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EXTREME VALUES FOR TWO-DIMENSIONAL DISCRETE
GAUSSIAN FREE FIELD

BY JIAN DING1 AND OFER ZEITOUNI2

Stanford University and MSRI,
and University of Minnesota and Weizmann Institute

We consider in this paper the collection of near maxima of the discrete,
two dimensional Gaussian free field in a box with Dirichlet boundary con-
ditions. We provide a rough description of the geometry of the set of near
maxima, estimates on the gap between the two largest maxima, and an esti-
mate for the right tail up to a multiplicative constant on the law of the centered
maximum.

1. Introduction. The discrete Gaussian free field (GFF) {ηN
v :v ∈ VN } on a

2D box VN of side length N with Dirichlet boundary condition, is a mean zero
Gaussian process which takes the value 0 on ∂VN and satisfies the following
Markov field condition for all v ∈ VN \ ∂VN : ηN

v is distributed as a Gaussian vari-
able with variance 1 and mean equal to the average over the neighbors given the
GFF on VN \ {v} (see later for more formal definitions). One facet of the GFF that
has received intensive attention is the behavior of its maximum. In this paper, we
prove a number of results involving the maximum and near maxima of the GFF.
Our first result concerns the geometry of the set of near maxima and states that the
vertices of large values are either close to or far away from each other.

THEOREM 1.1. There exists an absolute constant c > 0,

lim
r→∞ lim

N→∞P
(∃v,u ∈ VN : r ≤ |v − u| ≤ N/r and

(1)
ηN

u , ηN
v ≥ mN − c log log r

) = 0,

where mN = Emaxv∈VN
ηN

v .

[The asymptotic behavior of mN is recalled in (4) below.] In addition, we show
that the number of particles within distance λ from the maximum grows exponen-
tially.
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THEOREM 1.2. For λ > 0, let AN,λ = {v ∈ VN :ηN
v ≥ mN − λ} for λ > 0.

Then there exist absolute constants c,C such that

lim
λ→∞ lim

N→∞P
(
cecλ ≤ |AN,λ| ≤ CeCλ) = 1.

Another important characterization of the joint behavior for the near maxima is
the spacings of the ordered statistics, out of which the gap between the largest two
values is of particular interest. We show that the right tail of this gap is of Gaussian
type, as well as that the gap is of order 1.

THEOREM 1.3. Let �N be the gap between the largest and the second largest
values in {ηN

v :v ∈ VN }. Then, there exist absolute constants c,C > 0 such that for
all λ > 0 and all N ∈ N

ce−Cλ2 ≤ P(�N ≥ λ) ≤ Ce−cλ2
,(2)

lim
δ→0

lim sup
N→∞

P(�N ≤ δ) = 0.(3)

We do not know whether the gap estimate in (2) can be improved to a precise
Gaussian tail estimate as λ → ∞.

Finally, we compute the right tail for the maximum up to a multiplicative con-
stant. Set MN = maxv ηN

v .

THEOREM 1.4. There exists a constant C > 0 such that for all λ ∈
[1,

√
logN),

C−1λe−√
2πλ ≤ P(MN > mN + λ) ≤ Cλe−√

2πλ.

Related work. In the mathematical literature, the study on the maximum of
the GFF goes back at least to Bolthausen, Deuschel and Giacomin [12] who es-
tablished the law of large numbers for MN/ logN by associating with the GFF
an appropriate branching structure. Afterwards, the main focus has shifted to the
study of fluctuations of the maximum. Using hypercontractivity estimates, Chat-
terjee [19] showed that the variance of the maximum is o(logn), thus demonstrat-
ing a better concentration than that guaranteed by the Borell–Sudakov–Tsirelson
isoperimetric inequality, which is however still weaker than the correct O(1) be-
havior. Later, Bolthausen, Deuschel and Zeitouni [13] proved that (Mn −EMn) is
tight along a deterministic subsequence (nk)k∈N; they further showed that in order
to get rid of the subsequence, it suffices to compute a precise estimate (up to addi-
tive constant) on the expectation of the maximum. An estimate in such precision
was then achieved by Bramson and Zeitouni [16], by comparing the GFF with the
modified branching random walk (MBRW) introduced therein. They showed that
the sequence of random variables MN − mN is tight, where

mN = 2
√

2/π
(
logN − 3

8 log logN
) + O(1).(4)
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Using the “sprinkling method”, this was later improved by Ding [23], who showed
that there exist absolute constants C,c > 0 so that for all N ∈ N and 0 ≤ λ ≤
(logN)2/3

ce−Cλ ≤ P(MN ≥ mN + λ) ≤ Ce−cλ and
(5)

ce−CeCλ ≤ P(MN ≤ mN − λ) ≤ Ce−cecλ

.

Note that our Theorem 1.4 gives an improvement upon the estimates on the right
tail of MN in (5); the precise estimate for the left tail is more challenging because
an analogous comparison to Lemma 2.6 for the left tail could not be achieved in
an obvious way.

In contrast with the research activity concerning the maximum of the GFF, not
much has been done until very recently concerning its near maxima. To our knowl-
edge, the only results in the mathematical literature is due to Daviaud [20] who
studied the geometry of the set of large values of the GFF which are within a mul-
tiplicative constant from the expected maximum, that is, those values above ηmN

with η ∈ (0,1). He showed that the logarithm of the cardinality of the set of such
near maxima is asymptotic to 2(1 − η) logN , and described the fractal structure
of these sets. Related work for the continuous GFF is contained in Hu, Miller and
Peres [31].

In contrast with the GFF, much more is known concerning both the value of
the maximum and the structure of near maxima for the model of branching Brow-
nian motions. The study of the maximum of the BBM dates back to a classical
paper by Kolmogorov, Petrovskii and Piscounov [33], where they discussed the
KPP equation (also known as the Fisher equation). The probabilistic interpretation
of the KPP equation in terms of BBM, described in McKean [37], was further ex-
ploited by Bramson [14, 17]. It was then proved that both the left and right tails
exhibit exponential decay and the precise exponents were computed. See, for ex-
ample, Bramson [14] and Harris [30] for the right tail, and see Arguin, Bovier and
Kistler [7] for the left tail (the argument is due to De Lellis). In addition, Lalley and
Sellke [34] obtained an integral representation for the limiting law of the centered
maximum.

More recently, the structure of the point process of maxima of the BBM was
described in great detail, in a series of papers by Arguin, Bovier and Kistler [7–9]
and in a paper by Aïdékon, Berestycki, Brunet and Shi [4]. These papers describe
the limit of the process of extremes of BBM, as a certain Poisson point process
with exponential density where each atom is decorated by an independent copy of
an auxiliary point process.

In the physics literature, the link between the extremal process for the GFF
and that for BBM is often assumed, and some aspects of it (such as tail distri-
butions) are conjectured to hold for a general class of logarithmicaly correlated
processes, see Carpentier and Le Doussal [18] for (nonrigorous) arguments using
a renormalization-group approach and links to the freezing transition of spin-glass
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systems, and Fyodorov, Le Doussal and Rosso [29] for further information on ex-
treme distributions. On the mathematical side, numerous results and conjectures
have been formulated for such models; see Duplantier, Rhodes, Sheffield and Var-
gas [26] and Arguin and Zindy [10] for recent progress.

Our results in this work are a first step in the study of the process of extrema
for the GFF. In particular, Theorem 1.1 is a precise analog of results in [7], while
Theorems 1.2 and 1.3 provide weaker results than those of [8]. The results here
play an important role in the study of convergence of the maximum of the GFF,
see Bramson, Ding and Zeitouni [15].

Finally, we note that a connection between the maximum of the GFF and the
cover time for the random walk has been shown in Ding, Lee and Peres [25] and
Ding [24]. In particular, an upper bound on the fluctuation of the cover time for 2D
lattice was shown in [22] using such a connection, improving on previous work
of Dembo, Peres, Rosen and Zeitouni [21]. It is worthwhile emphasizing that the
precise estimate on the expectation of the maximum of the GFF in [16] plays a
crucial role in [22].

A word on proof strategy. A general approach in the study of the maximum
of the GFF, which we also follow, is to compare the maxima of the GFF and of
Gaussian processes of relative amenable structures; this is typically achieved using
comparison theorems for Gaussian processes (see Lemmas 2.2 and 2.5). The first
natural “comparable” process is the branching random walk (BRW) which admits
a natural tree structure (although [12] do not use directly Gaussian comparisons,
the BRW features implicitly in their approach). In [16], the modified branching
random walk (see Section 2.1) was introduced as a finer approximation of the GFF,
based on which a precise (up to additive constant) estimate on the expectation of
the maximum was achieved.

Our work also uses comparisons of the GFF with the MBRW/BRW. One obsta-
cle we have to address is the lack of effective, direct comparisons for the collection
of near maxima of two Gaussian processes. We get around this issue by compar-
ing a certain functional of the GFF, which could be written as the maximum of a
certain associated Gaussian process. Various such comparisons between the GFF
and the MBRW/BRW are employed in Section 2. In particular, we use a variant
of Slepian’s inequality that allows one to compare the sum of the m-largest values
for two Gaussian processes. Afterwards, estimates for the aforementioned func-
tionals of MBRW/BRW are computed in Section 3. Finally, based on the estimates
of these functionals of the GFF (obtained via comparison), we deduce our main
theorems in Section 4.

Along the way, another method that was used often is the so-called sprinkling
method, which in our case could be seen as a two-level structure. The sprinkling
method was developed by Ajtai, Komlós and Szemerédi [5] in the study of per-
colation, and found its applications later in that area (see, e.g., [6, 11]). Under
the framework of the sprinkling method, one first tries to understand a perturbed
version of the targeted random structure, building upon which one then tries to
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establish properties of the targeted random structure. Such a scheme will be useful
if a weak property on the perturbed random structure can be strengthened signif-
icantly to the targeted structure with relatively little effort by taking advantage of
the perturbation. In the context of the study of the maximum of the GFF, the sprin-
kling method was first successfully applied in [23]; an application to the study of
cover times of random walks appears in [24].

Discussions and open problems. There are a number of natural open problems
in this line of research on the GFF, of which establishing the limiting law of the
maximum and the scaling limit of the extreme process are of great interest.3 Even
partial progresses toward these goals could be interesting. For instance, it would
be of interest to provide more information on the joint behavior of the maxima by
characterizing other important statistics. We also point out that we computed the
exponent only for the right tail as in Theorem 1.4, but not for the left tail. A con-
ceptual difficulty in computing the exponent in the left tail is that the MBRW has
Gaussian type left tail (analogous to BRW) as opposed to doubly-exponential tail
in (5)—the top levels in the MBRW could shift the value of the whole process
to the left with a Gaussian type cost in probability, while in the GFF the Dirich-
let boundary condition decouples the GFF near the boundary such that the GFF
behaves almost independently close to the boundary. Therefore, it is possible that
a new approximation needs to be introduced in order to study the left tail of the
maximum in higher precision (merely using the sprinkling method as done in [24]
seems unlikely to yield even the exponent). We note that these last comments do
not apply to the so-called massive GFF, see Chatterjee [19], which is expected to
behave analogously to BBM.

Three perspectives of Gaussian free field. A quick way to rigourously define the
GFF is to give its probability density function. Denoting by f the p.d.f. of (ηv),
we have

f
(
(xv)

) = Ze−(1/16)
∑

u∼v(xu−xv)
2
,(6)

where Z is a normalizing constant and xv = 0 for v ∈ ∂VN . [Note that each edge
appears twice in (6).]

Alternatively, a slower but more informative way to define the GFF is by us-
ing the connection with random walks (in particular, Green functions). Consider
a connected graph G = (V ,E). For U ⊂ V , the Green function GU(·, ·) of the
discrete Laplacian is given by

GU(x, y) = Ex

(
τU−1∑
k=0

1{Sk = y}
)

for all x ∈ V \ U,y ∈ V,

(7)
GU(x, y) = 0 for x ∈ U,y ∈ V,

3The convergence of the law of the recentered maximum has been recently proved [15], using
results of the current paper.
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where τU is the hitting time of the set U for a simple random walk (Sk), defined
by (the notation applies throughout the paper)

τU = min{k ≥ 0 :Sk ∈ U}.(8)

The GFF {ηv :v ∈ V } with Dirichlet boundary on U is then defined as the mean
zero Gaussian process indexed by V such that the covariance matrix is given by
Green function (GU(x, y))x,y∈V . Clearly, ηv = 0 for all v ∈ U . For the equivalence
of definitions in (6) and (7), cf., [32].

Finally, we recall the connection between the GFF and electrical networks. We
can view the 2D box VN as an electrical network if each edge is replaced by a unit
resistor and the boundary is wired together. We then associate a classic quantity
to the network, the so-called effective resistance, which is denoted by Reff(·, ·).
The following well-known identity relates the GFF to the electric network, see, for
example, [32], Theorem 9.20.

E(ηu − ηv)
2 = 4Reff(u, v).(9)

Note that the factor of 4 above is due to the nonstandard normalization we are
using in the 2D lattice (in general, this factor is 1 with a standard normalization).

2. Comparisons with modified branching random walk. In this section, we
compare the maxima of the Gaussian free field with those of the so-called modified
branching random walk (MBRW), which was introduced in [16]; the advantage of
dealing with the MBRW is that its covariance function, like that of the GFF but in
contrast with BRW, depends on the Euclidean distance, as we explain next.

2.1. A short review on MBRW. Consider N = 2n for some positive integer n.
For k ∈ [n], let Bk be the collection of squared boxes in Z2 of side length 2k with
corners in Z2, and let BDk denote the subsets of Bk consisting of squares of the
form ([0,2k − 1] ∩ Z)2 + (i2k, j2k). For v ∈ Z2, let Bk(v) = {B ∈ Bk :v ∈ B} be
the collection of boxes in Bk that contains v, and define BDk(v) be the (unique)
box in BDk that contains v. Furthermore, denote by BN

k the subset of Bk consisting
of boxes whose lower left corners are in VN . Let {ak,B}k≥0,B∈BDk

be i.i.d. standard
Gaussian variables, and define the branching random walk to be

ϑv =
n∑

k=0

ak,BDk(v).(10)

For k ∈ [n] and B ∈ BN
k , let bk,B be independent centered Gaussian variables with

Var(bk,B) = 2−2k , and define

bN
k,B = bk,B ′ for B ∼N B ′ ∈ BN

k ,(11)

where B ∼N B ′ if and only if there exist i, j ∈ Z such that B = (iN, jN) + B ′
(note that for any B ∈ Bk , there exists a unique B ′ ∈ BN

k such that B ∼N B ′). In
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a manner compatible with definition in (11), we let dN(u, v) = minw∼Nv ‖u − w‖
be the Euclidean distance between u and v when considering VN as a torus, for all
u, v ∈ VN . Finally, we define the MBRW {ξN

v :v ∈ VN } such that

ξN
v =

n∑
k=0

∑
B∈Bk(v)

bN
k,B.(12)

The motivation of the above definition is that the MBRW approximates the GFF
with high precision. That is to say, the covariance structure of the MBRW approx-
imates that of the GFF well. This is elaborated in the next lemma which compares
their covariances (see [16], Lemma 2.2 for a proof).

LEMMA 2.1. There exists a constant C such that the following holds with
N = 2n for all n.∣∣Cov

(
ξN
u , ξN

v

) − (
n − log2

(
dN(u, v)

))∣∣ ≤ C for all u, v ∈ VN,∣∣∣∣Cov
(
η4N

u , η4N
v

) − 2 log 2

π

(
n − (

0 ∨ log2 ‖u − v‖))∣∣∣∣ ≤ C

for all u, v ∈ (2N,2N) + VN.

2.2. Comparison of the maximal sum over restricted pairs. In this subsection,
we approximate the GFF by the MBRW based on the following comparison theo-
rem on the expected maximum of Gaussian process (see e.g., [28] for a proof).

LEMMA 2.2 (Sudakov–Fernique). Let A be an arbitrary finite index set and
let {Xa}a∈A and {Ya}a∈A be two centered Gaussian processes such that

E(Xa − Xb)
2 ≥ E(Ya − Yb)

2 for all a, b ∈ A.(13)

Then Emaxa∈A Xa ≥ Emaxa∈A Ya .

Instead of directly comparing the expected maximum as in [16], we compare
the following two functionals for GFF and MBRW, respectively. For an integer r ,
define

η�
N,r = max

{
ηN

v + ηN
u :u, v ∈ VN, r ≤ ‖u − v‖ ≤ N/r

}
,

(14)
ξ�
N,r = max

{
ξN
v + ξN

u :u, v ∈ VN, r ≤ ‖u − v‖ ≤ N/r
}
.

The main goal in this subsection is to prove the following.

PROPOSITION 2.3. There exists a constant κ ∈ N such that for all r , n ≥ κ

positive integers, and with N = 2n,√
2 log 2

π
Eξ�

2−κN,r ≤ Eη�
N,r ≤

√
2 log 2

π
Eξ�

2κN,r .
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In order to prove the preceding proposition, it is convenient to consider

η̃�
N,r = max

{
η4N

v+(2N,2N) + η4N
u+(2N,2N) :u, v ∈ VN, r ≤ ‖u − v‖ ≤ N/r

}
.(15)

We start with proving the next useful lemma.

LEMMA 2.4. Using the above notation, we have

(i) Eη�
N,r ≤ Eη̃�

N,r ;

(ii) P(maxv∈VN
ηN

v ≥ λ) ≤ 2P(maxv∈VN
η4N

v+(2N,2N) ≥ λ) for all λ ∈R.

PROOF. Denote by V ′
N = {v + (2N,2N) :v ∈ VN }, and consider the pro-

cess ηN· as indexed over the set V ′
N [so it is a Gaussian free field on VN

with index shifted by (2N,2N)]. Note that the conditional covariance matrix of
{η4N

v }v∈V ′
N

given the values of {η4N
v }v∈V4N\V ′

N
corresponds to the covariance ma-

trix of {ηN
v }v∈V ′

N
. This implies that

{
η4N

v :v ∈ V ′
N

} law= {
ηN

v +E
(
η4N

v |{η4N
u :u ∈ V4N \ V ′

N

})
:v ∈ V ′

N

}
,(16)

where on the right-hand side {ηN
v :v ∈ V ′

N } is independent of {η4N
u :u ∈ V4N \ V ′

N }
and both are defined on the same probability space. Write

φv = E
(
η4N

v |{η4N
u :u ∈ V4N \ V ′

N

}) = E
(
η4N

v |{η4N
u :u ∈ ∂V ′

N

})
.

Note that φv is a linear combination of {η4N
u :u ∈ ∂V ′

N }, and thus a mean zero
Gaussian variable. By the above identity in law and the independence, we derive
that

Eη̃�
N,r ≥ E

(
η�

N,r + φτ1 + φτ2

) = Eη�
N,r ,

where (τ1, τ2) is the pair at which the sum in the definition of η�
N,r is maximized

[see (14) and (15)], and the second equality follows from the fact that φτ1 and φτ2

has mean 0. This completes the proof of part (i). Part (ii) follows from the same
argument, by noting that almost surely,

max
v∈V ′

N

η4N
v ≥ max

v∈VN

(
ηN

v

)′ + φτ ,

where τ ∈ V ′
N is the maximizer for {η4N

v :v ∈ V ′
N } and, for v ∈ VN , (ηN

v )′ =
η4N

v+(2N,2N) −E(ηv+(2N,2N)|{η4N
u ,u ∈ ∂V ′

N }) is distributed like a GFF. The desired
bound follows from the fact that φτ given the location τ is a centered Gaussian
variable independent of (maxv∈VN

ηN
v )′. �

PROOF OF PROPOSITION 2.3. For the upper bound, by the preceding lemma,
it suffices to prove that Eη̃�

N,r ≤ Eξ�
2κN,r . For this purpose, define the mapping

ψN :VN �→ V2κN by

ψN(v) = (
2κ−2N,2κ−2N

) + 2κ−3v for v ∈ VN.(17)
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Applying Lemma 2.1, we obtain that there exists sufficiently large κ (that depends
only on the universal constant C in Lemma 2.1) such that for all v,u, v′, u′ ∈ VN ,

E
(
η4N

v+(2N,2N) + η4N
u+(2N,2N) − η4N

v′+(2N,2N) − η4N
u′+(2N,2N)

)2

(18)

≤ 2 log 2

π
E

(
ξ2κN
ψN(v) + ξ2κN

ψN(u) − ξ2κN
ψN(v′) − ξ2κN

ψN(u′)
)2

.

In order to verify (18), note from the definition that the variance of ξ2κN
ψN(v) grows

with κ (more levels are involved) while, for all u, v ∈ VN , the covariance between
ξ2κN
ψN(v) and ξ2κN

ψN(u) does not grow (the number of common levels remains constant,
since points are taken farther away due to the definition of ψN ). This observation
allows us to select κ large so as to increase the right-hand side in (18). Now, an
application of Lemma 2.2 for the processes{

η4N
v+(2N,2N) + η4N

u+(2N,2N) :u, v ∈ VN, r ≤ ‖v − u‖ ≤ N/r
}

and

{√
2 log 2

π

(
ξ2κN
ψN(v) + ξ2κN

ψN(u)

)
:u, v ∈ VN, r ≤ ‖v − u‖ ≤ N/r

}

yields that Eη̃�
N,r ≤

√
2 log 2

π
Eξ�

2κN,r . Here, we used the fact that r ≤ ‖ψN(v) −
ψN(u)‖ ≤ 2κN/r for all u, v ∈ VN such that r ≤ ‖v − u‖ ≤ N/r .

The lower bound follows along the same line, which we now sketch. Analogous
to (18), we can derive that for all u, v,u′, v′ ∈ V2−κN

E
(
ηN

ψ2−κN (v) + ηN
ψ2−κN (u) − ηN

ψ2−κN (v′) − ηN
ψ2−κN (u′)

)2

≥ 2 log 2

π
E

(
ξ2−κN
v + ξ2−κN

u − ξ2−κN
v′ − ξ2−κN

u′
)2

.

Combined with the fact that r ≤ ‖ψ2−κN(v) − ψ2−κN(u)‖ ≤ N/r for all u, v ∈
V2−κN such that r ≤ ‖u − v‖ ≤ 2−κN/r , another application of Lemma 2.2 com-
pletes the proof. �

2.3. Comparison of the right tail for the maximum. In this subsection, we
compare the maximum of GFF with that of MBRW in the sense of “stochastic
domination”, for which we will use Slepian’s [38] comparison lemma.

LEMMA 2.5 (Slepian). Let A be an arbitrary finite index set and let {Xa}a∈A
and {Ya}a∈A be two centered Gaussian processes such that (13) holds and
VarXa = VarYa for all a ∈ A. Then P(maxa∈A Xa ≥ λ) ≥ P(maxa∈A Ya ≥ λ),
for all λ ∈ R.

REMARK. The additional assumption on the identical variance in Lemma 2.5
allows for a comparison of maxima of fields that goes beyond comparisons of
expectations. On the down side, it forces us to modify our fields before we can
apply the lemma.
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The main result of this subsection is the following.

LEMMA 2.6. There exists a universal integer κ > 0 such that for all N and
λ ∈ R

1

2
P

(
max

v∈V2−κN

√
2 log 2

π
ξ2−κN
v ≥ λ

)
≤ P

(
max
v∈VN

ηN
v ≥ λ

)

≤ 4P
(

max
v∈V2κN

√
2 log 2

π
ξ2κN
v ≥ λ

)
.

PROOF. We first prove the upper bound in the comparison. In light of part (ii)
of Lemma 2.4, it suffices to consider the maximum of GFF in a smaller central
box (of half size), with the convenience that the variance is almost uniform therein.
Indeed, by Lemma 2.1, we see that for a universal constant C > 0∣∣Varη4N

u − Varη4N
v

∣∣ ≤ C for all u, v ∈ (2N,2N) + VN.(19)

Let ψN be defined as in (17). It is clear that for κ sufficiently large (independent
of N ), we have Varη4N

v+(2N,2N) ≤ 2 log 2
π

Var ξ2κN
ψN(v) for all v ∈ VN . Therefore, we

can choose a collection of positive numbers {av}v∈VN
such that

Var
(
η4N

v+(2N,2N) + avX
) = 2 log 2

π
Var ξ2κN

ψN(v),(20)

where X is an independent standard Gaussian variable. Furthermore, due to (19)
and the fact that the MBRW has precisely uniform variance over all vertices, we
have for a universal constant C > 0

|au − av| ≤ C for all u, v ∈ VN.

This implies that

E
((

η4N
v+(2N,2N) + avX

) − (
η4N

u+(2N,2N) + auX
))2

≤ E
(
η4N

v+(2N,2N) − η4N
u+(2N,2N)

)2 + C2 for all u, v ∈ VN.

Combined with the fact that E(ξ2κN
ψN(u) − ξ2κN

ψN(v))
2 grows (linearly) with κ and

Lemma 2.1, it follows that for κ sufficiently large (independent of N ) and for
all u, v ∈ VN

E
((

η4N
v+(2N,2N) + avX

) − (
η4N

u+(2N,2N) + auX
))2

(21)

≤ 2 log 2

π
E

(
ξ2κN
ψN(u) − ξ2κN

ψN(v)

)2
.
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Combined with (20), an application of Lemma 2.5 yields that

P
(

max
v∈VN

η4N
v+(2N,2N) + avX ≥ λ

)
(22)

≤ P

(√
2 log 2

π
max
v∈VN

ξ2κN
ψN(v) ≥ λ

)
for all λ ∈ R.

It is clear that

P
(

max
v∈VN

η4N
v+(2N,2N) + avX ≥ λ

)
≥ P

(
max
v∈VN

η4N
v+(2N,2N) ≥ λ,X ≥ 0

)

= 1

2
P

(
max
v∈VN

η4N
v+(2N,2N) ≥ λ

)
.

Combined with (22), the desired upper bound follows.
We now turn to the proof of the lower bound, which shares the same spirit with

the proof of the upper bound. Recall the definition of ψ2−κN as in (17). Using
Lemma 2.1 again, we obtain that∣∣VarηN

ψ2−κN (v) − VarηN
ψ2−κN (u)

∣∣ ≤ C for all u, v ∈ V2−κN .

It is also clear from Lemma 2.1 that VarηN
ψ2−κN (v) ≥ 2 log 2

π
Var ξ2−κN

v , for κ suffi-
ciently large (independent of N ) and for all v ∈ V2−κN . Continue to denote by X

an independent standard Gaussian variable. We can then choose a collection of
positive numbers {a′

v :v ∈ V2−κN } satisfying |a′
v − a′

u| ≤ C such that

VarηN
ψ2−κN (v) = 2 log 2

π
Var

(
ξ2−κN
v + a′

vX
)

for all v ∈ V2−κN .

Analogous to the derivation of (21), we get that for κ sufficiently large (indepen-
dent of N ),

E
(
ηN

ψ2−κN (v) − ηN
ψ2−κN (u)

)2

≥ 2 log 2

π
E

((
ξ2−κN
v + a′

vX
) − (

ξ2−κN
u + a′

uX
))2 for all u, v ∈ V2−κN .

Another application of Lemma 2.5 yields that for all λ ∈ R

P
(

max
v∈V2−κN

ηN
ψ2−κN (v) ≥ λ

)
≥ P

(√
2 log 2

π
max

v∈V2−κN

(
ξ2−κN
v + a′

vX
) ≥ λ

)

≥ P

(√
2 log 2

π
max

v∈V2−κN

ξ2−κN
v ≥ λ,X ≥ 0

)

= 1

2
P

(√
2 log 2

π
max

v∈V2−κN

ξ2−κN
v ≥ λ

)
.

Combined with the fact that ψ2−κN (v) ∈ VN for all v ∈ V2−κN , this completes the
proof. �
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2.4. Comparison of the maxima of sums of particles. We conclude this section
with a comparison between the Gaussian free field and branching random walk,
which will be used in the proof of Theorem 1.2.

We need the following variant of Slepian’s inequality.

LEMMA 2.7. Let X = (Xi : i ∈ [n]) and Y = (Y1, . . . , Yn) be two mean-zero
Gaussian processes such that EX2

i = EY 2
i and EXiXj ≤ EYiYj for all i, j ∈ [n].

Fix 1 ≤ m ≤ n, and define Sm(x) = max{∑i∈A xi :A ⊆ [n], |A| = m} for x ∈ Rn.
Then ESm(X) ≥ ESm(Y).

PROOF. For β > 0, define Fβ :Rn �→R by

Fβ(x) = β−1 log
∑

A∈�m

eβxA,

where we denote by �m = {A ⊆ [n] : |A| = m} and xA = ∑
i∈A xi . We prove below

that

∂2Fβ/∂xi∂xj ≤ 0, i �= j.(23)

Then, by [36], Theorem 3.11, one has that

EFβ(X) ≥ EFβ(Y).

Taking β → ∞ yields the lemma.
It remains to prove (23). For k ∈ [n] and I ⊆ [n], we set �

\I
k = {B ⊆ [n] \

I : |B| = k}. Then, for i �= j ,

∂2Fβ

∂xi ∂xj

=
βeβ(xi+xj ) ∑

B∈�
\{i,j}
m−2

eβxB

∑
A∈�m

eβxA

−
βeβ(xi+xj ) ∑

B∈�
\i
m−1

eβxB
∑

B ′∈�
\j
m−1

eβxB′

(
∑

A∈�m
eβxA)2 .

The inequality (23) follows from the following combinatorial claim. �

CLAIM 2.8. For all i, j,m ∈ [n] and β > 0, we have∑
A∈�m

eβxA
∑

B∈�
\{i,j}
m−2

eβxB ≤ ∑
B∈�

\i
m−1

eβxB
∑

B ′∈�
\j
m−1

eβxB′ .

PROOF. Fix a sequence (a1, . . . , an) such that a� ∈ {0,1,2} for all � /∈ {i, j},
ai, aj ∈ {0,1} and

∑
� a� = 2m−2. We count the multiplicity of the term e

∑
� βa�x�
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in the left (denoted by L) and right-hand sides (denoted by R), respectively. Let
k = |{� ∈ [n] \ {i, j} :a� = 1}|. It is straightforward to verify that

L =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(
k

k/2 + 1

)
, if ai + aj = 0,(

k − 1
(k − 1)/2

)
, if ai + aj = 1,(

k − 2
(k − 2)/2

)
, if ai + aj = 2;

and

R =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(
k

k/2

)
, if ai + aj = 0,(

k − 1
(k − 1)/2

)
, if ai + aj = 1,(

k − 2
(k − 2)/2

)
, if ai + aj = 2.

Therefore, we always have L ≤ R, completing the proof of the claim. �

We now demonstrate a comparison for the maxima of sums of values between
the GFF and the BRW.

LEMMA 2.9. For N = 2n with n ∈ N, let {ηv :v ∈ VN } be the Gaussian free
field and {ϑv :v ∈ VN } the branching random walk as defined in (10). For � ∈ N,
define

S�,N = max
{∑

v∈A

ηv : |A| = �,A ⊂ VN

}
and

R�,N =
√

2 log 2

π
max

{∑
v∈A

ϑv : |A| = �,A ⊂ VN

}
.

Then, there exists absolute constant κ ∈ N such that ES�,N ≤ ER�,N2κ .

PROOF. Consider ϑ∗
v = ϑv + κXv where Xv are i.i.d. standard Gaussian vari-

ables, and define R∗
�,N = √

2 log 2/π max{∑v∈A ϑ∗
v : |A| = �,A ⊂ VN }. Clearly,

ER∗
�,N ≤ ER�,N2κ . Let X be another independent standard Gaussian variable and

choose a nonnegative sequence {av :v ∈ (2N,2N) + VN } such that

Var
(
η4N

v + avX
) = Varϑ∗

v for all v ∈ (2N,2N) + VN.(24)

By Lemma 2.1, we see that |au − av| ≤ C for an absolute constant C > 0. Further
define

S∗
�,N = max

{ ∑
v∈A+(2N,2N)

η4N
v + avX : |A| = �,A ⊂ VN

}
.
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Using similar arguments as in the proof of Lemma 2.4, we deduce that ES�,N ≤
ES∗

�,N . Therefore, it remains to prove ES∗
�,N ≤ ER∗

N,�. To this end, note that we
can select κ = 4C such that for all u, v ∈ VN

E
(
ϑ∗

v ϑ∗
u

) ≤ E
((

η4N
v+(2N,2N) + av+(2N,2N)X

)(
η4N

v+(2N,2N) + av+(2N,2N)X
))

.

Combined with (24) and Lemma 2.7, it completes the proof. �

3. Maxima of the modified branching random walk. This section is de-
voted to the study of the maxima of MBRW, from which we will deduce properties
for the maxima of GFF.

3.1. The maximal sum over pairs. The following lemma is the key to control-
ling the maximum over pairs. Set m̃N = √

π/2 log 2 · mN .

LEMMA 3.1. There exist constants c1, c2 > 0 so that

2m̃N − c2 log log r ≤ Eξ�
N,r ≤ 2m̃N − c1 log log r.

We consider first a branching random walk {Xn
i : i = 1, . . . ,4n}, with four de-

scendants per particle and standard normal increments. Note that {ϑv :v ∈ VN } as
defined in (10) is a BRW with four descendants per particle and n generations.
We use different notation in this subsection that allows us to ignore the geo-
metrical embedding of the BRW into the two-dimensional lattice. Let Tn be the
maximum of the BRW after n generations. Let c∗ = 2

√
log 2, c̄ = (3/2)/c∗ and

tn = c∗n − c̄ logn. We need the following estimates on the right tail of the max-
imum of a BRW. For the lower bound, we refer for example, to [2] and to [39],
(2.5.11), (2.5.13). One can obtain the upper bound by adapting, with some effort,
Bramson’s argument in [14]; this is done in detail in [15], Lemmas 3.7, 3.8. Alter-
natively, one can refer to [3], Proposition 4.1 for most of the content of Lemma 3.2.

LEMMA 3.2. The expectation ETn satisfies

ETn = c∗n − c̄ logn + O(1).(25)

Further, there exist constants c,C > 0 so that, for y ∈ [0,
√

n],
ce−c∗y ≤ P(Tn ≥ tn + y) ≤ C(1 + y)e−c∗y,(26)

with the upper bound holding for any y ≥ 0.

We remark that [3], Proposition 4.1, implies (in a much more general setting
than that considered here) a lower bound in (26) that matches the upper bound (up
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to a multiplicative constant); we will not directly use this. Further, (26) implies
that with T ′

n an independent copy of Tn, there exists a constant C such that

P
(
Tn + T ′

n ≥ 2tn + 2y
)

≤ ∑
j∈Z

P
(
Tn ∈ tn + [j, j + 1)

)
P

(
T ′

n ≥ tn + 2y − (j + 1)
)

(27)

≤ 2P(Tn ≥ tn + 2y) +
�2(y−1)�∑

j=0

P(Tn ≥ tn + j)P
(
T ′

n ≥ tn + 2y − (j + 1)
)

≤ C(1 + y)3e−2c∗y ≤ C(1 + y)4e−2c∗y

for any y ≥ 0 and any positive integer n.
For x ∈ Z, let

�n(x) = #
{
1 ≤ i ≤ 4n :Xn

i ∈ [tn − x − 1, tn − x]}
be the number of particles in the BRW at distance roughly x behind the leader. The
following is essentially folklore, we include a proof since we have not been able
to find an appropriate reference.

PROPOSITION 3.3. For some universal constant C, and all x ∈ Z,

E�n(x) ≤ Cnec∗x−x2/2n.(28)

Further, for any u > −x so that 0 < x + u ≤ √
n/2,

P
(
�n(x) ≥ ec∗(x+u)) ≤ Ce−c∗u+C log+(x++u).(29)

Note that the interest in (29) is only in situations in which x + u is at most at
logarithmic scale (in n).

PROOF. The estimate (28) is a simple union bound: with G a zero mean Gaus-
sian with variance n we have

E�n(x) = 4nP
(
G ∈ [tn − x − 1, tn − x]).

Using standard estimates for the Gaussian distribution and the value of tn, the
estimate (28) follows.

We write the proof of (29) in case x ≥ 0, the general case is similar. We use
Lemma 3.2. Fix δ > 0, r = 2(x + u)2 and y = u − c̄ log r . Note that c̄ log r + y +
x <

√
r . With K an arbitrary positive integer,

P(Tn+r ≥ tn+r + y)

≥ P
(
�n(x) ≥ K

)[
1 − (

P
(
Tr ≤ tr + c̄ log r + y + x − c̄ log(1 + r/n)

))K ]
(30)

≥ P
(
�n(x) ≥ K

)[
1 − (

1 − Ce−c∗(y+x+c̄ log r))K ]
,
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where in the last inequality we used the lower bound in (26). Taking K = ec∗(x+u)

we have that e−c∗(y+x+c̄ log r)K = 1 and therefore

P(Tn+r ≥ tn+r + y) ≥ cP
(
�n(x) ≥ K

)
.

Using the upper bound in (26), we get that

P
(
�n(x) ≥ K

) ≤ Ce−c∗y(1 + y).

This yields (29). �

In what follows, we write i ∼s j if the particles Xn
i and Xn

j had a common
ancestor at generation n−s. In the next corollary, the precise value of the constants
appearing in the exponent is of no particular significance (nor have we tried to
optimize over those).

COROLLARY 3.4. There exists a constant C > 0 such that, for any s ≤ n/2
positive integer, and any z positive,

P
(∃i1 ∼s i2 :Xn

i1
+ Xn

i2
≥ 2tn − c̄ log s + z

)
(31)

≤ C
[
e−0.9c∗z + e−0.45c∗z−0.7 log s].

Similarly,

P
(∃i1 ∼n−s i2 :Xn

i1
+ Xn

i2
≥ 2tn − c̄ log s + z

)
(32)

≤ C
[
e−0.9c∗z + e−0.45c∗z−0.7 log s].

In particular, there exists an r0 such that for all r > r0 and all n large,

E max
i1∼s i2,s∈[r,n−r]

(
Xn

i1
+ Xn

i2

) ≤ 2tn − (c̄/4) log r.(33)

PROOF. We first provide the proof of (31); the claim (32) follows similarly
and (33) will then be an easy consequence.

The argument (given the estimates in Proposition 3.3) is straightforward and
routine, even if tedious; it requires controlling the number of particles, at genera-
tion n − s, that are near tn−s − x, that is �n−s(x), and dividing to cases according
to x and the different possible values of �n−s(x).

In what follows we set u∗ = u∗(x, z) = max(|x|, z) and j∗ = j∗(x, z) = �u∗�.
We also define Z

(1)
− = Z− ∩ {x : |x| ≤ (z + c̄ log s)/2}, Z(2)

− = Z− ∩ {x : |x| > (z +
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c̄ log s)/2} and Zn = {x ∈ Z : 0 ≤ x + u∗ ≤ √
n/4}. (For negative x one has to

exercise some care, this is the reason for the definition of Z
(1)
− and Z

(2)
− .)

The starting point of the proof of (31) is the following estimate, obtained by
decomposing over the location of particles at generation n − s.

P
(∃i1 ∼s i2 :Xn

i1
+ Xn

i2
≥ 2tn − c̄ log s + z

)
≤ ∑

x∈Z
P

(
�n−s(x) ≥ ec∗(x+u∗))

+ ∑
x∈Z+∩Zn

j∗(x,z)∑
j=0

P
(
�n−s(x) ≥ ec∗(x+j))ec∗(x+j+1)

× P
(
Ts + T ′

s ≥ 2ts + z + 2x + c̄ log+ s
)

+ ∑
x∈Z(1)

− ∩Zn

j∗(x,z)∑
j=|x|

P
(
�n−s(x) ≥ ec∗(x+j))ec∗(x+j+1)

× P
(
Ts + T ′

s ≥ 2ts + z + 2x + c̄ log+ s
)

(34)
+ ∑

x∈Z(1)
− ∩Zc

n

E
(
�n−s(x)

)
P

(
Ts + T ′

s ≥ 2ts + z + 2x + c̄ log+ s
)

+ ∑
x∈Z+∩Zc

n

E
(
�n−s(x)

)
P

(
Ts + T ′

s ≥ 2ts + z + 2x + c̄ log+ s
)

+ ∑
x∈Z(2)

−

P
(
�n−s(x) ≥ 1

)

=: ∑
x∈Z

A1(x) + ∑
x∈Z+∩Zn

A2(x) + ∑
x∈Z(1)

− ∩Zn

A3(x) + ∑
x∈Z(1)

− ∩Zc
n

A4(x)

+ ∑
x∈Z+∩Zc

n

A5(x) + ∑
x∈Z(2)

−

A6(x)

=: A1 + A2 + A3 + A4 + A5 + A6,

where T ′
s is an independent copy of Ts . The contribution to A1 from x ∈ Zn can

be estimated using (29) and one finds

∑
x∈Zn

A1(x) ≤ C
∑
|x|≤z

e−c∗z+C log+ z + 2C

∞∑
x=z

e−c∗x+C log+ x

(35)
≤ CeC log+ ze−c∗z.
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A similar computation using (29) and (27) yields∑
x∈Z+∩Zn

A2(x)

≤ C
∑

x∈Z+∩Zn

u∗∑
j=0

e−c∗j+C log+(x+j)ec∗(x+j+1)e−c∗(z+2x+c̄ log s)

(36)
× (

z + |x| + c̄ log s
)4

≤ C(1 + log s)4eC log+ ze−c∗z.

To control A3, we repeat the last computation and obtain∑
x∈Z(1)

− ∩Zn

A3(x)

≤ C
∑

x∈Z(1)
− ∩Zn

u∗∑
j=0

e−c∗j+C log+(x+j)ec∗(x+j+1)e−c∗(z+2x+c̄ log s)

(37)
× (

z + |x| + c̄ log s
)4

≤ C(1 + log s)4eC log+ ze−c∗z/2−c∗c̄ log s/2.

To control A6 over Zn, we repeat the estimate as in controlling A1 and obtain∑
x∈Z(2)

− ∩Zn

A6(x) ≤ C(1 + log s + z)e−c∗z/2+c∗c̄ log s/2.(38)

The estimate for x /∈Zn is easier, using this time (28). Indeed, in such a situation
either |x| or z are at least of order

√
n. One has∑

x /∈Zn

A1(x) ≤ C
∑

x /∈Zn

E�n−s(x) · e−c∗(x+u∗)

≤ ∑
x /∈Zn

Cne−c∗u∗−x2/n ≤ e−0.9c∗z−2 logn.

(The constant 0.9 does not play a particular role in the last inequality, all that is
needed is that it is smaller than 1 and close to 1 and that e−0.1c∗u∗

< 1/n3 for all n

large and x /∈ Zn.) Since log s < logn, we get∑
x /∈Zn

A1(x) ≤ Cs−2e−0.9c∗z.(39)

Similarly,∑
x∈Z+∩Zc

n

A5(x) ≤ C
∑

x∈Z+∩Zc
n

(1 + z + x + c̄ log s)4ne−c∗(x+z)−x2/2n−c∗c̄ log s

(40)
≤ e−0.9c∗z.
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As mentioned earlier, for negative x ∈ Zc
n one has to exercise some care, this was

the reason for the definition of Z
(1)
− and Z

(2)
− . One has, using (27),∑

x∈Z(1)
− ∩Zc

n

A4(x) ≤ C
∑

x∈Z(1)
− ∩Zc

n

n
(
1 + z + |x| + c̄ log s

)4e−c∗(x+z+c̄ log s)

(41)
≤ Ce−0.45c∗z−0.99c∗c̄ log s ≤ e−0.45c∗z−0.7 log s,

where we have used that c∗c̄ = 3/2, and again the choice of 0.99 as the constant
multiplying c∗c̄ is of no real importance except that it is close enough to 1. Finally,
just using (28), we get similarly∑

x∈Z(2)
− ∩Zc

n

A6(x) ≤ ∑
x∈Z(2)

− ∩Zc
n

Cnec∗x−x2/2n ≤ e−0.45c∗z−0.7 log s .(42)

Summing (35)–(42) yields (31). As mentioned before, the proof of (32) is similar.
Because c∗c̄ = 3/2 and 0.9 · 3/2 > 1 we also have then that

P
(∃s ∈ {r, . . . , n/2},∃i1 ∼s i2 :Xn

i1
+ Xn

i2
≥ 2tn − (c̄/4) log r + z

)

≤
n/2∑
s=r

C
[
e−0.9c∗(z+c̄ log(s/r1/4)) + e−0.45c∗(z+c̄ log(s/r0.25))−0.7 log s]

≤ Ce−0.45c∗z.

A similar estimates holds for the range s ∈ {n/2, . . . , n− r}. Summing those over z

yields (32). We omit further details.
We can now provide the proof of Lemma 3.1:

PROOF OF LEMMA 3.1. We begin with the upper bound. The argument is
similar to what was done in the proofs in Section 2 and therefore we will not
provide all details.

Let SN
v be a BRW of depth n and set RN

v = (1 − εN)SN
v + Gv where Gv is

a collection of i.i.d. zero mean Gaussians of variance σ 2 to be defined (indepen-
dent of N ) and εN = O(1/n). Choosing σ and εN appropriately one can ensure
that E((RN

u )2) = E((ξN
u )2) and that E((RN

u −RN
v )2) ≥ E((ξN

u −ξN
v )2). Applying

Lemma 2.7 and Corollary 3.4, we deduce the upper bound in Lemma 3.1.
We now turn to the proof of the lower bound. The first step is the following

proposition. In what follows, ξ̃�
N,r is defined as ξ�

N,r except that the maximum is
taken only over pairs of vertices at distance at least N/4 from the boundary, and
the top two levels of the MBRW are not added. �

PROPOSITION 3.5. There exist constants C1,C2 > 0 such that for all N large
and all r ,

P
(
ξ̃�
N,r ≥ 2m̃N − C1 log log r

) ≥ C2.(43)
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We postpone the proof of Proposition 3.5 and show how to deduce the lower
bound in Lemma 3.1 from it. Fix C = 2c > 1 integer and consider the MBRW
ξN,C
v in the box VCN with levels up to n = log2(N/4) (i.e., the last c + 2 levels

are not taken), and define ξ�
N,C,r in a natural way. By independence of the field in

sub-boxes of side N/4 that are at distance at least N/2 of each other, we get that

P
(
ξ�
N,C,r ≥ 2m̃N − C1 log log r

) ≥ 1 − (
1 − C2

2
)C2/2

.

Adding the missing c + 2 levels we then obtain, by standard estimates for the
Gaussian distribution,

P
(
ξ�
CN,r ≥ 2m̃N − C1 log log r − y

) ≥ 1 − (
1 − C2

2
)C2/2 − C3e−C4y

2/c.

Renaming N , we rewrite the last estimate as

P
(
ξ�
N,r ≥ 2m̃N − C1 log log r − y − C5c

) ≥ 1 − (
1 − C2

2
)C2/2 − C3e−C4y

2/c.

Choosing y = C5c and summing over c we obtain that Eξ�
N,r ≥ 2m̃N −C6 log log r ,

as claimed.

PROOF OF PROPOSITION 3.5. We consider VN as being centered. There are
two steps.

Step 1. We consider the MBRW from level n − log r − 1 to level 1. That is,
with r fixed define

ξ̂N
v =

n−log2 r−1∑
k=0

∑
B∈Bk(v)

bN
k,B and An,r = VN/r ∩

(
N

r
Z

)2

.(44)

For each x ∈ An,r , let VN,r(x) denote the Z2 box centered at x with side N/2r .
We call y ∈ An,r a right neighbor of x ∈ An,r if x2 = y2 and y1 > x1 satisfies
y1 = x1 + N/r , and we write y = xR . Finally, we set, for x ∈ AN,r ,

ξ∗
N,r,x = max

v∈VN,r (x)
ξ̂N
v .

Note that, by construction, the collection {ξ∗
N,r,x}x∈An,r is i.i.d.

A straightforward adaptation of [16] shows that

P
(
ξ∗
N,r,x ≥ m̃N/r − c

) ≥ g(c),(45)

where g(c) →c→∞ 1 is independent of N, r . Let ζ ∗
x,N be the (unique) element of

VN,r(x) such that ξ∗
N,r,x = ξ̂N

ζ ∗
x,N

. Let

MN,r,c = {
x ∈ An,r : ξ∗

N,r,x ≥ m̃N/r − c, ξ∗
N,r,xR

≥ m̃N/r − c
}
.

By independence, we get from (45) that there exists a constant c, independent
of N, r , so that

P
(|MN,r,c| ≥ r2/4

) ≥ 1
2 .(46)
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Step 2. For x ∈ MN,r,c, set ξ̄∗
N,r,x = ξ∗

N,r,x + ξ∗
N,r,xR

; note that for such x, one
has ξ̄N,r,x ≥ 2m̃N/r − 2c. Define, for v ∈ VN ,

YN
v =

n∑
k=n−log2 r

∑
B∈Bk(v)

bN
k,B,(47)

and for x ∈ AN,r , set

ZN
x = YN

ζ ∗
x,N

+ YN
ζ ∗
xR,N

.

Conditioned on the sigma algebra FN,r generated by the collection of variables
{ζ ∗

x,N }, the collection {ZN
x }x is a zero mean Gaussian field, with (conditional) co-

variance satisfying∣∣Ẽ(
ZN

x ZN
y

) − 4(log2 r − log2
(|x − y|/(N/r)

)∣∣ ≤ C

for some constant C independent of N, r ; here, Ẽ denotes expectation conditioned
on FN,r . �

It is then straightforward, using the argument in the proof of Proposition 5.2
in [16], to verify that Z∗

N = maxx∈MN,r,c
ZN

x is comparable to twice the maximum
of MBRW run for log2 r generations, that is, on the event |MN,r,c| ≥ r2/4 there
exist positive constants c1, c2 independent of r,N (but dependent on c) such that

P̃
(
Z∗

N ≥ 2m̃r − c1
) ≥ c2.

We now combine the two steps. Let x∗
N be the (unique) random element of

MN,r,c such that Z∗
N = ZN

x∗
N

. Then, on the event |MN,r,c| ≥ r2/4, we have

ξ̃�
N,r ≥ ZN

x∗
N

+ 2m̃N/r − 2c.

Therefore, with probability at least g(c) · c2, we get that

ξ̃�
N,r ≥ 2(m̃r + m̃N/r ) − c4 ≥ 2m̃N − c5 log log r,

completing the proof of the proposition. �

Combined with Proposition 2.3, Lemma 3.1 immediately gives the following
consequence.

COROLLARY 3.6. There exist absolute constants c1, c2,C > 0 so that

2mN − c2 log log r − C ≤ Eη�
N,r ≤ 2mN − c1 log log r + C.
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3.2. The right tail for the maximum. In this subsection, we compute the right
tail for the maximum of the MBRW.

LEMMA 3.7. There exists a constant C > 0 such that for all y ∈ [1,
√

n) and
n large enough,

C−1ye−2
√

log 2y ≤ P
(
max

v
ξN
v > m̃N + y

)
≤ Cye−2

√
log 2y.

Combined with Lemma 2.6, the preceding lemma directly yields Theorem 1.4.

PROOF OF LEMMA 3.7. The upper bound is an immediate comparison argu-
ment. Consider the MBRW ξN

v , and consider the associated BRW ξ̃N
v . As noted

in [16], Proposition 3.2, E(ξN
v )2 = E(ξ̃N

v )2 and there exists a constant C such that
for v �= v′,

EξN
v ξN

v′ + C ≥ Eξ̃N
v ξ̃N

v′ .

Let G,Gv be i.i.d. Gaussian variables of zero mean and variance C, independent
of the fields {ξ, ξ̃}. Set μN

v = ξN
v + G and μ̃N

v = ξ̃N
v + Gv . Clearly, it is still the

case that E(μN
v )2 = E(μ̃N

v )2, while now,

EμN
v μN

v′ ≥ Eμ̃N
v μ̃N

v′ for v �= v′.

We conclude from Slepian’s lemma that

P
(
max

v
μ̃N

v ≥ t
)

≥ P
(
max

v
μN

v ≥ t
)

≥ 1

2
P

(
max

v
ξN
v ≥ t

)
.

[The last inequality because P(G ≥ 0) = 1/2.] On the other hand, maxv μN
v is

trivially stochastically dominated by maxv ξ̃
�C�N
v . Combining these with the upper

bound in (26) yields the upper bound in the lemma.
The main work goes to the proof of the lower bound. Recall that N = 2n. Set

an = 2
√

log 2n − 3
4
√

log 2
logn. To simplify notation, we drop the superscript and

denote by {ξv :v ∈ V } a MBRW of n levels. For 0 ≤ t ≤ n, let ξv(t) be the sum of
the Gaussians variables in the first t-levels for ξv (i.e., summing over the Gaussian
variables associated to boxes of side length 2n,2n−1, . . . ,2n−t ). Define

Av(y) =
{
ξv ∈ [an + y − 1, an + y], ξv(t) ≤ ant

n
+ y ∀t ∈ [n]

}
and

Z(y) = ∑
v∈V

1Av(y).

Therefore, writing ξ̄v(t) = ξv(t) − ant
n

we can compute

P
(
Av(y)

) = P
(
ξ̄v(n) ∈ [y − 1, y], ξ̄v(t) ≤ y for all t ∈ [n]).
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Let Q be a probability measure under which ξ̄v is a Gaussian random walk. Then
we have

dP

dQ
= e−(an/n)ξ̄v(n)−(a2

n/(2n2))n.(48)

Altogether, we obtain that

P
(
Av(y)

) = EQ

(
dP

dQ
1Av(y)

)
= e−a2

n/2ne−(an/n)yQ
(
Av(y)

)

� n3/24−ne−2
√

log 2y y

n3/2 = 4−ne−2
√

log 2yy,

where the notation � means that the ratio of the left- and right-hand sides is
bounded above and below by absolute positive constants. Note that we have ap-
plied the Ballot theorem (see, e.g., [1], Theorem 1) to estimate Q(Av(y)). This
implies that

EZ(y) � e−2
√

log 2yy.(49)

Next, we turn to computing the second moment of Z(y). To this end, consider v

and w such that v and w splits in level ts = n − s (denoted by v ∼s w). That is to
say, the boxes of side length 2s associated to v are disjoint from those associated
to w. Write ξ̄v(t) = ξv(t) − an

n
t , ξ̄w(t) = ξw(t) − an

n
t . We compute (writing αn =

an/n)

P
(
Av(y) ∩ Aw(y)

)
= P

(
ξ̄v(t) ≤ y, ξ̄w(t) ≤ y for all t ∈ [n], ξ̄v(n), ξ̄w(n) ∈ [y − 1, y])

= ∑
z≤y

P
(
ξ̄v(t) ≤ y, ξ̄w(t) ≤ y for all t ∈ [n], ξ̄v(n), ξ̄w(n) ∈ [y − 1, y],(50)

ξ̄v(ts) ∈ [z − 1, z])
≤ ∑

z≤y

P
(
ξ̄v(t) ≤ y for all t ∈ [ts], ξ̄v(ts) ∈ [z − 1, z])�2

y,z,s,

where

�y,z,s = sup
ξ̄v(ts )∈[z−1,z]

P
(
ξ̄v(t) ≤ y for all ts < t ≤ n, ξ̄v(n) ∈ [y − 1, y]|ξ̄v(ts)

)
.

Note that in (50), we have an inequality as opposed to an equality which would
hold for BRW. For v ∼s w, the processes {ξv(t) : t ∈ [ts]} and {ξw(t) : t ∈ ts} are
not precisely the same and therefore{

ξ̄v(t) ≤ y, for all t ∈ [ts], ξ̄v(ts) ∈ [z − 1, z]}
�= {

ξ̄w(t) ≤ y, for all t ∈ [ts], ξ̄w(ts) ∈ [z − 1, z]}.
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This explains the inequality in (50). By the Ballot theorem,

�y,z,s ≤ P
(
ξv(r) ≤ y − z for all r ∈ [s], ξ̄v(s) ∈ [y − 1 − z, y − z])

(51)

� e−(α2
n/2)se−αn(y−z) y − z + 1

s3/2 ,

where the notation � means that the left-hand side is bounded by the right-hand
side up to an absolute constant. Recalling (48) and applying a slight variation of
the Ballot theorem (see, e.g., [39], Corollary 2), we obtain that

P
(
ξ̄v(t) ≤ y, for all t ∈ [ts], ξ̄v(ts) ∈ [z − 1, z])

� e−(α2
n/2)(n−s)e−αnz (y + 1)(y − z + 1)

(n − s)3/2 .

Plugging the preceding inequality and (51) into (50), we get that

P
(
Av(y) ∩ Aw(y)

)
� (y + 1)

∑
z≤y

e−α2
nn/2e−(α2

n/2)se−αnye−αn(y−z) (y − z + 1)3

s3(n − s)3/2

� y4−nn3/24−sn3s/2ne−αny

s3(n − s)3/2 ,

where the summation is over all z such that y − z is a nonnegative integer. Sum-
ming over v ∼s w and also over s, we obtain from a straightforward computation
that

E
(
Z(y)

)2 =
n∑

s=1

∑
v∼sw

P
(
Av(y) ∩ Aw(y)

)

� ye−αny
n∑

s=1

n3/2n3s/2n

s3(n − s)3/2 � ye−αny
n∑

s=1

n3s/2n

s3(1 − s/n)3/2

� ye−αny
n/2∑
s=1

n3s/2n

s3 + ye−αny
n∑

s=n/2

1

(n − s)3/2 � ye−αny.

Recalling (49) and that αn = an/n, as well as using the inequality P(Z(y) > 0) ≥
(EZ(y))2/EZ2(y), we complete the proof on the lower bound. �

4. Maxima of the Gaussian free field. This section is devoted to the study of
the maxima of the GFF, for which we will harvest results from previous sections.

4.1. Physical locations for large values in Gaussian free field. This subsection
is devoted to the proof of Theorem 1.1. We first briefly explain the strategy for the
proof. Suppose that there exists a number ε > 0 such that the limiting probability
in (1) is larger than ε along a subsequence {rk}. Then, we can take N ′ � N/ε such
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that the same limiting probability with N replaced by N ′ will approach almost 1.
This would then (roughly) imply that the expected value of η�

N ′,rk will exceed
2mN − δ log log rk − O(1) (where δ > 0 is a small number), contradicting with
Corollary 3.6 as k → ∞. The details of the proof are carried out in what follows.

We start with the following preliminary lemma.

LEMMA 4.1. For N ′ > 8N , consider a discrete ball B of radius 8N in a box
VN ′ of side length N ′. Let B∗ ⊂ B be a box of side length N such that the centers
of B and B∗ coincide. Let {ηv :v ∈ VN ′ } be a GFF on VN ′ with Dirichlet boundary
condition and let

ψv = E
(
ηv|{ηu :u ∈ ∂B}).

Then for v ∈ B∗, we have Varψv = O(log(N ′/N)).

PROOF. We need the following lemma, which implies that the harmonic mea-
sure on ∂B with respect to any v ∈ B∗ is comparable to the uniform distribution.

LEMMA 4.2 ([35], Lemma 6.3.7). Let Cn ⊂ Z2 be a discrete ball of radius n

centered at the origin. There exist absolute constants c,C > 0 such that for all
x ∈ Cn/4 and y ∈ ∂Cn

c/n ≤ Px(τ∂Cn = y) ≤ C/n.

The Gauss–Markov property of the GFF allows one to write the conditional
expectation for GFF at a vertex given values on the boundary as a harmonic mean
for the values over the boundary (see, e.g., [27], Theorem 1.2.2). Combined with
the preceding lemma, this implies that for v ∈ B∗ ⊂ B , we have

ψv = ∑
w∈∂B

av,wηw where c/N ≤ av,w ≤ C/N.(52)

Therefore, we have

Varψv = �
(
1/N2) ∑

u,w∈∂B

G∂VN ′ (u,w).(53)

In order to estimate the sum of Green functions, we use the next lemma.

LEMMA 4.3 ([35], Proposition 6.4.1). For � < n and x ∈ Cn \ C�, we have

Px(τ∂Cn < τ∂C�
) = log |x| − log� + O(1/�)

logn − log�
.

By the preceding lemma, we have

Pu

(
τ∂VN ′ < τ+

∂B

) ≥ O
(
1/

(
N log

(
N ′/N

)))
for all u ∈ ∂B,
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where τ+
∂B = min{t ≥ 1 :St ∈ ∂B}. Thus,

∑
w∈∂B G∂VN ′ (u,w) =

O(N log(N ′/N)). Therefore,

Var(ψv) = O
(
log

(
N ′/N

))
for all v ∈ B∗. �

The following lemma, using the sprinkling idea, is the key to the proof of The-
orem 1.1. In the lemma, for ε, δ > 0 we set C(δ, ε) = 2 log δ/ log(1 − ε).

LEMMA 4.4. There exist a a constant C > 0 such that, if

P(∃v,u ∈ VN : r ≤ |v − u| ≤ N/r and ηu, ηv ≥ mN − λ) ≥ ε(54)

for some ε,λ > 0 and N, r ∈ N, then for any δ > 0, setting N ′ to be the small-
est power of 2 larger than or equal to C(δ, ε)N and γ = C(

√
logC(δ, ε)/δ), the

following holds

P
(
η�

N ′,r ≥ 2mN − 2λ − γ
) ≥ 1 − δ.

PROOF. Let N ′ = N2k+3 with k = �log2 C(δ, ε) − 3�. B1, . . . ,B2k ⊂ VN ′ be
disjoint discrete balls of radius 8N , and for i ∈ [2k] let B∗

i ⊂ Bi be a box of side
length N such that these two centers (of the ball and the box) coincide. Let {η′

v :v ∈
VN ′ } be a GFF on VN ′ with Dirichlet boundary condition, and for i ∈ [2k] let
{η(i)

v :v ∈ Bi} be i.i.d. GFFs on Bi with Dirichlet boundary condition. We first
claim that for all i ∈ [2k]

P
(∃v,u ∈ B∗

i : r ≤ |v − u| ≤ N/r and η(i)
u + η(i)

v ≥ 2mN − 2λ
) ≥ ε/2.(55)

In order to prove the preceding inequality, we consider the decomposition of
{η(i)

v :v ∈ B∗
i } [by conditioning on the values at ∂B∗

i analogous to (16)] as

η(i)
v = η(i),∗

v + φv for all v ∈ B∗
i ,

where {η(i),∗
v :v ∈ B∗

i } is a GFF on B∗
i with Dirichlet boundary condition and is

independent of the centered Gaussian process {φv :v ∈ B∗
i }. Note that φv here de-

notes the conditional expectation of ηi
v given the values on ∂B∗

i . Let τ1(i), τ2(i) ∈
B∗

i be the locations of maximizers of

max
{
η(i),∗

v + η(i),∗
u :u, v ∈ B∗

i , r ≤ |v − u| ≤ N/r
}
.

By Assumption (54), we have

P
(
η

(i),∗
τ1(i)

+ η
(i),∗
τ2(i)

≥ 2mN − 2λ
) ≥ ε.

Since φτ1(i) + φτ2(i) is a centered Gaussian variable that is independent of η
(i),∗
τ1(i)

+
η

(i),∗
τ2(i)

, we can deduce (55) as required.
Let us now consider the decomposition for {η′

v :v ∈ VN ′ }. We can write

η′
v = η(i)

v + ψv for v ∈ B∗
i and i ∈ [

2k],



1506 J. DING AND O. ZEITOUNI

where {ψv :v ∈ B∗
i } is a Gaussian process independent of {η(i)

v : i ∈ [2k], v ∈ Bi},
and furthermore

ψv = E
(
η′

v|
{
η′

u :u ∈ ∂Bi

})
for v ∈ B∗

i .

By Lemma 4.1, we obtain that Varψv = O(k) for all v ∈ B∗
i and i ∈ [2k].

Next, let ι ∈ [2k] be the location of the maximizer of

max
{
η

(i)
τ1(i)

+ η
(i)
τ2(i)

: i ∈ [
2k]}.

By the independence of {η(i)· } for i ∈ [2k], we deduce that

P
(
η

(ι)
τ1(ι)

+ η
(ι)
τ2(ι)

≥ 2mN − 2λ
) ≥ 1 − (1 − ε/2)2k

.

Conditioning on the location of ι and τ1(ι), τ2(ι), we see that Var(ψτ1(ι) +ψτ2(ι)) =
O(k). Therefore,

P
(
η′

τ1(ι)
+ η′

τ2(ι)
≥ 2mN − 2λ − γ

) ≥ (
1 − (1 − ε/2)2k )(

1 − O(k)

γ 2

)
,

where we simply used Markov’s inequality to bound the probability P(ψτ1(ι) +
ψτ2(ι) ≥ −λ). With our choice of k, γ , this completes the proof. �

We next bound the lower tail on η�
N,r from above. To this end, we first show that

the maximal sum over pairs for the GFF has fluctuation at most O(log log r).

LEMMA 4.5. For any r ≤ N , let η�
N,r be defined as in (14). Then the sequence

of random variables {(η�
N,r − Eη�

N,r)/ log log r}N,r is tight along N ∈ N and r ∈
{0, . . . ,N}.

PROOF. To simplify notation, we consider the sequence N = 2n in the proof
(the tightness of the full sequence will follow from the same proof with slight
modification by considering n(N) = max{k ∈ N : 2k ≤ N}). To this end, we first
claim that

Eη�
2N,r ≥ Emax{Z1,Z2},(56)

where Z1,Z2 ∼ η�
N,r and Z1 is independent of Z2. The proof of (56) follows from

the similar argument as in the proof of Lemma 2.4, as we sketch briefly in what
follows. Consider VN,V ′

N ⊂ V2N where VN and V ′
N are two disjoint boxes of side

length N . Using a similar decomposition as in (16), we can write η2N
v = ηN

v + φv

for v ∈ VN and η2N
v = η̂N

v +φv for v ∈ V ′
N , where ηN· and η̂N· are two independent

copies of GFF in a 2D box of side length N . This yields (56). Now using the
equality a ∨ b = a+b+|a−b|

2 , we deduce that

E|Z1 − Z2| ≤ 2
(
Eη�

2N,r −EZ1
) ≤ 2C log log r,
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where the last inequality follows from Corollary 3.6. This completes the proof of
the lemma. �

Based on the preceding lemma, we prove a stronger result which will also imply
that the number of point whose values in the GFF exceed mN − λ grows at least
exponentially in λ. We will follow the proof for the upper bound on the lower tail
of the maximum of GFF in [23], Section 2.4. For N, r ∈ N, define

�N,r = {
(u, v) ∈ VN × VN : r ≤ |u − v| ≤ N/r

}
.

LEMMA 4.6. There exists absolute constants C,c > 0 such that for all N ∈ N

and r, λ ≥ C

P
(∃A ⊂ �N,r with |A| ≥ log r :∀(u, v) ∈ A :ηu + ηv ≥ 2mN − 2λ log log r

)
≥ 1 − Ce−ecλ log log r

.

PROOF. The proof idea is similar to [23], and thus we will be brief in what
follows. Denote by R = N(log r)−λ/10 and � = N(log r)−λ/100. Assume that the
left bottom corner of VN is the origin o = (0,0). Define oi = (i�,2R) for 1 ≤ i ≤
M = �N/2�� = (log r)λ/100/2. Let Ci be a discrete ball of radius r centered at oi

and let Bi ⊂ Ci be a box of side length R/8 centered at oi . We next regroup the M

boxes into m blocks. Let m = (log r)λ/200, and let Cj = {Ci : (j − 1)m < i < jm}
and Bj = {Bi : (j − 1)m < i < jm} for j = 1, . . . ,M/m.

Now we consider the maximal sum over pairs of the GFF in each Bj . For ease
of notation, we fix j = 1 and write B = B1 and C= C1. For each B ∈ B, analogous
to (16), we can write

ηv = gB
v + φv for all v ∈ B ⊆ C ∈ C,

where {gB
v :v ∈ B} is the projection of the GFF on C with Dirichlet boundary

condition on ∂C, and {{gB
v :v ∈ B} :B ∈ B} are independent of each other and of

{ηv :v ∈ ∂C}, and φv = E(ηv|{ηu :u ∈ ∂C}) is a convex combination of {ηu :u ∈
∂C}. For every B ∈ B, define (χ1,B,χ2,B) ∈ B × B ∩ �N,r such that

gB
1,χB

+ gB
χ2,B

= sup
u,v∈B×B∩�N,r

gB
v + gB

u .

Since λ is large enough, we get from Corollary 3.6 and Lemma 4.5 that

P
(
gB

1,χB
+ gB

χ2,B
≥ 2mN − λ log log r

) ≥ 1/4.

Let W = {(χ1,B,χ2,B) :gB
1,χB

+ gB
χ2,B

≥ 2mN − λ log log r,B ∈ B}. By indepen-
dence, a standard concentration argument gives that for an absolute constant c > 0

P
(
W ≤ 1

8m
) ≤ e−cm.(57)

It remains to study the process {φu +φv : (u, v) ∈ W }. If φu +φv ≥ 0 for (u, v) ∈
W , we have ηu + ηv ≥ 2mN − λ log log r . The required estimate is summarized in
the following lemma.
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LEMMA 4.7 ([23], Lemma 2.3). Let U ⊂ ⋃
B∈B B × B such that |U ∩ B ×

B| ≤ 1 for all B ∈ B. Assume that |U | ≥ m/8. Then, for some absolute constants
C,c > 0

P
(
φu + φv ≤ 0 for all (u, v) ∈ U

) ≤ Ce−c(log r)cλ .

Despite the fact that we are considering a sum over a pairs (instead of a single
value φv) in the current setting as well as slightly different choices of parameters,
the proof of the preceding lemma goes exactly the same as that in [23]. The main
idea is to control the correlations among (φu +φv) for (u, v) ∈ U . Indeed, one can
show that the correlation coefficient is uniformly bounded by O(λ log log r

√
R/�).

Slepian’s comparison theorem can then be invoked to complete the proof. Due to
the similarity, we do not reproduce the proof here.

Altogether, the preceding lemma implies that

P
(
max
B∈B max

v,v∈B×B∩�N,r

ηu + ηv ≥ 2mN − 2λ log log r
)

≥ 1 − Ce−c(log r)cλ .

Now, let (χ1,j , χ2,j ) ∈ Bj ×Bj ∩ �N,r be such that

ηχ1,j
+ ηχ2,j

= max
B∈Bj

max
(u,v)∈B×B∩�N,r

ηu + ηv,

and let A = {(χ1,j , χ2,j ) : 1 ≤ j ≤ M/m}. A union bound gives that

min(u,v)∈A ηu +ηv ≥ 2mN − 2λ log log r with probability at least 1 −Ce−c(log r)cλ ,
concluding the proof. �

The following is an immediate corollary of the preceding lemma.

COROLLARY 4.8. There exist absolute constants C,c > 0 such that for all
N ∈N and λ, r ≥ C

P
(
η�

N,r ≥ 2mN − 2λ log log r
) ≥ 1 − Ce−cecλ log log r

.

We are now ready to provide the proof of Theorem 1.1.

PROOF OF THEOREM 1.1. Suppose that the conclusion in the theorem does
not hold. This implies that for a particular choice of c = c1/8 (where c1 is the con-
stant in Corollary 3.6) there exists ε > 0 and a subsequence {rk} with rk →k→∞ ∞
such that for all k

lim sup
N→∞

P(∃v,u ∈ VN : rk ≤ |v − u| ≤ N/rk and ηu, ηv ≥ mN − c log log rk) ≥ ε.

Then by Lemma 4.4, for a δ > 0 to be specified and C(ε, δ) > 0, we have

lim sup
N→∞

P
(∃v,u ∈ VC(ε,δ)N : rk ≤ |v − u| ≤ C(ε, δ)N/rk, ηu + ηv

≥ 2mN − 2c log log rk − C(ε, δ)
) ≥ 1 − δ.
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Now we consider random variables WN,k = 2mN − 2c log log rk − C(ε, δ) −
η�

C(ε,δ)N,rk
. By the preceding inequality, for any δ > 0 there exists an integer Nδ

such that P(WN,k ≥ 0) ≤ 2δ for all N ≥ Nδ and k ∈ N. By Corollary 4.8, we see
that for absolute constants C�, c� > 0

P(WN,k ≥ λ log log rk) ≤ C�e−c�ec�(λ−2c) log log rk for all N,k,λ ≥ C�.

Therefore, for N ≥ Nδ and rk ≥ ee ∨ C�, we obtain that

EWN,k ≤ log log rk

∫ ∞
0

P(WN,k ≥ λ log log rk) dλ

≤ log log rk

∫ ∞
0

(2δ) ∧ (
C�e−c�ec�(λ−2c) log log rk )

dλ

≤ Ac,C�δ log log rk + log log rk

∫ ∞
0

(2δ) ∧ (
C�e−c�ec�λ)

dλ

≤ Ac,C�,c�δ log log rk,

where Ac,C� > 0 is a number depending on (c,C�) and Ac,C�,c� > 0 is a num-
ber that depends only on (c,C�, c�). Recalling that c = c1/8 and choosing δ =
c1/4Ac,C�,c� , we then get that for N ≥ Nδ and rk ≥ ee,

Eη�
C(ε,δ)Nj ,rk

≥ 2mNj
− c1

2
log log rk − C(ε, δ) for all k ∈ N.(58)

This contradicts with Corollary 3.6 (sending k → ∞), thereby completing the
proof. �

We conclude this subsection by providing the proof of Theorem 1.2.

PROOF OF THEOREM 1.2. The lower bound on Aλ,N follows immediately
from Lemma 4.6. A straightforward deduction from Theorem 1.1 together with a
packing argument yields an upper bound of merely doubly-exponential on Aλ,N .
In what follows, we strengthen the upper bound to exponential of λ. Continue
denoting S�,N and R�,N as in Lemma 2.9. Following notation as in Section 3.1,
we see that

R�,N ≤ �TN − �

4c∗ 1
{∣∣�∗

N,log�/(2c∗)
∣∣ ≤ �/2

}
log�,

where �∗
N,x = ⋃x

i=tN−TN
�N(i). Applying (26) and (29), we deduce that there

exists a constant c > 0 such that for sufficiently large �

ER�,N ≤ �(
√

2 log 2/πmN − c log�).

Combined with Lemma 2.9, it follows that for sufficiently large �

ES�,N ≤ �(
√

2 log 2/πmN − c log�).(59)
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At this point, the proof can be completed analogous to the deduction of (58), as
we sketch below. Suppose otherwise that for any α > 0 there exists a subsequence
{rk} such that for all k there exists a subsequence Nk,i with

P
(|ANk,i ,rk | ≥ eαrk

) ≥ ε for all i ∈ N,

where ε > 0 is a positive constant. Then, following the same sprinkling idea in
Lemma 4.4, we can show that for any δ > 0, there exists C(ε, δ) such that for
N ′

k,i = C(δ, ε)Nk,i and γ = γ (ε, δ), the following holds

P
(|AN ′

k,i ,rk−γ | ≥ eαrk
) ≥ 1 − δ.

Combined with Lemma 4.6, it follows that

ESeαrk ,N ′
k,i

≥ eαrk
(√

2 log 2/πmN ′
k,i

− (
1 + c′δα

)
rk − γ

)
,

where c′ > 0 is a constant that arise from the estimate in Lemma 4.6. Now, setting
δ = (c/2c′), α = 4/c and sending rk → ∞, we obtain a bound that contradicting
with (59), completing the proof of Theorem 1.2. �

4.2. The gap between the largest two values in Gaussian free field. In this sub-
section, we study the gap between the largest two values and prove Theorem 1.3.

Upper bound on the right tail. In order to show the upper bound in (2), it suffices
to prove that for some absolute constants C,c > 0 and all λ > 0

P(λ < �N ≤ λ + 1) ≤ P(�N ≤ 1) · Ce−cλ2
.(60)

To this end, define

�λ = {
(xv)v∈VN

:γ
(
(xv)

) ∈ (λ,λ + 1]} for all λ ≥ 0,

where γ ((xv)) is defined to be the gap between the largest two values in {xv}. For
(xv)v∈VN

∈ �λ, let τ ∈ VN be such that xτ = maxv∈VN
xv . We construct a mapping

φλ : �λ �→ �0 that maps (xv)v∈VN
∈ �λ to (yv)v∈VN

such that

yv = xv if v �= τ and yτ = xτ − λ.

It is clear that the mapping is 1–1 and (yv)v∈VN
∈ �0. Furthermore, the Jacobian

of the mapping φλ is precisely 1 on �λ. It remains to estimate the density ratio
f ((xv))/f ((yv)). Using (6), we get that

f
(
(xv)

) = Ze−(1/16)
∑

u∼v(xu−xv)
2

= Ze−(1/16)
∑

u∼v(yu−yv)
2
e−(1/8)

∑
u∼τ ((xu−xτ )2−(yu−yτ )2)

≤ f
(
(yv)

)
e−(1/2)λ2

.

It then follows that

P
((

ηN
v

) ∈ �λ

) ≤ e−λ2/2P
((

ηN
v

) ∈ �0
)
,
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completing the proof of (60).
Lower bound on the right tail. In order to prove the lower bound on the right tail

for the gap, we first show that with positive probability there exists a vertex such
that all its neighbors in the GFF take values close to mN within a constant window.
To this end, we consider a new Gaussian process {ζv :v ∈ VN } defined by

ζv = 1

4

∑
u∼v

ηv for v ∈ VN \ ∂VN and ζ |∂V = 0.(61)

In addition, we denote by V e
N and V o

N the collection of even and odd vertices in VN ,
respectively. Note that VN = V e

N ∪ V o
n .

LEMMA 4.9. For every ε > 0, there exists a constant Cε > 0 such that

P
(

max
v∈V e

N

ζv ≥ mN − Cε

)
≥ 1 − ε.

PROOF. We will apply Lemma 2.2. For κ ∈ N to be specified later, define
φ̃κ (·) :V2−κN �→ V e

N by

φ̃κ (v) = 2κv for all v ∈ V2−κN .

Let {η2−κN
v :v ∈ V2−κN } be a GFF on V2−κN . We claim that for large κ (independent

of N )

E(ζφ̃κ (u) − ζφ̃κ (v))
2 ≥ E

(
η2−κN

u − η2−κN
v

)2 for all u, v ∈ V2−κN .(62)

In order to see this, we note that by (9) and the triangle inequality

Var(ηv) = Varηu + O(1) = Cov(ηv, ηu) + O(1) for all u ∼ v.

This then implies that

E(ζv − ζu)
2 = E(ηu − ηv)

2 + O(1) for all u, v ∈ VN.

Now again using the fact that

E(ηφ̃κ (u) − ηφ̃κ (v))
2 −E

(
η2−κN

u − η2−κN
v

)2

grows with κ , we could select κ large (though independent of N ) to beat the O(1)

term, and thus obtain (62). At this point, an application of Lemma 2.2 and (4)
yields that

E max
v∈V e

N

ζv = mN + O(1).(63)

In addition, it is clear that maxv∈V e
N

ζv ≤ maxv∈VN
ηv . Therefore, (5) implies an

exponential right tail for maxv∈V e
N

ζv . Together with (63), this completes the proof
of the lemma. �
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For ε > 0, let Cε be defined as in the preceding lemma, and define

�̄ε =
{
(xv) : max

v∈V e
N

1

4

∑
u∼v

xu ≥ mN − Cε

}
.

For (xv) ∈ �̄ε , let v� ∈ V e
N be such that 1

4
∑

u∼v� xu = maxv∈V e
N

1
4

∑
u∼v xu. Let

�∗
ε = {(xv) ∈ �̄ε : xv� − 1

4
∑

u∼v� xu ∈ (−C∗
ε ,0)}. Note that {ζv :v ∈ V e

N } is mea-
surable in the σ -field generated by {ηv :v ∈ V o

N }. Applying Markov field property
of the GFF and Lemma 4.9, we obtain that there exists C∗

ε sufficiently large (de-
pending only on ε) such that P((ηv) ∈ �∗) ≥ 1 − 2ε. By (5), we see that there
exists a constant C�

ε > 0 (depending only on ε) such that

P
({ηv} ∈ ��

ε

) ≥ 1 − 3ε,(64)

where ��
ε = �∗

ε ∩ {maxv∈V e
N

1
4

∑
u∼v xu ≥ maxv∈VN

xv − C�
ε }. Now choose ε =

1/4. For λ ≥ 0, define a map �λ : ��
1/4 �→RVN by �λ((xv)) = (yv) with

yv = xv for all v �= v� and yv� = 2 max
v

xv + λ − xv�.

The somewhat strange definition of yv� above (as opposed to set yv� = maxv xv +
λ) is for the purpose of ensuring the mapping to be bijective. By definition, we
have that

γ
(
�λ

(
(xv)

)) = 2 max
v

xv + λ − xv� − max
v

xv ≥ λ

for all (xv) ∈ ��
1/4. It is also obvious that �λ is a bijective mapping and that the

determinant of the Jacobian is 1. In addition, it is straightforward to check (by
definition of ��) for some absolute constants c�,C� > 0

f
(
�λ

(
(xv)

)) ≥ c�e−C�λ2
f

(
(xv)

)
for all (xv) ∈ ��

1/4.

Integrating over ��
1/4 and applying (64), we complete the proof for the lower

bound in (2).
Lower bound on the gap. For any ε > 0, we let ��

ε and v� be defined as above
such that (64) holds. Denote by τ the maximizer of maxv∈VN

xv . By Theorem 1.2,
there exists C�

ε > 0 such that P(��
ε) ≥ 1 − 4ε, where

��
ε = ��

ε ∩ {
(xv) :

∣∣{v :xv ≥ xτ ′ − C∗
ε − 1

}∣∣ ≥ C�
ε

}
.

Consider 0 < δ < 1, and define Ci = {(xv) : (i − 1)δ ≤ γ ((xv)) < iδ} for all i ≥ 1.
We then construct a mapping �i :��

ε ∩ C1 �→ RVN by (say �i maps (xv) to (yv))
defining

yv = xv if v /∈ {
v�, τ

}
and yv� = xτ + iδ,

and in addition yτ = xv� if v� �= τ . For all (xv) ∈ �ε and i = 1, . . . ,1/δ, it is clear
that

f
(
(xv)

) ≤ C′
εf

(
�i

(
(xv)

))
,
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where C′
ε is a constant that depends on ε. In addition, for all (xv) ∈ ��

ε ∩ C1 we
see that �i((xv)) ∈ Ci+1. Furthermore, every image has at most C�

ε +1 pre-images
in ��

ε ∩ C1. In order to see this, we note that there are two cases when trying
to reconstruct (xv) from (yv): (1) v� = τ , in which we obtain one valid instance
of (xv); (2) v� �= τ , in which we obtain at most C�

ε valid instances of (xv). This
is because by definition v� is the maximizer of maxv∈VN

yv ; and τ satisfies that
yτ = xv� ≥ xτ − C∗

ε , and there are at most C�
ε locations whose values in y· is

no less than xτ − C∗
ε . Once we locate v� and τ , the sequence (xv) is uniquely

determined by (yv). Altogether, we obtain

P
(
(ηv) ∈ ��

ε ∩ C1
) ≤ C′

ε

(
C�

ε + 1
)
P

(
(ηv) ∈ Ci+1

)
for all 1 ≤ i ≤ 1/δ. Since Ci’s are disjoint, we obtain that

P
(
(ηv) ∈ ��

ε ∩ C1
) ≤ 2C′

ε

(
C�

ε + 1
)
δ.

Now, sending δ → 0 and then ε → 0 completes the proof of (3).
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