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A BASIC IDENTITY FOR KOLMOGOROV OPERATORS IN THE
SPACE OF CONTINUOUS FUNCTIONS RELATED

TO RDES WITH MULTIPLICATIVE NOISE

BY SANDRA CERRAI1 AND GIUSEPPE DA PRATO

University of Maryland and Scuola Normale Superiore

We consider the Kolmogorov operator associated with a reaction–
diffusion equation having polynomially growing reaction coefficient and per-
turbed by a noise of multiplicative type, in the Banach space E of continuous
functions. By analyzing the smoothing properties of the associated transition
semigroup, we prove a modification of the classical identité du carré des
champs that applies to the present non-Hilbertian setting. As an application
of this identity, we construct the Sobolev space W1,2(E;μ), where μ is an
invariant measure for the system, and we prove the validity of the Poincaré
inequality and of the spectral gap.

1. Introduction. In the present paper we are concerned with the analysis of
the Kolmogorov operator associated with the following reaction–diffusion equa-
tion in the interval (0,1), perturbed by a noise of multiplicative type⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
(t, ξ) = ∂2u

∂ξ2 (t, ξ) + f
(
ξ, u(t, ξ)

) + g
(
ξ, u(t, ξ)

)∂w

∂t
(t, ξ),

t ≥ 0, ξ ∈ [0,1],
u(t,0) = u(t,1) = 0, u(0, ξ) = x(ξ),

ξ ∈ [0,1].

(1.1)

Here ∂w/∂t (t, ξ) is a space–time white noise. The nonlinear terms f,g : [0,1] ×
R →R are both continuous, the mapping g(ξ, ·) :R→R is Lipschitz-continuous,
uniformly with respect to ξ ∈ [0,1], and the mapping f (ξ, ·) has polynomial
growth, is locally Lipschitz-continuous and satisfies suitable dissipativity condi-
tions, uniformly with respect to ξ ∈ [0,1]. The example of f (ξ, ·) we have in
mind is an odd-degree polynomial, having negative leading coefficient.

In [4], the well posedness of equation (1.1) has been studied, and it has been
proved that for any initial datum x ∈ E := C0([0,1]) there exists a unique mild
solution ux ∈ Lp(�;C([0, T ];E)), for any T > 0 and p ≥ 1. This allows us to
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introduce the Markov transition semigroup Pt associated with equation (1.1), by
setting for any Borel measurable and bounded function ϕ :E →R

Ptϕ(x) = Eϕ
(
ux(t)

)
, t ≥ 0, x ∈ E.

As is known (see [2]) the semigroup Pt is not strongly continuous in Cb(E). Nev-
ertheless, it is weakly continuous, so that we can define the weak generator K
associated with the semigroup Pt in terms of the Laplace transform of Pt ,

(λ −K)−1ϕ(x) =
∫ ∞

0
e−λtPtϕ(x) dt, ϕ ∈ Cb(E).2(1.2)

For all definitions and details we refer to our previous work [2] and to Appendix B
in [3].

In this paper we are going to study some important properties of the Kol-
mogorov operator K in Cb(E). If we write equation (1.1) in the abstract form

du(t) = [
Au(t) + F

(
u(t)

)]
dt + G

(
u(t)

)
dw(t)

(see Section 2 below for all notations), then K reads formally as

Kϕ = 1

2

∞∑
k=1

D2ϕ
(
G(x)ek,G(x)ek

) + 〈
Ax + F(x),Dϕ(x)

〉
E(1.3)

(here Dϕ and D2ϕ represent the first and the second derivatives of a twice differ-
entiable function ϕ :E →R and 〈·, ·〉E is the duality between E and its topological
dual E�). Notice, however, that it is not easy to decide whether a given function
belongs to the domain of K or not, as it is defined in an abstract way by for-
mula (1.2). Our main concern here is studying some relevant properties of K, such
as the possibility to define the Sobolev space W 1,2(E,μ), with respect to the in-
variant measure μ for equation (1.1), or the validity of the Poincaré inequality and
of the spectral gap, which, as is well known, implies the exponential convergence
to equilibrium.

In the case of additive noise, that is, when G(x) is constant, it is possible to study
equation (1.1) in the Hilbert space H = L2(0,1) in a generalized sense, so that the
associated transition semigroup and the Kolmogorov operator can be introduced.
In this case, it has been proved that the so-called identité du carré des champs

K
(
ϕ2) = 2ϕKϕ + ∣∣G�Dϕ

∣∣2
H(1.4)

is valid for functions ϕ in a core of K.3 Identity (1.4) has several important con-
sequences. Actually, if there exists an invariant measure μ for ux(t), identity (1.4)
provides the starting point to define the Sobolev space W 1.2(H,μ). Moreover, un-
der some additional conditions, it allows to prove the Poincaré inequality and the
exponential convergence of Ptϕ to equilibrium (spectral gap).

2The space of all uniformly continuous and bounded real-valued mappings defined on E.
3A core of K is a subset of D(K) which is dense in the graph norm of K (see [8]).



A BASIC IDENTITY FOR KOLMOGOROV OPERATORS 1299

To this purpose, we should mention that the existence of an invariant measure μ

for equation (1.1) has been proved in [4]. The problem of uniqueness is more
delicate, in general. But here we are in a favorable situation, as we are assuming
that g is uniformly bounded from below by a positive constant. Actually, as we
are dealing with white noise in space and time, this implies that the transition
semigroup Pt is strongly Feller and irreducible, so that we can apply the Doob and
the Khasminskii theorems, and we can conclude that the invariant measure μ is
unique and strongly mixing.

The case we are dealing with in the present paper is much more delicate, as
we are considering a polynomial reaction term f combined with a multiplicative
noise. Because of this, it seems better and more natural to work in the Banach space
E of continuous functions vanishing at the boundary, instead of in H . Moreover,
the space Cb(E) is larger than the space Cb(H), and working in Cb(E) allows us
to estimate some interesting functions as, for example, the evaluation functional
Eδξ0(u) = Eu(ξ0), for ξ0 ∈ [0,1] fixed.

On the other hand, deciding to work in Cb(E) instead of Cb(H) has some rel-
evant consequences, and there is a price to pay. In our case it means in particular
that formula (1.4) has to be changed in a suitable way. Actually, if ϕ ∈ C1

b(E) and
x ∈ E we cannot say that Dϕ(x) ∈ H and hence the term |G�(·)Dϕ|H is no more
meaningful. In fact, it turns out that formula (1.4) has to be replaced by the formula

K
(
ϕ2) = 2ϕKϕ +

∞∑
k=1

∣∣〈G(·)ek,Dϕ
〉
E

∣∣2,(1.5)

where {ek}k∈N is the complete orthonormal system given by the eigenfunctions of
the second derivative, endowed with Dirichlet boundary conditions.

Notice that, in order to give a meaning to (1.5), for ϕ ∈ D(K), we have to prove
that:

(i) D(K) is included in C1
b(E);

(ii) the series in (1.5) is convergent for any ϕ ∈ D(K);
(iii) ϕ2 ∈ D(K), for any ϕ ∈ D(K) and (1.5) holds.

The proof of each one of these steps is very delicate in the framework we are
considering here and requires the use of different arguments and techniques, com-
pared to [8] and [3], Chapters 6 and 7.

In order to approach (i), we have proved that the solution ux(t) of equation (1.1)
is differentiable with respect to the initial datum x ∈ E. Moreover, we have proved
that the second derivative equation is solvable and suitable bounds for its solution
have been given. These results were not available in the existing literature and,
in order to be proved, required some new arguments based on positivity, as the
classical techniques did not apply, due to the fact that f ′ is not globally bounded,
and the noise is multiplicative. Next, we had to prove that, as in the Hilbertian
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case, a Bismuth–Elworthy–Li formula holds for the derivative of the semigroup.
This well-known formula provides the important gradient estimate

sup
x∈E

∣∣D(Ptϕ)
∣∣
E� ≤ c(t ∧ 1)−1/2 sup

x∈E

∣∣ϕ(x)
∣∣, t > 0,

which is crucial in order to prove that D(K) is contained in C1
b(E).

In order to prove (ii), we couldn’t proceed directly as in [3], Chapter 5, by
using the mild formulation of the first derivative equation and the fact that etA is
an Hilbert–Schmidt operator, for any t > 0, again because of the presence of the
polynomial nonlinearity f combined with the multiplicative noise. Nevertheless,
by using a suitable duality argument, we could prove that

∞∑
k=1

∣∣〈G(x)ek,D(Ptϕ)(x)
〉
E

∣∣2 ≤ c
∣∣G(x)

∣∣2
E‖ϕ‖2

0(t ∧ 1)−1, t > 0

and this allowed us to prove that the series in (1.5) is convergent, for any ϕ ∈ D(K).
For this reason, we would like to mention the fact that our duality argument does
work because we are dealing with the two concrete spaces E = C0([0,1]) and
H = L2(0,1) together, and hence we can use some nice approximation and du-
ality arguments between the corresponding spaces of continuous functions Cb(E)

and Cb(H) and the corresponding spaces of differentiable functions C1
b(E) and

C1
b(H); see Lemma 2.1.
Finally, in order to prove (iii), we had to use a suitable modification of the

Itô formula that applies to Banach spaces and a suitable approximation argument
based on the use of the Ornstein–Uhlenbeck semigroup in the Banach space E.

As we mentioned before, as a consequence of the modified identité du carré
des champs (1.5), we were able to construct the space W 1,2(E;μ) and prove the
Poincaré inequality and the existence of a spectral gap. For this reason, we would
like to stress that in spite of the fact that the identité du carré des champs has to be
modified and we have to replace |G�(·)Dϕ|2H by the series

∞∑
k=1

∣∣〈G(·)ek,Dϕ
〉
E

∣∣2,
the Poincaré inequality proved is identical to what we have in the case of the
Hilbert space H , with |Dϕ|H clearly replaced by |Dϕ|E� , that is,∫

E

∣∣ϕ(x) − ϕ̄
∣∣2 dμ(x) ≤ ρ

∫
E

∣∣Dϕ(x)
∣∣2
E� dμ(x).

2. Preliminaries. We shall denote by H the Hilbert space L2(0,1), endowed
with the usual scalar product 〈·, ·〉H and the corresponding norm | · |H . More-
over, we shall denote by E the Banach space C0([0,1]) of continuous functions
on [0,1], vanishing at 0 and 1, endowed with the sup-norm | · |E and the duality
〈·, ·〉E between E and its dual topological space E�.
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Now, if we fix x ∈ E there exists ξx ∈ [0,1] such that |x(ξx)| = |x|E . Then, if
δ is any element of E� having norm equal 1, the element δx ∈ E� defined by

〈y, δx〉E :=
⎧⎪⎨
⎪⎩

x(ξx)y(ξx)

|x|E , if x �= 0,

〈y, δ〉E, if x = 0,
(2.1)

belongs to the subdifferential ∂|x|E := {x� ∈ E�; |x�|E� = 1, 〈x, x�〉E = |x|E};
see, for example, [3], Appendix A, for all definitions and details.

Next, let X be a separable Banach space. L(X) shall denote the Banach algebra
of all linear bounded operators in X and L1(X) shall denote the subspace of trace-
class operators. We recall that

‖T ‖ = sup
|x|X≤1

|T x|X, T ∈ L(X).

For any other Banach space Y , we denote by Bb(X,Y ) the linear space of all
bounded and measurable mappings ϕ :X → Y and by Cb(X,Y ) the subspace of
continuous functions. Endowed with the sup-norm

‖ϕ‖0 = sup
x∈X

∣∣ϕ(x)
∣∣
Y ,

Cb(X,Y ) is a Banach space. Moreover, for any k ≥ 1, Ck
b(X,Y ) shall denote the

subspace of all functions which are k-times Fréchet differentiable. Ck
b(X,Y ), en-

dowed with the norm

‖ϕ‖k = ‖ϕ‖0 +
k∑

j=1

sup
x∈X

∣∣Djϕ(x)
∣∣
Y =: ‖ϕ‖0 +

k∑
j=1

[ϕ]j

is a Banach space. In the case Y = R, we shall set Bb(X,Y ) = Bb(X) and
Ck

b(X,Y ) = Ck
b(X), k ≥ 0.

In what follows, we shall denote by A the linear operator

Ax = ∂2x

∂ξ2 , x ∈ D(A) = H 2(0,1) ∩ H 1
0 (0,1).

A is a nonpositive and self-adjoint operator which generates an analytic semi-
group etA, with dense domain in L2(0,1). The space L1(0,1) ∩ L∞(0,1) is in-
variant under etA, so that etA may be extended to a nonpositive one-parameter
contraction semigroup etAp on Lp(0,1), for all 1 ≤ p ≤ ∞. These semigroups
are strongly continuous, for 1 ≤ p < ∞, and are consistent, in the sense that
etApx = etAq (t)x, for all x ∈ Lp(0,1) ∩ Lq(0,1). This is why we shall denote
all etAp by etA. Finally, if we consider the part of A in E, it generates a strongly
continuous analytic semigroup.

For any k ∈ N, we define

ek(ξ) = √
2 sin kπξ, ξ ∈ [0,1].(2.2)
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The family {ek}k∈N is a complete orthonormal system in H which diagonalizes A,
so that

Aek = −k2π2ek, k ∈ N.

Notice that for any t > 0 the semigroup etA maps Lp(0,1) into Lq(0,1), for any
1 ≤ p ≤ q ≤ ∞ and for any p ≥ 1 there exists Mp > 0 such that∥∥etA

∥∥
L(Lp(0,1),Lq(0,1)) ≤ Mp,qe

−ωp,q t t−(q−p)/2pq, t > 0.(2.3)

Here we are assuming that ∂w(t)/∂t is a space–time white noise defined on the
stochastic basis (�,F,Ft ,P). Thus, w(t) can be written formally as

w(t) :=
∞∑

k=1

ekβk(t), t ≥ 0,

where {ek}k∈N is the complete orthonormal system in H which diagonalizes A and
{βk(t)}k∈N is a sequence of mutually independent standard real Brownian motions
on (�,F,Ft ,P). As is well known, the series above does not converge in H ,
but it does converge in any Hilbert space U containing H , with Hilbert–Schmidt
embedding.

Concerning the nonlinearities f and g, we assume that they are both continuous.
Moreover, they satisfy the following conditions:

HYPOTHESIS 1. (1) For any ξ ∈ [0,1], both f (ξ, ·) and g(ξ, ·) belong
to C2(R).

(2) There exists m ≥ 1 such that for j = 0,1,2

sup
ξ∈[0,1]

∣∣Dj
ρf (ξ, ρ)

∣∣ ≤ cj

(
1 + |ρ|(m−j)+)

.(2.4)

(3) There exists λ ∈R such that

sup
(ξ,ρ)∈[0,1]×R

f ′(ξ, ρ) ≤ λ.(2.5)

(4) The mapping g(ξ, ·) :R → R is Lipschitz continuous, uniformly with re-
spect to ξ ∈ [0,1], and

sup
ξ∈[0,1]

∣∣g(ξ, ρ)
∣∣ ≤ c

(
1 + |ρ|1/m)

.(2.6)

(5) If there exist α > 0 and β ≥ 0 such that(
f (ξ, ρ + σ) − f (ξ, ρ)

)
σ ≤ −α|σ |m+1 + β

(
1 + |ρ|m)|σ |,(2.7)

then no restriction is assumed on the linear growth of g(ξ, ·).
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In what follows, for any x, y ∈ E and ξ ∈ [0,1] we shall denote

F(x)(ξ) = f
(
ξ, x(ξ)

)
,

[
G(x)y

]
(ξ) = g

(
ξ, x(ξ)

)
y(ξ).

Due to (2.4), F is well defined and continuous from Lp(0,1) into Lq(0,1), for
any p,q ≥ 1 such that p/q ≥ m. In particular, if m �= 1, then F is not defined from
H into itself. Moreover, due to (2.5), for x,h ∈ L2m(0,1),〈

F(x + h) − F(x),h
〉
H ≤ λ|h|2H .(2.8)

Clearly, F is also well defined in E, and it is possible to prove that it is twice
continuously differentiable in E, with[

DF(x)y
]
(ξ) = Dρf

(
ξ, x(ξ)

)
y(ξ),[

D2F(x)(y1, y2)
]
(ξ) = D2

ρf
(
ξ, x(ξ)

)
y1(ξ)y2(ξ).

In particular, for any x ∈ E,
∣∣DjF(x)

∣∣
Lj (E) ≤ c

(
1 + |x|(m−j)+

E

)
.(2.9)

Moreover, for any x,h ∈ E,〈
F(x + h) − F(x), δh

〉
E ≤ λ|h|E,(2.10)

where δh is the element of ∂|h|E defined above in (2.1).
Finally, if (2.7) holds, we have〈

F(x + h) − F(x), δh

〉
E ≤ −α|h|mE + β

(
1 + |x|mE

)
.(2.11)

Next, concerning the operator G, as the mapping g(ξ, ·) :R → R is Lipschitz-
continuous, uniformly with respect to ξ ∈ [0,1], the operator G is Lipschitz-
continuous from H into L(H ;L1(0,1)), that is,∥∥G(x) − G(y)

∥∥
L(H ;L1(0,1)) ≤ c|x − y|H .(2.12)

In the same way it is possible to show that the operator G is Lipschitz-continuous
from H into L(L∞(0,1);H) and∥∥G(x) − G(y)

∥∥
L(L∞(0,1);H) ≤ c|x − y|H .(2.13)

By proceeding similarly as in [3], Proposition 6.1.5, it is possible to prove the
following result.

LEMMA 2.1. For any ϕ ∈ Cb(E) there exists a sequence {ϕn}n∈N ⊂ Cb(H)

such that ⎧⎨
⎩

lim
n→∞ϕn(x) = ϕ(x), x ∈ E,

sup
x∈H

∣∣ϕn(x)
∣∣ ≤ sup

x∈E

∣∣ϕ(x)
∣∣, n ∈N.(2.14)
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Moreover, if ϕ ∈ Ck
b(E), we have {ϕn}n∈N ⊂ Ck

b(H) and for any j ≤ k,⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

lim
n→∞Djϕn(x)(hi, . . . , hj ) = Djϕ(x)(hi, . . . , hj ),

x,h1, . . . , hj ∈ E,

sup
x∈H

∣∣Djϕn(x)
∣∣
Lj (E) ≤ sup

x∈E

∣∣Djϕ(x)
∣∣
Lj (E),

n ∈ N.

(2.15)

PROOF. The sequence {ϕn} has been already introduced in [3], Proposi-
tion 6.1.5, by setting

ϕn(x) = ϕ(xn), x ∈ H,

where for any x ∈ H ,

xn(ξ) = n

2

∫ ξ+1/n

ξ−1/n
x̂(η) dη, ξ ∈ [0,1]

and x̂(η) is the extension by oddness of x(η), for η ∈ (−1,0) and η ∈ (1,2).
Clearly, due to the boundary conditions, we have that xn ∈ E, for any n ∈ N, so
that ϕn(x) is well defined.

In [3], Proposition 6.1.5, we have already proved that (2.14) holds. In order to
prove (2.15) (for k = 1) we just notice that for any n ∈ N and x,h ∈ H we have

ϕn(x + h) − ϕn(x) = ϕ(xn + hn) − ϕ(xn) = 〈
hn,Dϕ(xn)

〉
E + o

(|hn|E)
.

As o(|hn|E) = o(|h|H ), we can conclude that ϕn is differentiable in H and〈
h,Dϕn(x)

〉
H = 〈

hn,Dϕ(xn)
〉
E, x,h ∈ H.

If x,h ∈ E, then xn and hn converge to x and h in E, respectively. This implies
that (2.15) holds. �

2.1. The approximating Nemytskii operators. Let γ be a function in C∞(R)

such that

γ (x) = x, |x| ≤ 1,∣∣γ (x)
∣∣ = 2, |x| ≥ 2,

(2.16) ∣∣γ (x)
∣∣ ≤ |x|, x ∈ R,

γ ′(x) ≥ 0, x ∈R.

For any n ∈ N, we define

fn(ξ, ρ) = f
(
ξ, nγ (ρ/n)

)
, (ξ, ρ) ∈ [0,1] ×R.
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It is immediate to check that all functions fn are in C2
b(R) and satisfy (2.4)

and (2.5), so that the corresponding composition operators Fn satisfy inequalities
(2.9) and (2.10), for constants c and λ independent of n. Namely∣∣DjFn(x)

∣∣
E ≤ c

(
1 + |x|(m−j)+

E

)
(2.17)

and 〈
Fn(x + h) − Fn(x), δh

〉
E ≤ λ|h|E.(2.18)

Notice that all fn(ξ, ·) are Lipschitz continuous, uniformly with respect to ξ ∈
[0,1], so that all Fn are Lipschitz continuous in all Lp(0,1) spaces and in E.

According to (2.16), we can easily prove that for any j = 0,1,2 and R > 0,

lim
n→∞ sup

(ξ,ρ)∈[0,1]×[−R,R]
∣∣Djfn(ξ, ρ) − Djf (ξ, ρ)

∣∣ = 0

and then for any R > 0 and j = 1,2⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

lim
n→∞ sup

|x|E≤R

∣∣Fn(x) − F(x)
∣∣
E = 0,

lim
n→∞ sup

|x|E≤R

|y1|E,...,|yj |E≤R

∣∣DjFn(x)(y1, . . . , yj )

− DjF(x)(y1, . . . , yj )
∣∣
E = 0.

(2.19)

We have already seen that the mappings Fn are Lipschitz-continuous in H . The
differentiability properties of Fn in H are a more delicate issue. Actually, even if
fn(ξ, ·) is assumed to be smooth, Fn :H → H is only Gateaux differentiable and
its Gateaux derivative at x ∈ H along the direction h ∈ H is given by[

DFn(x)h
]
(ξ) = Dρfn

(
ξ, x(ξ)

)
h(ξ), ξ ∈ [0,1].

Higher order differentiability is even more delicate, as the higher order derivatives
do not exist along any direction in H , but only along more regular directions. For
example, the second order derivative of Fn exists only along directions in L4(0,1),
and for any x ∈ H and h, k ∈ L4(0,1)[

D2Fn(x)(h, k)
]
(ξ) = D2

ρfn

(
ξ, x(ξ)

)
h(ξ)k(ξ), ξ ∈ [0,1].

3. The solution of (1.1). With the notation introduced in Section 2, equa-
tion (1.1) can be rewritten as the following abstract evolution equation:

du(t) = [
Au(t) + F

(
u(t)

)]
dt + G

(
u(t)

)
dw(t), u(0) = x.(3.1)

DEFINITION 3.1. An adapted process u ∈ Lp(�;C([0, T ];E)) is a mild so-
lution for equation (3.1) if

u(t) = etAx +
∫ t

0
e(t−s)AF

(
u(s)

)
ds +

∫ t

0
e(t−s)AG

(
u(s)

)
dw(s).
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Let X = E or X = H . In what follows, for any T > 0 and p ≥ 1 we shall denote
by Cw

p,T (X) the set of adapted processes in Lp(�;C([0, T ];X)). Endowed with
the norm

‖u‖Cw
p,T (X) =

(
E sup

t∈[0,T ]
∣∣u(t)

∣∣p
X

)1/p
,

Cw
p,T (X) is a Banach space. Furthermore, we shall denote by Lw

p,T (X) the Banach
space of adapted processes in C([0, T ];Lp(�;X)), endowed with the norm

‖u‖Lw
p,T (X) = sup

t∈[0,T ]
(
E

∣∣u(t)
∣∣p
X

)1/p
.

In [4] it has been proved that, under Hypothesis 1, for any T > 0 and p ≥ 1
and for any x ∈ E, equation (3.1) admits a unique mild solution ux in Cw

p,T (E).
Moreover, ∥∥ux

∥∥
Cw

p,T (E) ≤ cp,T

(
1 + |x|E)

.(3.2)

One of the key steps in the proof of such an existence and uniqueness result, is
given in [4], Theorem 4.2, where it is proved that the mapping

u ∈ Cx
p,T (E) �→

(
t �→ �(u)(t) :=

∫ t

0
e(t−s)AG

(
u(s)

)
dw(s)

)
∈ Cx

p,T (E)

is well defined and Lipschitz continuous. By adapting the arguments used in the
proof of [4], Theorem 4.2, it is also possible to show that

E sup
s∈[0,t]

∣∣�(u)(s) − �(v)(s)
∣∣p
E ≤ cp(t)

∫ t

0
E

∣∣u(s) − v(s)
∣∣p
E ds, t ≥ 0(3.3)

for some continuous function cp(t), with cp(0) = 0. In particular, there exists
Tp > 0 such that∥∥�(u) − �(v)

∥∥
Lw

p,T (E) ≤ 1
4‖u − v‖Lw

p,T (E), T ≤ Tp.(3.4)

Now, for any n ∈N, we consider the approximating problem

du(t) = [
Au(t) + Fn

(
u(t)

)]
dt + G

(
u(t)

)
dw(t), u(0) = x(3.5)

and we denote by ux
n its unique mild solution in Cw

p,T (E). As all Fn satisfy (2.17)
and (2.18), we have that∥∥ux

n

∥∥
Cw

p,T (E) ≤ cp(T )
(
1 + |x|E)

, n ∈ N(3.6)

for a function cp(T ) independent of n.
As proved in [4], Section 3, the mapping

u ∈ Cx
p,T (H) �→

(
t �→ �(u)(t) :=

∫ t

0
e(t−s)AG

(
u(s)

)
dw(s)

)
∈ Cx

p,T (H)
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is well defined and Lipschitz continuous. Then, as the mapping Fn :H → H is
Lipschitz-continuous, we have that for any x ∈ H and for any T > 0 and p ≥ 1,
problem (3.5) admits a unique mild solution ux

n ∈ Cx
p,T (H) such that∥∥ux

n

∥∥
Cw

p,T (H) ≤ cn,p(T )
(
1 + |x|H )

.(3.7)

LEMMA 3.2. Under Hypothesis 1, for any T ,R > 0 and p ≥ 1, we have

lim
n→∞ sup

|x|E≤R

∥∥ux
n − ux

∥∥
Cw

p,T (E) = 0.(3.8)

PROOF. Since Fn(x) = F(x), for |x|E ≤ n, we have{
sup

t∈[0,T ]
∣∣ux(t)

∣∣
E ≤ n

}
⊂

{
sup

t∈[0,T ]
∣∣ux

n(t) − ux(t)
∣∣
E = 0

}
.

This implies∥∥ux
n − ux

∥∥p

Cw
p,T (E)

= E

(
sup

t∈[0,T ]
∣∣ux

n(t) − ux(t)
∣∣p
E; sup

t∈[0,T ]
∣∣ux(t)

∣∣
E > n

)

≤ (∥∥ux
n

∥∥p

Cw
2p,T (E)

+ ∥∥ux
∥∥p

Cw
2p,T (E)

)
P

(
sup

t∈[0,T ]
∣∣ux(t)

∣∣
E > n

)1/2
.

Therefore, thanks to (3.2) and (3.6), we get

∥∥ux
n − ux

∥∥
Cw

p,T (E) ≤ cp(T )
(1 + |x|2E)

n2 ,

which implies (3.8). �

4. The first derivative. For any x ∈ E, u ∈ Lw
p,T (E) and n ∈N, we define

�n(x,u)(t) = etAx +
∫ t

0
e(t−s)AFn

(
u(s)

)
ds +

∫ t

0
e(t−s)AG

(
u(s)

)
dw(s),

t ≥ 0.

Clearly, for any x ∈ E the solution ux
n of problem (3.5) is the unique fixed point

of �n(x, ·). The mapping Fn :E → E is Lipschitz continuous, then due to (3.4),
there exists Tp = Tp(n) > 0 such that∥∥�n(x,u) − �n(x, v)

∥∥
Lw

p,T (E) ≤ 1
2‖u − v‖Lw

p,T (E), T ≤ Tp.

Therefore, if we show that the contraction mapping �n is of class C1, we get that
the mapping

x ∈ E �→ ux
n ∈ Lw

p,T (E)

is differentiable, and for any h ∈ E

Dxu
x
nh = Dx�n

(
x,ux

n

)
h + Du�n

(
x,ux

n

)
Dxu

x
nh(4.1)



1308 S. CERRAI AND G. DA PRATO

(for a proof see, e.g., [3]).
As fn(ξ, ·) is in C2(R), the mapping Fn :E → E is twice continuously differ-

entiable, then it is possible to check that the mapping

u ∈ Lw
p,T (E) �→

(
t �→

∫ t

0
e(t−s)AFn

(
u(s)

)
ds

)
∈ Lw

p,T (E)

is twice differentiable. Analogously, as the mapping g(ξ, ·) is in C2(R), by using
the stochastic factorization method as in [4], Theorem 4.2, it is not difficult to
prove that the mapping

u ∈ Lw
p,T (E) �→

(
t �→

∫ t

0
e(t−s)AG

(
u(s)

)
dw(s)

)
∈ Lw

p,T (E)

is twice differentiable.
Moreover, for any x ∈ E and u, v ∈ Lw

p,T (E), we have

[
Du�n(x,u)v

]
(t) =

∫ t

0
e(t−s)AF ′

n

(
u(s)

)
v(s) ds

(4.2)

+
∫ t

0
e(t−s)AG′(u(s)

)
v(s) dw(s), t ≥ 0,

where, for any x, y, z ∈ E and ξ ∈ [0,1][
F ′

n(x)y
]
(ξ) = Dρfn

(
ξ, x(ξ)

)
y(ξ),[(

G′(x)y
)
z
]
(ξ) = Dρg

(
ξ, x(ξ)

)
y(ξ)z(ξ)

and Dρfn and Dρg are the derivatives of fn and g with respect to the second
variable. Therefore, as, clearly,[

Dx�n(x,u)h
]
(t) = etAh,

from (4.1) we have that ηh
n := Dxu

x
nh solves the linear equation

dηh
n(t) = [

Aηh
n(t) + F ′

n

(
ux

n(t)
)
ηh

n(t)
]
dt + G′(ux

n(t)
)
ηh

n(t) dw(t),
(4.3)

ηh
n(0) = h.

LEMMA 4.1. Under Hypothesis 1, for any T > 0 and p ≥ 1 the process
ux

n is differentiable with respect to x ∈ E in Lw
p,T (E). Moreover, the derivative

Dxu
x
nh =: ηh

n belongs to Cw
p,T (E) and satisfies

∥∥ηh
n

∥∥
Cw

p,T (E) ≤ MpeωpT |h|E(4.4)

for some constants Mp and ωp independent of n ∈ N.
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PROOF. To prove (4.4) we cannot use the Itô formula, due to presence of the
white noise. Moreover we cannot use the same arguments used, for example, in [4]
and [3], because of the unboundedness of f ′ and the presence of the noisy part. In
view of what we have already seen, we have only to prove that (4.4) holds. To this
purpose, the key remark here is that we can assume h ≥ 0. Actually, in the general
case we can decompose h = h+ − h−. As h+ and h− are nonnegative, both ηh+

n

and ηh−
n verify the lemma and then, since by linearity ηh

n = ηh+
n − ηh−

n , we can
conclude that the lemma is true also for ηh

n .
Let �n(t) be the mild solution of the problem

d�n(t) = [A − I ]�n(t) dt + G′(ux
n(t)

)
ηh

n(t) dw(t), �n(0) = 0.

Since we are assuming that Dρg(ξ, ·) is bounded uniformly with respect to ξ ∈
[0,1], we have that the argument of [4], Theorem 4.2 and Proposition 4.5, can be
adapted to the present situation and

E sup
s∈[0,t]

∣∣�n(s)
∣∣p
E ≤ cp

∫ t

0
E

∣∣ηh
n(s)

∣∣p
E ds, t ∈ [0, T ](4.5)

for some constant cp independent of T > 0.
Next, if we set zn = ηh

n − �n, we have that zn solves the equation

dzn

dt
(t) = [A − I ]zn(t) + [

F ′
n

(
ux

n(t)
) + I

]
ηh

n(t), zn(0) = h.

Now, since we are assuming that h ≥ 0 and equation (4.3) is linear, we have that

P
(
ηh

n(t) ≥ 0, t ∈ [0, T ]) = 1;
see [10] for a proof and see also [5] for an analogous result for equations with
non-Lipschitz coefficients. Therefore, as f ′

n(ξ, ρ) ≤ λ, for any (ξ, ρ) ∈ [0,1] ×R,
and the semigroup etA is positivity preserving, we have

zn(t) = et(A−I )h +
∫ t

0
e(t−s)(A−I )[F ′

n

(
ux

n(s)
) + I

]
ηh

n(s) ds

≤ et(A−I )h + (λ + 1)

∫ t

0
e(t−s)(A−I )ηh

n(s) ds.

This implies

0 ≤ ηh
n(t) = zn(t) + �n(t) ≤ et(A−I )h + (λ + 1)

∫ t

0
e(t−s)(A−I )ηh

n(s) ds + �n(t),

so that ∣∣ηh
n(t)

∣∣
E ≤ c|h|E + c(λ + 1)+

∫ t

0

∣∣ηh
n(s)

∣∣
E ds + ∣∣�n(t)

∣∣
E.

Thanks to (4.5), this allows us to conclude that

E sup
s∈[0,t]

∣∣ηh
n(s)

∣∣p
E ≤ cp|h|pE + cp

∫ t

0
E sup

r∈[0,s]
∣∣ηh

n(r)
∣∣p
E ds.
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From the Gronwall lemma, this yields (4.4). �

LEMMA 4.2. Under Hypothesis 1, there exists ηh ∈ Cw
p.T (E) such that for any

R > 0,

lim
n→∞ sup

x,h∈BR(E)

∥∥ηh
n − ηh

∥∥
Cw

p.T (E) = 0.(4.6)

Moreover, the limit ηh solves the equation

dηh(t) = [
Aηh(t) + F ′(ux(t)

)
ηh(t)

]
dt + G′(ux(t)

)
ηh(t) dw(t),

(4.7)
ηh(0) = h

and ∥∥ηh
∥∥
Cw

p,T (E) ≤ MpeωpT |h|E.(4.8)

PROOF. For any n, k ∈ N we have∥∥ηh
n+k − ηh

n

∥∥p

Cw
p,T (E)

= E

(
sup

t∈[0,T ]
∣∣ηh

n+k(t) − ηh
n(t)

∣∣p
E; sup

t∈[0,T ]
∣∣ux(t)

∣∣
E ≤ n

)

+E

(
sup

t∈[0,T ]
∣∣ηh

n+k(t) − ηh
n(t)

∣∣p
E; sup

t∈[0,T ]
∣∣ux(t)

∣∣
E > n

)
.

Since {
sup

t∈[0,T ]
∣∣ux(t)

∣∣
E ≤ n

}
⊆ {

ηh
n+k(t) = ηh

n(t), t ∈ [0, T ]},
thanks to (3.2) and (4.4) we get∥∥ηh

n+k − ηh
n

∥∥2p

Cw
p,T (E)

≤ E

(
sup

t∈[0,T ]
∣∣ηh

n+k(t) − ηh
n(t)

∣∣2p
E

)
P

(
sup

t∈[0,T ]
∣∣ux(t)

∣∣
E > n

)
(4.9)

≤ cp(T )

n2p
|h|2p

E

(
1 + |x|2p

E

)
and this implies that {ηh

n}n∈N is a Cauchy sequence in Cw
p,T (E).

Let ηh be its limit, and let R > 0 and n ∈ N. For any m ≥ n and x,h ∈ BR(E),
due to (4.9) we have∥∥ηh

n − ηh
∥∥
Cw

p,T (E) ≤ ∥∥ηh
n − ηh

m

∥∥
Cw

p,T (E) + ∥∥ηh
m − ηh

∥∥
Cw

p,T (E)

≤ cp(T ,R)

n
+ ∥∥ηh

m − ηh
∥∥
Cw

p,T (E).

Therefore, if we fix ε > 0 and m̄ = m(ε, x,h,ρ,T ,p) ≥ n such that∥∥ηh
m̄ − ηh

∥∥
Cw

p,T (E) < ε,
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due to the arbitrariness of ε > 0 we get (4.6).
Moreover, as

ηh
n(t) = etAh +

∫ t

0
e(t−s)AF ′

n

(
ux

n(s)
)
ηh

n(s) ds +
∫ t

0
e(t−s)AG′

n

(
ux

n(s)
)
ηh

n(s) dw(s)

and since, in addition to (4.6), (3.8) also holds, we can take the limit on both sides,
and we get that the limit ηh is a mild solution of equation (4.7). �

REMARK 4.3. In [3], Chapter 4, the differentiability of the mapping

x ∈ H �→ ux
n ∈ Lx

p,T (H)(4.10)

has been studied in the case g(ξ, ρ) = 1.
Since fn ∈ C2

b(R), for any fixed n ∈ N, we have that DFn :H → L(H) is
bounded. Hence, the proof of [3], Proposition 4.2.1, can be adapted to the present
situation of an equation with multiplicative noise, where the diffusion coefficient
g is smooth, and g′ is bounded. This means that the mapping in (4.10) is differen-
tiable and the derivative Dxu

x
nh satisfies equation (4.3). Moreover, by proceeding

as in [3], Lemma 4.2.2, it is possible to prove that Dxu
x
n(t)h ∈ Lp(0,1) for any

t > 0, P-a.s., and for any p ≥ 2 and q ≥ 0,

sup
x∈H

E
∣∣Dxu

x
n(t)h

∣∣q
Lp(0,1) ≤ cp,q,n(t ∧ 1)−((p−2)q)/4p|h|qH .(4.11)

Next, we show that we can estimate ηh in H .

LEMMA 4.4. Under Hypothesis 1, for any T > 0 and p ≥ 1 we have∥∥ηh
∥∥
Cw

p,T (H) ≤ cp(T )|h|H .(4.12)

Moreover, for any p ≥ 1 and q ∈ [2,+∞] such that p(q − 2)/4q < 1, we have

E
∣∣ηh(t)

∣∣p
Lq(0,1) ≤ cp,q(t)t−(p(q−2))/4q |h|pH , t > 0.(4.13)

PROOF. If we denote by �h(t) the mild solution of

dγ (t) = (A + λ)γ (t) dt + G′(ux(t)
)
ηh(t) dw(t), γ (0) = 0,

where λ is the constant introduced in (2.5), we have that ρ(t) := ηh(t) − �h(t)

solves the problem

dρ(t)

dt
= (A + λ)ρ(t) + (

F ′(ux(t)
) − λ

)
ηh(t), ρ(0) = h.

As in the proof of Lemma 4.1, we decompose ρ(t) = ρ+(t) − ρ−(t), where

dρ±(t)

dt
= (A + λ)ρ±(t) + (

F ′(ux(t)
) − λ

)
ηh±

(t), ρ(0) = h±.
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As

P
(
ηh±

(t) ≥ 0, t ∈ [0, T ]) = 1

and f ′ − λ ≤ 0, we have

ρ±(t) = et(A+λ)h± +
∫ t

0
e(t−s)(A+λ)(F ′(ux(s)

) − λ
)
ηh±

(s) ds

(4.14)
≤ et(A+λ)h±,

so that

0 ≤ η±(t) = ρ±(t) + �h±
(t) ≤ et(A+λ)h± + �h±

(t).

Therefore, since for any q ∈ [2,+∞] and p ≥ 0

E sup
t∈[0,T ]

∣∣�(t)
∣∣p
Lq(0,1) ≤ cp,q(t)

∫ t

0
E

∣∣ηh(s)
∣∣p
Lq(0,1) ds,(4.15)

we can conclude that

E sup
s∈[0,t]

∣∣ηh(s)
∣∣p
H ≤ cpeλpt |h|pH + cp(t)

∫ t

0
E sup

r∈[0,s]
∣∣ηh(r)

∣∣p
H ds

and (4.12) follows from the Gronwall lemma.
In order to prove (4.13), we notice that, due to (4.14),∣∣ηh(t)

∣∣ ≤ et(A+λ)|h| + ∣∣�(t)
∣∣,

so that, in view of (2.3) and (4.15), we can conclude that

E
∣∣ηh(t)

∣∣p
Lq(0,1) ≤ cp

∣∣et(A+λ)|h|∣∣pLq(0,1) + cpE
∣∣�(t)

∣∣p
Lq(0,1)

≤ cp,q(t)t−(p(q−2))/4q |h|pH + cp,q(t)

∫ t

0
E

∣∣ηh(s)
∣∣p
Lq(0,1) ds.

If p(q − 2)/4q < 1, we can conclude by a comparison argument. �

5. The second derivative. Now, we investigate the second order differentia-
bility of ux

n with respect to x ∈ E. For any processes z ∈ Lw
p,T (E) and x ∈ E, we

define[
Tn(x)z

]
(t) =

∫ t

0
e(t−s)AF ′

n

(
ux

n(s)
)
z(s) ds +

∫ t

0
e(t−s)AG′(ux

n(s)
)
z(s) dw(s),

so that equation (4.3) can be rewritten as

ηh
n(t) = etAh + Tn(x)ηh

n(t).

Due to the boundedness of Dρfn(ξ, ·) and Dρg(ξ, ·), we have that there exists
Tp = Tp(n) > 0 such that for any x ∈ E,∥∥Tn(x)

∥∥
L(Lw

p,T (E)) ≤ 1
2 , T ≤ Tp,
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so that

ηh
n = [

I − Tn(x)
]−1

e·Ah.(5.1)

Since fn and g are twice differentiable with bounded derivatives and Lemma 4.1
holds, we have that the mapping

x ∈ E �→ Tn(x)z ∈ Lw
p,T (E)

is differentiable. Therefore, we can differentiate both sides in (5.1) with respect to
x ∈ E along the direction k ∈ E, and we obtain

Dxη
h
nk = [

I − Tn(x)
]−1

Dx

[
Tn(x)ηh

n

]
k,

so that

Dxη
h
nk − Tn(x)Dxη

h
nk = Dx

[
Tn(x)ηh

n

]
k.

Now it is immediate to check that for any k ∈ E,

Dx

[
Tn(x)z

]
k(t) =

∫ t

0
e(t−s)AF ′′

n

(
ux

n(s)
)(

z(s), ηk
n(s)

)
ds

+
∫ t

0
e(t−s)AG′′(ux

n(s)
)(

z(s), ηk
n(s)

)
dw(s)

and then ζ h,k
n := Dxη

h
n · k = D2

xu
x
n(h, k) satisfies the equation

dζh,k
n (t) = [

Aζh,k
n (t) + F ′

n

(
ux

n(t)
)
ζ h,k
n (t) + F ′′

n

(
ux

n(t)
)(

ηh
n(t), ηk

n(t)
)]

dt

+ [
G′(ux

n(t)
)
ζ h,k
n (t) + G′′(ux

n(t)
)(

ηh
n(t), ηk

n(t)
)]

dw(t),(5.2)

ζ h,k(0) = 0.

Notice that, as the derivatives of Fn and G are bounded, thanks to (4.4) we have∥∥ζ h,k
n

∥∥
Cw

p,T (E) ≤ cn,p(T )|h|E|k|E(5.3)

for some continuous increasing function cp,n(T ).

LEMMA 5.1. Under Hypothesis 1, for any T > 0 and p ≥ 1 the process ux
n

is twice differentiable in Lw
p,T (E) with respect to x ∈ E. Moreover the second

derivative D2
xu

x
n(h, k) =: ζ h,k

n belongs to Cw
p,T (E) and satisfies

∥∥ζ h,k
n

∥∥
Cw

p,T (E) ≤ cp(T )
(
1 + |x|(m−1)

E

)|h|E|k|E(5.4)

for some continuous increasing function cp(T ) independent of n ∈N.
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PROOF. We have already seen that ux
n is twice differentiable in Lw

p,T (E), and

D2
xu

x
n(h, k) satisfies equation (5.2). Hence it only remains to prove estimate (5.4).

As we proved in Lemma 4.1, for any x ∈ E and any h ∈ Lp(�;E) which is
Fs-measurable, the equation

dη(t) = [
Aη(t) + F ′

n

(
ux

n(t)
)
η(t)

]
dt + G′(ux

n(t)
)
η(t) dw(t),

(5.5)
η(s) = h,

admits a unique solution ηh
n(s, ·) ∈ Lp(�;C([s, T ];E)) such that

E sup
t∈[s,T ]

∣∣ηh
n(s, t)

∣∣p
E ≤ Mpeωp(T −s)

E|h|pE.

Hence we can associate to equation (5.5) a stochastic evolution operator �n(t, s)

such that

ηh
n(s, t) = �n(t, s)h, h ∈ Lp(�;E)

and such that

E sup
r∈[s,t]

∣∣�n(r, s)h
∣∣p
E ≤ Mpeωp(t−s)

E|h|pE, 0 ≤ s ≤ t.(5.6)

We claim that ζ h,k
n can be represented in terms of the operator �n(t, s) as

ζ h,k
n (t) = �h,k

n (t) +
∫ t

0
�n(t, s)�

h,k
n (s) ds,(5.7)

where �h,k
n is the solution of the problem

d�(t) = A�(t) dt + [
G′(ux

n(t)
)
�(t) + G′′(ux

n(t)
)(

ηh
n(t), ηk

n(t)
)]

dw(t),
(5.8)

�(0) = 0

and

�h,k
n (t) = F ′

n

(
ux

n(t)
)
�h,k

n (t) + F ′′
n

(
ux

n(t)
)(

ηh
n(t), ηk

n(t)
)
.

Clearly, in order to prove (5.7) we have to show that
∫ t

0 �n(t, s)�
h,k
n (s) ds solves

the problem

dz(t) = [
Az(t) + F ′

n

(
ux

n(t)
)
z(t) + �h,k

n (t)
]
dt + G′(ux

n(t)
)
z(t) dw(t),

z(0) = 0.

More generally, we have to prove that for any � ∈ Cw
p,T (E) the mild solution of

the problem

dz(t) = [
Az(t) + F ′

n

(
ux

n(t)
)
z(t) + �(t)

]
dt + G′(ux

n(t)
)
z(t) dw(t),

(5.9)
z(0) = 0
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is given by

ẑ(t) :=
∫ t

0
�n(t, s)�(s) ds.

We have ∫ t

0
e(t−s)AF ′

n

(
ux

n(s)
)
ẑ(s) ds

=
∫ t

0
e(t−s)AF ′

n

(
ux

n(s)
) ∫ s

0
�n(s, r)�(r) dr ds

=
∫ t

0

∫ t

r
e(t−s)AF ′

n

(
ux

n(s)
)
�n(s, r)�(r) ds dr

and analogously, by the stochastic Fubini theorem,∫ t

0
e(t−s)AG′(ux

n(s)
)
ẑ(s) dw(s)

=
∫ t

0
e(t−s)AG′(ux

n(s)
) ∫ s

0
�n(s, r)�(r) dr dw(s)

=
∫ t

0

∫ t

r
e(t−s)AG′

n

(
ux

n(s)
)
�n(s, r)�(r) dw(s) dr.

Now, recalling the definition of �n(t, s)�, we have∫ t

0

[∫ t

r
e(t−s)AF ′

n

(
ux

n(s)
)
�n(s, r)�(r) ds

+
∫ t

r
e(t−s)AG′

n

(
ux

n(s)
)
�n(s, r)�(r) dw(s)

]
dr

=
∫ t

0

[
�n(t, r)�(r) − e(t−r)A�(r)

]
dr

= ẑ(t) −
∫ t

0
e(t−r)A�(r) dr,

so that ẑ is the mild solution of equation (5.9).
Once we have representation (5.7) for ζ h,k

n , we can proceed with the proof of
estimate (5.4). As �h,k

n solves equation (5.8), we have

�h,k
n (t) =

∫ t

0
e(t−s)A[

G′(ux
n(s)

)
�h,k

n (s) + G′′(ux
n(s)

)(
ηh

n(s), ηk
n(s)

)]
dw(s).

Therefore, due to the boundedness of Dρg(ξ,ρ) and D2
ρg(ξ, ρ), from (4.4)

and (3.3) we get

E sup
s∈[0,t]

∣∣�h,k
n (s)

∣∣p
E ≤ cp(T )

∫ t

0
E

∣∣�h,k
n (s)

∣∣p
E ds + cp(T )|h|pE|k|pE,
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so that, from the Gronwall lemma, we can conclude

E sup
s∈[0,t]

∣∣�h,k
n (s)

∣∣p
E ≤ cp(T )|h|pE|k|pE.(5.10)

Next, as (3.6) and (4.4) hold and as the derivatives of Fn satisfy (2.17), due to (5.6)
we have

E sup
t∈[0,T ]

∣∣∣∣
∫ t

0
�n(t, s)�

h,k
n (s) ds

∣∣∣∣
p

E

≤ cp(T )

∫ T

0
E

∣∣�h,k
n (s)

∣∣p
E ds

≤ cp(T )
(
1 + |x|(m−1)p

E

)∥∥�h,k
n

∥∥1/2
Cw

2p,T (E)
+ cp(T )

(
1 + |x|(m−2)p

E

)|h|pE|k|pE
and then, thanks to (5.10), we get

E sup
t∈[0,T ]

∣∣∣∣
∫ t

0
�n(t, s)�

h,k
n (s) ds

∣∣∣∣
p

E

≤ cp(T )
(
1 + |x|(m−1)p

E

)|h|pE|k|pE.

Together with (5.10), this implies (5.4). �

In view of the previous lemmas, by arguing as in the proof of Lemma 4.2, we
get the following result.

LEMMA 5.2. Under Hypothesis 1, there exists ζ h,k ∈ Cw
p,T (E) such that for

any R > 0,

lim
n→∞ sup

x,h,k∈BR(E)

∥∥ζ h,k
n − ζ h,k

∥∥
Cw

p,T (E) = 0.(5.11)

Moreover, the limit ζ h,k solves the equation

dζ(t) = [
Aζ(t) + F ′(ux(t)

)
ζ(t) + F ′′(ux(t)

)(
ηh(t), ηk(t)

)]
dt

+ [
G′(ux(t)

)
ζ(t) + G′′(ux(t)

)(
ηh(t), ηk(t)

)]
dw(t), ζ(0) = 0.

In particular, ∥∥ζ h,k
∥∥
Cw

p,T (E) ≤ cp(T )
(
1 + |x|m−1

E

)|h|E|k|E.(5.12)

REMARK 5.3. Concerning the second order differentiability of mapping
(4.10), we can adapt again the arguments used in [3], Theorem 4.2.4, to the present
situation, and thanks to (4.11) we have that mapping (4.10) is twice differentiable
with respect to x ∈ H , and the derivative along the directions h, k ∈ H satisfies
equation (5.2). Moreover,∥∥D2

xu
x
n(h, k)

∥∥
Cw

p,T (H) ≤ cp,n(T )|h|H |k|H .(5.13)
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As a consequence of Lemmas 3.2, 4.1, 4.2, 5.1 and 5.2, we have the following
fact.

THEOREM 5.4. Under Hypothesis 1, the mapping

x ∈ E �→ ux ∈ Lw
p,T (E)

is differentiable, and the derivative Dxu
uh along the direction h ∈ E solves the

problem

dη(t) = [
Aη(t) + F ′(ux(t)

)
η(t)

]
dt + G′(ux(t)

)
η(t) dw(t),

(5.14)
η(0) = h.

PROOF. For any n ∈N and x,h ∈ E we have

ux+h
n − ux

n = Dxu
x
nh +

∫ 1

0

∫ 1

0
D2

xu
x+ρθh
n (h,h) dθ dρ.

Then, due to (3.8), (4.6) and (5.11), we can take the limit as n → ∞, and we get

ux+h − ux = ηh +
∫ 1

0

∫ 1

0
ζ h,h dθ dρ.

The mapping

h ∈ E �→ ηh ∈ Lw
p,T (E)

is clearly linear and according to (4.8) is bounded. Moreover, according to (5.12)
we have ∥∥∥∥

∫ 1

0

∫ 1

0
ζ h,h dθ dρ

∥∥∥∥
Lw

p,T (E)

≤ cp(T )
(
1 + |x|m−1

E + |h|m−1
E

)|h|2E
and then we can conclude that ux is differentiable in Lw

p,T (E) with respect to
x ∈ E, and its derivative along the direction h ∈ E solves problem (5.14). �

In view of Lemma 4.4 and Theorem 5.4, for any T > 0, p ≥ 1 and x, y ∈ E we
have

E sup
t∈[0,T ]

∣∣ux(t) − uy(t)
∣∣p
H ≤ cp(T )|x − y|pH .(5.15)

Now, if x ∈ H and {xn}n∈N is any sequence in E, converging to x in H , due
to (5.15) we have that {uxn}n∈N is a Cauchy sequence in Cw

p,T (H), and then there
exists a limit ux ∈ Cw

p,T (H), only depending on x, such that∥∥ux
∥∥
Cw

p,T (H) ≤ cp(T )
(
1 + |x|H )

.(5.16)

Such a solution will be called a generalized solution.

THEOREM 5.5. Under Hypothesis 1, for any x ∈ H , equation (3.1) admits
a unique generalized solution ux ∈ Cw

p,T (H), for any T > 0 and p ≥ 1. Moreover
estimate (5.16) holds.
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6. The transition semigroup. We define the transition semigroup associated
with equation (3.1) as

Ptϕ(x) = Eϕ
(
ux(t)

)
, x ∈ E, t ≥ 0

for any ϕ ∈ Bb(E). In view of Theorem 5.4, we have that

ϕ ∈ C1
b(E) �⇒ Ptϕ ∈ C1

b(E), t ≥ 0(6.1)

and there exist M > 0 and ω ∈ R such that

‖Ptϕ‖1 ≤ Meωt‖ϕ‖1, t ≥ 0.

We would like to stress that, in view of Theorem 5.5, the semigroup Pt can be
restricted to Cb(H). Actually, for any ϕ ∈ Bb(H) we can define

P H
t ϕ(x) = Eϕ

(
ux(t)

)
, t ≥ 0, x ∈ H,

where ux(t) is the unique generalized solution of (3.1) in Cw
p,T (H) introduced in

Theorem 5.5. Notice that if x ∈ E and ϕ ∈ Bb(H), then P H
t ϕ(x) = Ptϕ(x).

Our first purpose here is to prove that the semigroup Pt has a smoothing effect
in Bb(E). Namely, we want to prove that Pt maps Bb(E) into C1

b(E), for any t > 0.
For this reason, we have to assume the following condition on the multiplication
coefficient g in front of the noise.

HYPOTHESIS 2. We have

inf
(ξ,ρ)∈[0,1]×R

∣∣g(ξ, ρ)
∣∣ =: β > 0.(6.2)

First of all, we introduce the transition semigroup P n
t associated with the ap-

proximating equation (3.5) by setting

P n
t ϕ(x) = Eϕ

(
ux

n(t)
)
, x ∈ E, t ≥ 0

for any ϕ ∈ Bb(E). It is important to stress that, according to Lemmas 4.1 and 5.1
and to (5.3)

ϕ ∈ Ck
b(E) �⇒ P n

t ϕ ∈ Ck
b(E), t ≥ 0, k = 0,1,2(6.3)

and ∥∥P n
t ϕ

∥∥
k ≤ Meωt‖ϕ‖k, t ≥ 0, k = 0,1,2

for some constants M > 0 and ω ∈ R, which are independent of n ∈ N.
Notice that, as equation (3.5) is solvable in H , we can also consider the restric-

tion of P n
t to Bb(H). In view of what we have seen in Remarks 4.3 and 5.3, we

have that

ϕ ∈ Ck
b(H) �⇒ P n

t ϕ ∈ Ck
b(H), t ≥ 0, k = 1,2(6.4)
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and there exist constant Mn > 0 and ωn ∈R such that∥∥P n
t ϕ

∥∥
k ≤ Mne

ωnt‖ϕ‖k, t ≥ 0, k = 1,2.(6.5)

Now, due to Hypothesis 2, for any x, y ∈ H we can define

[
G−1(x)y

]
(ξ) = y(ξ)

g(ξ, x(ξ))
, ξ ∈ [0,1].

It is immediate to check that for any p ∈ [1,+∞],
G−1 :H → L

(
Lp(0,1),Lp(0,1)

)
and

G−1(x)G(x) = G(x)G−1(x), x ∈ H.

Therefore, we can adapt the proof of [3], Proposition 4.4.3 and Theorem 4.4.5, to
the present situation and we can prove that P n

t has a smoothing effect. Namely, we
have

ϕ ∈ Bb(H) �⇒ P n
t ϕ ∈ C2

b(H), t > 0

and the Bismut–Elworthy–Li formula holds

〈
h,D

(
P n

t ϕ
)
(x)

〉
H = 1

t
Eϕ

(
ux

n(t)
) ∫ t

0

〈
G−1(

ux
n(s)

)
Dxu

x
n(s)h, dw(s)

〉
H ,

(6.6)
t > 0

for any ϕ ∈ Cb(H) and x,h ∈ H .
In view of all these results, by proceeding as in the proof of [3], Theorem 6.5.1,

due to what we have proved in Sections 3, 4 and 5 we obtain the following fact.

THEOREM 6.1. Under Hypotheses 1 and 2, we have

ϕ ∈ Bb(E) �⇒ Ptϕ ∈ C1
b(E), t > 0

and

〈
h,D(Ptϕ)(x)

〉
E = 1

t
Eϕ

(
ux(t)

) ∫ t

0

〈
G−1(

ux(s)
)
Dxu

x(s)h, dw(s)
〉
H ,

(6.7)
t > 0.

In particular, for any ϕ ∈ Bb(E),

sup
x∈E

∣∣D(Ptϕ)(x)
∣∣
E� ≤ c(t ∧ 1)−1/2‖ϕ‖0, t > 0.(6.8)
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Theorem 6.1 says that if ϕ ∈ Bb(E), then Ptϕ ∈ C1
b(E), for any t > 0. If we

could prove that in fact Ptϕ ∈ C1
b(H), then we would have

∞∑
i=1

∣∣〈G(x)ei,D(Ptϕ)(x)
〉
H

∣∣2 = ∣∣G�(x)D(Ptϕ)(x)
∣∣2
H < ∞.

But in general we have only Ptϕ ∈ C1
b(E), and it is not clear in principle whether

the sum ∞∑
i=1

∣∣〈G(x)ei,D(Ptϕ)(x)
〉
E

∣∣2
is convergent or not. The next theorem provides a positive answer to this question,
which will be of crucial importance for the statement and the proof of the egalité
du carré des champs and for its application to the Poincaré inequality.

THEOREM 6.2. Let {ei}i∈N be the complete orthonormal basis of H defined
in (2.2). Then, under Hypotheses 1 and 2, for any ϕ ∈ Cb(E) and x ∈ E we have

∞∑
i=1

∣∣〈G(x)ei,D(Ptϕ)(x)
〉
E

∣∣2 ≤ c
∣∣G(x)

∣∣2
E‖ϕ‖2

0(t ∧ 1)−1, t > 0.(6.9)

Moreover, if ϕ ∈ C1
b(E), for any x ∈ E we have

∞∑
i=1

∣∣〈G(x)ei,D(Ptϕ)(x)
〉
E

∣∣2 ≤ c(t)Pt

(∣∣Dϕ(·)∣∣2E�

)
(x)

∣∣G(x)
∣∣2
Et−1/2,

(6.10) t > 0

for some continuous increasing function. If we also assume that there exists γ > 0
such that

E
∣∣ηh(t)

∣∣2
E ≤ ce−γ t (t ∧ 1)−1/2|h|2H ,(6.11)

then there exists δ > 0 such that
∞∑
i=1

∣∣〈G(x)ei,D(Ptϕ)(x)
〉
E

∣∣2 ≤ ce−δtPt

(∣∣Dϕ(·)∣∣2E�

)
(x)

∣∣G(x)
∣∣2
Et−1/2,

(6.12) t > 0.

PROOF. Assume ϕ ∈ Cb(E) and x,h ∈ E. According to (4.12) and (6.7), for
any t ∈ (0,1] we have∣∣〈h,D(Ptϕ)(x)

〉
E

∣∣ = 1

t

∣∣∣∣Eϕ
(
ux(t)

) ∫ t

0

〈
G−1(

ux(s)
)
Dxu

x(s)h, dw(s)
〉
H

∣∣∣∣
≤ ‖ϕ‖0

t

(∫ t

0
E

∣∣G−1(
ux(s)

)
Dxu

x(s)h
∣∣2
H ds

)1/2

≤ c‖ϕ‖0

t

(∫ t

0
c(s) ds

)1/2

|h|H
≤ c‖ϕ‖0t

−1/2|h|H .
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Due to the semigroup law, it follows that for any t > 0,∣∣〈G(x)h,D(Ptϕ)(x)
〉
E

∣∣ ≤ c‖ϕ‖0(t ∧ 1)−1/2∣∣G(x)
∣∣
E|h|H .(6.13)

This implies in particular that for any t > 0 and x ∈ E, there exists �ϕ(t, x) ∈ H

such that 〈
G(x)h,D(Ptϕ)(x)

〉
E = 〈

�ϕ(t, x), h
〉
H , h ∈ E.

Therefore, in view of (6.13)

∞∑
i=1

∣∣〈G(x)ei,D(Ptϕ)(x)
〉
E

∣∣2 =
∞∑
i=1

∣∣〈�ϕ(t, x), ei

〉
H

∣∣2

= ∣∣�ϕ(t, x)
∣∣2
H

≤ c‖ϕ‖2
0(t ∧ 1)−1∣∣G(x)

∣∣2
E

and (6.9) holds.
Next, in order to prove (6.10), we notice that if ϕ ∈ C1

b(E), then〈
G(x)h,D(Ptϕ)(x)

〉
E = E

〈
Dux(t)G(x)h,Dϕ

(
ux(t)

)〉
E.

According to (4.13), with p = 2 and q = +∞, for any t > 0, we have∣∣〈G(x)h,D(Ptϕ)(x)
〉
E

∣∣2 ≤ E
∣∣Dϕ

(
ux(t)

)∣∣2
E�E

∣∣Dux(t)G(x)h
∣∣2
E

≤ Pt

(∣∣Dϕ(·)∣∣2E�

)
(x)c2,∞(t)t−1/2∣∣G(x)

∣∣2
E|h|2H .

As above, this implies that for any t > 0 and x ∈ E there exists �̂ϕ(t, x) ∈ H such
that 〈

G(x)h,D(Ptϕ)(x)
〉
E = 〈

�̂ϕ(t, x), h
〉
H

and as above we can conclude that (6.10) holds.
Finally, in order to get (6.12), we have to proceed exactly in the same way, by

using (6.11) instead of (4.13). �

REMARK 6.3. Condition (6.11) is satisfied if we assume that there exists
α > 0 such that

sup
(ξ,ρ)∈[0,1]×R

Dρf (ξ, ρ) = −α

and if

βg := sup
(ξ,ρ)∈[0,1]×R

∣∣Dρg(ξ,ρ)
∣∣

is sufficiently small, compared to α.
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Actually, by adapting the arguments used in [6], Lemma 7.1, it is possible to
prove that there exists some p̄ > 1 such that for any p ≥ p̄, 0 < δ < α and v ∈
Cw

p,T (E),

sup
s≤t

eδps
E

∣∣∣∣
∫ s

0
e(s−r)(A−α)G′(ux(r)

)
v(r) dw(r)

∣∣∣∣
p

E

≤ c1,p

β
p
g

(α − δ)c2,p
sup
s≤t

eδps
E

∣∣v(s)
∣∣p
E

for two positive constants c1,p and c2,p independent of δ. This implies that if z(t)

solves the linear problem

dz(t) = (A − α)z(t) dt + G′(ux(t)
)
z(t) dw(t), z(0) = h,

then

sup
s≤t

eδps
E

∣∣z(t)∣∣pE ≤ |h|pE + c1,p

β
p
g

(α − δ)c2,p
sup
s≤t

eδps
E

∣∣z(s)∣∣pE.

Therefore, if we pick α and βg such that

c1,p

β
p
g

αc2,p
< 1,

we can conclude that

E
∣∣z(t)∣∣pE ≤ cpe−δpt |h|pE ≤ cpe−δpt (t ∧ 1)−p/4|h|pH(6.14)

for every δ > 0 small enough, so that

c1,p

β
p
g

(α − δ)c2,p
< 1.

Finally, as we have Dρf + α ≤ 0, by using a comparison argument as in [7],
Example 4.4, we can show that if h ≥ 0, then

0 ≤ ηh(t) ≤ z(t), t ≥ 0.

Therefore, by linearity, thanks to (6.14), we can conclude that (6.11) holds true.

7. Kolmogorov operator. We define the Komogorov operator K in Cb(E)

associated with Pt , by proceeding as in [2] and [3]. The operator K is defined
through its resolvent by

(λ −K)−1ϕ(x) =
∫ +∞

0
e−λtPtϕ(x) dt, x ∈ E(7.1)

for all λ > 0 and ϕ ∈ Cb(E); see also [11].
We notice that, by Theorem 6.1, we have

D(K) ⊂ C1
b(E),(7.2)

where D(K) is the domain of K. In fact, this stronger property holds.
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THEOREM 7.1. Let {ei}i∈N be the complete orthonormal basis of H defined
in (2.2). Then, under Hypotheses 1 and 2, for any ϕ ∈ D(K) and x ∈ E we have

∞∑
i=1

∣∣〈G(x)ei,Dϕ(x)
〉
E

∣∣2 ≤ c
∣∣G(x)

∣∣2
E

(‖ϕ‖2
0 + ‖Kϕ‖2

0
)
.(7.3)

PROOF. Due to the Hölder inequality, for any ε ∈ (0,1) and ψ ∈ Cb(E) we
have∣∣〈G(x)ei,D

(
(1 −K)−1ψ

)
(x)

〉
E

∣∣2
≤

∫ ∞
0

e−t (t ∧ 1)−(1−ε) dt

∫ ∞
0

e−t (t ∧ 1)1−ε
∣∣〈G(x)ei,D(Ptψ)(x)

〉
E

∣∣2 dt

and then, according to (6.9), we get
∞∑
i=1

∣∣〈G(x)ei,D
(
(1 −K)−1ψ

)
(x)

〉
E

∣∣2 ≤ cε

∫ ∞
0

e−t (t ∧ 1)−ε dt
∣∣G(x)

∣∣2
E‖ψ‖2

0.

Therefore, if we take ψ = (1 −K)ϕ, we get (7.3). �

Our goal is to prove the following result:

THEOREM 7.2. Assume Hypotheses 1 and 2. Then, for any ϕ ∈ D(K) we have
ϕ2 ∈ D(K) and the following identity holds:

Kϕ2 = 2ϕKϕ +
∞∑
i=1

∣∣〈G(·)ei,Dϕ
〉
E

∣∣2.(7.4)

In order to prove identity (7.4), we need suitable approximations of prob-
lem (1.1) in addition to (3.5). For any m ∈ N, we denote by ux

n,m the unique mild
solution in Cw

p,T (E) of the problem

du(t) = [
Au(t) + Fn

(
u(t)

)]
dt + G

(
u(t)

)
Pm dw(t), u(0) = x,

where Pmx = ∑m
i=1〈x, ek〉ek , x ∈ H . Moreover for any k ∈ N we denote by ux

n,m,k
the unique solution in Cw

p,T (E) of the problem

du(t) = [
Aku(t) + Fn

(
u(t)

)]
dt + G

(
u(t)

)
Pm dw(t), u(0) = x,(7.5)

where Ak = kA(k − A)−1 are the Yosida approximations of A. The following
result is straightforward.

LEMMA 7.3. Under Hypotheses 1 and 2, for any x ∈ E and T > 0 we have

lim
m→∞

∣∣ux
n,m(t) − ux

n(t)
∣∣
E = 0 uniformly on [0, T ].

Moreover for any x ∈ E,m ∈ N and T > 0 we have

lim
k→∞

∣∣ux
n,m,k(t) − ux

n,m(t)
∣∣
E = 0 uniformly on [0, T ].
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Let us introduce the approximating Kolmogorov operators. If ϕ ∈ Cb(E) and
λ > 0, they are defined as above throughout their resolvents

(λ −Kn)
−1ϕ(x) =

∫ +∞
0

e−λt
Eϕ

(
ux

n(t)
)
dt,

(λ −Kn,m)−1ϕ(x) =
∫ +∞

0
e−λt

Eϕ
(
ux

n,m(t)
)
dt

and

(λ −Kn,m,k)
−1ϕ(x) =

∫ +∞
0

e−λt
Eϕ

(
ux

n,m,k(t)
)
dt

for any ϕ ∈ Cb(E) and x ∈ E. From Lemmas 3.2 and 7.3, we get the following
approximation results.

LEMMA 7.4. Assume Hypotheses 1 and 2. Then, for any λ > 0 and x ∈ E, we
have

lim
n→∞

∣∣(λ −Kn)
−1ϕ(x) − (λ −K)−1ϕ(x)

∣∣
E = 0.

If moreover m ∈ N,

lim
m→∞

∣∣(λ −Kn,m)−1ϕ(x) − (λ −Kn)
−1ϕ(x)

∣∣
E = 0.

If finally k ∈ N, we have

lim
k→∞

∣∣(λ −Kn,m,k)
−1ϕ(x) − (λ −Kn,m)−1ϕ(x)

∣∣
E = 0.

LEMMA 7.5. Assume Hypotheses 1 and 2. Then, for any n,m, k ∈ N we have
C2

b(E) ⊂ D(Kn,m,k), and for any ϕ ∈ C2
b(E) we have

Kn,m,kϕ
2 = 2ϕKn,m,kϕ +

m∑
i=1

∣∣〈G(·)ei,Dϕ
〉
E

∣∣2.(7.6)

PROOF. Since the stochastic equation (7.5) has regular coefficients and a
finite-dimensional noise term, the conclusion follows from Itô’s formula in the
Banach space E; see Appendix. �

COROLLARY 7.6. Let ϕn,m,k = (λ − Kn,m,k)
−1ψ , for n,m, k ∈ N and ψ ∈

C2
b(E). Then, under Hypotheses 1 and 2, the following identity holds:

ϕ2
n,m,k = (2λ −Kn,m,k)

−1

(
2ϕn,m,kψ +

m∑
i=1

∣∣〈G(·)ei,Dϕn,m,k

〉
E

∣∣2)
.(7.7)
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PROOF. As

λϕn,m,k −Kn,m,kϕn,m,k = ψ,(7.8)

since ψ ∈ C2
b(E) we have ϕn,m,k ∈ C2

b(E). Now, multiplying (7.8) by ϕn,m,k and
taking into account (7.6), we get

λϕ2
n,m,k − 1

2
Kn,m,k

(
ϕ2

n,m,k

) − 1

2

m∑
i=1

∣∣〈G(·)ei,Dϕn,m,k

〉
E

∣∣2 = ψϕn,m,k

and the conclusion follows. �

LEMMA 7.7. Let ϕ = (λ − K)−1ψ , for ψ ∈ C2
b(E) and λ > 0. Then, under

Hypotheses 1 and 2, the following identity holds:

ϕ2 = (2λ −K)−1

(
2ϕψ +

∞∑
i=1

∣∣〈G(·)ei,Dϕ
〉
E

∣∣2)
.(7.9)

Consequently, ϕ2 ∈ D(K) and (7.4) holds.

PROOF. The conclusion follows from Theorem 7.1, Lemma 7.4 and Corol-
lary 7.6, by letting n,m, k → ∞. �

We are now in a position to prove Theorem 7.2.

PROOF OF THEOREM 7.2. Let ϕ ∈ D(K), λ > 0 and ψ = λϕ − Kϕ. If we
assume that ψ ∈ C2

b(E), then, due to Lemma 7.7, we know that (7.9) holds. Now
assume ψ ∈ Cb(E). It is well known that we cannot find a uniform approximation
of ψ because C2

b(E) is not dense in Cb(E). Thus we define

Rtψ(x) =
∫
H

ψ
(
etAx + y

)
NQt (dy),

where NQt is the Gaussian measure in H with mean 0 and covariance Qt =
−1

2A−1(1−e2tA) for t ≥ 0. As NQt is the law of the solution of the linear equation

du(t) = Au(t) dt + dw(t), u(0) = 0,

which takes values in E and etAx ∈ E, for any x ∈ H and t > 0, we have that
Rtψ ∈ Bb(H). Moreover, as proved in [9], we have that for each t > 0, Rtψ be-
longs to C∞

b (H) and consequently to C∞
b (E).

Now let ϕt = (λ −K)−1Rtψ . Since Rtψ ∈ C2
b(E), we have by (7.9)

ϕ2
t = (2λ −K)−1

(
2ϕtRtψ +

∞∑
i=1

∣∣〈G(·)ei,Dϕt

〉
E

∣∣2)
.(7.10)
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Therefore, the conclusion follows letting t → 0. Actually, if for any x ∈ E we have

lim
t→0

ht (x) = h(x), sup
t∈[0,1]

sup
x∈E

∣∣ht (x)
∣∣ < ∞,

then it is immediate to check that

lim
t→0

(λ −K)−1ht (x) = (λ −K)−1h(x), x ∈ E.

Therefore, as for any x ∈ E

lim
t→0

ϕ2
t (x) = ϕ2(x), lim

t→0
ϕt(x)Rtψ(x) = ϕ(x)ψ(x),

we get (7.9) by taking the limit as t ↓ 0 in both sides of (7.10) if we show that

lim
t→0

∞∑
i=1

∣∣〈G(x)ei,Dϕt(x)
〉
E

∣∣2 =
∞∑
i=1

∣∣〈G(x)ei,Dϕ(x)
〉
E

∣∣2.(7.11)

Thus, in order to complete the proof of Theorem 7.2, it remains to prove (7.11).
Since

lim
t→0

Rtψ(x) = ψ(x), ‖Rtψ‖0 ≤ ‖ψ‖0,

according to (6.7) we have

lim
t→0

〈
G(x)ei,Dϕt(x)

〉
E = 〈

G(x)ei,Dϕ(x)
〉
E(7.12)

for any i ∈ N. By proceeding as in the proof of Theorem 6.2, we see that for any
ϕ ∈ Cb(E), x ∈ E and t > 0, there exists �(t, x) ∈ H such that

1

t
E

∫ t

0

〈
G−1(

ux(s)
)
Dux(s)G(x)h, dw(s)

〉
H = 〈

�(t, x), h
〉
H

and ∣∣�(t, x)
∣∣
H ≤ ct−1/2∣∣G(x)

∣∣
E.(7.13)

By arguing as in the proof of Theorem 7.1, with ε = 1/2, this implies that∣∣〈G(x)ei,Dϕt(x)
〉
E

∣∣2 ≤ c

∫ ∞
0

e−λs(s ∧ 1)1/2∣∣〈G(x)ei,D
(
Ps(Rtψ)

)
(x)

〉
E

∣∣2 ds

≤ c‖Rtϕ‖0

∫ ∞
0

e−λs(s ∧ 1)1/2∣∣〈�(s, x), ei

〉
H

∣∣2 ds

≤ c‖ϕ‖0

∫ ∞
0

e−λs(s ∧ 1)1/2∣∣〈�(s, x), ei

〉
H

∣∣2 ds.

Therefore, due to (7.13),
∞∑
i=1

∫ ∞
0

e−λs(s ∧ 1)1/2∣∣〈�(s, x), ei

〉
H

∣∣2 ds < ∞

and (7.12) holds. From Fatou’s lemma we get (7.11), and (7.4) follows for a general
ϕ ∈ D(K). �
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8. Invariant measures. In [4] it has been proved that there exists an invariant
probability measure μ on (E,B(E)) for the semigroup Pt . In particular, if ϕ ∈
D(K), we have ∫

E
Kϕ dμ = 0.(8.1)

From now on we shall assume that the following condition is satisfied:

HYPOTHESIS 3. There exists α > 0 such that

sup
(ξ,ρ)∈[0,1]×R

Dρf (ξ, ρ) = −α

and g(ξ, ρ) is uniformly bounded on [0,1] ×R.

In [7], Proposition 4.1, we have proved that under Hypothesis 3 there exists
δ > 0 such that for any p ≥ 1 and x ∈ E

E
∣∣ux(t)

∣∣p
E ≤ cp

(
1 + e−δpt |x|pE

)
, t ≥ 0.(8.2)

As a consequence of this, we have that for any p ≥ 1,∫
E

|x|pEμ(dx) < ∞.(8.3)

Actually, due to the invariance of μ, for any t ≥ 0 it holds∫
E

|x|pEμ(dx) =
∫
E
E

∣∣ux(t)
∣∣p
Eμ(dx) ≤ cp

(
1 + e−δpt

∫
E

|x|pEμ(dx)

)
.

Therefore, if we choose t0 such that cpe−δpt0 < 1/2, we have that (8.3) follows.

REMARK 8.1. In order to have (8.2) it is not necessary to assume that g is
uniformly bounded. Actually, (2.6) is what we need to prove (8.2). In Hypothesis 3
we are assuming that g is bounded in view of the proof of the Poincaré inequality,
where we need an estimate, that is, uniform with respect to x ∈ E.

Now, as μ is invariant, it is well known that Pt can be uniquely extended
to a semigroup of contractions on L2(E,μ) which we shall still denote by Pt ,
whereas we shall denote by K2 its infinitesimal generator.

LEMMA 8.2. Assume Hypotheses 1, 2 and 3. Then, D(K) is a core for K2.

PROOF. Let ψ := λϕ −K2ϕ, for ϕ ∈ D(K2) and λ > 0. Since Cb(E) is dense
in L2(E,μ), there exists a sequence (ψn) ⊂ Cb(E) convergent to ψ in L2(E,μ).
If we set ϕn := (λ −K2)

−1ψn, then ϕn ∈ D(K) and

ϕn → ϕ, K2ϕn → Kϕ in L2(E,μ),

which shows that D(K) is a core for K2. �
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8.1. Consequences of the “egalité du carré des champs”. Our first result is
the so called egalité du carré des champs; see [1].

PROPOSITION 8.3. Assume that Hypotheses 1, 2 and 3 hold. Then for any
ϕ ∈ D(K) we have

∫
E
Kϕ(x)ϕ(x) dμ(x) = −1

2

∫
E

∞∑
i=1

∣∣〈G(x)ei,Dϕ(x)
〉
E

∣∣2 dμ(x).(8.4)

PROOF. Let ϕ ∈ D(K). Then, by Theorem 7.2, ϕ2 ∈ D(K), and identity (7.4)
holds. According to (7.3) and (8.3), we can integrate both sides of (7.4) with re-
spect to μ and taking into account that, in view of (8.1),

∫
E K(ϕ2) dμ = 0, and we

get the conclusion. �

Let us show a similar identity for the semigroup Pt .

PROPOSITION 8.4. Let ϕ ∈ C1
b(E), and set v(t, x) = Ptϕ(x). Then, under

Hypotheses 1, 2 and 3, we have

v ∈ L∞(
0, T ;L2(E,μ)

)
,

∞∑
i=1

∣∣〈G(·)ei,Dxv
〉
E

∣∣2 ∈ L1(
0, T ;L1(E,μ)

)

for any T > 0. Moreover

∫
E
(Ptϕ)2μ(dx) +

∫ t

0
ds

∫
E

∞∑
i=1

∣∣〈G(x)ei,D(Psϕ)(x)
〉
E

∣∣2μ(dx)

(8.5)
=

∫
H

ϕ2(x)μ(dx).

PROOF. If we assume that ϕ ∈ D(K), we have Ptϕ ∈ D(K) and KPtϕ =
PtKϕ; for a proof see [3], Lemma B.2.1. According to (7.3), this yields

∞∑
i=1

∣∣〈G(x)ei,Dxv(t, x)
〉
E

∣∣2

≤ c
∣∣G(x)

∣∣2
E

(‖Ptϕ‖2
0 + ‖KPtϕ‖2

0
)

≤ c
∣∣G(x)

∣∣2
E

(‖ϕ‖2
0 + ‖Kϕ‖2

0
)
,

so that
∞∑
i=1

∣∣〈G(·)ei,Dxv(t, ·)〉E∣∣2 ∈ L1(
0, T ;L1(E,μ)

)
(8.6)
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for any T > 0. Now, as Dtv(t, x) = Kv(t, x) (see [3], Proposition B.2.2), multi-
plying both sides by v(t, x) and integrating over E with respect to μ, due to (8.4)
we get

1

2

d

dt

∫
E

v2(t, x)μ(dx) =
∫
E
Kv(t, x)v(t, x)μ(dx)

= −1

2

∫
E

∞∑
i=1

∣∣〈G(x)ei,Dxv(t, x)
〉
E

∣∣2μ(dx).

Thus, integrating with respect to t , (8.5) follows when ϕ ∈ D(K).
Now, assume ϕ ∈ C1

b(E). Clearly, the mapping (t, x) �→ Ptϕ(x) is in L∞(0, T ;
L2(E,μ)). Moreover, according to (6.10),

∞∑
i=1

∣∣〈G(x)ei,D(Ptϕ)(x)
〉
E

∣∣2 ≤ c(t)Pt

(∣∣Dϕ(·)∣∣2E�

)
(x)

∣∣G(x)
∣∣2
Et−1/2

(8.7)
≤ c(t) sup

x∈E

∣∣Dϕ(x)
∣∣
E�

∣∣G(x)
∣∣2
Et−1/2

and then (8.6) holds. Next, for any n ∈ N we define ϕn := n(n − K)−1ϕ. Clearly,
ϕn ∈ D(K), and for x ∈ E

lim
n→∞ϕn(x) = ϕ(x), ‖ϕn‖0 ≤ ‖ϕ‖0, n ∈ N.(8.8)

Moreover, thanks to (4.8), we have

lim
n→∞

∣∣Dϕn(x) − Dϕ(x)
∣∣
E� = 0,

(8.9)
sup
x∈E

∣∣Dϕn(x)
∣∣
E� ≤ sup

x∈E

∣∣Dϕ(x)
∣∣
E�, n ∈ N.

As (8.5) holds for ϕ ∈ D(K), if we set vn(t, x) = Ptϕn(x), we have for each n ∈ N

∫
E

v2
n(t, x)μ(dx) +

∫ t

0
ds

∫
E

∞∑
i=1

∣∣〈G(x)ei,Dxvn(s, x)
〉
E

∣∣2μ(dx)

=
∫
H

ϕ2
n(x)μ(dx).

Due to (8.7), (8.8) and (8.9), by arguing as in the proof of Lemma 7.7, we can take
the limit in both sides above, as n → ∞, and we get (8.5) for ϕ ∈ C1

b(E). �

8.2. The Sobolev space W 1,2(E,μ). We are going to show that the derivative
operator D is closable in L2(E,μ) so that we can introduce the Sobolev space
W 1,2(E,μ).
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PROPOSITION 8.5. Assume Hypotheses 1, 2 and 3. Then the derivative oper-
ator

D :C1
b(E) → L2(

E,μ;E�), ϕ �→ Dϕ

is closable in L(E,μ).

PROOF. Let (ϕn) ⊂ C1
b(E) such that

ϕn → 0 in L2(E,μ),

Dϕn → F in L2(
E,μ;E�).

We have to show that F = 0. We first prove that for any t > 0, we have

lim
n→∞D(Ptϕn)(x) = E

[(
Dux(t)

)�
F

(
ux(t)

)]
in L2(

E,μ;E�).(8.10)

In fact, recalling Theorem 5.4 and (4.8), we have∫
E

∣∣D(Ptϕn)(x) −E
(
Dux(t)

)�
F

(
ux(t)

)∣∣2
E�μ(dx)

=
∫
E

∣∣EDux(t)∗
(
Dϕn

(
ux(t)

) − F
(
ux(t)

))∣∣2
E�μ(dx)

≤ Meωt
∫
E
E

∣∣Dϕn

(
ux(t)

) − F
(
ux(t)

)∣∣2
E�μ(dx)

= Meωt
∫
E

∣∣Dϕn(x) − F(x)
∣∣2
E�μ(dx),

the last inequality following from the invariance of μ. This implies (8.10).
Now, according to (8.5) we have

∫
E
(Ptϕn)

2μ(dx) +
∫ t

0
ds

∫
E

∞∑
i=1

∣∣〈G(x)ei,D(Psϕn)(x)
〉
E

∣∣2μ(dx)

=
∫
H

ϕ2
n(x)μ(dx).

Then we can take the limit as n → ∞ on both sides, and we get

lim
n→∞

∫ t

0
ds

∫
E

∞∑
i=1

∣∣〈G(x)ei,D(Psϕn)(x)
〉
E

∣∣2μ(dx) = 0.

Due to (8.10), this implies that for any i ∈ N,

E
〈
Dux(t)G(x)ei,F

(
ux(t)

)〉
E = 0,
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so that

Pt

(〈
G(x)ei,F (x)

〉
E

) = E
〈
G

(
ux(t)

)
ei,F

(
ux(t)

)〉
E

= E
〈
Dux(t)G(x)ei,F

(
ux(t)

)〉
E +E

〈
G(x)ei − Dux(t)G(x)ei,F

(
ux(t)

)〉
E

+E
〈(
G

(
ux(t)

) − G(x)
)
ei,F

(
ux(t)

)〉
E

= E
〈
G(x)ei − Dux(t)G(x)ei,F

(
ux(t)

)〉
E

+E
〈(
G

(
ux(t)

) − G(x)
)
ei,F

(
ux(t)

)〉
E.

Consequently, due to the continuity at t = 0 of ux(t) and Dux(t), we get

lim
t→0

Pt

(〈
G(·)ei,F

〉
E

) = 0 in L1(E,μ).

Since Pt is a strongly continuous semigroup in L1(E,μ), we deduce 〈G(·)ei,

F 〉E = 0 for all i ∈ N. As G(x) is invertible and by Fejer’s theorem for any h ∈ E,

lim
n→∞

1

n

∑
i≤n

∑
j≤i

〈h, ej 〉Hej = h in E,(8.11)

which implies 〈h,F (x)〉E = 0, for any x,h ∈ E, and then F = 0. �

Since D is closable in L2(E,μ), we define as usual the Sobolev space
W 1,2(E,μ) as the domain of the closure of D endowed with its graph norm. No-
tice that if {ϕn} ⊂ C1

b(E) approximates some ϕ ∈ W 1,2(E,μ) in the graph norm
of D, then, according to (8.7), the series∫ t

0
ds

∫
E

∞∑
i=1

∣∣〈G(x)ei,D(Psϕn)(x)
〉
E

∣∣2 dμ(x)

converges uniformly with respect to n ∈ N, so that (8.5) holds for any ϕ ∈
W 1,2(E,μ).

PROPOSITION 8.6. Under Hypotheses 1, 2 and 3, for any ϕ ∈ D(K2), we have∫
E
K2(ϕ)(x)ϕ(x) dμ(x) = −1

2

∫
E

∞∑
i=1

∣∣〈G(x)ei,Dϕ(x)
〉
E

∣∣2 dμ(x).(8.12)

PROOF. The proof follows from Lemma 8.2 and Proposition 8.5. �

8.3. The Poincaré inequality. In what follows we shall assume the following
condition:

HYPOTHESIS 4. There exists γ > 0 such that

E
∣∣ηh(t)

∣∣2
E ≤ ce−γ t (t ∧ 1)−1/2|h|2H .(8.13)
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In Remark 6.3 we discussed in detail cases when condition (8.13) holds. Ac-
tually, we have seen that if F ′ ≤ −α, for some α > 0, as stated in Hypothesis 3,
then (8.13) holds if ‖G′‖L(E) is sufficiently small compared to α; see also [7]
and [6].

As a consequence of Hypothesis 4, we have that there exists some θ > 0 such
that ∣∣DPtϕ(x)

∣∣
E ≤ e−θt sup

x∈E

∣∣Dϕ(x)
∣∣
E�.(8.14)

By a standard argument this implies that for any x ∈ E,

lim
t→∞Ptϕ(x) = ϕ̄ =

∫
E

ϕ dμ.(8.15)

PROPOSITION 8.7. Under Hypotheses 1–4, there exist ρ > 0 such that for all
ϕ ∈ W 1,2(E,μ), ∫

E

∣∣ϕ(x) − ϕ̄
∣∣2 dμ(x) ≤ ρ

∫
E

∣∣Dϕ(x)
∣∣2
E� dμ(x).(8.16)

PROOF. We start from (8.5) for ϕ ∈ W 1,2(E,μ),

∫
E
(Ptϕ)2(x)μ(dx) +

∫ t

0
ds

∫
E

∞∑
i=1

∣∣〈G(x)ei,D(Psϕ)(x)
〉
E

∣∣2μ(dx)

=
∫
H

ϕ2(x)μ(dx).

Taking into account (6.12), this yields∫
E
(Ptϕ)2μ(dx) + c

∫ t

0
ds e−δss−1/2

∫
E

Ps

(∣∣Dϕ(·)∣∣2E�

)
(x)μ(dx)

≥
∫
H

ϕ2(x)μ(dx),

which, by the invariance of μ, yields∫
E
(Ptϕ)2μ(dx) + c

∫ t

0
ds e−δss−1/2

∫
E

∣∣Dϕ(x)
∣∣2
E�μ(dx) ≥

∫
H

ϕ2(x)μ(dx).

Letting t → ∞, and recalling (8.15), this implies that for some ρ > 0,

(ϕ̄)2 + ρ

∫
E

∣∣Dϕ(x)
∣∣2
E�μ(dx) ≥

∫
H

ϕ2(x)μ(dx),

which is equivalent to (8.16). �



A BASIC IDENTITY FOR KOLMOGOROV OPERATORS 1333

8.4. Spectral gap and convergence to equilibrium.

PROPOSITION 8.8. Under Hypotheses 1–4, we have

σ(K2) \ {0} ⊂ {
λ ∈ C :Reλ ≤ −β2/ρ

}
,

where σ(K2) denotes the spectrum of K2.

PROOF. Let us consider the space of all mean zero functions from L2(E,μ)

L2
π(E,μ) := {

ϕ ∈ L2(E,μ) : ϕ̄ = 0
}
.

Clearly

L2(E,μ) = L2
π(E,μ) ⊕R.

Moreover if ϕ̄ = 0, we have by the invariance of μ

(Ptϕ) =
∫
H

Ptϕ(x) dμ(x) =
∫
H

ϕ(x)dμ(x) = 0,

so that L2
π(E,μ) is an invariant subspace of Pt .

Denote by Kπ the restriction of K2 to L2
π(E,μ). Then we have clearly

σ(K2) = {0} ∪ σ(Kπ).

Moreover, if ϕ ∈ L2
π(E,μ) we see, using (8.4), that∫

E
Kπϕ(x)ϕ(x) dμ(x) =

∫
E
K2ϕ(x)ϕ(x) dμ(x)

(8.17)

= −1

2

∫
E

∞∑
i=1

∣∣〈G(x)ei,Dϕ(x)
〉
E

∣∣2 dμ(x).

Now, due to (8.11), for any x,h ∈ E we have

∣∣〈G(x)h,Dϕ(x)
〉
E

∣∣2 =
( ∞∑

i=1

〈
G(x)ei,Dϕ(x)

〉
E〈h, ei〉H

)2

≤
∞∑
i=1

∣∣〈h, ei〉H
∣∣2 ∞∑

i=1

∣∣〈G(x)ei,Dϕ(x)
〉
E

∣∣2,
so that, as |h|E ≤ 1 implies |h|H ≤ 1,

∣∣G�(x)Dϕ(x)
∣∣2
E� ≤

∞∑
i=1

∣∣〈G(x)ei,Dϕ(x)
〉
E

∣∣2.
Due to Hypothesis 2, according to (8.17) this yields∫

E
Kπϕϕ dμ ≤ −β2

2

∫
E

∣∣Dϕ(x)
∣∣2
E� dμ(x)



1334 S. CERRAI AND G. DA PRATO

and by Poincaré’s inequality, we deduce
∫
E
Kπϕ(x)ϕ(x) dμ(x) ≤ −β2

2

∫
E

∣∣Dϕ(x)
∣∣2
E� dμ(x)

(8.18)

≤ −β2

2ρ

∫
E

ϕ2(x) dμ(x),

which yields by the Hille–Yosida theorem

σ(Kπ) ⊂ {
λ ∈ C :Reλ ≤ −β2/2ρ

}
. �

REMARK 8.9. The spectral gap implies the exponential convergence of Ptϕ

to ϕ̄. In fact from∫
E
Kπϕ(x)ϕ(x) dμ(x) ≤ −β2

2ρ

∫
E

ϕ2(x) dμ(x),

we deduce that Kπ +β2/2ρI is m-dissipative, so that by the Hille–Yosida theorem
we have ∫

E

∣∣Ptψ(x)
∣∣2 dμ(x) ≤ e−β2/ρt

∫
E

∣∣ψ(x)
∣∣2 dμ(x),

(8.19)
ψ ∈ L2

π(E,μ).

Now given ϕ ∈ L2(E,μ), setting in (8.19) ψ := ϕ − ϕ̄, we get∫
E

∣∣Ptϕ(x) − ϕ̄
∣∣2 dμ(x) ≤ e−β2/ρt

∫
E

∣∣ϕ(x) − ϕ̄
∣∣2 dμ(x)

= e−β2/ρt

(∫
H

ϕ2(x) dμ(x) − ϕ̄2
)

≤ e−β2/ρt
∫
E

∣∣ϕ(x)
∣∣2 dμ(x).

APPENDIX: AN ITÔ FORMULA IN THE SPACE OF
CONTINUOUS FUNCTIONS

Fix k ∈ N, and let b,σ1, . . . , σk be mappings from H into H and from E into E,
which are Lipschitz continuous both in H and in E. Let X be the solution to the
stochastic differential equation

X(t) = x +
∫ t

0
b
(
X(s)

)
ds +

k∑
i=1

∫ t

0
σi

(
X(s)

)
dβi(s),(A.1)

where β1, . . . , βn are independent real Brownian motions.
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If ϕ ∈ C2
b(H), then it is well known that the following Itô’s formula holds:

Eϕ
(
X(t)

) = ϕ(x) +E

∫ t

0
Lϕ

(
X(s)

)
ds,(A.2)

where L is the Kolmogorov operator given by

Lϕ(x) = 1

2

k∑
i=1

〈
D2ϕ(x)σi(x), σi(x)

〉
H + 〈

Dϕ(x), b(x)
〉
H , x ∈ H.(A.3)

Now we see what happens when dealing with (A.2) for functions defined in E.

PROPOSITION A.1. If ϕ ∈ C2
b(E), then it holds

Eϕ
(
X(t)

) = ϕ(x) +E

∫ t

0
LEϕ

(
X(s)

)
ds,(A.4)

where LE is given by

LEϕ(x) = 1

2

k∑
i=1

〈
σi(x),D2ϕ(x)σi(x)

〉
E + 〈

b(x),Dϕ(x)
〉
E(A.5)

and DE represents the Frèchet derivative in E.

PROOF. In view of Lemma 2.1, if ϕ ∈ C2
b(E), there exists a sequence

{ϕn}n∈N ⊂ C2
b(H) such that

lim
n→∞ϕn(x) = ϕ(x), x ∈ E,

lim
n→∞

〈
y,Dϕn(x)

〉
H = 〈

y,Dϕ(x)
〉
E, x, y ∈ E,

lim
n→∞

〈
y,D2ϕn(x)y

〉
H = 〈

y,D2
Eϕ(x)y

〉
E, x, y ∈ E.

Consequently,

lim
n→∞Lϕn(x) = LEϕ(x), x ∈ E.(A.6)

Now, by Itô’s formula (A.2), we have for any n ∈ N,

Eϕn

(
X(t)

) = ϕn(x) +E

∫ t

0
Lϕn

(
X(s)

)
ds(A.7)

and then, letting n → ∞, we get (A.4). �

REMARK A.2. Let ϕ ∈ C2
b(E). Then ϕ2 ∈ C2

b(E), and we have〈
y,DEϕ2(x)

〉
E = 2ϕ(x)

〈
y,DEϕ(x)

〉
E

and 〈
y,D2

Eϕ2(x)y
〉
E = 2ϕ(x)

〈
y,D2

Eϕ(x)y
〉
E + 2

∣∣〈y,DEϕ(x)
〉
E

∣∣2.
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Consequently,

LEϕ2(x) = 2ϕ(x)LEϕ2(x) +
n∑

k=1

∣∣〈σk(y),DEϕ(x)
〉
E

∣∣2.(A.8)
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