have∣∣∣∣y + |z|2/n

y

∣∣∣∣� 1

for any y; this implies that the denominator in (A.15) has magnitude � 1, which
gives (A.8). Thus, we may assume that |z|2/n < 1/2.

The bound (A.15) similarly with the index 2n replaced by any other index.
Averaging over these indices, we obtain the self-consistent equation

Im s(
√−1η)

= 1

2n

2n∑
i=1

1
/(

η + Im s(
√−1η)(A.16)

+ (1 + o(1)
) |z|2/n

η + Im s(
√−1η) + o(1)

+ o(1)

)
with overwhelming probability. If we write x := η + Im s(

√−1η), we thus have

x = 1

2n

2n∑
i=1

1

x + (1 + o(1))((|z|2/n)/(x + o(1))) + o(1)
+ η
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with overwhelming probability. Note that either x = o(1) or x + o(1) = (1 +
o(1))x. In the latter case, we can simplify the above equation as

x = 1

2n

2n∑
i=1

1 + o(1)

x + ((|z|2/n)/x)
+ η

and thus

x = (1 + o(1))x

x2 + |z|2/n
+ η.

In particular, this forces x2 + |z|2/n ≥ 1 + o(1). Since we have assumed that
|z|2/n ≤ 1/2, we conclude that x ≥ 1/2 (say). We conclude that for each n−1+c ≤
η ≤ n10, we have

Im s(
√−1η) + η = o(1)

or

Im s(
√−1η) + η ≥ 1/2

with overwhelming probability. Rounding η to the nearest multiple of (say) n−100

and using the union bound (and crude perturbation theory estimates), we conclude
with overwhelming probability that this dichotomy in fact holds for all n−1+c ≤
η ≤ n10. On the other hand, for η = n10, one is clearly in the second case of the
dichotomy rather than the first. By continuity, we conclude that the second case of
this dichotomy in fact holds for all n−1+c ≤ η ≤ n10; in particular, we have with
overwhelming probability that

Im s(
√−1η) � 1,

when n−1+c ≤ η ≤ n−c. Inserting this bound into (A.15), we conclude with over-
whelming probability that

ImR(
√−1η)2n,2n  1,

when n−1+c ≤ η ≤ n−c, which gives Proposition 31 in this case. Finally, the case
η > n−c can be handled by (A.11).

REMARK 65. A refinement of the above analysis can be used to give more
precise control on the Stieltjes transform of Wn,z, as well as the counting func-
tion NI . See [3] for more details.

APPENDIX B: ASYMPTOTICS FOR THE REAL GAUSSIAN ENSEMBLE

The purpose of this appendix is to establish Lemma 11. Our arguments here will
rely heavily on those in [7].
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By reflection, we may restrict attention to the case when z1, . . . , zl lie in the
upper half-plane C+. Our starting point is the explicit formula

ρ(k,l)
n (x1, . . . , xk, z1, . . . , zl) = Pf

(
K̃n(xi, xi′) K̃n(xi, zj ′)

K̃n(zj , xi′) K̃n(zj , zj ′)

)
1≤i,i′≤k;1≤j,j ′≤l

for the correlation functions, where K̃n : (R ∪ C+) × (R ∪ C+) → M2(C) is a
certain explicit 2 × 2 matrix kernel obeying the antisymmetry law

K̃
(
ζ, ζ ′)= −K̃

(
ζ ′, ζ

)T
,(B.1)

making the expression inside the Pfaffian Pf an antisymmetric 2(k + l) × 2(k + l)

matrix; see [7], Theorem 8. In view of this formula, we see that Lemma 11 will
follow if we can establish the uniform bound

K̃n

(
ζ, ζ ′)= O(1)

for all ζ, ζ ′ ∈ R∪C+.
To do this, we will need the explicit description of the kernel K̃n. Following [7],

we will need the partial cosine and exponential functions

cn/2(γ ) :=
n/2−1∑
m=0

γ 2m

(2m)! ,

en/2(γ ) :=
n−2∑
m=0

γ m

m!
as well as the function

rn/2(z, x) := e−z2/2
√

2π

√
erfc(

√
2 Im z)

2(n−3)/2

(n − 2)! sgn(x)zn−1γ

(
n − 1

2
,
x2

2

)
,

where erfc := 1 − erf is the complementary error function and

γ (t, x) =
∫ x

0
yt−1e−y dy

is the incomplete gamma function. In [7], Theorem 8, the formula

K̃n

(
γ, γ ′) := (

D̃Sn

(
γ, γ ′) S̃

(
γ, γ ′)

−S̃
(
γ ′, γ

)
ĨSMn

(
γ, γ ′)+ E

(
γ, γ ′))

is given for the kernel K̃n, where E(γ, γ ′) is equal to 1
2 sgn(γ − γ ′) when γ, γ ′

are real, and equal to 0 otherwise, and the scalar quantities D̃Sn(γ, γ ′), S̃(γ, γ ′),
ĨSMn(γ, γ ′), are defined by the following formulae, depending on whether γ, γ ′
are real or complex:
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(1) (Real–real case). If x, x′ ∈ R, then

S̃n

(
x, x′) := e−(x−x′)2/2

√
2π

e−xx′
en/2

(
xx′)+ rn/2

(
x, x′),

D̃Sn

(
x, x′) := e−(x−x′)2/2

√
2π

(
x′ − x

)
e−xx′

en/2
(
xx′),

ĨSn

(
x, x′) := e−x2/2

2
√

π
sgn
(
x′) ∫ (x′)2/2

0

e−t

√
t
cn/2(x

√
2t) dt

− e−(x′)2/2

2
√

π
sgn(x)

∫ x2/2

0

e−t

√
t
cn/2

(
x′√2t

)
dt.

(2) (Complex–complex case). If z, z′ ∈C+, then

S̃n

(
z, z′)
:= ie−(1/2)(z−z̄′)2

√
2π

(
z̄′ − z

)√
erfc

(√
2 Im(z)

)
erfc

(√
2 Im

(
z′))e−zz̄′

en/2
(
zz̄′),

D̃Sn

(
z, z′)
:= e−(1/2)(z−z′)2

√
2π

(
z′ − z

)√
erfc

(√
2 Im(z)

)
erfc

(√
2 Im

(
z′))e−zz′

en/2
(
zz′),

ĨSn

(
z, z′)
:= −e−(1/2)(z̄−z̄′)2

√
2π

(
z̄′ − z̄

)√
erfc

(√
2 Im(z)

)
erfc

(√
2 Im

(
z′))e−zz′

en/2
(
zz′).

(3) (Real–complex case). If x ∈ R and z ∈ C+, then

S̃n(x, z) := ie−(1/2)(x−z̄)2

√
2π

√
erfc

(√
2 Im(z)

)
e−xz̄en/2(xz̄),

S̃n(z, x) := e−(1/2)(x−z)2

√
2π

√
erfc

(√
2 Im(z)

)
e−xzen/2(xz) + rn/2(z, x),

D̃Sn(x, z) := e−(1/2)(x−z)2

√
2π

(z − x)

√
erfc

(√
2 Im(z)

)
e−xzen/2(xz),

ĨSn(x, z) := − ie−(1/2)(x−z̄)2

√
2π

√
erfc

(√
2 Im(z)

)
e−xz̄en/2(xz̄) − irn/2(z̄, x).

As E(γ, γ ′) is clearly bounded, it thus suffices [in view of (B.1)] to show that all
the expressions S̃n(x, x′), D̃Sn(x, x′), Ĩ Sn(x, x′), S̃n(z, z

′), D̃Sn(z, z
′), Ĩ Sn(z, z

′),
S̃n(x, z), S̃n(z, x), D̃Sn(x, z), Ĩ Sn(x, z) are all O(1) for x, x′ ∈ R and z, z′ ∈ C+.
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This will be a variant of the estimates in [7], Section 9, which were concerned with
the asymptotic values of these expressions as n → ∞ rather than uniform bounds.

We first dispose of the rn/2 terms. In the proof of [7], Corollary 9, the estimate

∣∣rn/2(z, x)
∣∣≤ e−(1/2)Re(z2)

√
erfc

(√
2 Im(z)

) |z|n−1

2n/2(n/2 − 1)!
is established for any x ∈ R and z ∈ C

+. Using the standard bound

erfc(x) = O

(
e−x2

1 + x

)
(B.2)

for any x ≥ 0, we thus have

∣∣rn/2(z, x)
∣∣ e−|z|2/2 |z|n−1

2(n−1)/2(n/2 − 1)! .

But |z|n−1

2(n−1)/2(n/2−1)! is one of the Taylor coefficients of e|z|2/2, and so

rn/2(z, x) = O(1).(B.3)

Thus, we may ignore all terms involving rn/2.
Now we handle the real–real case. Recall from the triangle inequality and Taylor

expansion that ∣∣en/2(z)
∣∣≤ en/2

(|z|)≤ exp
(|z|)(B.4)

for any complex number z. Thus, for instance, we have∣∣S̃n

(
x, x′)∣∣ exp

(−(x − x′)2/2 − xx′ + ∣∣xx′∣∣)+ 1  1

since the expression inside the exponential is either −(x −x′)2/2 or −(x +x′)2/2.
If one applies the same method to bound D̃Sn(x, x′), one obtains.
Similarly, one has∣∣D̃Sn

(
x, x′)∣∣ ∣∣x − x′∣∣ exp

(−(x − x′)2/2 − xx′ + ∣∣xx′∣∣).
This bound is O(1) when xx′ is positive, but can grow linearly when xx′ is neg-
ative. To deal with this issue, we need an alternate bound to (B.4) that saves an
additional polynomial factor in some cases:

LEMMA 66 (Alternate bound). For any complex number z, one has

∣∣en/2(z)
∣∣ |z|1/2

||z| − z| exp
(|z|)

with the convention that the right-hand side is infinite when z is a nonnegative real.



UNIVERSALITY FOR NON-HERMITIAN MATRICES 869

PROOF. The claim is trivial for |z| ≤ 1, so we may assume that |z| > 1. Ob-
serve that

(|z| − z
)
en/2(z) =

n/2∑
m=0

zm

m!
(|z| − m

)− zn/2+1

(n/2)! .(B.5)

An application of Stirling’s formula reveals that

zm

m! = O

(
1

|z|1/2 exp
(|z|))

for all m, so the second term on the right-hand side of (B.5) is O(|z| 1
|z|1/2 exp(|z|)).

It thus suffices to show that
n/2∑
m=0

zm

m!
(|z| − m

)= O
(|z|1/2 exp

(|z|)).
By the triangle inequality, the left-hand side can be bounded by∑

m≤|z|

|z|m
m!

(|z| − m
)+ ∑

m>|z|

|z|m
m!

(
m − |z|).

This expression telescopes to

2
|z|m+1

m! ,

where m := �|z|�. By Stirling’s formula, this expression is O(|z|1/2 exp(|z|)) as
required. �

Inserting this bound in the case when xx′ is negative, we conclude that∣∣D̃Sn

(
x, x′)∣∣ ∣∣x − x′∣∣ 1

(xx′)1/2 exp
(−(x − x′)2/2 − xx′ + ∣∣xx′∣∣)

= |x| + |x′|
|x|1/2|x′|1/2 exp

((|x| − ∣∣x′∣∣)2/2
)

and one easily verifies that this expression is O(1).
Finally, to control Ĩ Sn(x, x′), it suffices by symmetry to show that∫ (x′)2/2

0

e−t

√
t
cn/2(x

√
2t) dt = O

(
exp
(
x2/2

))
.(B.6)

But by Taylor expansion we may bound cn/2(x
√

2t) by cosh(x
√

2t). Since∫ (x′)2/2

0

e−t

√
t

cosh(x
√

2t) =
√

π

2
e(x′)2/2

(
erf
( |x| + |x′|√

2

)
− erf

( |x′| − |x|√
2

))
,
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we see from (B.2) that the left-hand side of (B.6) is

 exp
((

x′)2/2
)

exp
(−max

(∣∣x′∣∣− |x|,0
)2

/2
)≤ exp

(
x2/2

)
as required.

Next we turn to the complex–complex case. From (B.2) and (B.4), we see that

∣∣S̃n

(
z, z′)∣∣ exp

(
−1

2
Re
((

z − z̄′)2))∣∣z̄′ − z
∣∣ exp(− Im(z)2 − Im(z′)2)

(1 + Im(z))1/2(1 + Im(z′))1/2

× exp
(∣∣zz̄′∣∣− Re

(
zz̄′)).

After some rearrangement, the right-hand side here becomes

|z̄′ − z|
(1 + Im(z))1/2(1 + Im(z′))1/2 exp

(
−1

2

(|z| − ∣∣z′∣∣)2).

If one uses Lemma 66 instead of (B.4), one gains an additional factor of |z|1/2|z′|1/2

||z||z′|−zz̄′| .
Thus, it suffices to show that

|z̄′ − z|
(1 + Im(z))1/2(1 + Im(z′))1/2 min

(
1,

|z|1/2|z′|1/2

||z||z′| − zz̄′|
)

(B.7)

× exp
(
−1

2

(|z| − ∣∣z′∣∣)2) 1.

By symmetry, we may assume that 0 < Im(z) ≤ Im(z′). We may assume that |z|
and |z′| are comparable and larger than 1, since otherwise the claim easily follows
from the exp(−1

2(|z| − |z′|)2) term.
Let θ denote the angle subtended by z and z′. Observe from the triangle inequal-

ity that ∣∣z̄′ − z
∣∣ ∣∣|z| − ∣∣z′∣∣∣∣+ Im(z) + |z|θ(B.8)

and ∣∣|z|∣∣z′∣∣− zz̄′∣∣� |z|2θ.

The first two terms on the right-hand side of (B.8) give an acceptable contribution
to (B.7) (bounding the minimum crudely by 1), so it suffices to show that

|z|θ
(1 + Im(z))1/2(1 + Im(z′))1/2 min

(
1,

|z|
|z|2θ

)
 1,

but this is clear after discarding the denominator and using the second term in the
minimum. This establishes the bound |S̃n(z, z

′)|  1. Similar arguments, which
we leave to the reader, show that |D̃Sn(z, z

′)|  1 and |Ĩ Sn(z, z
′)|  1.
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Finally, we turn to the real–complex case. Using (B.4) and (B.2), we can bound

∣∣S̃n(x, z)
∣∣ exp

(
−1

2
Re
(
(x − z̄)2))exp(− Im(z)2)

1 + Im(z)1/2 exp
(−xz̄ + |x||z|).

The right-hand side simplifies to exp(−(x − |z|)2/2)/(1 + Im(z)1/2), which is
clearly O(1).

A similar argument [using (B.3)] shows that S̃n(x, z) = O(1) and Ĩ Sn(x, z) =
O(1). The bound D̃Sn(x, z) = O(1) can be established by the same arguments
used to handle the complex–complex case; we leave the details to the reader. This
completes the proof of Lemma 11.
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