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NO ZERO-CROSSINGS FOR RANDOM POLYNOMIALS AND
THE HEAT EQUATION

BY AMIR DEMBO1 AND SUMIT MUKHERJEE

Stanford University

Consider random polynomial
∑n

i=0 aix
i of independent mean-zero nor-

mal coefficients ai , whose variance is a regularly varying function (in i) of
order α. We derive general criteria for continuity of persistence exponents for
centered Gaussian processes, and use these to show that such polynomial has
no roots in [0,1] with probability n−bα+o(1), and no roots in (1,∞) with
probability n−b0+o(1), hence for n even, it has no real roots with probabil-
ity n−2bα−2b0+o(1). Here, bα = 0 when α ≤−1 and otherwise bα ∈ (0,∞)

is independent of the detailed regularly varying variance function and corre-
sponds to persistence probabilities for an explicit stationary Gaussian process
of smooth sample path. Further, making precise the solution φd(x, t) to the
d-dimensional heat equation initiated by a Gaussian white noise φd(x,0), we
confirm that the probability of φd(x, t) �= 0 for all t ∈ [1, T ], is T −bα+o(1),
for α = d/2 − 1.

1. Introduction. Algebraic polynomials of the form

Qn(x) =
n∑

i=0

aix
i(1.1)

with x ∈ R and independent, zero-mean random coefficients ai are objects of
much interest in probability theory. In particular, for i.i.d. normal {ai}, the num-
ber Nn of real roots has been studied in some detail, starting with Littlewood
and Offord work [13–15] that provides upper and lower bounds on En = E[Nn]
as well as on both tails of the law of Nn. Among its consequences is the upper
bound P(Nn = 0) = O( 1

logn
), much refined in [5], which proved that for n even

P(Nn = 0) = n−4b0+o(1) decays polynomially and that the same positive, finite,
power exponent b0 applies for any i.i.d. {ai} of finite moments of all orders.

In another direction, Kac [10] provides an explicit formula for En in case of i.i.d.
normal {ai}, yielding also the sharp asymptotics En ∼ 2

π
logn, whereas [17] shows

that Nn is asymptotically normal of mean En and Var(Nn)∼ 4
π
(1− 2

π
) logn. Most

of these results extend to other distributions of the i.i.d. {ai} (see the historical
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account in [5], Section 2). We also note in passing the rich asymptotic theory for
location of complex zeros of z �→Qn(z) and related random analytic functions (cf.
[8, 9] and the references therein).

Our focus here is on persistence probabilities

pJ (n)= P
(
Qn(x) < 0, ∀x ∈ J

)
.(1.2)

Such probabilities have been extensively studied, for other stochastic processes,
also in reliability theory and in the physics literature, cf. the surveys [2, 16] and
references therein. Specifically, we study the asymptotics of pJ (n) for J = [0,1],
J = (1,∞), J = [0,∞) and J =R, where {ai} are independent, centered normal
with E(a2

0)= 1 and i �→ E(a2
i )= iαL(i) forms a regularly varying sequence of or-

der α, at i →∞. Equivalently, we consider any i �→ L(i) slowly varying at infinity
(namely, such that L([μi])/L(i) → 1 when i →∞, for any fixed μ > 0, cf. [3]).
To this end, deriving in Theorem 1.6 a new, general flexible criteria for continuity
of persistence probability tail exponential rates, we show in Theorem 1.3 that for
any slowly varying L(·),

p[0,1](n) = n−bα+o(1), p(1,∞)(n) = n−b0+o(1),

p[0,∞)(n) = n−bα−b0+o(1).

Subject to a mild regularity condition on L(2k)/L(2k + 1), we further deduce that
pR(2n) = n−2bα−2b0+o(1) [clearly, pR(2n + 1) = 0 and we note in passing that
P(Nn = 0)= 2pR(n)].

The power exponent bα is thus universal, that is, independent of the specific
slowly varying function L(·), and the asymptotics of p(1,∞)(n) is further indepen-
dent of the order α of the regularly varying variance of ai (as already noted in [20]
for the case of L(·)≡ 1).

1.1. Nonzero crossings for random polynomials. Hereafter, let F(s, t) :=
sech((t − s)/2), {Ẑt , t ≥ 0} denote the centered stationary Gaussian process of co-
variance function exp{−(t − s)2/8)} and for each α > −1, consider the centered
Gaussian process

Y
(α)
t =

∫∞
0 gt (r) dWr

(
∫∞

0 gt (r)2 dr)1/2 ,(1.3)

where gt (r) := rα/2 exp(−e−t r) (see [5], (1.4), for α = 0). We start with some
preliminary facts about these processes and their persistence exponents.

LEMMA 1.1. For any α > −1, the C∞(R)-valued stochastic process t �→ Y
(α)
t

of (1.3) has covariance function F(s, t)α+1. Further, its persistence exponent

bα := − lim
T→∞

1

T
logP

(
sup

t∈[0,T ]
Y

(α)
t ≤ δT

)
,(1.4)
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exists and is independent of the precise choice of δT → 0. These persistence ex-
ponents are such that the nonincreasing (α + 1)−1bα ↑ 1/2 when α ↓ −1 and
the nondecreasing (α + 1)−1/2bα ↑ b̂∞ when α ↑∞, where b̂∞ denotes the finite
persistence exponent of {Ẑt }.

REMARK 1.2. Accurate numerical values are known for some values of
bα (see [20] and references therein), but no analytic prediction for it has ever
been given. The best rigorously proved lower and upper bounds at α = 0 are
b0 ∈ (1/(4

√
3),1/4], derived in [18], Proposition 2 and [11], Theorem 3.2, re-

spectively. From Lemma 1.1, we have that bα is between
√

α + 1b0 and (α+1)b0.
Hence, bα ∈ (0,∞) admits the corresponding lower and upper bounds. It further
has linear asymptotics at α ↓−1 and square-root growth for α →∞, thereby con-
firming the predictions of [20].

Here is our first main result.

THEOREM 1.3. Consider random algebraic polynomials Qn(·) of indepen-
dent, centered normal coefficients {ai} such that E[a2

0] = 1 and let L(i) :=
i−αE[a2

i ], i ≥ 1, for some α ∈R.

(a) Setting hereafter bα ≡ 0 when α ≤−1 and Tn := logn, we have that for any
slowly varying sequence L(·),

lim
n→∞

1

Tn

logp[0,1](n) =−bα,(1.5)

lim
n→∞

1

Tn

logp(1,∞)(n) =−b0,(1.6)

lim
n→∞

1

Tn

logp[0,∞)(n) =−bα − b0.(1.7)

(b) If in addition

lim
n→∞n

∣∣∣∣L(n+ 1)

L(n)
− 1

∣∣∣∣= 0,(1.8)

then further,

lim
n→∞

1

Tn

logpR(2n) =−2bα − 2b0.(1.9)

REMARK 1.4. The rate condition (1.8) is the discrete version of the condition
x d

dx
(logL(x)) → 0 as x →∞. For example, (1.8) holds when L(x) = (logx)γ ,

for any γ ∈ R, or when L(x) = exp{(logx)λ} for any |λ| < 1, but fails in case of
the slowly varying L(n)= 1 + n−1(1 + (−1)n).



88 A. DEMBO AND S. MUKHERJEE

1.2. Heat equation initiated by white noise. Setting Kt(x) := (4πt)−d/2 ×
exp{−‖x‖2

2
4t

}, recall that for any smooth enough ψ(·), the function

φd(x, t)=
∫
Rd

Kt (x − y)ψ(y) dy(1.10)

is a classical solution of the d-dimensional heat equation
∂φd(x, t)

∂t
= 
φd(x, t)(1.11)

on D0 = Rd × (0,∞) with initial condition φd(·,0) = ψ(·). It is formally
argued in [20] that taking for ψ(·) a centered Gaussian field of covariance
δd(x−y), should yield by (1.10) a centered Gaussian field φd(x, t) with covariance
E[φd(x1, t)φd(x2, s)] = Kt+s(x1 − x2). Assuming the existence of such a process,
it would have for each fixed x1 = x2 = x ∈Rd , the time covariance Kt+s(0). Thus,
taking α = d/2 − 1, it follows that

φd

(
x, et ) L=

√
K2et (0)Y

(α)
t

for {Y (α)
t } of Lemma 1.1. Consequently,

lim
T→∞

1

logT
logP

(
φd(x, t) �= 0, ∀t ∈ [1, T ])=−bα,(1.12)

lim
R→∞

1

R
logP

(
φ1(x,1) �= 0, ∀|x| ≤R/2

)=−b̂∞(1.13)

for bα of (1.4) and b̂∞ of Lemma 1.1. That is, the seemingly unrelated random
polynomials {Qn(x)x∈[0,1]} have the same persistence power exponent bα as these
solutions {φ2(α+1)(x, t)t∈[1,T ]} of the heat equation.

While on a set of full measure the random function x �→ ψ(x) is not Lebesgue
measurable [hence the integral (1.10) ill-defined], we make precise the notion of
solution φd(x, t) ∈ C∞(D0) of (1.11) such that φd(x, t) is a centered Gaussian field
of covariance Kt+s(x1 − x2). (Added in galleys: after our article was accepted for
publication we realized that this is already done in Section 8 of [4].) Of course,
upon rigorously constructing such a field we immediately get the confirmation of
both (1.12) and (1.13).

THEOREM 1.5. Equip C0 = C2,1(D0) with the topology of uniform conver-
gence on compacts of function and its relevant partial derivatives of first and
second order. There exists a (C0,BC0)-valued, centered Gaussian field φd(x, t)

of covariance function C((x1, t), (x2, s)) = Ks+t (x1 − x2), which satisfies (1.11)
on D0. Further, φd ∈ C∞(D0) and for any 0 < t1 < t2,

φd(x, t2)=
∫
Rd

Kt2−t1(x − y)φd(y, t1) dy.(1.14)

1.3. Continuity of persistence exponents for Gaussian processes. The motiva-
tion for this work lies in the prediction of [19, 20] for much of our results, but the



NO ZERO-CROSSINGS FOR RANDOM POLYNOMIALS 89

persistence asymptotics of Theorem 1.3 has been rigorously derived before only
for i.i.d. {ai} [namely, α = 0 and L(·) ≡ 1], where [5] relies on an explicitly sim-
ple closed form of Cov(Qn(x),Qn(y)) for handling this case. In contrast, no such
closed form expression exist for α �= 0 and especially for L(·) �≡ 1, henceforth re-
quiring a more delicate treatment of the covariance in various domains of x, y, to
which much of our effort is devoted.

Indeed, beware that the convergence of covariance functions for smooth cen-
tered Gaussian processes [such as Qn(·)], while implying weak convergence of
the corresponding laws, falls short of relating their large deviations (and in partic-
ular the relevant persistence power exponents). For example, with Z standard nor-
mal independent of {Y (α)· }, the positive autocorrelation of the smooth, stationary,
centered Gaussian process

√
1 − εnY

(α)· +√
εnZ is within εn → 0 of the autocor-

relation of {Y (α)· } but for εn logn → ∞, the corresponding persistence exponent
is easily shown to be 0 �= bα . Our second main result shows that in contrast, per-
sistence power exponent is continuous for any collection of centered Gaussian
processes whose maxima over compact intervals converge pointwise, arbitrarily
slowly, to those of the limit process [see (1.17) below], provided their nonnegative
auto-correlations satisfy a mild uniform integrability condition [see (1.15)], and
the persistence exponent of the limiting process is somewhat stable [see (1.16)].

THEOREM 1.6. Let S denote the class of all stationary, autocorrelation func-
tions A : [0,∞) �→ [−1,1] with S+ denoting the subset of nonnegative A ∈ S .
For centered stationary Gaussian process {Zt }t≥0 of autocorrelation A(s, t) =
A(0, t − s) ∈ S+, the nonnegative, possibly infinite, limit

b(A) := − lim
T→∞

1

T
logP

(
sup

t∈[0,T ]
Zt < 0

)
,

exists. Consider centered Gaussian processes {Z(k)
t }t≥0, 1 ≤ k ≤ ∞ (normal-

ized to have E[(Z(k)
t )2] = 1), of nonnegative autocorrelations Ak(s, t), such that

A∞(s, t) ∈ S+. Suppose that the following three conditions hold:

lim sup
k,τ→∞

sup
s≥0

{
logAk(s, s + τ)

log τ

}
< −1.(1.15)

lim sup
M→∞

1

M
logP

(
sup

t∈[0,M]
Z

(∞)
t < M−η

)
=−b(A∞) ∀η > 0(1.16)

and there exist ζ > 0 and M1 < ∞ such that for any z ∈ [0, ζ ] and M ≥M1,

P
(

sup
t∈[0,M]

Z
(∞)
t < z

)
≤ lim inf

k→∞ inf
s≥0

P
(

sup
t∈[0,M]

Z
(k)
s+t < z

)
≤ lim sup

k→∞
sup
s≥0

P
(

sup
t∈[0,M]

Z
(k)
s+t < z

)
(1.17)

≤ P
(

sup
t∈[0,M]

Z
(∞)
t ≤ z

)
.
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Then

lim
k,T→∞

1

T
logP

(
sup

t∈[0,T ]
Z

(k)
t < 0

)
=−b(A∞).(1.18)

REMARK 1.7. Theorem 1.6 only requires that (1.17) holds for z = 0 and
zM = CM−η ↓ 0. Further, its proof applies even when Ak(·, ·) and Z

(k)
t are de-

fined only on [0, T �
k ], for some given T �

k →∞, with the conclusion (1.18) valid
then for any unbounded Tk ≤ T �

k . We also note in passing that when dealing with
stationary Ak ∈ S+ for all k large enough, it suffices to consider only s = 0 in
(1.15) and (1.17), with (1.18) implying in particular that, in such setting,

lim
k→∞b(Ak)= b(A∞).(1.19)

The first of the three conditions of Theorem 1.6, namely (1.15), is usually easy
to check. Its second condition, (1.16), is relatively mild, and in particular ap-
plies whenever Z

(∞)
t of continuous sample path has decreasing autocorrelation

A∞(0, t) such that

a2
h,θ := inf

0<t≤h

{
A∞(0, θ t)−A∞(0, t)

1 −A∞(0, t)

}
> 0(1.20)

for any finite h > 0 and θ ∈ (0,1) (see [12], Theorem 3.1(iii), and its proof).
Our next lemma provides explicit sufficient conditions that yield the last condi-

tion, (1.17), of Theorem 1.6 [and which we utilize when proving Lemma 1.1 and
part (a) of Theorem 1.3].

LEMMA 1.8. Condition (1.17) holds if to D ∈ S corresponds a Gaussian pro-
cess of continuous sample paths and for any finite M there exist positive εk → 0
such that whenever τ ∈ [0,M] (and s ∈ [0, T �

k ]),
(1 − εk)A∞(0, τ )+ εkD(0, τ ) ≤ Ak(s, s + τ)

≤ (1 − εk)A∞(0, τ )+ εk.(1.21)

Alternatively, setting p2
k(u) := 2 − 2 infs≥0,τ∈[0,u] Ak(s, s + τ), if Ak(s, s + τ) →

A∞(0, τ ) pointwise and

lim
δ↓0

sup
1≤k≤∞

∫ ∞
0

[
pk

(
e−v2)∧ δ

]
dv = 0,(1.22)

then the corresponding laws of {Z(k)
s+· : s ≥ 0,1 ≤ k ≤∞} are uniformly tight with

respect to supremum norm on C[0,M], which for Ak ∈ S implies that (1.17) holds
for any z ∈R.

For example, by dominated convergence, (1.22) holds whenever for some η > 1,

lim sup
u↓0

| logu|η sup
1≤k≤∞

{
p2

k(u)
}
<∞.(1.23)
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REMARK 1.9. To demonstrate the flexibility of our approach, we utilize Re-
mark 1.7 to confirm the persistence exponent values predicted by [20] for the
so called Binomial random polynomials. That is, with b̂∞ as in Lemma 1.1, if
E[a2

i ] = n
i

for i = 0, . . . , n, then

lim
n→∞n−1/2 logp[0,∞)(n) =−πb̂∞,(1.24)

lim
n→∞(2n)−1/2 logpR(2n) =−2πb̂∞.(1.25)

Indeed, the parameterization x := tan(s/(2
√

n)), with s ∈ [0, π
√

n) for x ∈ R+
and s ∈ (−π

√
n,π

√
n) in case x ∈ R, translates the Binomial random polynomi-

als, into stationary, centered Gaussian processes whose autocorrelations

An(s, t) :=
[
cos

(
t − s

2
√

n

)]n

are nonnegative when either s, t ∈ [0, π
√

n) or n is even. Recall that the con-
tinuous, symmetric function f (u) := u2/2 + log cos(u) on |u| ≤ π/2, decreases
in u ≥ 0; hence An(0, τ ) ↑ e−τ 2/8 := A∞(0, τ ) as n → ∞, per fixed τ ∈ R

[out of which uniform super-exponential decay in τ , hence condition (1.15) fol-
lows]. With A∞(0, τ ) ∈ S+ both (1.24) and (1.25) are specializations to this
context of conclusion (1.19) of Theorem 1.6, so it remains only to verify that
(1.20) and (1.23) hold here. Now, condition (1.20) holds, for example, by [12],
Remark 3.1, whereas (1.23) holds since p2

n(u) ≤ p2
2(u)≤ u2/4 for all n≥ 2 and u.

1.4. Theorem 1.3: Proof outline and extensions. We proceed to outline the
intuition, following [5] and [20], which governs our proof of Theorem 1.3. First,
since x �→Qn(x) is continuous, for x ∈ [0,1] not too close to 1, the sign of Qn(x)

can be controlled by the value of Qn(0); hence, the asymptotics of p[0,1](n) is
dominated by the behavior of Qn(x) for x ≈ 1. To handle the latter, setting x = e−u

allows for approximating

Cov
(
Qn

(
e−u),Qn

(
e−v))= 1 +

n∑
i=1

L(i)iαe−i(u+v) := hα,n(u+ v)(1.26)

for α > −1 and small, but not too small values of u, v [namely, in range of
(w�,wh), for nw� →∞ and wh → 0], by∫ ∞

0
L(r)rαe−r(u+v) dr ∼ �(α + 1)(u+ v)−(α+1)L

(
1

u+ v

)
.

The correlation between Qn(e
−u) and Qn(e

−v) is then approximately S(u, v)×
R(u, v)α+1 where

R(u, v) := 2
√

uv

u+ v
, S(u, v) := L(1/(u+ v))√

L(1/(2u))L(1/(2v))
(1.27)
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and for small u, v the slowly varying nature of L(·) at infinity implies that S(u, v)

is nearly one. Consequently, replacing S(u, v) by 1, upon setting s := − logu and
t := − logv we arrive at the correlation between Y

(α)
t and Y

(α)
s with relevant range

t, s ∈ [δTn, (1 − δ)Tn] (for w� = n−(1−δ) and wh = n−δ), yielding the persistence
power exponent bα of (1.4). On a more technical note, as long as the ratio u/v

is bounded, we have indeed that S(u, v) ≈ 1 for any slowly varying L(·), but the
supremum of u/v over the domain of (u, v) relevant to the asymptotics of p[0,1](n)

is O(n), requiring us to rely on Theorem 1.6.
Similarly, the main contribution to p(1,∞)(n) comes from x ≈ 1. However, set-

ting x = eu, even at the relevant range of small u, v ∈ (n−(1−δ), n−δ), here the large
values of i dominate the covariance function of Qn(e

u) resulting, for any α ∈ R,
with

Cov
(
Qn

(
eu),Qn

(
ev))= 1 +

n∑
i=1

L(i)iαei(u+v) ∼ (u+ v)−1L(n)nαen(u+v).

The limiting correlation is now approximately independent of α and L(·), given
for s = − logu and t = − logv by R(u, v) = F(s, t) [we note in passing that
for α <−1 this approximation breaks down at C(α) logn/n, a threshold which
w� must thus exceed, causing further technical challenge, as seen in proof of
Lemma 3.1].

Finally, part (b) of Theorem 1.3 then follows upon showing that, for even values
of n, the events of having Qn(x) negative throughout each of the four intervals
±[0,1] and ±(1,∞), are approximately independent of each other [with (1.8)
utilized for controlling the dependence between Qn(x) and Qn(−x)].

REMARK 1.10. We show, in part (b) of Lemma 3.1, that the sequence
n �→ p[0,1](n) is bounded away from zero whenever

∑
i L(i)iα converges (in par-

ticular, for any α < −1). Things are more involved when α = −1, as it is
easy to check that for L(x) = (logx)γ , γ ≥ 0 and n large h−1,n(e

−t + e−s) =
(γ + 1)−1[min(t, s)]γ+1[1 + O(1/min(t, s))] when t, s ∈ [1, logn]. Hence, for
the relevant (large) values of t , the asymptotic autocorrelation of Qn(e

−e−t
) is

that of Brownian motion, raised to power γ + 1, suggesting that in this case
p[0,1](n) = (logn)−(γ+1)/2+o(1) is sensitive to the choice of L(·). The lower bound
of (4.16) may be improved to (| logv|/| logu|)r , yielding the persistence lower
bound (logn)−(γ+1)+o(1) [by the same reasoning as in proof of (4.18)].

REMARK 1.11. As we briefly outline next, Theorem 1.6 can also deal with
the main contribution to persistence probabilities for Weyl random polynomials.
Namely, the case of E[a2

i ] = 1/i!, i ≥ 0 and intervals J = [0,
√

n − �n] with
�n →∞. In this setting, we have that

hn(st) := Cov
(
Qn(s),Qn(t)

)= n∑
i=0

(st)i

i! ∼ est
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for s, t ∈ J , with uniform relative error ηn := 1 − e−zhn(z) = P(Nz > n), where
Nz denotes a Poisson random variable of parameter z = n − √

n�n. Consid-
ering An(s, t) := corr(Qn(s),Qn(t)) and A∞(s, t) = e−(t−s)2/2, this yields the
bound (1.21) for D(s, t) = A∞(s, t)2, some εn → 0 and all s, t ∈ J , so from
Lemma 1.8 we have that (1.17) holds when s ∈ J . The covariance estimate fur-
ther implies that An(s, t) ≤ 4A∞(s, t) for all s, t ∈ J and n large enough, from
which (1.15) follows. We have seen already that (1.16) holds for Ẑ2t (see Re-
mark 1.9), so taking n−1/2�n → 0 we deduce from Theorem 1.6 that

lim
n→∞n−1/2 logpJ (n) =−2b̂∞

as predicted in [20]. The upper bound pR+(n) ≤ exp(−2b̂∞n1/2(1+o(1))) follows
and to confirm, as predicted there, that it is sharp, one needs only to show that
n−1/2 logp[√n−�n,∞)(n) → 0.

REMARK 1.12. While we do not pursue this here, by a strong approximation
argument like the one done in [5], the conclusions of Theorem 1.3 should extend
to nonnormal {ai} with all moments finite.

REMARK 1.13. Changing from mean-zero coefficients to regularly vary-
ing negative mean of order α� can alter persistence power exponents associ-
ated with Qn(·), depending on the relation between α and α�. Indeed, setting
E[ai] = −iα�L�(i) for some α� ∈ R, some slowly varying L�(·) and all i ≥ 1, re-
sults with E[Qn(e

−u)] having the same form as −hα�,n(u) in the regime of small,
but not too small values of u of relevance here. The relevant persistence power
exponent is thus reduced, or eliminated all together, when hα�,n(u) � √

hα,n(2u)

and expected to remain intact when hα�,n(u) � √
hα,n(2u). The same applies for

the persistence power exponents associated with the neighborhood of −1, except
for E[Qn(−e−u)] having the form of hα�−1,n(u), due to cancellations between
mean values for even coefficients and those for odd coefficients. For example,
p[0,1](n) = n−o(1) even for α > −1 as soon as (α� + 1) > (α + 1)/2, whereas
for p[−1,0](n) this requires α� > (α + 1)/2. Similarly, we get the prediction
p(1,∞)(n) = n−λb0 when α� = (α − λ)/2 for λ ∈ [0,1] [and upon reducing α�

by one, same applies for p(−∞,−1)(n)]. We prove none of these predictions, but
note in passing their agreement in case α� = α = 0 with the rigorous analysis
of [5].

We prove Theorem 1.6, Lemmas 1.1 and 1.8 in Section 2, Theorem 1.3 in Sec-
tion 3 and Theorem 1.5 in Section 5, devoting Section 4 to proofs of the auxiliary
lemmas we use for proving Theorem 1.3.
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2. Proofs of Lemma 1.1, Theorem 1.6 and Lemma 1.8.

2.1. Proof of Theorem 1.6. By subadditivity lemma, the existence of the limit
b(A) follows from Slepian’s inequality (see [1], Theorem 2.2.1), and nonnegativity
of the autocorrelation A ∈ S+.

Considering (1.17) for z = 0 and fixed M large enough, there exist ξk ↓ 0 such
that for all k,

inf
s≥0

P
(

sup
t∈[0,M]

Z
(k)
s+t < 0

)
≥ P

(
sup

t∈[0,M]
Z

(∞)
t < 0

)
− ξk.

Thus, by Slepian’s inequality and the nonnegativity of Ak(·, ·), we conclude that

P
(

sup
t∈[0,T ]

Z
(k)
t < 0

)
≥
[
P
(

sup
t∈[0,M]

Z
(∞)
t < 0

)
− ξk

]�T/M�
,

which upon taking log, dividing by T and letting k,T →∞ gives

lim inf
k,T→∞

1

T
logP

(
sup

t∈[0,T ]
Z

(k)
t < 0

)
≥ 1

M
logP

(
sup

t∈[0,M]
Z

(∞)
t < 0

)
.

So, considering M →∞ completes the proof of the lower bound in (1.18).
To get the matching upper bound, note that by (1.15), there exist η > 1 and M0

finite, such that for all large k and any s, t ,

Ak(s, t)≤M
η
0 |t − s|−η.(2.1)

For such η and M0, set 0 < δ < (1 − η−1)/2 small enough for

4(M0δ)
η

∞∑
i=1

i−η < 1.(2.2)

Next, fixing finite M large enough for γ := (Mδ2)−η ≤ 3/4, let si = (1 +
δ)Mi, i ≥ 1, and consider the δM-separated intervals Ii := [si − M,si]. Since
|s − t | ≥ δM|i − j | whenever s ∈ Ii , t ∈ Ij , it follows from (2.1) that then
Ak(s, t) ≤ γ (M0δ)

η|i − j |−η. Thus, setting I (t) := i for t ∈ Ii we have that for
any s, t ∈⋃

i Ii ,

Ak(s, t)≤ (1 − γ )Ak(s, t)1{I (s)=I (t)} + γB
(
I (s), I (t)

)
,(2.3)

where B(i, i) = 1 and B(i, j) := (M0δ)
η|i − j |−η for i �= j . Setting N :=

�T/(M(1 + δ))� and

JT :=
N⋃

i=1

Ii ⊂ [0, T ],

it follows from (2.2) and the Gershgorin circle theorem, that all the eigenvalues
of the symmetric N -dimensional matrix B = {B(i, j)}Ni,j=1 lie within [1/2,3/2].
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In particular, B is positive definite and the RHS of (2.3) is the autocorrelation of
the centered Gaussian process

√
1 − γ �Z(k)

t +√
γXI(t) on JT , where the centered,

stationary, Gaussian sequence {Xi}∞i=1 of autocorrelation B(i, j), is independent

of the mutually independent restrictions of �Z(k)
t to intervals Ii , having the same

law as Z
(k)
t within each Ii . Thus, by Slepian’s inequality for some ξk ↓ 0, any k

large enough and all T ,

P
(

sup
t∈[0,T ]

Z
(k)
t < 0

)
≤ P

(
sup
t∈JT

Z
(k)
t < 0

)
≤ P

(
sup

t∈[0,T ]
{√

1 − γ �Z(k)
t +√

γXI(t)

}
< 0

)

= E

[
N∏

i=1

P

(
sup
t∈Ii

Z
(k)
t ≤−

√
γ√

1 − γ
Xi

∣∣∣∣X)]

≤ E

N∏
i=1

[
P
(
sup
t∈Ii

Z
(k)
t < 2γ δ

)
+ 1{Xi≤−γ δ−1/2}

]

≤ E

N∏
i=1

[
P
(

sup
t∈[0,M]

Z
(∞)
t ≤ 2γ δ

)
+ ξk + 1{Xi≤−γ δ−1/2}

]
,(2.4)

where in the last inequality we use (1.17) for z = 2γ δ ≤ ζ (provided M is large
enough). Since B(i, j) is nonincreasing in |i − j |, by Slepian’s inequality the last
term is in turn further bounded above by

N∑
j=0

(
N

j

)(
P
(

sup
t∈[0,M]

Z
(∞)
t < 3γ δ

)
+ ξk

)N−j
P
(
Xi ≥ γ δ−1/2,1 ≤ i ≤ j

)
.(2.5)

Proceeding to bound P(Xi ≥ γ δ−1/2,1 ≤ i ≤ j), recall that all eigenvalues
of B lie within [1/2,3/2], and so the quadratic form x′B−1x is bounded bellow
by 2

3‖x‖2
2, yielding the bound

P
(
Xi ≥ γ δ−1/2,1 ≤ i ≤ j

)= det(B)−1/2(2π)−j/2
∫
[γ δ−1/2,∞)j

e−(1/2)x′B−1x dx

≤ 2j/2

(2π)j/2

∫
[γ δ−1/2,∞)j

e−1/3‖x‖2
2 dx

= 3j/2P
(
X1 ≥

√
2/3γ δ−1/2)j .

Combining this with (2.4) and (2.5), we deduce that

P
(

sup
t∈[0,T ]

Z
(k)
t < 0

)
≤
[
P
(

sup
t∈[0,M]

Z
(∞)
t < 3γ δ

)
+ξk+

√
3P

(
X1 ≥

√
2/3γ δ−1/2)]N.
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Considering T −1 log of this inequality in the limit T , k →∞ results with

lim sup
k,T→∞

1

T
logP

(
sup

t∈[0,T ]
Z

(k)
t < 0

)
≤ 1

M(1 + δ)
log

[
P
(

sup
t∈[0,M]

Z
(∞)
t < 3γ δ

)
+√

3P
(
X1 ≥

√
2/3γ δ−1/2)].(2.6)

Next, note that with X1 a standard normal variable and η(1 − 2δ) > 1,

lim sup
M→∞

1

M
logP

(
X1 ≥

√
2/3γ δ−1/2)≤− lim inf

M→∞
(
3Mγ 1−2δ)−1 =−∞,

whereas by (1.16) we have

lim sup
M→∞

1

M
logP

(
sup

t∈[0,M]
Z

(∞)
t < 3γ δ

)
=−b(A∞).

Thus, considering the RHS of (2.6) as M →∞, then δ ↓ 0, yields the upper bound
in (1.18).

2.2. Proof of Lemma 1.8. Let Vt denote the stationary, centered Gaussian
process of auto-correlation D(·, ·) ∈ S . Assuming without loss of generality that
εk ∈ [0,3/4] (so 1 −√

1 − εk ≤√
εk ∧ 1/2), per fixed M and z, by Slepian’s in-

equality and the LHS of (1.21), for any s ≥ 0 and k,

P
(

sup
t∈[0,M]

Z
(k)
s+t < z

)
≥ P

(
sup

t∈[0,M]
{√

1 − εkZ
(∞)
t +√

εkVt

}
< z

)
≥ P

(
sup

t∈[0,M]
Z

(∞)
t < z− 2ε

1/4
k

)
− P

(
sup

t∈[0,M]
Vt ≥ ε

−1/4
k − |z|

)
.

By sample path continuity, supt∈[0,M] Vt is finite almost surely, so with εk → 0 it
follows from the preceding that for any z and M finite,

lim inf
k→∞ inf

s≥0
P
(

sup
t∈[0,M]

Z
(k)
s+t < z

)
≥ P

(
sup

t∈[0,M]
Z

(∞)
t < z

)
.

Similarly, from the RHS of (1.21) we have that for any s ≥ 0 and k,

P
(

sup
t∈[0,M]

Z
(k)
s+t < z

)
≤ P

(
sup

t∈[0,M]
{√

1 − εkZ
(∞)
t +√

εkX1
}
< z

)
≤ P

(
sup

t∈[0,M]
Z

(∞)
t < z+ 2ε

1/4
k

)
+ P

(
X1 ≤−ε

−1/4
k + |z|),
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hence for any z and M finite,

lim sup
k→∞

sup
s≥0

P
(

sup
t∈[0,M]

Z
(k)
s+t < z

)
≤ P

(
sup

t∈[0,M]
Z

(∞)
t ≤ z

)
.

Turning to the second part of the lemma, recall [1], Theorem 1.4.1, that for some
universal constant C and all s, M , k and δ > 0,

E
[

sup
|t−t ′|≤δ,t,t ′≤M

∣∣Z(k)
s+t −Z

(k)
s+t ′

∣∣]≤ C

∫ ∞
0

[
pk

(
e−v2)∧ δ

]
dv

(using integration by parts, one easily confirms that the preceeding is equivalent
to [1], (1.4.5)). Thus, as Z

(k)
s has a standard normal law, for any k, the condi-

tion (1.22) guarantees (by an application of Arzela–Ascoli theorem), the stated
uniform tightness of the laws of Z

(k)
s+· on C[0,M]. As such, by Prohorov’s theo-

rem it is a precompact collection of laws (with respect to weak convergence on
C[0,M]). Clearly, pointwise convergence of Ak(s, s + τ) to A∞(0, τ ) implies,
per fixed s and finite M , convergence as k →∞ of the f.d.d. of Z

(k)
s+· on [0,M] to

those of Z
(∞)· . In combination with the preceding precompactness, this verifies the

convergence of Z
(k)
s+· to Z

(∞)· in distribution on C[0,M] (per s and M). The conver-

gence in law of supt∈[0,M] Z
(k)
s+t to supt∈[0,M] Z

(∞)
t which follows (by continuity

of z· �→ supt∈[0,M] zt on C[0,M]), implies, by definition, the validity of (1.17) in
case Ak ∈ S (where such convergence is by default uniform in s).

2.3. Proof of Lemma 1.1. The centered Gaussian process Y
(α)
t of (1.3) is well

defined [since the nonrandom, nonzero gt ∈ L2(R+) for all t ∈ R and α > −1].
Further, since ‖gt‖2 = et(α+1)/2‖g0‖2 and

(gt , gs) :=
∫ ∞

0
gt (r)gs(r) dr =

(
e−t + e−s

2

)−(α+1)

‖g0‖2
2,

it follows that

Cov
(
Y

(α)
t , Y (α)

s

)= (gt , gs)

‖gt‖2‖gs‖2
=

[
sech

(
t − s

2

)]α+1

,

so {Y (α)
t , t ∈R} is stationary and of the specified nonnegative covariance function.

Next, since

ĝt (r) := gt (r)

‖gt‖2
= rα/2

‖g0‖2
exp

(−t (α + 1)/2 − e−t r
)
,

is infinitely differentiable in t with ‖dkĝt

dtk
‖2 finite for all k ∈N, the sample functions

t �→ Y
(α)
t = ∫∞

0 ĝt (r) dWr of (1.3) are C∞(R)-valued.
The limit (1.4) for δT ≡ 0 is merely b(Fα+1) for covariance function

Fα+1 ∈ S+. Further, with τ �→ ρα(τ ) := [sech(τ/2)]α+1 decreasing and satisfying
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the condition of [12], Remark 3.1, it follows from [12], Theorem 3.1(iii), that (1.4)
extends to any δT → 0.

By yet another application of Slepian’s inequality, the stated monotonicity
properties of α �→ bα are immediate consequence of the monotonicity of α �→
ρα(τ/(α+1)) and α �→ ρα(τ/

√
α + 1), per fixed τ . Applying the monotone trans-

formation − log(·) to these two functions of α+1 and setting f (u) := log cosh(u),
the preceding is in turn equivalent to u �→ u−1f (u) nondecreasing and u �→
u−2f (u) nonincreasing on (0,∞). The former holds since

ψ1(u) := u2(u−1f (u)
)′ = uf ′(u)− f (u)

is such that ψ ′
1(u) = uf ′′(u) = u sech2(u) ≥ 0, hence u �→ ψ1(u) is nondecreas-

ing, starting at ψ1(0) = −f (0) = 0. So, necessarily both ψ1(u) and u−2ψ1(u) =
(u−1f (u))′ are nonnegative for u > 0, from which it follows that u−1f (u) is non-
decreasing. Similarly, setting

ψ2(u) := u3(u−2f (u)
)′ = uf ′(u)− 2f (u)

and noting that f ′(0)= tanh(0) = 0, results with

ψ ′
2(u) = uf ′′(u)− f ′(u)=

∫ u

0

(
f ′′(u)− f ′′(r)

)
dr ≤ 0,

due to the monotonicity of f ′′(u) = sech2(u). So, with u �→ ψ2(u) nonincreasing
on (0,∞) and starting at ψ2(0) = −2f (0) = 0, we deduce that ψ2(u) ≤ 0, and
hence also u−3ψ2(u)= (u−2f (u))′ ≤ 0, as claimed.

With u−1f (u) ↑ 1 as u ↑ ∞, when α ↓ −1 the autocorrelation Ãα(0, τ ) :=
ρα(|τ |/(α + 1)) of Y

(α)
t/(α+1) converges downward to the autocorrelation function

Ã−1(0, τ ) := exp(−|τ |/2) of the standard, stationary Ornstein–Uhlenbeck pro-
cess {Xt, t ≥ 0}, whose persistence exponent is 1/2 (cf. [5], Lemma 2.5). In view
of (1.4) and Slepian’s inequality, this results with

(α + 1)−1bα = b(Ãα)≤ b(Ã−1)= 1/2,

whereas the convergence of b(Ãα) to b(Ã−1) is established by applying The-
orem 1.6, as in (1.19). Indeed, condition (1.15) of the theorem holds since
Ãα(0, τ ) ≤ Ã0(0, τ ) = ρ0(τ ) decays exponentially in τ , uniformly in α ≤ 0,
while by Lemma 1.8, condition (1.17) holds for all z ∈ R since in this setting
p2

α(u) = 2(1 − Ãα(0, u)) ≤ 2(1 − e−u/2) ≤ u satisfies (1.23), and the limiting
Ornstein–Uhlenbeck process {Xt, t ≥ 0} of continuous sample path satisfies con-
dition (1.16) since, for example, it satisfies (1.20) by [12], Remark 3.1.

Similarly, since u−2f (u) ↑ 1/2 for u ↓ 0, the correlation functions Âα(0, τ ) :=
ρα(|τ |/√α + 1) of Y

(α)

t/
√

α+1
, α > −1, converge downward to Â∞(0, τ ) :=

exp(−τ 2/8) when α ↑ ∞. Consequently, Â∞ ∈ S+ is the covariance function
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of some centered, stationary Gaussian process {Ẑt , t ≥ 0}, having nonnegative
persistence exponent b̂∞ := b(Â∞). By Slepian’s inequality and (1.4),

(α + 1)−1/2bα = b(Âα)≤ b(Â∞)= b̂∞
and b(Âα) → b(Â∞) as a consequence of applying Theorem 1.6 for Âα ∈ S+.
Indeed, in this setting we have the uniform (over α ≥ 0), exponential decay
of Âα(0, τ ) ≤ ρ0(τ ), condition (1.23) of Lemma 1.8 holds as p2

α(u) = 2(1 −
Âα(0, u)) ≤ 2(1 − e−u2/8) ≤ u2/4 and we dealt already in Remark 1.9 with con-
dition (1.20), and thereby (1.16). Finally, noting that exp(−|τ |/8) ≤ exp(−τ 2/8)

for |τ | ≤ 1 and applying Slepian’s inequality twice, we find that for all T ,

P
(

sup
t∈[0,T ]

Ẑt ≤ 0
)
≥ P

(
sup

t∈[0,1]
Ẑt ≤ 0

)�T � ≥ P
(

sup
t∈[0,1]

Xt/4 ≤ 0
)�T �

.

Clearly, P(supt∈[0,1/4] Xt ≤ 0) > 0, hence b̂∞ is finite.

3. Proof of Theorem 1.3.

3.1. Asymptotics for p[0,1](n) and p(1,∞)(n). We start by stating the three
lemmas used in proving part (a) of Theorem 1.3 (deferring their proofs to Sec-
tion 4). First, due to smoothness of Qn(·), for δ > 0 small, sgn{Qn(e

−u)} is con-
trolled by the value of Qn(1) when |u| ≤ n−(1−δ) and by the values of a0 or an

when |u| ≥ n−δ . Hence, as our next lemma states, the contribution of this range of
arguments to persistence exponents is negligible.

LEMMA 3.1. In the setting of Theorem 1.3:

(a) For any α ∈R and slowly varying L(·),
lim
δ→0

lim inf
n→∞

1

Tn

logP
(

sup
|u|≤n−(1−δ)

{
Qn

(
e−u)} < 0

)
= 0,(3.1)

lim
δ→0

lim inf
n→∞

1

Tn

logP
(
Qn

(
e−u) < 0, ∀|u| ≥ n−δ)= 0.(3.2)

(b) If
∑

i L(i)iα converges then n �→ p[0,1](n) is bounded away from zero. More
generally, if α ≤−1 then

lim
n→∞

1

Tn

logP
(
sup
u≥0

{
Qn

(
e−u)} < 0

)
= 0.(3.3)

Hereafter, for positive functions f,g of common domain, f (x) � g(x) stands
for existence of finite uniform bound supx f (x)/g(x) ≤C(α,L(·)).

From (3.3), we have that p[0,1](n) = n−o(1) when α ≤−1, and our next lemma
is key to finding the contribution of u ∈ (n−(1−δ), n−δ) to the asymptotics of
p[0,1](n), in case α > −1.
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LEMMA 3.2. For any α > −1, δ > 0, slowly varying L(·) and hα,n(·) as
in (1.26),

lim
n→∞ sup

w∈(2n−(1−δ),2n−δ)

∣∣∣∣wα+1hα,n(w)

L(1/w)
− �(α + 1)

∣∣∣∣= 0.(3.4)

Consequently, in the setting of Theorem 1.3, for u, v ∈ (n−(1−δ), n−δ),

c̄n(u, v) := corr
[
Qn

(
e−u),Qn

(
e−v)]� e−(α+1)/4| logv−logu|(3.5)

and for any M finite there exist εn = εn(M) ↓ 0 such that if in addition u/v ∈
[1/M,M], then

(1 − εn)R(u, v)α+1 + εnR(u, v)α+2 ≤ c̄n(u, v)

≤ (1 − εn)R(u, v)α+1 + εn(3.6)

[for R(·, ·) of (1.27)].

Similarly, the following lemma controls the contribution of x ∈ (en−(1−δ)
, en−δ

)

to p(1,∞)(n).

LEMMA 3.3. For hα,n(·) of (1.26), any α ∈R, δ > 0 and slowly varying L(·),
as n→∞,

sup
w∈(2n−(1−δ),2n−δ)

∣∣∣∣we−nwhα,n(−w)

L(n)nα
− 1

∣∣∣∣→ 0.(3.7)

Consequently, for all u, v ∈ (n−(1−δ), n−δ),

c̃n(u, v) := corr
[
Qn

(
eu),Qn

(
ev)]� e−1/2| logv−logu|(3.8)

and for any M finite there exist εn = εn(M) ↓ 0 such that if in addition u/v ∈
[1/M,M], then

(1 − εn)R(u, v)+ εnR(u, v)2 ≤ c̃n(u, v)≤ (1 − εn)R(u, v)+ εn.(3.9)

PROOF OF PART (a) OF THEOREM 1.3. Starting with the proof of (1.5),
we fix δ > 0 and partition R+ into three disjoint intervals JH = [n−δ,∞), J =
(n−(1−δ), n−δ) and JL = [0, n−(1−δ)]. Then, with �Qn(u) := Qn(e

−u)/
√

hα,n(2u),
by Slepian’s inequality and the nonnegativity of the covariance of Qn(·), we have
that

P
(
sup
u∈J

{�Qn(u)
}
< 0

)
≥ P

(
sup

x∈[0,1]
{
Qn(x)

}
< 0

)
≥ P

(
sup
u∈J

{�Qn(u)
}
< 0

)
P
(

sup
u∈JL

{�Qn(u)
}
< 0

)
P
(

sup
u∈JH

{�Qn(u)
}
< 0

)
.
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Considering the limit of 1
Tn

log(·) of these probabilities as n → ∞ followed by
δ ↓ 0, we have by Lemma 3.1 that suffices to consider α > −1, and only the term
involving u ∈ J is relevant for the asymptotics of p[0,1](n). To deal with the latter
term, let

An(s, t) := c̄n

(
exp

{−e−s/nδ}, exp
{−e−t /nδ})

so that u, v ∈ J correspond to s := − logu − δTn and t := − logv − δTn, in
[0, (1−2δ)Tn]. Upon this change of variables, the inequalities (3.6) of Lemma 3.2
translates into (1.21) holding for A∞(s, t) := F(s, t)α+1 and D(s, t) := F(s, t)α+2

in S+, the covariance functions of processes Y
(α)
t and Y

(α+1)
t of continuous

sample path. Hence, by Lemma 1.8 condition (1.17) of Theorem 1.6 holds,
whereas by (1.4) of Lemma 1.1 so does condition (1.16), and from (3.5) we
have that An(s, t) ≤ C exp(−α+1

4 |t − s|) for some C finite, any n and all
s, t ∈ [0, (1 − 2δ)Tn], which is much stronger than condition (1.15). We thus con-
clude from Theorem 1.6 (for T = Tn →∞, as in Remark 1.7), that

lim
n→∞

1

Tn

logP
(
sup
u∈J

{�Qn(u)
}
< 0

)
=−(1 − 2δ)bα(3.10)

from which (1.5) follows upon taking δ ↓ 0.
Similarly, for proving (1.6) we fix δ > 0 and considering Q̂n(w) := Qn(e

w)/√
hα,n(−2w), split the supremum over w ∈R+ into the disjoint JL, J and JH , of

which by Lemma 3.1 only the supremum over w ∈ J matters. Same change of vari-
able yields covariance functions An(s, t) := c̃n(exp{−e−s/nδ}, exp{−e−t /nδ}) for
s, t ∈ [0, (1 − 2δ)Tn], which in view of (3.9) of Lemma 3.3 satisfy (1.21) for
A∞(s, t)= F(s, t) and D(s, t) = F(s, t)2, whereas the bound (3.8) of that lemma
provides uniform exponential decay An(s, t) ≤ C exp(−|t − s|/2). Put together,
by yet another application of Lemmas 1.8 and 1.1, and Theorem 1.6, we conclude
that

lim
n→∞

1

Tn

logP
(
sup
u∈J

{
Q̂n(u)

}
< 0

)
=−(1 − 2δ)b0,(3.11)

so letting δ ↓ 0 we arrive at (1.6).
Turning to prove (1.7), since Qn(x) has nonnegative correlation on [0,∞), by

Slepian’s inequality, for any slowly varying L(·) and all n, the lower bound

p[0,∞)(n) ≥ n−bα−b0−o(1)(3.12)

as in (1.7), is a direct consequence of the corresponding lower bounds of
(1.6) and (1.5), and the matching upper bound for (1.7) is derived in the sequel
[while upper bounding pR(n)]. �
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3.2. Lower bound on pR(n). Having centered Gaussian coefficients, the joint
law of {Qn(x) :x ∈R} is invariant under x �→ −x, hence same lower bound applies
for p(−∞,0](n). Consequently, for the stated lower bound on pR(2n), it suffices to
establish strong control on corr[Qn(x),Qn(−y)] for x, y > 0.

Unfortunately, in case x = y ∈ (0,1) fixed, these correlations do not decay
with n. However, the nonnegligible correlation comes from lower order coeffi-
cients of Qn(·), so our first order of business is to show that suffices to consider
only the higher order part of Qn(·).

Indeed, by definition, for any slowly varying L(·) there exists r ∈ N such that
L(i) > 0 for all i ≥ 2r . Further, as ρ ↓ 0, uniformly in |x| ≤ 1

fρ(x) := 1 + x2r − ρ

r∑
i=1

|x|2i−1 → f0(x) ≥ 1

and fρ(x) is nondecreasing in |x| ≥ 1 for all ρ small enough, hence infx fρ0(x) > 0
for some ρ0 > 0. Fixing δ > 0, set m = mn := �δTn� and with âi denoting inde-
pendent centered Gaussian variables of variances (3/4)E[a2

i ], independent of the
sequence {ai}, note that Qn(·) = QL

n (·) + QM
n (·) + QH

n (·), for the independent
algebraic polynomials,

QL
n (x) := â0 +

2r−1∑
i=1

aix
i + â2rx

2r ,

QM
n (x) := 0.5

m−1∑
i=r

x2i[a2i + 2a2i+1x + a2i+2x
2],

QH
n (x) := 0.5a0 + â2mx2m +

n∑
i=2m+1

aix
i.

For any ρ > 0, the event

�ρ :=
{
â0 ≤−1,

r−1
sup
i=1

{a2i} ≤ 0,
r

sup
i=1

{|a2i−1|}≤ ρ, â2r ≤−1
}
,

of positive probability [as E[a2
0]L(2r) > 0], results with QL

n (·) ≤−fρ(·). Hence,

P
(

sup
x∈R

{
QL

n (x)
}
< 0

)
≥ P(�ρ0) > 0.

Next, if a2i ≤ 0 and a2ia2i+2 ≥ a2
2i+1 for all r ≤ i ≤ m − 1, then necessarily

QM
n (x) ≤ 0 for all x ∈ R. Due to strict positivity of the slowly varying L(2i) for

i ≥ r ,

c2i := L(2i + 1)√
L(2i)L(2i + 2)

(
(2i + 1)2

(2i)(2i + 2)

)α/2
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is uniformly bounded for i ≥ r , for example, C := supi≥r{c2i} is finite and with
ai = √

iαL(i)Zi for standard i.i.d. Gaussian {Zi}, the preceding event occurs
whenever Z2i ≤−√

C and |Z2i+1| ≤ 1 for all r ≤ i ≤ m. That is, for some positive
λ= λ(C) < P(�ρ0) and all n large

P
(

sup
x∈R

{
QM

n (x)
}≤ 0

)
≥ λm.

By the preceding and independence of these three polynomials,

pR(n) ≥ P
(

sup
x∈R

{
QL

n (x)
}
< 0, sup

x∈R
{
QM

n (x)
}≤ 0, sup

x∈R
{
QH

n (x)
}≤ 0

)
≥ λm+1P

(
sup
x∈R

{
Q̃n(x)

}≤ 0
)
,(3.13)

where Q̃n(x) := QH
n (x)√

var(QH
n (x))

and dn(x, y) := corr[QH
n (x),QH

n (y)]. Note that the

covariance of QH
n (e−·) is 0.25 + hα,n(·)− hα,2m−1(·) and m = mn = O(logn) is

small enough that both (3.6) and (3.9) apply for dn(e
−u, e−v). It is further not hard

to check that Lemma 3.1 holds for QH
n (·). Thus, by a rerun of the proof of part (a)

of Theorem 1.3 we arrive at the analog of (3.12) for QH
n (·). Namely, that if ξn → 0

as n →∞, then

P
(
sup
x≥0

{
Q̃n(x)

}≤ ξn

)
≥ n−bα−b0−o(1).(3.14)

We show in the sequel that subject to condition (1.8) on L(·), for even values of
n →∞,

γn := −mn inf
xy>0

{
dn(x,−y)∧ 0

}→ 0.(3.15)

This implies that for εn = 2γn/mn,

(1 − εn) dn(x, y)+ εn ≥ dn(x, y)1{xy≥0},

hence with ξn := −γ
1/4
n [so ξ2

n/εn = mn/(2
√

γn)], and Z a standard Gaussian
independent of Q̃n(·), it follows from Slepian’s inequality and the union bound
that

P
(

sup
x∈R

{
Q̃n(x)

}≤ 0
)
≥ P

(
sup
x∈R

{√
1 − εnQ̃n(x)+√

εnZ
}≤ ξn

)
− P(

√
εnZ ≤ ξn)

≥
[
P
(
sup
x≥0

{
Q̃n(x)

}≤ ξn

)]2 − e−mn/(4
√

γn).

Considering T −1
n log(·) of both sides and taking n → ∞ followed by δ ↓ 0, we

conclude in view of (3.13), (3.14) and our choice of m= mn = �δTn�, that

lim inf
n→∞

1

Tn

logpR(n) ≥ 2 lim
δ↓0

lim inf
n→∞

1

Tn

logP
(
sup
x≥0

{
Q̃n(x)

}≤ ξn

)
≥−2(bα + b0).
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Proceeding to prove (3.15), note that for x, y ≥ 0,

dn(x,−y)= dn(x, y)

[
0.25 + hδ

e(xy)− hδ
o(xy)

0.25 + hδ
e(xy)+ hδ

o(xy)

]
,

where, assuming hereafter that n is an even integer,

hδ
e(z) :=

n/2∑
i=m+1

L(2i)(2i)αz2i + 3

4
L(2m)(2m)αz2m,

hδ
o(z) :=

n/2∑
i=m+1

L(2i − 1)(2i − 1)αz2i−1.

With dn(x, y) ∈ [0,1], we thus get (3.15) by showing that for some γn → 0,

hδ
e(z) ≥

(
1 − γnm

−1
n

)
hδ

o(z) ∀z ≥ 0.(3.16)

To this end, setting C2i−1 := √
L(2i)L(2i − 2)(2i)α(2i − 2)α , observe that with n

even [and L(·) nonnegative], by discriminant calculations similar to those we used
for bounding QM

n (·),

hδ
e(z) ≥

n/2∑
i=m+1

C2i−1z
2i−1 ∀z ∈R.

Hence, (3.16) follows from

lim sup
i→∞

(2i − 1)

∣∣∣∣ C2i−1

L(2i − 1)(2i − 1)α
− 1

∣∣∣∣= 0,

which for α finite is a direct consequence of our assumption (1.8).

3.3. Upper bound on pR(n). Considering first the case of α > −1, we fix
δ > 0 and have that

pR(n) ≤ P
(

sup
x∈In(δ)

{
Qn(x)

}
< 0

)
,

where

In(δ) := ±{(
e−n−(1−δ)

, e−n−δ )∪ (
en−(1−δ)

, en−δ )}=:
4⋃

i=1

Ji(δ).

The asymptotic of pJ3(δ)(n) and pJ4(δ)(n), provided in (3.10), and (3.11), re-
spectively, extend to any crossing levels ξn → 0. In view of these and the in-
variance of law of Qn(·) to change of sign, by the usual argument based on
Slepian’s inequality, it remains only to show that the autocorrelation cn(x, y) :=
corr[Qn(x),Qn(y)] satisfies

cn(x, y) ≤ εn + (1 − εn)cn(x, y)1{(x,y)∈Ji(δ),1≤i≤4}(3.17)
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for some εnTn → 0. This amounts to confirming that

Tncn(x,−y) � o(1) ∀x, y ∈ (
e−n−δ

, en−δ )
,(3.18)

Tncn

(
x, y−1)� o(1) ∀x, y ∈ (

e−n−δ

, e−n−(1−δ))
.(3.19)

Turning to prove (3.18), note that

Cov
(
Qn(x),Qn(y)

)= he(xy)+ ho(xy)

for

he(z) := 1 +
n/2∑
i=1

L(2i)(2i)αz2i , ho(z) :=
n/2∑
i=1

L(2i − 1)(2i − 1)αz2i−1.

Thus, ∣∣cn(x,−y)
∣∣= cn(x, y)

|he(xy)− ho(xy)|
he(xy)+ ho(xy)

≤ |he(xy)− ho(xy)|
he(xy)+ ho(xy)

and it suffices to show that as n →∞,

Tn sup
| log z|≤2n−δ

|he(z)− ho(z)|
he(z)+ ho(z)

→ 0.(3.20)

To this end, setting m= mn := �T 2
n � we have by (1.8) that∣∣he(z)− ho(z)

∣∣
≤ 1 +

2m∑
i=1

L(i)iαzi +
n/2∑

i=m+1

L(2i)(2i)αz2i

∣∣∣∣L(2i − 1)(2i − 1)α

L(2i)(2i)α
z−1 − 1

∣∣∣∣
�

2m∑
i=1

iα+δ +
n/2∑

i=m+1

[∣∣∣∣1 − 1

z

∣∣∣∣+ sup
i≥m

∣∣∣∣L(2i − 1)(2i − 1)α

L(2i)(2i)α
− 1

∣∣∣∣]L(2i)(2i)αz2i

� T 2(α+2)+
n + [

n−δ +m−1
n

]
he(z).

Noting that z �→ [he(z)+ ho(z)] is nondecreasing on R+, we get from (3.4) that

inf
| log z|≤2n−δ

[
he(z)+ ho(z)

]
� L

(
nδ)nδ(α+1) � nδ(α+1)/2

and (3.20) follows. Proceeding to prove (3.19), note that max(x, y)n ≤ e−nδ
for

x, y ∈ J3(δ), hence

cn

(
x, y−1)= yn +∑n

i=1 L(i)iαxiyn−i

[(1 +∑n
i=1 L(i)iαx2i )(y2n +∑n

i=1 L(i)iαy2(n−i))]1/2

� nα+2 max(x, y)n√
L(n)nα

� e−nδ/2
.

Finally, in case α ≤−1 it suffices to consider the event of no-crossing in inter-
vals J1(δ) ∪ J4(δ) outside [−1,1]. Consequently, suffices to confirm only (3.18),
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the first of our two claims, and only for x, y ∈ J4(δ) := (en−(1−δ)
, en−δ

). We pro-
ceed as before via (3.20), now needing it only for

√
z ∈ J4(δ), so at end of its proof

we rely here on the bound (3.7) at w = 2n−(1−δ) (which hold for all α ∈R), to get
that uniformly in

√
z ∈ J4(δ),

he(z)+ ho(z) � n1−δL(n)nαe2nδ � enδ

.

4. Proofs of Lemmas 3.1–3.3. We begin by proving Lemmas 3.2 and 3.3 re-
garding asymptotic covariances in intervals which dominate the persistence prob-
abilities of Theorem 1.3.

PROOF OF LEMMA 3.2. We set J := (n−(1−δ), n−δ) and make frequent use of
the following obvious estimates, valid for all l > −1 and y > 1 > w > 0:

wl+1
∑

i≥y/w

ile−iw � e−y/2, wl+1
∫
x≥y/w

xle−xw dx � e−y/2,

wl+1
1/w∑
i=1

il � 1.

Here, the constants implied by � are allowed to depend on l (in any case we use
these bounds only for l = α, l = α + 1 and l = α + 2).

Starting with the proof of (3.4), from the representation theorem [3], Theo-
rem 1.3.1, it follows that L(x) ∼ L̃(x) and xηL̃(x) is eventually increasing (de-
creasing), if η > 0 (or η < 0, resp.). Hence, to simplify the presentation we
can assume hereafter that xηL(x) is eventually increasing (decreasing) if η > 0
(or η < 0, resp.). Thus, for η := (l + 1)/2 > 0 there exists x1 < ∞ such that
L(i)≤ L(1/w)/(wi)η for all x1 ≤ i ≤ 1/w. Consequently, for all a ≥ wx1,

wl+1

L(1/w)

a/w∑
i=x1

L(i)ile−iw ≤wl+1−η
a/w∑
i=x1

il−ηe−iw � a(l+1)/2.(4.1)

Likewise, there exists x2 < ∞ such that L(i) ≤ iwL(1/w) for x2 ≤ 1/w ≤ i;
hence, for b ≥wx2,

wl+1

L(1/w)

∑
i≥b/w

L(i)ile−iw ≤wl+2
∑

i≥b/w

il+1e−iw � e−b/2.(4.2)

Combining the bounds (4.1) and (4.2) with those corresponding to L(·) ≡ 1, results
with

wl+1

L(1/w)

∣∣∣∣∣
∞∑

i=x1

[
L(i)−L

(
1

w

)]
ile−iw

∣∣∣∣∣
� a(l+1)/2 + e−b/2 +

{
sup

λ∈[a,b]

∣∣∣∣L(λ/w)

L(1/w)
− 1

∣∣∣∣}wl+1
∞∑

i=x1

ile−iw.
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Since for l + 1 > 0 and w > 0,∣∣∣∣∣wl+1
∞∑

i=x1

ile−iw − �(l + 1)

∣∣∣∣∣� wmin(l+1,1),

it follows that for any n ≥ b/w,∣∣∣∣wl+1hl,n(w)

L(1/w)
− �(l + 1)

∣∣∣∣
� a(l+1)/2 + e−b/2 + sup

λ∈[a,b]

∣∣∣∣L(λ/w)

L(1/w)
− 1

∣∣∣∣+wmin(l+1,1)/2.(4.3)

To deduce (3.4), consider l = α >−1 and fixing ε > 0, choose a = a(ε) small and
b = b(ε) large such that for all w ∈ 2J the first two terms on the right-hand side
are bounded by ε. Then recall that for w ↓ 0, the convergence |L(λ/w)/L(1/w)−
1| → 0 is uniform over λ in compacts (cf. [3], Theorem 1.2.1).

Turning to prove (3.5), we have by (3.4) that for u, v ∈ J ,

c̄n(u, v)= hα,n(u+ v)√
hα,n(2u)hα,n(2v)

� S(u, v)R(u, v)α+1

with S(·, ·) and R(·, ·) of (1.27). By the eventual monotonicity of x �→ x±2ηL(x),
we further have for n−δ ≥ v ≥ u > 0 and all large n,√

L(1/(u+ v))

L(1/(2u))
≤
(

u+ v

2u

)η

,

√
L(1/(u+ v))

L(1/(2v))
≤
(

2v

u+ v

)η

,

resulting with S(u, v) ≤ (v/u)η. Clearly, R(u, v) ≤ 2(v/u)−1/2, so taking η =
(α + 1)/4 we arrive at (3.5). Next, fixing M > 1 and setting ḡα,n(w) :=
wα+1hα,n(w),

�Gα,n(u, v) := c̄n(u, v)

R(u, v)α+1 = ḡα,n(u+ v)√
ḡα,n(2u)ḡα,n(2v)

[by (1.27) and the preceding expression for c̄n(u, v)], our claim (3.6) amounts to

−εn

(
1 −R(u, v)

)≤ �Gα,n(u, v)− 1 ≤ εn

(
R(u, v)−(α+1) − 1

)
(4.4)

for some εn → 0, any v ∈ [u,Mu] and all u ∈ J . Since z − 1 − log z ≥ 0 on
R+ and εp(1 − r) ≤ log(1 + ε(r−p − 1)) whenever p ≥ 0 and r, ε ∈ [0,1], the
inequality (4.4) follows in turn from

−εn

(
1 −R(u, v)

)≤Gα,n(u, v) := log �Gα,n(u, v) ≤ εn(α + 1)
(
1 −R(u, v)

)
.

To this end, setting εn := (1 + α ∧ 0)−1(1 +M)2ε̃n and noting that

1 −R(u, v) = (
√

v −√
u)2

v + u
≥ (v − u)2

2(v + u)2 ≥ (v − u)2

2(1 +M)2u2 ,



108 A. DEMBO AND S. MUKHERJEE

it suffices to show that for some ε̃n → 0,

∣∣Gα,n(u, v)
∣∣≤ ε̃n

(v − u)2

2u2 .(4.5)

Now, fixing u, we expand the function v �→ Gα,n(u, v) in Taylor’s series about
v = u, to get

Gα,n(u, v) =Gα,n(u,u)+ (v − u)G′
α,n(u,u)+ (v − u)2

2
G′′

α,n(u, ξ)(4.6)

for some ξ = ξn(u, v) ∈ [u, v]. With

Gα,n(u, v) = gα,n(u+ v)− 1
2gα,n(2u)− 1

2gα,n(2v), gα,n(w) := log ḡα,n(w),

clearly Gα,n(u,u)= G′
α,n(u,u)= 0 and

u2∣∣G′′
α,n(u, ξ)

∣∣= u2∣∣g′′
α,n(u+ ξ)− 2g′′

α,n(2ξ)
∣∣

≤ 3 sup
w∈2J

{
w2∣∣g′′

α,n(w)
∣∣} := ε̃n.(4.7)

Thus, to complete the proof of (4.5), and thereby that of (3.6), it suffices to show
that w2|g′′

α,n(w)| → 0 uniformly in w ∈ 2J . For this task, setting h0
l,n(w) :=

hl,n(w)− 1, we have that h′l,n(w) =−h0
l+1,n(w) and consequently,

w2g′′
α,n(w) =−(α + 1)+ w2h0

α+2,n(w)

hα,n(w)
−
(

wh0
α+1,n(w)

hα,n(w)

)2

.(4.8)

From (3.4), we know that for l = 1,2, uniformly in w ∈ 2J , as n →∞,

wlh0
α+l,n(w)

hα,n(w)
→ �(α + l + 1)

�(α + 1)

and we are done since

−(α + 1)+ �(α + 3)

�(α + 1)
−
(

�(α + 2)

�(α + 1)

)2

= 0.(4.9) �

PROOF OF LEMMA 3.3. To prove (3.7), fix δ ∈ (0,1) and setting κn := n −
n1−δ/2, note that for w ∈ 2J

(
1 − e−w)e−nw

n∑
i=κn+1

∣∣∣∣ L(i)iα

L(n)nα
− 1

∣∣∣∣eiw

� n−δ/2 + sup
μ∈[1−n−δ/2,1]

∣∣∣∣L(μn)

L(n)
− 1

∣∣∣∣=: γn,
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e−nwhα,κn(−w) � e−nδ/3
and∣∣∣∣∣(1 − e−w)e−nw

n∑
i=κn+1

eiw − 1

∣∣∣∣∣� e−nδ/2
.

Combining these bounds, we find that for any α ∈R and w ∈ 2J ,∣∣∣∣we−nwhα,n(−w)

L(n)nα
− 1

∣∣∣∣� γn(4.10)

from which (3.7) follows, since γn → 0 for any fixed slowly varying L(·) and
δ > 0.

We now confirm (3.8) by noting that

c̃n(u, v)= hα,n(−u− v)/
√

hα,n(−2u)hα,n(−2v),

which by (3.7) converges as n → ∞, uniformly in u, v ∈ J , to R(u, v) ≤ 2(v ∨
u/v ∧ u)−1/2.

Next, proceeding along the same lines as the proof of (3.6), now with
�Gα,n(u, v) := c̃n(u, v)/R(u, v) and gα,n(w) := log[whα,n(−w)], reduces the
proof of (3.9) to w2|g′′

α,n(w)| → 0, uniformly in w ∈ 2J . To this end, it is not
hard to check that (4.8) is replaced here by

w2g′′
α,n(w) =−1 + w2h0

α+2,n(−w)

hα,n(−w)
−
(

wh0
α+1,n(−w)

hα,n(−w)

)2

=−1 + Var(wHn,w),

where [adopting the convention L(0)0α = 1], for j = 0,1, . . . , n,

P(Hn,w = j) = L(n− j)(n− j)αe−jw∑n
k=0 L(n− k)(n− k)αe−kw

.

The variance of the Geometric(e−w) random variable H∞,w is 1
4 [sinh(w/2)]−2,

hence Var(wH∞,w) → 1 when w ↓ 0. Further, as we have already seen, truncat-
ing wH∞,w and wHn,w at wn1−δ/2 changes the corresponding variances by at
most e−nδ/3

, uniformly over w ∈ 2J and from the estimates leading to (4.10), we
easily deduce that

sup
w∈2J ,j≤n1−δ/2

∣∣∣∣ P(Hn,w = j)

P(H∞,w = j)
− 1

∣∣∣∣� γn.

Combining these facts, we conclude that

sup
w∈2J

∣∣∣∣ Var(wHn,w)

Var(wH∞,w)
− 1

∣∣∣∣� γn,

thereby completing the proof of (3.9). �

We proceed with a regularity lemma that is used in the sequel for proving
Lemma 3.1 (and Lemma 5.1).
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LEMMA 4.1. There exist finite universal constants Kd , such that if centered
Gaussian process {Zt, t ∈ T }, indexed on T = [a, b]d ⊂Rd , satisfies

D(s, t)2 := E
[
(Zt −Zs)

2]≤M2‖t − s‖2
2 ∀s, t ∈ T(4.11)

for some M < ∞, then

E
[
sup
t∈T

Zt

]
≤KdM|b − a|.(4.12)

Further, if for d = 1 we have that t �→Zt ∈ C1 and

2(b − a)2 sup
t∈T

E
[
Z′

t
2]≤ sup

t∈T

E
[
Z2

t

]
,(4.13)

then for some universal constant μ > 0,

P
(
sup
t∈T

{Zt }< 0
)
≥ μ.(4.14)

PROOF. For proving (4.12) note that there exist Cd < ∞ such that T is cov-
ered by at most N(ε) = min{1, ε−d(CdM|b−a|)d} Euclidean balls of radius ε/M .
With BD(s, r)= {t ∈ T :D(s, t)≤ ε} denoting the ball in pseudo-metric D(·, ·) of
radius ε ≥ 0 and center s ∈ T and B(s, ε) the Euclidean ball of same radius and
center, our assumption (4.11) implies that B(s, ε/M) ⊆ BD(s, ε) for any s ∈ T ,
thereby inducing a cover of T by at most N(ε) balls of radius ε in pseudo-metric
D(·, ·). Recall [1], Theorem 1.3.3, that there exist universal finite K0 such that

E
[
sup
t∈T

Zt

]
≤K0

∫ CdM|b−a|
0

√
logN(ε) dε.

Our thesis follows upon change of variable y =
√

d−1 logN(ε), with Kd :=
2
√

dK0Cd

∫∞
0 y2e−y2

dy.
Turning to prove (4.14), let σT

2 := supt∈T E[Z2
t ] and �Zt := Zt −Zt0 for t0 ∈ T

such that E[Z2
t0
] = σ 2

T . Then, by Cauchy–Schwarz we have that for any s, t ∈ T ,

E
[
(�Zt − �Zs)

2]= E
[
(Zt −Zs)

2]≤ (t − s)2 sup
u∈[s,t]

E
[
Z′2

u

]
.

Thus, (4.13) results with

σ̄ 2
T := sup

t∈T

E
[�Z2

t

]≤ 1

2
σT

2

and considering (4.12) for �Zt , we further have that E[supt∈T
�Zt ] ≤ K1σT . Clearly,

sup
t∈T

Zt =Zt0 + sup
t∈T

�Zt,

so by a union bound we have for any λ > 0,

P
(
sup
t∈T

{Zt }< 0
)
≥ P(Zt0 <−λσT )− P

(
sup
t∈T

{�Zt }> λσT

)
.(4.15)



NO ZERO-CROSSINGS FOR RANDOM POLYNOMIALS 111

For λ ≥K1, large enough the first term on the right-hand side is at least 0.5e−λ2/2

and by Borell-TIS inequality, the second term is at most

2 exp
{
−(λ−K1)

2σ 2
T

2σ̄ 2
T

}
≤ 2e−(λ−K1)

2
.

This completes the proof, since μ := 0.5e−λ2/2 − 2e−(λ−K1)
2

is strictly positive
for λ large enough. �

We establish part (a) of Lemma 3.1 by partitioning relevant domains of Qn(e
−·)

to at most γ (δ)Tn subintervals, within each of which (4.13) holds [and where
γ (δ) → 0], thereby combining Lemma 4.1 and Slepian’s inequality. However, to
provide the estimates of part (b) in critical case of α =−1, we require the follow-
ing comparison (after a change of argument), between Qn(e

−·) and the standard
stationary Ornstein–Uhlenbeck process {Xt, t ≥ 0}.

LEMMA 4.2. For α = −1 and any slowly varying L(·), there exist r(γ ) ↓ 0
when γ ↓ 0, such that

c̄n(u, v) ≥
(

u

v

)r(γ )

∀0 < u ≤ v ≤ γ.(4.16)

PROOF. First note that for v ≥ u ≥ 0, by the monotonicity of u �→ hα,n(u),

c̄n(u, v) = hα,n(u+ v)√
hα,n(2u)hα,n(2v)

≥ hα,n(2v)

hα,n(2u)
≥ hα,∞(2v)

hα,∞(2u)
,

where the second inequality follows by noting that n �→ hα,n(2v)/hα,n(2u) is
monotone decreasing [for e−2(n+1)(v−u) ≤ hα,n(2v)/hα,n(2u) via term by term
comparison]. We thus get (4.16) upon finding r = r(γ ) ↓ 0 for which ξr(u) :=
urh−1,∞(u) is nondecreasing on (0,2γ ]. Since ξ ′r (u)≥ 0 if and only if

r ≥ ζ(u) := uh0
0,∞(u)

h−1,∞(u)
,

this amounts to showing that ζ(u) ↓ 0 for u ↓ 0. To this end, recall (4.3) that
uh0

0,∞(u) � L(1/u) and moreover for any η > 0,

h−1,∞(u) ≥ e−1
1/u∑

i=η/u

L(i)i−1 ≥ e−1L(1/u)
(
1 + o(1)

)
log(1/η),

so considering u ↓ 0 followed by η ↓ 0 we conclude that also ζ(u) → 0 as u ↓ 0.
�

PROOF OF LEMMA 3.1.

(a) We first consider α > −1 and establish (3.1) by partitioning [−n−(1−δ),

n−(1−δ)] to at most γ (δ)Tn intervals {Ik}, with γ (δ) → 0, such that Zu =
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en(u∧0)Qn(e
−u) satisfies (4.13) within each such subinterval Ik . Indeed, since

Qn(e
−u) has nonnegative autocorrelation, by Slepian’s inequality and (4.14) we

have then that

P
(

sup
|u|≤n−(1−δ)

{
Qn

(
e−u)} < 0

)
≥∏

k

P
(

sup
u∈Ik

{Zu}< 0
)
≥ μγ(δ)Tn

for some universal constant μ > 0, yielding (3.1) upon considering T −1
n log(·) of

these probabilities in the limit n→∞ followed by δ ↓ 0.
To carry out this program, note first that both E[Qn(e

−u)2] = hα,n(2u) and
E[Q′

n(e
−u)2] = hα+2,n(2u) are monotone in u≥ 0, with (4.13) obviously satisfied

within any subinterval of size 1/(2n).
Further, from (4.3) we have that for any l > −1 there exist finite b = bl and pos-

itive wl , so that ul+1hl,n(u)/L(1/u) is bounded (and bounded away from zero),
uniformly in u ∈ [0,wl] and n ≥ bl/u. So, with α > −1, the same applies for
u2h0

α+2,n(2u)/hα,n(2u). This in turn implies that for some η > 0, u� > 0 and
b ≥ 2 finite [depending only on α and L(·)], setting uk,n = k/(2n), k = 0, . . . , b

and uk+b,n = beηk/(2n), k ≥ 0, the process Zu = Qn(e
−u) satisfies (4.13) in each

interval Ik = [uk−1,n, uk,n], k ≥ 1, provided uk,n ≤ u�. Since uk�+b,n ≥ n−(1−δ) for
k� := (δ/η)Tn, this takes care of the part of u ≥ 0 in (3.1). In case u=−w < 0, we
follow the same reasoning, just now applying Lemma 4.1 for the rescaled process
Zw := e−nwQn(e

w), w ≥ 0. Specifically, setting

h̃l,n(w) :=
n∑

j=0

L(n− j)(n− j)αj le−jw

for l = 0,2 [with L(0)0α := 1], it is easy to check that E[Z2
w] = h̃0,n(2w) and

E[Z′
w

2] = h̃2,n(2w). Thus, per α > −1 and slowly varying L(·), the same parti-
tion takes care of u < 0 in (3.1) provided w3h̃2,n(w)/(L(n)nα) is bounded and
wh̃0,n(w)/(L(n)nα) bounded away from zero, uniformly in w ∈ [bn−1,w�], for
some b < ∞ and w� > 0. To this end, fixing l ≥ 0 and ε ∈ (0,1), note that the ra-
tio between

∑
j≤(1−ε)n L(n− j)(n− j)αj le−jw and L(n)nα ∑

j≤(1−ε)n j le−jw is
bounded and bounded away from zero, uniformly in n and w (for any α ∈ R),
and the same applies for the ratio between the latter and L(n)nα/wl+1, pro-
vided (1 − ε)(nw) ≥ b [as shown in the course of proving (3.4)]. Next, recall
that

∑n
i=0 L(i)iα � L(n)nα+1 for α > −1 and slowly varying L(·); hence, we are

done, for
n∑

j>(1−ε)n

L(n− j)(n− j)αj le−jw ≤ e−(1−ε)nwnl
εn∑
i=0

L(i)iα

� L(n)nαw−(l+1)ξε(nw),

where ξε(b) := bl+1e−(1−ε)b → 0 as b →∞.
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Having dealt with (3.1) for α > −1, we turn to α ≤ −1 and fixing γ > 0
set b(γ ) := γ − (α + 1). Fixing l ≥ 0, we claim that wl+1h̃l,n(w)/(L(n)nα) is
bounded and bounded away from zero, uniformly in w ∈ [b(γ )Tnn

−1,w�]. In-
deed, the only difference is that now

∑n
i=0 L(i)iα � L(n)nη for any fixed η > 0,

so to neglect the contribution of j > (1 − ε)n to h̃l,n(w) we need that

nη−(α+1)ξε(nw) → 0,

which applies for any nw ≥ b(γ )Tn if ε > 0 and η > 0 are small enough so that
γ (1 − ε) > 2η − ε(α + 1). We further cover [0, γ Tn/(2n)] and [b(−γ )Tn/(2n),

b(γ )Tn/(2n)] by at most 3γ Tn intervals of equal length 1/(2n), within each
of which Lemma 4.1 applies for Zw = e−nwQn(e

w). So, given that (3.3) han-
dles the domain u ≥ 0, by the same reasoning as before, we establish (3.1) by
showing that for any fixed γ > 0, α < −1 and η > 0 small enough, the pro-
cess w �→ Qn(e

w) satisfies condition (4.13) within each subinterval of the par-
tition of [γ Tn/(2n), b(−γ )Tn/(2n)] given by wk,n = eηkw0,n, k ≥ 1, and w0,n =
γ Tn/(2n). As hα,n(−w) ≥ 1, this in turn amounts to proving that w2h0

α+2,n(−w)

is uniformly bounded on (0, b(−γ )Tn/n]. Indeed, adapting the calculation leading
to (4.10), now for κn = εn and with L(i)� iε , we find that

h0
α+2,n(−w)� enwnε+α+3 + eεnwnε+(α+3)+,

which yields the stated uniform boundedness for enw ≤ nb(−γ ) upon choosing
ε > 0 small enough so that

b(−γ )+ ε + α + 1 < 0, εb(−γ )+ ε + (α + 3)+ − 2 < 0.

We proceed to confirm (3.2) where, by (3.3), if α ≤ −1 we only need to con-
sider u =−w ≤ 0. Setting wk,n := eηkn−δ , k ≥ 0, recall that we have already seen
that for any α ∈R and η > 0 small enough, the rescaled process Zw satisfies (4.14)
within each subinterval Ik := [wk−1,n,wk,n] [and when α > −1 the same applies
also for Zu = Qn(e

−u) with u > 0]. Hence, partitioning ±u ∈ [n−δ, u�] for fixed
u� ∈ (0,1] to at most k� such subintervals, by the same reasoning we applied
for (3.1) in case α > −1, the proof of (3.2) reduces to showing that for all α ∈ R

and any fixed u� > 0,

inf
n
P
(
Qn

(
e−u) < 0, ∀|u| ≥ u�

)
> 0.(4.17)

We deal with u ≤ −u� in (4.17) by equivalently, considering {Rn(x) :=
xnQn(x

−1) < 0} for x ∈ (0, x�], with x� := e−u� < 1. Specifically, note that for
x ∈ [0, x�],

E
[
R′

n(x)2]� n∑
j=2

L(n− j)(n− j)αj2x2j
�
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is bounded by CL(n)nα for C = C(α,L(·)) finite and all n. Indeed, with∑∞
j=0 j2x

2j
� finite, such bound applies for the sum over j ≤ (1 − ε)n on the right-

hand side, whereas the remainder sum over (1 − ε)n < j ≤ n contributes at most

n2x2(1−ε)n
�

εn∑
i=0

L(i)iα,

which is exponentially decaying in n, hence dominated by L(n)nα . Since
E[Rn(x)2] ≥ L(n)nα for all x > 0 and n, the uniform partition of [0, x�] to r

subintervals {Ik} of length x�/r each, results for r large enough with x �→ Rn(x)

satisfying (4.13) within each subinterval Ik . Hence, by Slepian’s inequality, we get
that P(supx∈[0,x�]{Rn(x)}< 0) ≥ μr . The same argument applies for u≥ u�, since
E[Qn(x)2] ≥ 1 for all x ≥ 0 and

E
[
Q′

n(x)2]≤ ∞∑
i=1

L(i)iα+2x2(i−1)

is uniformly bounded on [0, x�] [for any fixed α ∈R and slowly varying L(·)].
(b) Setting vn := E[Qn(1)2] = 1+∑n

i=1 L(i)iα and �Qn(x) := Qn(x)−Qn(1),
note that

sup
x∈[0,1]

E
[�Qn(x)2]= vn − 1.

If the monotone limit v∞ of vn is finite, then x �→ Q∞(x) =∑∞
i=0 aix

i is a well-
defined centered Gaussian process on [0,1] whose sample path are a.s. (uniformly)
continuous; hence, K∞ := E[supx∈[0,1] Q∞(x)] is finite. Since n �→ E[(Qn(x) −
Qn(y))2] is nondecreasing, it follows from Sudakov–Fernique inequality that the
(nondecreasing) sequence Kn := E[supx∈[0,1] Qn(x)] is bounded above by K∞.
As argued around (4.15), by Borell-TIS inequality, for any λ ≥ K∞ ≥ supn Kn

large enough and all n,

p[0,1](n) ≥ P
(
Qn(1) < −λ

√
vn

)− P
(

sup
x∈[0,1]

{�Qn(x)
}
> λ

√
vn

)
≥ 0.5e−λ2/2 − 2e−(λ−Kn)2vn/(2(vn−1)),

with vn ↑ v∞ ∈ [1,∞), the right-hand side is bounded away from zero for some λ

and all n large enough, and hence so is n �→ p[0,1](n).
Assuming hereafter that v∞ = ∞ and in particular that α = −1, in view of

Lemma 4.2, we get (3.3) once we show that

lim inf
n→∞

1

Tn

logP
(

sup
u∈[γ n−1,γ ]

{
Qn

(
e−u)} < 0

)
≥−r(γ )(4.18)



NO ZERO-CROSSINGS FOR RANDOM POLYNOMIALS 115

(which per Lemma 4.2 converges to zero as γ ↓ 0). This is done upon realizing
that the auto-correlation function of u �→ X−2r(γ ) log(u/γ ) matches the right-hand
side of (4.16), hence by Slepian’s inequality,

P
(

sup
u∈[γ n−1,γ ]

{
Qn

(
e−u)} < 0

)
≥ P

(
sup

t∈[0,2r(γ )Tn]
{Xt } < 0

)
and (4.18) follows, since Xt has persistence exponent 1/2. �

5. Proof of Theorem 1.5. We start with two lemmas, the first of which pro-
vides for each fixed positive time a smooth initial condition of the required law,
while the second explicitly constructs a solution of the heat equation for such ini-
tial condition.

LEMMA 5.1. Equip A = C(Rd) with the topology of uniform convergence
on compact sets. For any ε > 0, there exists an (A,BA)-valued centered Gaussian
field gε(·) with covariance Cε(x1,x2)= K2ε(x1−x2) such that |gε(x)| ≤ a‖x‖+b

for some a, b (possibly random) and all x.

PROOF. Since Cε(·, ·) is positive definite, there exists a centered Gaussian
field gε(x) indexed on Rd with covariance function Cε(·, ·). Further, with δ = 2ε

and utilizing the bound 1 − e−r ≤ r ,

E
[(

gε(x1)− gε(x2)
)2]= 2

(
Kδ(0)−Kδ(x1 − x2)

)≤ ‖x1 − x2‖2

(4πδ)d/22δ
.(5.1)

Hence, using the induced bound on higher moments of gε(x1) − gε(x2), by
Kolmogorov–Centsov continuity theorem we can and shall consider hereafter the
unique continuous modification of gε(·), which takes values in A and is measur-
able with respect to the corresponding Borel σ -algebra BA.

Combining the bound (5.1) with Lemma 4.1, we have that E[sup‖x‖≤n gε(x)] ≤
M ′n, for some finite M ′ = M ′(d, η) and all n. Further, with E[gε(x)2] = K2ε(0)

uniformly bounded in x, we have by Borell-TIS inequality and the symmetry of
gε(·), that

P
(

sup
‖x‖≤n

∣∣gε(x)
∣∣ > 2M ′n

)
≤ 2e−M ′2n2/2K2ε(0).

Hence, by the Borel–Cantelli lemma, almost surely sup‖x‖≤n |gε(x)| ≤ 2M ′n for
all n ≥ N(ω) large enough, so |gε(x)| ≤ a‖x‖ + b, for a = 2M ′ and b = b(ω) =
sup‖x‖≤N(ω) |gε(x)| is a.s. finite [since N(ω) is a.s. finite and gε ∈ A]. Finally,
to have such growth condition hold for all ω, let gε(·) ≡ 0 on the null set where
N(ω) =∞, which neither affects the law of gε(·) nor its sample path continuity.

�
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LEMMA 5.2. Let g ∈A satisfy |g(x)| ≤ a‖x‖ + b for some a, b finite. Then,
for any d = 1, . . . , and ε > 0, setting Dε =Rd × (η,∞), the function

φ(x, t) =
∫
Rd

Kt−ε(x − y)g(y) dy =
∫
Rd

Kt−ε(y)g(x − y) dy(5.2)

is a solution in Cε := C2,1(Dε) of the heat equation (1.11), and the unique such
solution which converges to g(x) for t ↓ η and satisfies the growth condition
|φ(x, t)| ≤ p‖x‖ + q

√
t + r for some finite constants p,q, r .

PROOF. Since Ks(·) is a probability density on Rd such that∫ ‖u‖2Ks(u) du = 2ds, from the given growth condition of g(·) it follows that
for any t > η,∣∣φ(x, t)

∣∣≤ b + a‖x‖ + a

∫
Rd

‖y‖Kt−ε(y) dy ≤ b + a‖x‖ + a
√

2d(t − ε).

Thus, φ(·, ·) of (5.2) is well defined and satisfies the growth condition (with p = a,
q = a

√
2d and r = b). With φ(x, ε + s) alternatively being the expected value of

g(x−√
sU) for a standard multivariate normal U, dominated convergence provides

its convergence to g(x) (uniformly on compacts), as s ↓ 0.
To confirm that φ ∈ Cε satisfies the heat equation (1.11) on Dε , note that

φ(x, t) = Kt−ε(x)F

(
x

2(t − ε)
,

1

4(t − ε)

)
,

F (θ1, θ2) :=
∫
Rd

eθ ′1y−θ2y′yg(y) dy.

Clearly, Kt(x) ∈ C∞(D0) and combining the assumed linear growth of g(·) with
dominated convergence, we have that also F ∈ C∞(D0). Hence, φ ∈ Cε and by
the same reasoning, each partial derivative of φ(·, ·) can be taken within the inte-
gral (5.2) over y. As Kt(x) satisfies (1.11) on D0, it thus follows that φ(·) satisfies
this PDE on Dε . Finally, the uniqueness of solution of (1.11) in Cε subject to the
assumed linear growth condition and the given initial condition g ∈A at t = ε, is
well known (e.g., see [7], Theorem 2.3.7, for uniqueness on [ε, T ], any T > 0).

�

We now complete the proof of Theorem 1.5 by combining the preceding lemmas
with Kolmogorov’s extension theorem (to construct one measurable solution over
all of D0).

PROOF OF THEOREM 1.5. Fixing δ = 2ε > 0, by Lemma 5.1 there exists cen-
tered (A,BA)-valued Gaussian field gε(·) of law Pε corresponding to covariance
function Kδ(x1 − x2). We claim that φ|ε = Tε(gε) given by (5.2) for t ≥ δ, is
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(Cδ,BCδ )-measurable. Indeed, consider smooth ψ :R �→ [0,1] supported on R+
such that ψ(r)= 1 for r ≥ 1 and let φ̂n = Tε,n(gε), given by

φ̂n(x, t) =
∫
Rd

ψ
(
n− ‖x − y‖2)Kt−ε(x − y)gε(y) dy.

Since these integrals are over bounded domains of y values and (x, t) �→
Kt−ε(x)ψ(n − ‖x‖2) is smooth for t ≥ δ > ε, each mapping Tε,n : (A,BA) �→
(Cδ,BCδ ) is continuous (with respect to the relevant uniform convergence on com-
pacts). Further, by the growth condition of Lemma 5.1 on gε , for any M < ∞ and
multi-index (r, �),

sup
‖x‖≤M,s∈[0,M]

∣∣∣∣ ∂

∂xr1 · · · ∂xrk ∂s�

∫
Rd

Ks+ε(x − y)
(
1 −ψ

(
n− ‖x − y‖2))gε(y) dy

∣∣∣∣
n→∞−→ 0.

Consequently, we have that Tε,n(gε) → φ|ε in Cδ as n →∞, yielding the Borel
measurability of φ|ε .

Let Qδ = Pε ◦ T−1
ε denote the centered Gaussian law of φ|ε thus induced on

(Cδ,BCδ ) by (5.2). For any δ′ > δ ≥ 0, clearly Dδ ⊂ Dδ′ making the identity map
a projection πδ,δ′ :Cδ �→ Cδ′ , with the complete, separable, metrizable space C0
being homeomorphic to the projective limit of {Cδ, δ > 0} (with respect to these
projections). It is easy to check that for all t, s ≥ δ,

E
[
φ
∣∣
ε(x1, t)φ

∣∣
ε(x2, s)

]
=

∫ ∫
Kt−ε(x1 − y1)Ks−ε(x2 − y2)Cε(y1,y2) dy1 dy2

= Kt+s(x1 − x2),

is independent of ε > 0. In particular, for any δ′ > δ > 0 the Borel probabil-
ity measure Qδ′ on Cδ′ is just the push-forward of Qδ via the projection πδ,δ′ .
Consequently, setting the f.d.d. of {φ|ε′(·) : ε′ ≥ ε} on (0,∞) to match those of
{π2ε,2ε′(φ|ε) : ε′ ≥ ε} yields a consistent collection, so Kolmogorov’s extension
theorem provides existence of Borel probability measure Q0 on C0 such that each
Qδ is the push-forward of Q0 by π0,δ (see, e.g., [6], Theorems 12.1.2 and 13.1.1).
In particular, Q0 corresponds to a centered Gaussian field φd ∈ C0 having the same
covariance as its restrictions φ|ε to subdomains D2ε . As each φ|ε satisfies (1.11)
on Dε , clearly φd satisfies it throughout D0 and the identity (1.14) further follows
from our explicit construction via (5.2) of the restriction of φd to Dt1 [by utilizing
Fubini’s theorem, the growth condition of Lemma 5.1 and convolution properties
of the Brownian semigroup t �→ Kt(·)]. Finally, φd ∈ C∞(D0) by the integral rep-
resentation (1.14) and smoothness of (x, t) �→Kt(x). �
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