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WEAK CONVERGENCE OF THE LOCALIZED DISTURBANCE
FLOW TO THE COALESCING BROWNIAN FLOW

BY JAMES NORRIS1 AND AMANDA TURNER

University of Cambridge and Lancaster University

We define a new state-space for the coalescing Brownian flow, also
known as the Brownian web, on the circle. The elements of this space are
families of order-preserving maps of the circle, depending continuously on
two time parameters and having a certain weak flow property. The space
is equipped with a complete separable metric. A larger state-space, allow-
ing jumps in time, is also introduced, and equipped with a Skorokhod-type
metric, also complete and separable. We prove that the coalescing Brownian
flow is the weak limit in this larger space of a family of flows which evolve
by jumps, each jump arising from a small localized disturbance of the cir-
cle. A local version of this result is also obtained, in which the weak limit
law is that of the coalescing Brownian flow on the line. Our set-up is well
adapted to time-reversal and our weak limit result provides a new proof of
time-reversibility of the coalescing Brownian flow. We also identify a martin-
gale associated with the coalescing Brownian flow on the circle and use this
to make a direct calculation of the Laplace transform of the time to complete
coalescence.

1. Introduction. This paper is a contribution to the theory of stochastic flows
in one dimension. The main result is Theorem 6.2. It establishes weak convergence
of a certain class of discrete-time stochastic flows on the circle, which we call dis-
turbance flows, to the coalescing Brownian flow. This is motivated by a surprising
connection with a model of Hastings and Levitov [9] for planar aggregation, which
is worked out in our companion paper [15]. In this model, the flow of harmonic
measure on the cluster boundary is a disturbance flow, and our convergence theo-
rem then shows that the random structure of fingers in the Hasting–Levitov cluster
is well described in the small-particle limit by the coalescing Brownian flow.

A disturbance flow is a composition of independent and identically distributed
random maps of the circle to itself. We do not assume that the maps are homeomor-
phisms, but do require that they preserve order. We consider the limit where the
maps are close to the identity and are well localized. In this limit, we show that the
trajectories of points in the flow converge weakly to coalescing Brownian motions.
Further, we obtain a corresponding result at the level of flows. In formulating this,
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we define some new metric spaces, which we call the continuous weak flow space
and the cadlag weak flow space. These spaces have a number of convenient prop-
erties, which we prove. In particular, the continuous weak flow space provides a
state-space for the coalescing Brownian flow where its independent-increment and
reversibility properties are transparently expressed. The cadlag weak flow space
provides a good framework for weak convergence of one-dimensional stochastic
flows with jumps.

The coalescing Brownian flow is, loosely speaking, a family of one dimensional
Brownian motions, one for each space–time starting point, which evolve indepen-
dently up to collision and coalesce thereafter. The possibility to identify a precise
mathematical object corresponding to this idea was shown by Arratia in 1979 in
his Ph.D. thesis [1]. Beginning with Arratia, and more recently pursued by Le Jan
and Raimond [11] and Tsirelson [18], one line of work has focused on the pos-
sibility to define a family of random measurable functions (φts : s, t ∈ R, s ≤ t),
having the flow property

φts ◦ φsr = φtr , r ≤ s ≤ t

and such that any finite collection of trajectories (φts(x) : t ≥ s) performs coalesc-
ing Brownian motions. It is known that the functions φts cannot be chosen to be
right-continuous (or left-continuous) and this presents an obstacle in identifying
a suitable metrizable state-space. A second line of work, initiated by Fontes et
al. [7], overcomes this difficulty by completing the set of trajectories to form a
compact set of continuous paths (for a well-chosen topology on paths). The space
of these compact sets of paths is then complete and separable for the Hausdorff
metric. Depending on exactly which completion is chosen, this leads to a number
of canonical versions of Arratia’s flow, known as Brownian webs.

In this paper, we follow the flow-type picture, but in order to overcome the prob-
lem of having multiple choices for the value of φts(x) at points of discontinuity,
we work instead with the pairs {φ−, φ+} of left-continuous and right-continuous
modifications of the Arratia flow. This is not far from the viewpoint of Tóth and
Werner [17], who however did not address questions of weak convergence. In for-
getting the values of φ at jumps, our state-space becomes less informative about
path properties, but more regular. We are obliged to relax the flow condition to a
“weak flow” property that we define in Section 3, where we also show how to de-
fine a suitable metric on this space. This gives us an alternative state-space to [7],
where independent increment and time reversibility properties are, we think, more
naturally expressed; indeed, time-reversal appears as an isometry. Moreover, we
have been able to develop a Skorokhod-type state-space for flows which evolve by
jumps. This then dispenses with the need to embed jump flows in continuous flows
by interpolation.

We envisage that there are many natural stochastic flow processes, which have
jumps in time for which continuous interpolation may be problematic. Our topol-
ogy provides a convenient framework in which to characterize these processes and
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study convergence. A limitation of our framework is that it requires the flows to
have noncrossing trajectories. In addition, in our formulation, one does not see
so clearly the possible varieties of path. In models where these properties are im-
portant, the topology in [7] may be more appropriate, however, this needs to be
weighed against the complications that may arise from the interpolation process.
An early version of some parts of the present paper, along with its companion pa-
per [15], appeared in [14]. A discussion on the relation between our work and the
well-established framework from [7] can also be found in this paper.

The paper is organized as follows. In Section 2, we introduce disturbance flows,
and we prove weak convergence for the trajectories from countably many points,
in the limit as the disturbances become small and well-localized. In Section 3, we
define the continuous weak flow space and show that it provides a canonical space
for the coalescing Brownian flow. Section 4 is a short digression on the distribu-
tion of the time taken for the coalescing Brownian flow on the circle to coalesce
completely. In Section 5, the larger, cadlag weak flow space, of Skorokhod type, is
introduced. The convergence of the disturbance flow to the coalescing Brownian
flow is shown in Section 6. In Section 7, we take advantage of the approximation
by disturbance flows to give a new proof of the time-reversibility of the coalescing
Brownian flow. We prove in Section 8 a local limit for scales intermediate between
the disturbance and the whole circle, the limit object being the coalescing Brown-
ian flow on the line. The more technical proofs can be found in the Appendix, and
a list of notation is provided at the end of the paper.

2. The disturbance flow on the circle. We introduce a class of random flows
on the circle, whose distributions are invariant under rotations of the circle and
under which each point on the circle performs a random walk. The flow maps are
in general not continuous on the circle but have an order-preserving property. In
a certain asymptotic regime, the motion of the flow from a countable family of
starting points is shown to converge weakly to a family of coalescing Brownian
motions.

We specify a particular flow by the choice of a nondecreasing, right-continuous
function f + :R→R with the following degree 1 property2

f +(x + 1) = f +(x) + 1, x ∈ R.(1)

Denote the set of such functions by R and write L for the analogous set of left-
continuous functions. Each f + ∈ R has a left-continuous modification f − ∈ L,
given by f −(x) = limy↑x f +(y). Write D for the set of all pairs f = {f −, f +}.
When f + is continuous, we also write f = f + and, generally, we write f in place

2These functions can be considered as liftings of maps from the circle R/Z to itself having an
order-preserving property. In the limiting regime which we consider, the circle map is a perturbation
of the identity map and our basic map f + is the unique lifting which is close to the identity map
on R.



938 J. NORRIS AND A. TURNER

of f ± in expressions where the choice of left or right-continuous modification
makes no difference to the value. The sets R and L are closed under composition,
but D is not. In fact, if f1, f2 ∈ D, then f −

2 ◦f −
1 is the left-continuous modification

of f +
2 ◦ f +

1 if and only if f1 sends no interval of positive length to a point of
discontinuity of f2. We say in this case that f2 ◦ f1 ∈ D, denoting by f2 ◦ f1 the
pair {f −

2 ◦f −
1 , f +

2 ◦f +
1 }. Write f̃ ± for the periodic functions f̃ ±(x) = f ±(x)−x.

Define id(x) = x and set

D∗ =
{
f ∈ D \ {id} :

∫ 1

0
f̃ (x) dx = 0

}
.

We assume throughout that our basic map f ∈D∗.
Let us suppose we are given a sequence (�n :n ∈ Z) of independent random

variables, all distributed uniformly on (0,1]. For f ∈ D∗ and θ ∈ (0,1], define
fθ (x) = f (x − θ) + θ . Then define, for m,n ∈ Z with m < n,

�±
n,m = f ±

�n
◦ · · · ◦ f ±

�m+1
.(2)

Set �n,n = id for all n ∈ Z. Thus, for l ≤ m ≤ n, we have �±
n,l = �±

n,m ◦ �±
m,l .

Since f can have at most countably many points of discontinuity and intervals of
constancy, we have �n,m = {�−

n,m,�+
n,m} ∈ D almost surely. We call the function

f the disturbance and we call (�n,m :m,n ∈ Z,m ≤ n) the discrete disturbance
flow.3 Define ρ = ρ(f ) ∈ (0,∞) by

ρ

∫ 1

0
f̃ (x)2 dx = 1.(3)

We embed the discrete-time flow in continuous-time using a Poisson random mea-
sure N on R of intensity ρ. Write (Tn :n ∈ Z) for the ordered sequence of atoms
of N , labeled so that T0 ≤ 0 < T1. Then, for each bounded interval I ⊆ R, set
�I = id if N(I) = 0, and otherwise set

�I = �n,m,

where Tm+1 and Tn are the smallest and largest atoms of N in I . Write � =
(�I : I ⊆ R) for the family of maps �I where I ranges over all bounded inter-
vals in R. We call � the Poisson disturbance flow with disturbance f . A second
embedding in continuous time, without additional randomness, will also be con-
sidered. By the lattice disturbance flow with disturbance f , we mean the family

3In the case where f is a homeomorphism, the restriction of the flow to m,n ≥ 0 can be recovered
from the process (�n,0 :n ≥ 0). This is a random walk on the group of homeomorphisms of the
circle. The structure of this group is a rich area of mathematics. See, for example, [3, 8, 12, 13].
The present paper can be seen as an investigation of scaling limits for such random walks with small
localized steps. Our conclusion is then that one has to complete the homeomorphism group to the
space of weak flows in order to support the limit measure, and then that, within the class we consider,
the limit is universal.
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(�I : I ⊆R), where �I = id if ρI ∩Z= ∅ and otherwise �I = �n,m with m + 1
the smallest integer and n the largest integer in the interval ρI . In each embedding,
the time-scale has been chosen to normalize the mean square displacement per unit
time. Unless otherwise mentioned, our discussion refers to the Poisson case, which
is slightly cleaner, but the variations needed for the lattice case are slight and we
shall end up with the same asymptotic results in both cases.

Write I = I1 ⊕ I2 if I1, I2 and I are intervals with sup I1 = inf I2, I1 ∩ I2 = ∅

and I1 ∪ I2 = I . Note that � has the following properties:

�+
I (x) and �−

I (x) are random variables for all bounded intervals I

and all x ∈ R,
(4)

�+
I = �+

I2
◦ �+

I1
and �−

I = �−
I2

◦ �−
I1

whenever I = I1 ⊕ I2,(5)

for all t ∈ R there exists δ > 0 such that for all s ∈ (t − δ, t) and all
u ∈ (t, t + δ), �(s,t) = �(t,u) = id.

(6)

For e = (s, x) ∈R2 and t ∈ [s,∞), set

X
e,±
t = �±

(s,t](x).

For each e, almost surely,

X
e,−
t = X

e,+
t for all t ≥ s.(7)

We will therefore drop the ± and write simply Xe = (Xe
t : t ≥ s). We call Xe

the trajectory of the flow starting from e. The ± will reappear in any statement
requiring specification of a version of Xe for uncountably many e. Write μ

f
e for

the distribution of Xe on the Skorokhod space De = Dx([s,∞),R) of cadlag paths
starting from x at time s. Write de for the Skorokhod metric on De and write μe

for the distribution on De of a standard Brownian motion starting from e.

PROPOSITION 2.1. The trajectory Xe of the Poisson disturbance flow with
disturbance f converges weakly to Brownian motion on De, uniformly in f ∈ D∗
as ρ(f ) → ∞.

PROOF. Write X for Xe within the proof to lighten the notation. Note that X

is a compound Poisson process, making jumps distributed as f̃ (�1) at rate ρ. So,
for t ≥ s,

E(Xt − Xs) = ρ(t − s)

∫ 1

0
f̃ (θ) dθ = 0,

E
(
(Xt − Xs)

2)= ρ(t − s)

∫ 1

0
f̃ (θ)2 dθ = t − s.
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Hence, the processes (Xt)t≥s and (X2
t − t)t≥s are martingales. A standard criterion

(see, e.g., [2], page 143 or [10], page 355) allows us to deduce that the family of
laws {μf

e :f ∈D∗} is tight in De. Now f is nondecreasing so

f̃ (θ) ≥ f̃ (θ0) − (θ − θ0), θ ≥ θ0

and so, if f̃ (θ0) ≥ 0 for some θ0, then

ρ−1 =
∫ 1

0
f̃ (θ)2 dθ ≥

∫ θ0+f̃ (θ0)

θ0

(
f̃ (θ0) − (θ − θ0)

)2
dθ = ∣∣f̃ (θ0)

∣∣3/3

and a similar argument leads to the same estimate also when f̃ (θ0) ≤ 0. Hence,∣∣f̃ (θ)
∣∣≤ (3/ρ)1/3, θ ∈ (0,1].(8)

So the jumps of (Xt)t≥s are bounded in absolute value by (3/ρ)1/3. Let μ be any
weak limit law for the limit ρ(f ) → ∞. Write (Zt )t≥s for the coordinate process
on De. Then, by standard arguments, μ is supported on continuous paths and under
μ both (Zt )t≥s and (Z2

t − t)t≥s are local martingales in the natural filtration of
(Zt )t≥s . Hence μ = μe by Lévy’s characterization of Brownian motion. �

Given a sequence E = (ek :k ∈ N) in R2, set

DE =
∞∏

k=1

Dek

and define a metric dE on DE by

dE

(
z, z′)= ∞∑

k=1

2−k(dek

(
zk, z

′
k

)∧ 1
)
, z = (zk :k ∈ N), z′ = (z′

k :k ∈ N
)
.(9)

Then (DE,dE) is a complete separable metric space and (Xek :k ∈ N) is a random
variable in DE . Write μ

f
E for the distribution of (Xek :k ∈N) on DE .

Write ek = (sk, xk) and denote by (Zk
t )t≥sk the kth coordinate process on DE ,

given by Zk
t (z) = zk

t . Consider the filtration (Zt )t∈R on DE , where Zt is the σ -
algebra generated by (Zk

s : sk < s ≤ t ∨ sk, k ∈ N). Write CE for the (measurable)
subset of DE where each coordinate path is continuous. Define on CE

T jk = inf
{
t ≥ sj ∨ sk :Zj

t − Zk
t ∈ Z

}
.

We sometimes think of the paths (Zk
t )t≥sk as liftings of paths in the circle R/Z.

Then the times T jk are collision times of the circle-valued paths. The following is
a variant of a result of Arratia [1]. It provides a useful martingale characterization
corresponding to the intuitive idea of coalescing Brownian motions on the circle.

PROPOSITION 2.2. There exists a unique Borel probability measure μE

on DE under which, for all j, k, the processes (Zk
t )t≥sk and (Z

j
t Zk

t − (t −
T jk)+)t≥sj∨sk are both continuous local martingales in the filtration (Zt )t∈R.
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We sketch a proof. For existence, one can take independent Brownian motions
from each of the given time–space starting points and then impose a rule of co-
alescence on collision, deleting the path of lower index. The law of the resulting
process has the desired properties. On the other hand, given a probability measure
such as described in the proposition, on some larger probability space, one can use
a supply of independent Brownian motions to resurrect the paths deleted at each
collision. Then Lévy’s characterization can be used to see that one has recovered
the set-up used for existence. This gives uniqueness.

Consider now a limit in which the basic map f is an increasingly well local-
ized perturbation of the identity, where we quantify this property in terms of the
smallest constant λ = λ(f ) ∈ (0,1] such that

ρ

∫ 1

0

∣∣f̃ (x + a)f̃ (x)
∣∣dx ≤ λ, a ∈ [λ,1 − λ].(10)

PROPOSITION 2.3. The joint distribution μ
f
E of the family of trajectories

(Xe : e ∈ E) in the Poisson disturbance flow with disturbance f converges weakly
to the coalescing Brownian law μE on DE , uniformly in f ∈ D∗, as ρ(f ) → ∞
and λ(f ) → 0.

PROOF. We write Xk for Xek within the proof. For each k, the family of
marginal laws {μf

ek :f ∈ D∗} is tight, as in Proposition 2.1. Hence, the family of

laws {μf
E :f ∈ D∗} is also tight. Let μ be any weak limit law for {μf

E :f ∈ D∗}
under the limits ρ = ρ(f ) → ∞ and λ = λ(f ) → 0. Then μ is supported on CE .
For all j, k the process

X
j
t Xk

t −
∫ t

sj∨sk

b
(
Xj

s ,Xk
s

)
ds, t ≥ sj ∨ sk,

is a martingale,4 where

b
(
x, x′)= ρ

∫ 1

0
f̃ (x − θ)f̃

(
x′ − θ

)
dθ.

We have |b(x, x′)| ≤ λ whenever λ ≤ |x − x′| ≤ 1 − λ. Hence, by standard ar-
guments, under μ, the process (Z

j
t Zk

t : sj ∨ sk ≤ t < T jk) is a local martin-
gale. We know from the proof of Proposition 2.1 that, under μ, the processes
(Z

j
t : t ≥ sj ), ((Z

j
t )2 − t : t ≥ sj ) and (Zk

t : t ≥ sk) are continuous local martin-

gales. But μ inherits from the laws μ
f
E the property that, almost surely, for all

4In the lattice case, a similar argument can be based on the martingale

X
j
t Xk

t − 1

ρ

�ρt�−1∑
n=�ρ(sj ∨sk)�

b
(
X

j
n/ρ,Xk

n/ρ

)
, t ≥ sj ∨ sk,
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n ∈ Z, the process (Z
j
t − Zk

t + n : t ≥ sj ∨ sk) does not change sign. Hence, by

an optional stopping argument, Z
j
t − Zk

t is constant for t ≥ T jk . It follows that

(Z
j
t Zk

t − (t − T jk)+)t≥sj∨sk is a continuous local martingale. Hence, μ = μE , by
Proposition 2.2. �

3. A new state-space for the coalescing Brownian flow. The weak conver-
gence result for trajectories, obtained in Proposition 2.3, suggests the possibility
of a deeper result at the level of flows, independent of the choice of starting points
for trajectories. This would be of interest to understand what statistics of the dis-
turbance flows, beyond trajectories, have weak limits, for example, trajectories of
the inverse, reverse-time flow. For such a flow-level result, we first specify a state-
space and metric for the notion of weak convergence, and then identify a limit
object, which we call the coalescing Brownian flow.

We begin by defining a metric on D. Let S denote the set of all periodic con-
tractions on R having period 1. Each f ∈ D can be identified with some f × ∈ S
by drawing new axes at an angle π/4 with the old, and scaling appropriately. See
Figure 1. More formally, since x + f +(x) is strictly increasing in x, there is for
each t ∈R a unique x ∈ R such that

x + f −(x)

2
≤ t ≤ x + f +(x)

2
.(11)

FIG. 1. The map f × obtained from f by rotating the axes by π
4 .
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Define f ×(t) = t − x. Note that id× = 0. Then the map f �→ f × :D → S is a
bijection, so we can define a metric dD on D by

dD(f, g) = ∥∥f × − g×∥∥= sup
t∈[0,1)

∣∣f ×(t) − g×(t)
∣∣.(12)

A proof of the italicized assertion is given in the Appendix. The same is true for
some further technical assertions which will be made below, written also in italics.
The metric space (S,‖ · · · ‖) is complete and locally compact, so the same is true
for (D, dD). An alternative characterization5 of the metric dD is as follows: for
f,g ∈ D and ε > 0, we have

dD(f, g) ≤ ε ⇐⇒ f −(x − ε) − ε ≤ g−(x) ≤ g+(x) ≤ f +(x + ε) + ε

for all x ∈ R.

We deduce that, for f,g ∈D,

dD(f, g) ≤ ‖f − g‖, 2dD(f, id) = ‖f − id‖
and

dD(f, g ◦ f ) ≤ ‖g − id‖ when g ◦ f ∈ D,

dD(f, f ◦ g) ≤ ‖g − id‖ when f ◦ g ∈ D.

Moreover, for any sequence (fn :n ∈ N) in D,

fn → f ⇐⇒ fn(x) → f (x) at every point x where f is continuous.

Here and below, we write fn → f to mean convergence in the metric dD .
We now define our space of flows. We call them weak flows to emphasize that

the usual flow property may fail at points of spatial discontinuity. Consider φ =
(φts : s, t ∈R, s < t), with φts ∈ D for all s, t . Say that φ is a weak flow if

φ−
ut ◦ φ−

ts ≤ φ−
us ≤ φ+

us ≤ φ+
ut ◦ φ+

ts , s < t < u.(13)

Say that φ is continuous if, for all t ∈ R,

φts → id as s ↑ t , φut → id as u ↓ t .

Write C◦(R,D) for the set of all continuous weak flows. It will be convenient
sometimes to extend a continuous weak flow φ to the diagonal, which we do by
setting φss = id for all s ∈ R. Then, for any φ ∈ C◦(R,D), the map

(s, t) �→ φts :
{
(s, t) : s ≤ t

}→ D(14)

5Thus, dD is a close relative of the Lévy metric sometimes used on the set of distribution functions
for real random variables. This choice of topology is insensitive to the value of a function at its jump
discontinuities, only keeping track of its left and right continuous versions. The relationships of such
a metric to the operations of composition and inversion in D, which are significant for us, do not
appear to have been studied.
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is continuous.
Define, for φ,ψ ∈ C◦(R,D),

dC(φ,ψ) =
∞∑

n=1

2−n{d(n)
C (φ,ψ) ∧ 1

}
,(15)

where

d
(n)
C (φ,ψ) = sup

s,t∈(−n,n),s<t

dD(φts,ψts).(16)

Then dC is a metric on C◦(R,D), under which C◦(R,D) is complete and sepa-
rable. Define, for e = (s, x) ∈ R2 and t ≥ s, evaluation maps Z

e,+
t and Z

e,−
t on

C◦(R,D) by

Z
e,±
t (φ) = φ±

ts (x).

Then, for all φ ∈ C◦(R,D), the maps t �→ Z
e,±
t (φ) : [s,∞) → R are continuous.

So we can consider the left and right coordinate processes Ze,± = (Z
e,±
t : t ≥ s) as

Ce-valued random variables on C◦(R,D). Write Ze = Ze,+ to lighten the notation.
Define a σ -algebra F and a filtration (Ft )t∈R on C◦(R,D) by

F = σ
(
Ze

t : e ∈ R2, t ≥ s(e)
)
, Ft = σ

(
Ze

r : e ∈ R2, r ∈ (−∞, t] ∩ [s(e),∞)),
where s(e) is the first component of e. Then Ft is generated by the random
variables Ze

r with e ∈ Q2 and r ∈ (−∞, t] ∩ [s(e),∞), and F is the Borel σ -
algebra of the metric dC . Define for e = (s, x) and e′ = (s′, x′) the collision time
T ee′

:C◦(R,D) → [0,∞] by

T ee′
(φ) = inf

{
t ≥ s ∨ s′ :Ze

t (φ) − Ze′
t (φ) ∈ Z

}
.

The following result is a variant, stated in the language of continuous weak
flows, of a result of Tóth and Werner [17], Theorem 2.1, which itself was a variant
of a result of Arratia [1]. The characterizing martingale properties may be ex-
pressed less formally as saying that there exists a unique probability measure on
C◦(R,D) under which the left and right coordinate processes Ze,± agree almost
surely for all e ∈ R2 and behave as Brownian motions coalescing on the circle. We
shall give a complete proof, in part because we need most components of the proof
also for our main convergence result, and in part because our framework leads to
some simplifications, for example in the probabilistic underpinnings contained in
Proposition A.10. The formulation in terms of continuous weak flows has advan-
tages in leading to a unique object, with a natural time-reversal invariance (for
which see Section 7), and for the derivation of weak limits (see Section 6).

THEOREM 3.1. There exists a unique Borel probability measure μA on
C◦(R,D) under which, for all e, e′ ∈ R2, the processes (Ze

t )t≥s(e) and (Ze
t Z

e′
t −

(t − T ee′
)+)t≥s(e)∨s(e′) are continuous local martingales for (Ft )t∈R. Moreover,

for all e ∈ R2, we have Ze,+ = Ze,− μA-almost surely.
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PROOF. We first show that there exists a unique probability measure μA on
C◦(R,D) under which the above property holds for all e, e′ ∈ Q2. This essentially
amounts to showing that if we have a family of coalescing Brownian motions start-
ing from every point in Q2, then there exists a unique continuous weak flow under
which the motions of each point in Q2 are the given coalescing Brownian motions.

Fix an enumeration E = (ek :k ∈ N) of Q2. Define the evaluation map
ZE,± :C◦(R,D) → CE by ZE,±(φ) = (Zek,±(φ) :k ∈ N). Then, we have Ft =
{(ZE,+)−1(B) :B ∈ Zt }, where (Zt )t∈R is the filtration on CE generated by pro-
jection mappings as in Proposition 2.2. Therefore, if μ is any probability measure
on C◦(R,D) with the property that for all j, k ∈ N, the processes (Z

ek
t )t≥sk and

(Z
ej

t Z
ek
t − (t −T ej ek )+)t≥sj∨sk are continuous local martingales for (Ft )t∈R; then

by Proposition 2.2, μ ◦ (ZE,+)−1 = μE .
To show existence and uniqueness, it is therefore sufficient to show that ZE,+

is bijective, or rather that there exists some μE-almost sure subset on which ZE,+
is bijective. Let the images of the evaluation maps be

C
◦,±
E = {ZE,±(φ) :φ ∈ C◦(R,D)

}
.

Then the sets C
◦,±
E are measurable subsets of CE with μE(C

◦,±
E ) = 1. More-

over, ZE,± maps C◦(R,D) bijectively to C
◦,±
E and the inverse bijections C

◦,±
E →

C◦(R,D), which we denote by �E,±, are measurable. Write ZE for ZE,+ and
�E for �E,+. Then, on C

◦,+
E , for all j, k ∈N, we have

Zek ◦ �E = Zk, T ej ek ◦ �E = T jk,

where Zk and T jk are the projections and stopping times from Proposition 2.2,
and for all t ∈ R and B ∈ Ft we have 1B ◦ �E = 1B ′ for some B ′ ∈ Zt . Thus, we
can uniquely define μA = μE ◦ (�E)−1 as required.

To complete the proof, we need to show that μA has the required properties
for any given e, e′ ∈ R2. Observe that all the assertions above hold also when
E is replaced by the sequence E′ = (e, e′, e1, e2, . . .). We repeat the steps taken
to obtain a probability measure μ′

A = μE′ ◦ (�E′
)−1 on C◦(R,D). Then, under

μ′
A, the processes (Ze

t )t≥s(e) and (Ze
t Z

e′
t − (t − T ee′

)+)t≥s(e)∨s(e′) are continuous
local martingales for (Ft )t∈R. But also, under μ′

A, for all j, k ∈ N, the processes
(Z

ek
t )t≥sk and (Z

ej

t Z
ek
t − (t −T ej ek )+)t≥sj∨sk are continuous local martingales for

(Ft )t∈R, so μA = μ′
A.

Finally, we have �E′,+ = �E′,− on C
◦,−
E′ ∩ C

◦,+
E′ , so

Ze,−(�E′)= Ze,−(�E′,−)= Ze,+(�E′)
,

μE′-almost surely, and so Ze,− = Ze,+, μA-almost surely, as claimed. �

We call any C◦(R,D)-valued random variable with law μA a coalescing Brow-
nian flow on the circle.
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4. Complete coalescence time. In this section, we digress to discuss the com-
plete coalescence time T of a coalescing Brownian flow � on the circle, given by

T = inf
{
t ≥ 0 :�+

t0(x) = y + n for some n ∈ Z, for all x ∈ R, for some y ∈ R
}
.

It is known that

E
(
eλT )= √

λ/ sin
√

λ, λ < π2.(17)

Cox [4] showed this by an indirect argument. More recently, Zhou [19] gave a
direct proof. We give an alternative and simpler proof.

Fix N ∈ N and define for t ≥ 0

Bk
t = �t0(k/N) − �t0

(
(k − 1)/N

)
, k = 1, . . . ,N.

Then each process Bk is a Brownian motion of diffusivity 2, starting from 1/N

and stopped on hitting 0 or 1. Consider the stopping time S = inf{t ≥ 0 :Bk
t =

1 for some k} and note that Bk
S = 0 for all but one random value, k = K say, for

which BK
S = 1. Define

Mt = M
(N)
t = eλt

N∑
k=1

sin
{√

λBk
t

}

then the stopped process (MS
t )t≥0 = (MS∧t )t≥0 is a martingale so, for all t ≥ 0,

N sin{√λ/N} = M0

= E(MS∧t )

= E

(
eλ(S∧t)

N∑
k=1

sin
{√

λBk
S∧t

})

≥ E
(
eλ(S∧t)) sin

√
λ.

For λ < π2 the final inequality allows us to see that E(eλS) < ∞, so we can let
t → ∞ to obtain

N sin{√λ/N} = E
(
eλS) sin

√
λ.

On letting N → ∞, we obtain (17).
In fact, it is not hard to see that M

(N)
t increases with N for all t ≥ 0 and is

eventually constant for all t > 0. The limit process M(∞) is also a martingale
with M

(∞)
0 = √

λ and M
(∞)
T = eλT sin

√
λ, and the optional stopping argument

can alternatively be applied directly to M(∞).
From (17), we can identify T as having the same law as one-half of the time

T̃ taken for a BES(3) to get from 0 to 1. This can also be seen directly using the
relation

S =
N∑

k=1

Sk1{Bk(Sk)=1},
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where Sk = inf{t ≥ 0 :Bk
t ∈ {0,1}}. Then, for any bounded measurable function f ,

E
(
f (S)

)= N∑
k=1

E
(
f (Sk)1{Bk(Sk)=1}

)= E
(
f (S1)|B1(S1) = 1

)

and, on letting N → ∞, we obtain E(f (T )) = E(f (T̃ /2)). We thank Neil
O’Connell and Marc Yor for this observation.

5. A Skorokhod-type space of nondecreasing flows on the circle. Since the
disturbance flow is not continuous in time, it will be necessary to introduce a larger
flow space to accommodate it. Consider now φ = (φI : I ⊆ R), where φI ∈ D and
I ranges over all nonempty bounded intervals. Recall that we write I = I1 ⊕ I2 if
I, I1, I2 are intervals with sup I1 = inf I2, I1 ∩ I2 = ∅ and I1 ∪ I2 = I . Say that φ

is a weak flow if

φ−
I2

◦ φ−
I1

≤ φ−
I ≤ φ+

I ≤ φ+
I2

◦ φ+
I1

, I = I1 ⊕ I2.(18)

Say that φ is cadlag6 if, for all t ∈ R,

φ(s,t) → id as s ↑ t, φ(t,u) → id as u ↓ t.

Write D◦(R,D) for the set of cadlag weak flows. It will be convenient to extend
a cadlag weak flow φ to the empty interval by setting φ∅ = id. Given a bounded
interval I and a sequence of bounded intervals (In :n ∈ N), write In → I if the
indicator functions 1In → 1I pointwise as n → ∞. For any φ ∈ D◦(R,D), we
have

φIn → φI as In → I.(19)

Let φ be a cadlag weak flow and suppose that φ{t} = id for all t ∈ R. Then,
using (18), we have φ(s,t) = φ(s,t] = φ[s,t) = φ[s,t] for all s < t and, denoting all
these functions by φts ,7 the family (φts : s, t ∈ R, s < t) is a continuous weak flow
in the sense of the preceding section.

For φ,ψ ∈ D◦(R,D) and n ≥ 1, define

d
(n)
D (φ,ψ) = inf

λ

{
γ (λ) ∨ sup

I⊆R

∥∥χn(I )φ×
I − χn

(
λ(I)

)
ψ×

λ(I)

∥∥},(20)

where the infimum is taken over the set of increasing homeomorphisms λ of R,
where

γ (λ) = sup
t∈R
∣∣λ(t) − t

∣∣∨ sup
s,t∈R,s<t

∣∣∣∣log
(

λ(t) − λ(s)

t − s

)∣∣∣∣,(21)

6This definition is more symmetric in time than is usual for “cadlag”: a more accurate acronym
would be laglad.

7Note the reversal of the order of s and t . This was chosen to make the weak flow property (13)
appear neater.
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and where χn is the cutoff function8 given by

χn(I ) = 0 ∨ (n + 1 − R) ∧ 1, R = sup I ∨ (− inf I ).

Then define

dD(φ,ψ) =
∞∑

n=1

2−n{d(n)
D (φ,ψ) ∧ 1

}
.(22)

Then dD is a metric on D◦(R,D) under which D◦(R,D) is complete and separa-
ble. Moreover, the metrics dC and dD generate the same topology on C◦(R,D).
For the metric dD , for all bounded intervals I and all x ∈ R, the evaluation map

φ �→ φ+
I (x) :D◦(R,D) →R

is Borel measurable. Moreover, the Borel σ -algebra on D◦(R,D) is generated by
the set of all such evaluation maps with I = (s, t] and s, t and x rational.

6. Convergence to the coalescing Brownian flow. We now give a criterion
for weak convergence on D◦(R,D) and use it to show that the disturbance flow
converges to the coalescing Brownian flow.

For e = (s, x) ∈ R2 and φ ∈ D◦(R,D), the maps

t �→ φ±
(s,t](x) : [s,∞) →R

are cadlag. Hence, we can extend the maps Ze = Ze,+ and Ze,−, which we defined
on C◦(R,D) in Section 3, to measurable maps Ze,± :D◦(R,D) → De by setting

Ze,±(φ) = (φ±
(s,t](x) : t ≥ s

)
.

Let E = (ek :k ∈ N) be any countable dense subset of R2. Write ZE,± for the
maps D◦(R,D) → DE given by ZE,± = (Zek,± :k ∈ N). Write ZE = ZE,+. The
following result is a criterion for weak convergence on D◦(R,D). If we restrict to
measures supported on C◦(R,D), this is directly analogous to [6], Theorem 4.1.

THEOREM 6.1. Let (μn :n ∈ N) and μ be Borel probability measures on
D◦(R,D). Assume that ZE,− = ZE,+ holds μn-almost surely for all n and μ-
almost surely. Assume further that μn ◦ (ZE)−1 → μ ◦ (ZE)−1 weakly on DE .
Then μn → μ weakly on D◦(R,D).

8As in the case of the standard Skorokhod topology, localization in time sits awkwardly with the
stretching of time introduced via the homeomorphisms λ. There is no fundamental obstacle, just
some messiness at the edges. Note that, when I ∪ λ(I) ⊆ [−n,n], we have∥∥χn(I )φ×

I − χn
(
λ(I)

)
ψ×

λ(I)

∥∥= dD(φI ,ψλ(I)).

Also, for all intervals I , we have |χn(λ(I )) − χn(I )| ≤ γ (λ) and∥∥χn(I )φ×
I − χn

(
λ(I)

)
ψ×

λ(I)

∥∥≤ χn(I )dD(φI ,ψλ(I)) + ∣∣χn
(
λ(I)

)− χn(I )
∣∣∥∥ψ×

λ(I)

∥∥.
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PROOF. Set

D◦(E) = {φ ∈ D◦(R,D) :ZE,+(φ) = ZE,−(φ)
}
,

D◦
E = {ZE(φ) :φ ∈ D◦(E)

}
.

Let �n and � be random variables in D◦(R,D) having distributions μn and μ,
respectively. Then ZE(�n) → ZE(�) weakly on DE . Also �n,� ∈ D◦(E) al-
most surely, so ZE(�n),Z

E(�) ∈ D◦
E almost surely. Now D◦

E is measurable and
ZE maps D◦(E) bijectively to D◦

E . Denote the inverse bijection by �E . Then
�E :D◦

E → D◦(E) is measurable and continuous. Hence, �n = �E(ZE(�n)) →
�E(ZE(�)) = � weakly on D◦(R,D). �

The Poisson disturbance flow with disturbance f and the lattice disturbance
flow with disturbance f were defined in Section 2. Properties (4), (5) and (6) hold
in both cases and imply that the flow � = (�I : I ⊆ R) may be considered as a
Borel random variable in D◦(R,D). Moreover, as we noted in (7), for either of
these flows �, for all e ∈ R2, we have Ze,−(�) = Ze,+(�) almost surely. The
same is true when � is a coalescing Brownian flow, as shown in Theorem 3.1. Our
main result now follows directly from Proposition 2.3 and Theorem 6.1.

THEOREM 6.2. The Poisson disturbance flow with disturbance f and the lat-
tice disturbance flow with disturbance f both converge weakly to the coalescing
Brownian flow on the circle on D◦(R,D), uniformly in f ∈ D∗ as f becomes small
and localized, that is, as ρ(f ) → ∞ and λ(f ) → 0.

7. Time reversal. Time reversal acts as an isometry on our metric spaces of
weak flows. The time reversal of a disturbance flow with disturbance f is the
disturbance flow with disturbance f −1. We use these facts to give a new proof of
the time-reversibility of the coalescing Brownian flow, and to obtain a weak limit
for the joint law of forward and backward trajectories for disturbance flows.

For f + ∈ R and f − ∈ L, we define a left-continuous inverse (f +)−1 ∈ L and a
right-continuous inverse (f −)−1 ∈ R by

(
f +)−1

(y) = inf
{
x ∈ R :f +(x) > y

}
,(

f −)−1
(y) = sup

{
x ∈ R :f −(x) < y

}
.

The map f + �→ (f +)−1 :R → L is a bijection, with ((f +)−1)−1 = f + and
(
f +

1 ◦ f +
2

)−1 = (f +
2

)−1 ◦ (f +
1

)−1
, f1, f2 ∈R.

We have f + ◦ (f +)−1 = id if and only if f + is a homeomorphism. Define for f =
{f −, f +} ∈ D the inverse f −1 = {(f +)−1, (f −)−1} ∈ D. Note that (f −1)× =
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−f ×, so the map f �→ f −1 :D → D is an isometry. Define the time-reversal map
∧ :D◦(R,D) → D◦(R,D) by

φ̂I = φ−1
−I ,

where −I = {−x :x ∈ I }. It is straightforward to check that this is a well-defined
isometry of D◦(R,D), which restricts to an isometry of C◦(R,D).

PROPOSITION 7.1. The time-reversal of a disturbance flow with disturbance
f is a disturbance flow with disturbance f −1.

PROOF. Fix f ∈ D∗. Set g = f −1 and

� = {(x, y) ∈ R2 :y < f (x)
}= {(x, y) ∈ R2 :x > g(y)

}
,

�0 = {(x, y) ∈ R2 :y < x
}
.

Then, by Fubini’s theorem,∫ 1

0
f̃ (x) dx =

∫ 1

0

∫
R
(1� − 1�0)(x, y) dx dy = −

∫ 1

0
g̃(y) dy(23)

and ∫ 1

0
f̃ (x)2 dx =

∫ 1

0

∫
R

2(y − x)(1� − 1�0)(x, y) dx dy =
∫ 1

0
g̃(y)2 dy.(24)

So g ∈ D∗ and ρ(g) = ρ(f ). We may construct a lattice disturbance flow � with
disturbance f from a sequence (�n :n ∈ Z) of independent random variables, uni-
formly distributed on (0,1], by

�±
I = f ±

�n
◦ · · · ◦ f ±

�m
,

where m and n are respectively the minimal and maximal integers in ρI . Then

�̂±
I = g±

�−n
◦ · · · ◦ g±

�−m
.

Since (�n :n ∈ Z) and (�−n :n ∈ Z) have the same distribution, it follows that �̂

is a lattice disturbance flow with disturbance g. The Poisson case is similar. �

We were surprised by the calculations (23) and (24) which, though elementary,
we did not suspect until we realized they were forced by the known reversibility of
the universal scaling limit. On the other hand, we can now deduce the reversibility
of the limit, as already known for other formulations of the coalescing Brownian
flow. See, for example, [1, 6, 16, 19] and the references therein.

COROLLARY 7.2. The law μA of the coalescing Brownian flow on the circle
is invariant under time-reversal.
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PROOF. Fix r ∈ (0,1/2] and define f = fr ∈ D∗ by

f +(n + x) = n + (r ∨ x ∧ (1 − r)
)
, n ∈ Z, x ∈ [0,1).

Then f̃ +(x) = ((r − x) ∨ 0) + ((1 − r − x) ∧ 0) for x ∈ [0,1), so ρ(f ) = 3/(2r3)

and ∫ 1

0
f̃ (x)f̃ (x + a)dx = 0, 2r ≤ a ≤ 1 − 2r,

so λ(f ) ≤ 2r . Moreover, ρ(f −1) = ρ(f ) and λ(f −1) ≤ 2r .
Write μ

f
A for the law of a lattice disturbance flow with disturbance f . Set

μ̂A = μA ◦ ∧−1 and μ̂
f
A = μ

f
A ◦ ∧−1. Consider the limit r → 0. By Theorem 6.2,

we know that μ
f
A → μA and μ

f −1

A → μA, weakly on D◦(R,D). Since the time-
reversal map φ �→ φ̂ is an isometry, it follows, using the preceding proposition,

that μ
f −1

A = μ̂
f
A → μ̂A, weakly on D◦(R,D). Hence, μA = μ̂A. �

The same argument may be used to prove time reversibility of the coalescing
Brownian flow on the line, as introduced in the next section. In fact, Theorem 8.5
below applies to show that the

√
r-scale disturbance flow (defined below) with

disturbance fr (as above) converges weakly as r → 0 to the coalescing Brownian
flow on the line. Then reversibility follows by the argument of Corollary 7.2.

From the flow-level result Theorem 6.2, we can deduce weak convergence also
for paths running forward and backward in time from a given sequence of points
E = (ek :k ∈ N) in R2. For e = (s, x) ∈ R2, define Ďe = {ξ ∈ D(R,R) : ξs = x}
and set ĎE =∏∞

k=1 Ďek
. For φ ∈ D◦(R,D), define

Ž
e,±
t (φ) =

⎧⎨
⎩

φ±
(s,t](x), t ≥ s,(
φ−1)±

(t,s](x), t < s.
(25)

Then Že,±(φ) ∈ Ďe and extends Ze,±(φ), as defined in Section 5, from [s,∞)

to the whole of R. For all e ∈ R2, we have Že,+ = Že,− almost everywhere on
D◦(R,D) for both μA and μ

f
A, for any disturbance f . So, we drop the ±. Denote

by μ̌
f
E the law of (Žek :k ∈ N) on ĎE under μ

f
A and by μ̌E the corresponding law

under μA.

COROLLARY 7.3. We have μ̌
f
E → μ̌E weakly on ĎE , uniformly in f ∈ D∗,

as ρ(f ) → ∞ and λ(f ) → 0.

PROOF. We can check that Ž(s,x),+ is continuous as a map D◦(R,D) →
Ď(s,x) at φ ∈ C◦(R,D) provided

Ž(s,x±δ),+(φ) → Ž(s,x),+(φ)
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uniformly on R as δ → 0. Since this property holds for μA almost all φ, the
claimed limit follows from Theorem 6.2 by a standard property of weak conver-
gence. �

Weak convergence of the forward paths to coalescing Brownian motions was
shown in Proposition 2.3. The corresponding backward property is immediate
from the fact that the time reversal of a disturbance flow is another such flow.
What is new in the result just proved is the identification of the limit of the joint
law of these backward and forward paths—which has the property that the bi-
infinite paths never cross.

8. Local limits. We now prove local weak convergence of disturbance flows,
for a scale ε ∈ (0,1] intermediate between the scale of the disturbance f and the
unit scale of the circle. Some variations of our set-up will be needed, as we rescale
in a way which does not preserve the degree 1 property (1), and the limit object is
the coalescing Brownian flow on the line. Write D̄ for the set of all pairs {f −, f +}
where f + :R→R is nondecreasing and right-continuous and where f − is the left-
continuous modification of f +. For ε ∈ (0,1], define the scaling map σε : D̄ → D̄
by

σεf (x) = ε−1f (εx).

This map can be thought of as zooming in on the neighborhood around the origin.
We associate to a disturbance flow � = (�I : I ⊆ R) the ε-scale disturbance flow
�ε = (�ε

I : I ⊆ R), given by

�ε
I = σε(�ε2I ).

For e ∈ R2, we write Xe,ε for the trajectory of �ε starting from e. By the esti-
mate (8), the jumps of Xe,ε are bounded in absolute value by ε−1(3/ρ)1/3. A small
variation of the proof of Proposition 2.1 then leads to the following result.

PROPOSITION 8.1. The trajectory Xe,ε of the ε-scale Poisson disturbance
flow with disturbance f converges weakly to Brownian motion on De, uniformly
in f ∈ D∗ and ε ∈ (0,1] as ε3ρ(f ) → ∞.

Fix a sequence E = (ek :k ∈ N) in R2 and write DE and CE for the spaces of
cadlag and continuous paths starting from E, as in Section 2. Write ek = (sk, xk)

and recall the coordinate processes Zk and their filtration (Zt )t∈R, defined in Sec-
tion 2. Define on CE the collision times

T̄ jk = inf
{
t ≥ sj ∨ sk :Zj

t = Zk
t

}
.

The law μ̄E on CE of coalescing Brownian motions on the line then has the
following martingale characterization: for all j, k, the processes (Zk

t )t≥sk and
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(Z
j
t Zk

t − (t − T̄ jk)+)t≥sj∨sk are both continuous local martingales in the filtra-
tion (Zt )t∈R.

For small ε, we shall need to quantify the localization of a disturbance in terms
of the smallest constant λ = λ(f, ε) ∈ (0,1] such that

ρ

∫ 1

0

∣∣f̃ (x + a)f̃ (x)
∣∣dx ≤ λ, a ∈ [ελ,1 − ελ].

PROPOSITION 8.2. The joint distribution μ
f,ε
E of the family of trajectories

(Xe,ε : e ∈ E) in the ε-scale Poisson disturbance flow with disturbance f con-
verges weakly to the coalescing Brownian law μ̄E on DE , uniformly in f ∈ D∗, as
ε → 0 with ε3ρ(f ) → ∞ and λ(f, ε) → 0.

PROOF. Write Xk for Xek,ε within the proof. The family of laws {μf,ε
E :f ∈

D∗, ε ∈ (0,1]} is tight on DE . Let μ be a weak limit law of this family for the limit
ε → 0 with ε3ρ(f ) → ∞ and λ = λ(f, ε) → 0. Then, as in Proposition 2.3, under
μ, for all j , the processes (Z

j
t : t ≥ sj ) and ((Z

j
t )2 − t : t ≥ sj ) are continuous local

martingales. For all j, k, the process

X
j
t Xk

t −
∫ t

sj∨sk

b
(
εXj

s , εXk
s

)
ds, t ≥ sj ∨ sk,

is a martingale. Note that |b(εX
j
s , εXk

s )| ≤ λ until |Xj
t − Xk

t | leaves [λ, ε−1 − λ].
Define for R ≥ 1

T̄ jk,R = inf
{
t ≥ sj ∨ sk :

∣∣Zj
t − Zk

t

∣∣ /∈ [1/R,R]}
then, T̄ jk,R ↑ T̄ jk everywhere on CE as R → ∞. Under μ, the process (Z

j
t Zk

t :

sj ∨ sk ≤ t < T̄ jk,R) is a local martingale for all R, so (Z
j
t Zk

t : sj ∨ sk ≤ t < T̄ jk)

is also a local martingale. Now μ inherits from the laws μ
f,ε
E the property that,

almost surely, the process (Z
j
t − Zk

t : t ≥ sj ∨ sk) does not change sign. Hence,

Z
j
t − Zk

t is constant for t ≥ T̄ jk . It follows that (Z
j
t Zk

t − (t − T̄ jk)+)t≥sj∨sk is a
continuous local martingale. Hence, μ = μ̄E . �

We obtain state-spaces for flows on the line by replacing D by D̄ in the defini-
tions made in Sections 3 and 5, and replacing the metric dD by

dD̄(f, g) =
∞∑

n=1

2−n sup
t∈[−n,n]

(∣∣f ×(t) − g×(t)
∣∣∧ 1

)
.(26)

Denote by C◦(R, D̄) the set of continuous weak flows with values in D̄. Define the
coordinate processes Ze = Ze,+ and Ze,− and their filtration (Ft )t∈R on C◦(R, D̄)
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just as for C◦(R,D) in Section 3. The collision time T̄ ee′
:C◦(R, D̄) → [0,∞], for

e = (s, x) and e′ = (s′, x′), is now given by

T̄ ee′
(φ) = inf

{
t ≥ s ∨ s′ :Ze

t (φ) = Ze′
t (φ)

}
.

The following result is proved in [5], Section 9 and, analogously to Theorem 3.1,
shows that there exists a unique probability measure on C◦(R, D̄) under which
the left and right coordinate processes Ze,± agree almost surely for all e ∈R2 and
behave as coalescing Brownian motions.

THEOREM 8.3. There exists a unique Borel probability measure μ̄A on
C◦(R, D̄) under which, for all e, e′ ∈ R2, the processes (Ze

t )t≥s(e) and (Ze
t Z

e′
t −

(t − T̄ ee′
)+)t≥s(e)∨s(e′) are continuous local martingales for (Ft )t∈R. Moreover,

for all e ∈ R2, we have Ze,+ = Ze,− μ̄A-almost surely.

We call any C◦(R, D̄)-valued random variable with law μ̄A a coalescing Brow-
nian flow. The space D◦(R, D̄) of cadlag weak flows (φI : I ⊆ R) with φI ∈ D̄ for
all I is defined analogously to D◦(R,D). The Skorokhod-type metric on D◦(R, D̄)

is defined just as for D◦(R,D), except that the metric of the uniform norm on S is
replaced by a metric of uniform convergence on compacts on the space S̄ of con-
tractions on R. The following result follows from [5], Lemma 14.1. It extends [6],
Theorem 4.1, in allowing processes with jumps in time. Note that the additional
noncrossing criterion needed in [6] holds automatically in the space of weak flows.

THEOREM 8.4. Let (μn :n ∈ N) and μ be Borel probability measures on
D◦(R, D̄). Assume that ZE,− = ZE,+ holds μn-almost surely for all n and μ-
almost surely. Assume further that, for any finite sequence E in R2, we have
μn ◦ (ZE)−1 → μ ◦ (ZE)−1 weakly on DE . Then μn → μ weakly on D◦(R, D̄).

The ε-scale Poisson disturbance flow �ε with disturbance f may be consid-
ered as a Borel random variable in D◦(R, D̄). Moreover, for all e ∈ R2, we have
Ze,−(�ε) = Ze,+(�ε) almost surely. The same is true in the lattice case. Hence,
Proposition 8.2 and Theorems 8.3 and 8.4 imply the following local limit theorem.

THEOREM 8.5. The ε-scale Poisson disturbance flow with disturbance f and
the ε-scale lattice disturbance flow with disturbance f both converge weakly to
the coalescing Brownian flow on the line on D◦(R, D̄), uniformly in f ∈ D∗, as
ε → 0 with ε3ρ(f ) → ∞ and λ(f, ε) → 0.

APPENDIX

A.1. Some properties of the space D of nondecreasing functions of de-
gree 1. We give proofs in this subsection of a number of assertions made in
Section 3.
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PROPOSITION A.1. The map f �→ f × :D → S is a well-defined bijection,
with inverse given by

f −(x) = inf
{
t + f ×(t) : t ∈R, x = t − f ×(t)

}
,

f +(x) = sup
{
t + f ×(t) : t ∈ R, x = t − f ×(t)

}
.

PROOF. Recall that f ×(t) = t − x, where x is the unique point such that
f −(x) ≤ 2t − x ≤ f +(x). The periodicity of f × is an easy consequence of the
degree 1 condition. We now show that f × is a contraction. Fix s, t ∈ R and sup-
pose that f ×(s) = s − y. Switching the roles of s and t if necessary, we may
assume without loss that x ≥ y. If x = y, then f ×(s) − f ×(t) = s − t . On the
other hand, if x > y, then 2s − y ≤ f +(y) ≤ f −(x) ≤ 2t − x, so

−(t − s) ≤ −(t − s) + (2t − x) − (2s − y) = f ×(t) − f ×(s)

= (t − s) − (x − y) < t − s.

In both cases, we see that |f ×(t) − f ×(s)| ≤ |t − s|. Hence, f × ∈ S .
Suppose now that g ∈ S . Consider, for each x ∈R, the set

Ix = {t + g(t) : t ∈ R, x = t − g(t)
}
.

Since g is a contraction, these sets are all intervals, and, since g is bounded, they
cover R. For x, y ∈ R with x > y, and for s, t ∈ R with x = t − g(t), y = s − g(s),
we have t − s − (g(t) − g(s)) = x − y > 0, so s ≤ t , and so

t + g(t) − (s + g(s)
)= t − s + (g(t) − g(s)

)≥ 0.

Define h+(y) = sup Iy and h−(x) = inf Ix . We have shown that h+(y) ≤ h−(x).
Moreover, since the intervals Ix cover R, the functions h± must be the left-
continuous and right-continuous versions of a nondecreasing function h, which
then has the degree 1 property, because g is periodic. Thus, h ∈ D.

For each t ∈ R, we have h×(t) = t − x, where 2t − x ∈ Ix , and so 2t − x =
s +g(s) for some s ∈ R with x = s +g(s). Then s = t and so h×(t) = g(t). Hence,
h× = g. On the other hand, if we take g = f × and if x is a point of continuity of f ,
then we find Ix = {f (x)}, so h+(x) = h−(x) = f (x). Hence, h = f . We have now
shown that f �→ f × :D → S is a bijection, and that its inverse has the claimed
form. �

PROPOSITION A.2. For f,g ∈ D and ε > 0,

dD(f, g) ≤ ε ⇐⇒ f −(x − ε) − ε ≤ g−(x) ≤ g+(x) ≤ f +(x + ε) + ε

for all x ∈ R.

Moreover, for any sequence (fn :n ∈ N) in D,

fn → f in D ⇐⇒ f +
n (x) → f (x)

at all points x ∈ R where f is continuous.
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PROOF. Suppose that dD(f, g) ≤ ε and that x is a continuity point of g. Then
g(x) = t + g×(t) for some t ∈ R with x = t − g×(t). We must have x + ε ≥
t − f ×(t) and g(x) ≤ t + f ×(t) + ε, so f +(x + ε) + ε ≥ t + f ×(t) + ε ≥ g(x).
Similarly f −(x − ε) − ε ≤ g(x). These inequalities extend to all x ∈ R by taking
left and right limits along continuity points.

Conversely, suppose that t ∈ R is such that |f ×(t) − g×(t)| = dD(f, g) and let
x = t − g×(t) and y = t − f ×(t). Then x is the unique point with g−(x) + x ≤
2t ≤ g+(x) + x and y is the unique point such that f −(y) + y ≤ 2t ≤ f +(y) + y.
Hence, f −(x−ε)−ε ≤ g−(x) ≤ g+(x) ≤ f +(x+ε)+ε implies y ∈ [x−ε, x+ε]
and so dD(f, g) = |y − x| ≤ ε.

It follows directly that for any sequence (fn :n ∈ N) in D, if dD(fn, f ) → 0 as
n → ∞, then f +

n (x) → f (x) at all points x ∈ R where f is continuous.
Now suppose f +

n (x) → f (x) at all points x ∈ R where f is continuous. By
equicontinuity, it will suffice to show that f ×

n (t) → f ×(t) for each t ∈ R. Set x =
t −f ×(t) and xn = t −f ×

n (t). Given ε > 0, choose y1 ∈ (x−ε, x) and y2 ∈ (x, x+
ε), both points of continuity of f . Now f (y1) + y1 < 2t < f (y2) + y2, so there
exists N ∈ N such that for all n ≥ N , we have f +

n (y1) + y1 < 2t < f +
n (y2) + y2,

which implies xn ∈ [y1, y2], and hence |f ×
n (t) − f ×(t)| < ε, as required. �

PROPOSITION A.3. Suppose fn → f,gn → g,hn → h in D with h+
n ≤ f +

n ◦
g+

n for all n. Then h+ ≤ f + ◦ g+.

PROOF. It will suffice to establish the inequality at all points x where g and
h are both continuous. Given ε > 0, since f + is right-continuous, there exists a
point y > g(x) where f is continuous and such that f (y) < f +(g(x)) + ε. Then
f +

n (y) < f +(g(x)) + ε and g+
n (x) ≤ y eventually, so

h+
n (x) ≤ f +

n

(
g+

n (x)
)≤ f +

n (y) < f +(g(x)
)+ ε

eventually. Hence, h+(x) = limn→∞ h+
n (x) ≤ f +(g+(x)), as required. �

A.2. Some properties of the continuous flow-space C◦(R,D) and cadlag
flow-space D◦(R,D). We give proofs in this subsection of a number of asser-
tions made in Sections 3 and 5.

PROPOSITION A.4. For (s, x) ∈R2 and φ ∈ D◦(R,D), the map

t �→ φ+
(s,t](x) : [s,∞) →R

is cadlag, and is moreover continuous whenever φ ∈ C◦(R,D).

PROOF. Given t ≥ s and ε > 0, we can choose δ > 0 so that for all u ∈ (t, t +
δ], dD(φ(t,u], id) < ε/2. For such u and for x a point of continuity of φ(s,t], we
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have

φ+
(s,t](x) − ε = φ−

(s,t](x) − ε

≤ φ−
(t,u] ◦ φ−

(s,t](x)

≤ φ−
(s,u](x)

≤ φ+
(s,u](x)

≤ φ+
(t,u] ◦ φ+

(s,t](x)

≤ φ+
(s,t](x) + ε,

so |φ+
(s,u](x)−φ+

(s,t](x)| ≤ ε. The final estimate extends to all x by right-continuity.
Hence, the map is right continuous. A similar argument shows that, for u ∈ (s, t),
we have |φ+

(s,u](x) − φ+
(s,t)(x)| → 0 as u → t , so that the map has a left limit at

t given by φ+
(s,t)(x). Finally, if φ ∈ C◦(R,D), then φ(s,t) = φ(s,t], so the map is

continuous. �

PROPOSITION A.5. For all φ ∈ C◦(R,D), the map (s, t) �→ φts : {(s, t) : s ≤
t} → D is continuous. Moreover, for all φ ∈ D◦(R,D) and for any sequence of
bounded intervals In → I , we have φIn → φI .

PROOF. The first assertion follows from the second: given φ ∈ C◦(R,D) and
sequences sn → s and tn → t , then, passing to a subsequence if necessary, we can
assume that (sn, tn] → I for some interval I with inf I = s and sup I = t . Then, by
the second assertion, we have φtnsn → φI = φts , as required.

So, let us fix φ ∈ D◦(R,D) and a sequence of bounded intervals In → I . By
combining the cadlag and weak flow properties, we can show the following variant
of the cadlag property: for all t ∈ R, we have

φ[s,t) → id as s ↑ t , φ(t,u] → id as u ↓ t .(27)

For each n, there exist two disjoint intervals Jn and J ′
n, possibly empty, such that

I�In = Jn ∪ J ′
n. For any such Jn and J ′

n, using the weak flow property, we obtain

dD(φI ,φIn) ≤ ‖φJn − id‖ + ‖φJ ′
n
− id‖.

Set s = inf I , sn = inf In, t = sup I and tn = sup In. Then sn → s, tn → t , and

if s ∈ I then s ∈ In eventually, if s /∈ I then s /∈ In eventually,

if t ∈ I then t ∈ In eventually, if t /∈ I then t /∈ In eventually.

Hence, using the cadlag property or (27), or both, we find that φJn → id and φJ ′
n
→

id, which proves the proposition. �
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PROPOSITION A.6. The metrics dC and dD generate the same topology on
C◦(R,D).

PROOF. On comparing the definitions of d
(n)
C and d

(n)
D for each n ∈ N, and

considering the choice λ = id, we see that dD ≤ dC . Hence, it will suffice to
show, given φ ∈ C◦(R,D), n ∈ N and ε > 0, that there exists ε′ > 0 such that,
for all ψ ∈ C◦(R,D), we have d

(n)
C (φ,ψ) < ε whenever d

(n+1)
D (φ,ψ) < ε′. By

the preceding proposition, there exists a δ ∈ (0,1] such that dD(φts, φt ′s′) < ε/2
whenever |s − s′|, |t − t ′| ≤ δ and s, t ∈ (−n,n). Set ε′ = δ ∧ (ε/2) and suppose
that d

(n+1)
D (φ,ψ) < ε′. Then there exists an increasing homeomorphism λ of R,

with |λ(t) − t | ≤ δ for all t , such that, for all intervals I , we have ‖χn+1(I )ψ×
I −

χn+1(λ(I ))φ×
λ(I)‖ < ε/2. Given s, t ∈ (−n,n) with s < t , take I = (s, t]. Then

χn+1(I ) = χn+1(λ(I )) = 1, so dD(φλ(t)λ(s),ψts) = ‖ψ×
I −φ×

λ(I)‖ < ε/2. But then,
for all such s, t , we have

dD(φts,ψts) ≤ dD(φts, φλ(t)λ(s)) + dD(φλ(t)λ(s),ψts) < ε,

so d
(n)
C (φ,ψ) < ε, as required. �

PROPOSITION A.7. The metric spaces (C◦(R,D), dC) and (D◦(R,D), dD)

are complete and separable.

PROOF. The argument for completeness is a variant of the corresponding ar-
gument for the usual Skorokhod space D(R, S) of cadlag paths in complete sepa-
rable metric space S, as found, for example, in [2]. Suppose then that (ψn)n≥1 is
a Cauchy sequence in D◦(R,D). There exists a subsequence φk = ψnk such that
d

(n)
D (φn,φn+1) < 2−n for all n ≥ 1. It will suffice to find a limit in D◦(R,D) for

(φn)n≥1. Recall the definition of γ from (21). There exist increasing homeomor-
phisms κn of R for which γ (κn) < 2−n and

dD
(
φn

I ,φn+1
κn(I )

)
< 2−n, I ∪ κn(I ) ⊆ (−n,n).

For each n ≥ 1, the sequence (κn+m ◦ · · · ◦ κn)m≥1 converges uniformly on R to an
increasing homeomorphism, λn say, with γ (λn) < 2−n+1. Then κn ◦ λ−1

n = λ−1
n+1,

so

dD
(
φn

λ−1
n (I )

, φn+1
λ−1

n+1(I )

)
< 2−n, I ⊆ (−n + 1, n − 1).

So, for all m ≥ n,

dD
(
φn

λ−1
n (I )

, φn+m

λ−1
n+m(I)

)
< 2−n+1, I ⊆ (−n + 1, n − 1).(28)

Hence, for all bounded intervals I ⊆ R, (φn

λ−1
n (I )

)n≥1 is a Cauchy sequence in D,

which, since D is complete, has a limit φI ∈ D. On letting m → ∞ in (28), we
obtain

dD
(
φn

λ−1
n (I )

, φI

)
< 2−n+1, I ⊆ (−n + 1, n − 1).
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By Proposition A.3, φ = (φI : I ⊆ R) has the weak flow property. To see that φ

is cadlag, suppose given ε > 0 and t ∈ R. Choose n such that 2−n+1 ≤ ε/3 and
|t | ≤ n − 2. Then choose δ ∈ (0,1] such that

dD
(
φn

λ−1
n (s,t)

, id
)
< ε/3, dD

(
φn

λ−1
n (t,u)

, id
)
< ε/3

whenever s ∈ (t − δ, t) and u ∈ (t, t + δ). For such s and u, we then have

dD(φ(s,t), id) < ε, dD(φ(t,u), id) < ε.

Hence, φ ∈ D◦(R,D). For m ≤ n − 3, we have

d
(m)
D

(
φn,φ

)≤ γ (λn) ∨ sup
I⊆(−m−2,m+2)

∥∥χm

(
λ−1

n (I )
)
φn×

λ−1
n (I )

− χm(I)φ×
I

∥∥
≤ γ (λn) ∨ sup

I⊆(−m−2,m+2)

{
dD
(
φn

λ−1
n (I )

, φI

)+ γ (λn)
∥∥φ×

I

∥∥}

≤ 2−n+1
(
1 + sup

I⊆(−m−2,m+2)

∥∥φ×
I

∥∥).
Hence, dD(φn,φ) → 0 as n → ∞. We have shown that D◦(R,D) is complete.
If the sequence (φn)n≥1 in fact lies in C◦(R,D), then by an obvious varia-
tion of the argument for the cadlag property, the limit φ also lies in C◦(R,D).
Hence, C◦(R,D) is also complete. In particular, C◦(R,D) is a closed subspace in
D◦(R,D).

We turn to the question of separability. Let us write DN for the set of those
φ ∈ D◦(R,D) such that:

(i) for some n ∈ N and some rationals t1 < · · · < tn, we have φJ = id for all
time intervals J , which do not intersect the set {t1, . . . , tn};

(ii) for all other time intervals I , the maps φI and φ−1
I on R are constant on all

space intervals which do not intersect 2−NZ.

Note that each φ ∈ DN is determined by the maps φ(tk,tm], for integers 0 ≤ k <

m ≤ n, where t0 < t1, and for each of these maps there are only countably many
possibilities (finitely many if we insist that φ(0) ∈ [0,1)). Hence, DN is countable
and so is D∗ =⋃N≥1 DN . We shall show that D∗ is also dense in D◦(R,D).

Fix φ ∈ D◦(R,D) and n0 ≥ 1. It will suffice to find, for a given ε > 0, a ψ ∈ D∗
with d

(n0)
D (φ,ψ) < ε. By the cadlag property and compactness, there exist n ∈ N

and reals s1 < · · · < sn in I0 = (−n0 − 1, n0 + 1) such that dD(φI , id) < ε/4 for
every subinterval I of I0, which does not intersect {s1, . . . , sn}. To see this, let

A = {t ∈ I0 :dD(φ(s,t], φ(s,t)) ≥ ε/4 for some s < t
}
.

If A contains infinitely many points, then there exists a sequence (um)m∈N in A

and u ∈ R such that um → u strictly monotonically. Suppose that um ↑ u. Then,
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as in the proof of Proposition A.5, ‖φ(um,u) − id‖ < ε/8 and ‖φ[um,u) − id‖ < ε/8
for m is sufficiently large. But then, for all s < um,

dD(φ(s,um], φ(s,um)) ≤ dD(φ(s,um], φ(s,u)) + dD(φ(s,u), φ(s,um))

≤ ‖φ(um,u) − id‖ + ‖φ[um,u) − id‖
< ε/4,

contradicting um ∈ A. A similar contradiction arises if um ↓ u, so A contains
finitely many points. Therefore, I0 \ A consists of the disjoint union of finitely
many open intervals. It remains to show that if J is one of these intervals, there
exists some η > 0 such that if an interval I ⊆ J and sup I − inf I < η, then
dD(φI , id) < ε/4. If not then, there exists a sequence of intervals Im ⊆ J with
sup Im − inf Im < m−1 and dD(φIm, id) ≥ ε/4. By restricting to a subsequence if
necessary Im → I where I = ∅ or {t} for some t ∈ J . Therefore, φIm → φI . But
φ∅ = id and dD(φ{t}, id) < ε/4 for all t /∈ A, which contradicts dD(φIm, id) ≥ ε/4
for all m.

Next we can find rationals t1 < · · · < tn in I0 and an increasing homeomorphism
λ of R, with λ(t) = t for t /∈ I0, with γ (λ) supI⊆I0

‖φ×
I ‖ < ε/4, and such that

λ(tm) = sm for all m. Set s0 = t0 = −n0 − 1.
For f ∈ D, write �(f ) for the set of points where f is not continuous. Define,

for m = 0,1, . . . , n,

�m =
m−1⋃
k=0

�
(
φ−1

(sk,sm]
)∪ n⋃

k=m+1

�(φ(sm,sk]).

Then �m is countable, so we can choose N ≥ 1 with 16 · 2−N ≤ ε and choose
εm ∈ R with |εm| ≤ 2−N such that

τm(�m) ∩ 2−NZ = ∅, m = 0,1, . . . , n,

where τm(x) = x + εm. Set

δ−(x) = 2N⌈2−Nx
⌉
, δ+(x) = 2N⌊2−Nx

⌋+ 1.

Note that δ = {δ−, δ+} ∈ D. Define for 0 ≤ k < m ≤ n

ψ−
(tk,tm] = (δ−1)− ◦ (τm)−1 ◦ φ−

(sk,sm] ◦ τk ◦ δ−,

ψ+
(tk,tm] = (δ−1)+ ◦ (τm)−1 ◦ φ+

(sk,sm] ◦ τk ◦ δ+.

Then ψ(tk,tm] = {ψ−
(tk,tm],ψ

+
(tk,tm]} ∈ D by our choice of εk and εm. Moreover, δ+ ◦

(δ−1)+ ≥ id and δ− ◦ (δ−1)− ≤ id so, for 0 ≤ m < m′ < m′′ ≤ n, we obtain the
inequalities

ψ−
(tm′ ,tm′′ ] ◦ ψ−

(tm,tm′ ] ≤ ψ−
(tm,tm′′ ] ≤ ψ+

(tm,tm′′ ] ≤ ψ+
(tm′ ,tm′′ ] ◦ ψ+

(tm,tm′ ]
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from the corresponding inequalities for φ. We use the equations ‖δ − id‖ = 2−N

and ‖τm − id‖ = |εm| to see that

dD(φ(sk,sm],ψ(tk,tm]) ≤ 4 · 2−N, 0 ≤ k < m ≤ n.

For all intervals J such that J ∩ {t1, . . . , tn} = {tk+1, . . . , tm}, define ψJ = ψ(tk,tm].
For such intervals J , with J ⊆ I0, we have dD(φ(sk,sm]\λ(J ), id) < ε/4 and
dD(φλ(J )\(sk,sm], id) < ε/4; so, using the weak flow property for φ,

dD(ψJ ,φλ(J )) ≤ dD(ψ(tk,tm], φ(sk,sm]) + dD(φ(sk,sm], φλ(J ))

≤ 4 · 2−N + 2ε/4

< 3ε/4.

Define ψJ = id for all intervals J which do not intersect {t1, . . . , tn}. For such
intervals J with J ⊆ I0, we have dD(ψJ ,φλ(J )) ≤ dD(id, φλ(J )) ≤ ε/4. Now ψ ∈
DN and

d
(n0)
D (φ,ψ) ≤ γ (λ) ∨ sup

J⊆I0

{
dD(ψJ ,φλ(J )) + γ (λ)

∥∥φ×
J

∥∥}< ε

as required. This proves that D◦(R,D) is separable and, since C◦(R,D) is a closed
subspace of D◦(R,D), it follows that C◦(R,D) is also separable. �

PROPOSITION A.8. For all s, t ∈ R with s < t , and all x ∈ R, the map
φ �→ φ+

ts (x) on C◦(R,D) is Borel measurable. Moreover, the Borel σ -algebra on
C◦(R,D) is generated by the set of all such maps with s, t and x rational.

For all bounded intervals I ⊆ R and all x ∈ R, the map φ �→ φ+
I (x) on

D◦(R,D) is Borel measurable. Moreover, the Borel σ -algebra on D◦(R,D) is
generated by the set of all such maps with I = (s, t] and with s, t and x rational.

PROOF. The assertions for C◦(R,D) can be proved more simply than those
for D◦(R,D). We omit details of the former, but note that these follow also from
the latter, by general measure theoretic arguments, given what we already know
about the two spaces.

The proof for D◦(R,D) is an adaptation of the analogous result for the clas-
sical Skorokhod space; see, for example, [10], page 335. We prove first the
Borel measurability of the evaluation maps. Given a bounded interval I and
x ∈ R, we can find sn, tn ∈ R such that (sn, tn] → I as n → ∞. Then φ+

I (x) =
limm→∞ limn→∞ φ+

(sn,tn](x + 1/m), by Proposition A.5. Hence, it will suffice to
consider intervals I of the form (s, t]. Fix s, t and x and define for each m,n ∈ N

a function Fm,n on D◦(R,D) by

Fm,n(φ) =
∫ s+1/n

s

∫ t+1/n

t

∫ x+1/m

x
φ+

(s′,t ′]
(
x′)dx′ dt ′ ds′.
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Suppose φk → φ in D◦(R,D). We can choose increasing homeomorphisms λk of
R such that, γ (λk) → 0 and, uniformly in r ∈ [s − 1, s + 1] and u ∈ [t − 1, t + 1],
we have

dD
(
φk

λk(r,u], φ(r,u]
)→ 0.

Define

f (r, u) =
∫ x+1/m

x
φλ(r,u]

(
x′)dx′, fk(r, u) =

∫ x+1/m

x
φk

λk(r,u]
(
x′)dx′.

Then fk(r, u) → f (r, u), uniformly in r ∈ [s − 1, s + 1] and u ∈ [t − 1, t + 1]. Set
μk = λ−1

k . Then

Fm,n

(
φk) =

∫ μk(s+1/n)

μk(s)

∫ μk(t+1/n)

μk(t)
fk(r, u) dλk(u) dλk(r)

→
∫ s+1/n

s

∫ t+1/n

t
f (r, u) dudr = Fm,n(φ),

so Fm,n is continuous on D◦(R,D). By Proposition A.5, we have

φ+
(s,t](x) = lim

m→∞ lim
n→∞

1

mn2 Fm,n(φ).

Hence, φ �→ φ+
(s,t](x) is Borel measurable, as required.

Write now E for the σ -algebra on D◦(R,D) generated by all maps of this form
with s, t and x rational. It remains to show that E contains the Borel σ -algebra
of D◦(R,D). Write {(Ik, zk) :k ∈ N} for an enumeration of the set {(s, t] : s, t ∈
Q, s < t} ×Q. It is straightforward to show that, for all k, the map φ �→ φ×

Ik
(zk) is

E-measurable. Fix n ∈ N, φ0 ∈ D◦(R,D), r ∈ (0,∞) and k ∈ N, and consider the
set

A(k, r) = {φ ∈ D◦(R,D) :
(
χn(I1)φ

×
I1

(z1), . . . , χn(Ik)φ
×
Ik

(zk)
) ∈ B(k, r)

}
,

where

B(k, r) =⋃
λ

{
(y1, . . . , yk) ∈ Rk : max

j≤k

∣∣yj − χn

(
λ(Ij )

)
φ0×

λ(Ij )(zj )
∣∣< r

}
,

where the union is taken over all increasing homeomorphisms λ of R with
γ (λ) < r . Note that B(k, r) is an open set in Rk , so A(k, r) ∈ E , so A =⋃

m∈N
⋂

k∈N A(k, r − 1/m) ∈ E .
Consider the set

C = {φ ∈ D◦(R,D) :d(n)
D

(
φ,φ0)< r

}
.

It is straightforward to check from the definition of d
(n)
D , that C ⊆ A. Suppose that

φ ∈ A. We shall show that φ ∈ C. Then C = A, so C ∈ E , and since sets of this
form generate the Borel σ -algebra, we are done.
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We can find an m ∈ N and, for each k ∈ N, a λk with γ (λk) < r − 1/m such that∣∣χn(Ij )φ
×
Ij

(zj ) − χn

(
λk(Ij )

)
φ0×

λk(Ij )(zj )
∣∣< r − 1/m, j = 1, . . . , k.

Without loss of generality, we may assume that the sequence (λk :k ∈ N) converges
uniformly on compacts, and that its limit, λ say, satisfies γ (λ) ≤ r − 1/m. By
Proposition A.5, for each j , there is an interval Îj , having the same endpoints as
Ij such that φ

λ(Îj )
is a limit point in D of the sequence (φλk(Ij ) :k ∈ N), so φ×

λ(Îj )

is a limit point in S of the sequence (φ×
λk(Ij ) :k ∈ N). Then

∣∣χn(Ij )φ
×
Ij

(zj ) − χn

(
λ(Îj )

)
φ0×

λ(Îj )
(zj )
∣∣≤ r − 1/m

for all j . For all bounded intervals I and all z ∈R, we can find a sequence (jp :p ∈
N) such that Ijp → I , Îjp → I and zjp → z. So, we obtain

∣∣χn(I )φ×
I (z) − χn

(
λ(I)

)
φ0×

λ(I)(z)
∣∣≤ r − 1/m.

Hence, d
(n)
D (φ,φ0) ≤ r − 1/m and φ ∈ C, as we claimed. �

Recall that, for e = (s, x) ∈ R2 and φ ∈ D◦(R,D), we set

Ze,±(φ) = (φ±
(s,t](x) : t ≥ s

)
and for sequences E = (ek :k ∈ N) in R2, we set ZE,± = (Zek,± :k ∈ N). Also

C
◦,±
E = {ZE,±(φ) :φ ∈ C◦(R,D)

}
, D

◦,±
E = {ZE,±(φ) :φ ∈ D◦(R,D)

}
and

D◦(E) = {φ ∈ D◦(R,D) :ZE,+(φ) = ZE,−(φ)
}
,

D◦
E = {ZE(φ) :φ ∈ D◦(E)

}
.

PROPOSITION A.9. Let E be a countable subset of R2 containing9 Q2. Then
ZE,+ :C◦(R,D) → C

◦,+
E is a bijection, C

◦,+
E is a measurable subset of CE , and

the inverse bijection �E,+ :C◦,+
E → C◦(R,D) is a measurable map. Moreover,

ZE,+ :D◦(R,D) → D
◦,+
E is also a bijection, D

◦,+
E is a measurable subset of DE

and the inverse bijection �E,+ :D◦,+
E → D◦(R,D) is also a measurable map.

Moreover, the same statements hold with + replaced by −, we have D◦
E = D

◦,+
E ∩

D
◦,−
E and �E,+ = �E,− on D◦

E .

9The role of Q here could be played by any countable dense subset of R. The same comment
applies to Propositions A.10 and A.11.
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PROOF. We discuss only the cadlag case. The same comments apply as in the
preceding proof about the relationship of the cadlag and continuous cases. It is
straightforward to see from the density of E in R2 and the continuity properties of
cadlag weak flows that ZE,+ and ZE,− are both injective on D◦(R,D). We shall
instead give an explicit description of the ranges D

◦,±
E and explicit constructions

of inverse maps �E,+ and �E,−, which agree on D
◦,+
E ∩ D

◦,−
E , allowing us to

establish measurability (as well as injectivity). Consider for z ∈ DE the conditions

z
(s,x+n)
t = z

(s,x)
t + n, s, t, x ∈ Q, s < t, n ∈ Z(29)

and

z
(s,x)
t = inf

y∈Q,y>x
z
(s,y)
t , (s, x) ∈ E, t ∈Q, t > s.(30)

Under these conditions, define for s, t ∈ Q with s < t and for x ∈ R,

�−
(s,t](x) = sup

y∈Q,y<x

z
(s,y)
t , �+

(s,t](x) = inf
y∈Q,y>x

z
(s,y)
t .

Then �(s,t] = {�−
(s,t],�

+
(s,t]} ∈D and

�+
(s,t](x) = z

(s,x)
t , s, t, x ∈ Q, s < t.

Now consider the following additional conditions on z:

�−
(t,u] ◦ �−

(s,t] ≤ �−
(s,u] ≤ �+

(s,u] ≤ �+
(t,u] ◦ �+

(s,t],
(31)

s, t, u ∈ Q, s < t < u

and for all ε > 0 and all n ∈N, there exist δ > 0, m ∈ Z+ and u1, . . . , um ∈ (−n,n)

such that

‖�(s,t] − id‖ < ε(32)

whenever s, t ∈ Q∩ (−n,n) with 0 < t − s < δ and (s, t] ∩ {u1, . . . , um} = ∅.
Note that the inequalities between functions required in (31) hold whenever the

same inequalities hold between their restrictions to Q, by left and right continuity.
Note also that condition (32) is equivalent to the following condition involving
quantifiers only over countable sets:

for all rationals ε > 0 and all n ∈ N, there exist a rational δ > 0 and an m ∈ Z+
such that, for all rationals η > 0, there exist rationals s1, t1, . . . , sm, tm ∈ (−n,n),
with si < ti for all i and with

∑m
i=1(ti − si) < η, such that

‖�(s,t] − id‖ < ε

whenever s, t ∈ Q ∩ (−n,n) with 0 < t − s < δ and (s, t] ∩ ((s1, t1] ∪ · · · ∪
(sm, tm]) =∅.
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Denote by D
∗,+
E the set of those z ∈ DE where conditions (29), (30), (31) and (32)

all hold. Then D
∗,+
E is a measurable subset of DE . Fix z ∈ D

∗,+
E . Given a bounded

interval I , we can find sequences of rationals sn and tn such that (sn, tn] → I as
n → ∞. Then, by conditions (31) and (32),

dD(�(sn,tn],�(sm,tm]) ≤ ‖�(sn,sm] − id‖ + ‖�(tn,tm] − id‖ → 0

as n,m → ∞. So the sequence �(sn,tn] converges in D, with limit �I , say, and �I

does not depend on the approximating sequences of rationals. In the case where
I = I1 ⊕ I2, there exists another sequence of rationals un such that (sn, un] → I1
and (un, tn] → I2 as n → ∞. Hence, � = (�I : I ⊆ R) has the weak flow property,
by Proposition A.3. It is straightforward to deduce from (32) that � is moreover
cadlag, so � = �(z) ∈ D◦(R,D). It follows from its construction and the preced-
ing proposition that the map z �→ �(z) :D∗,+

E → D◦(R,D) is measurable.
Now, for all z ∈ D

∗,+
E , we have ZE,+(�(z)) = z and for all φ ∈ D◦(R,D),

we have ZE,+(φ) ∈ D
∗,+
E and �(ZE,+(φ)) = φ. Hence, D

◦,+
E = D

∗,+
E and

ZE,+ :D◦(R,D) → D
◦,+
E is a bijection with inverse �E,+ = �.

Consider now for z ∈ DE the condition

z
(s,x)
t = sup

y∈Q,y<x

z
(s,y)
t , (s, x) ∈ E, t ∈ Q, t > s.(33)

Denote by D
∗,−
E the set of those z ∈ DE where conditions (29), (31), (32) and (33)

all hold, and define � on D
∗,−
E exactly as on D

∗,+
E . Then, by a similar argument,

D
◦,−
E = D

∗,−
E and ZE,− :D◦(R,D) → D

◦,−
E is a bijection with inverse �E,− = �.

In particular, �E,+ = �E,− on D
◦,−
E ∩ D

◦,+
E and so D◦

E = D
◦,−
E ∩ D

◦,+
E , as

claimed. �

PROPOSITION A.10. Let E be a countable subset of R2 containing Q2. Then
μE(C◦

E) = 1.

PROOF. We use an identification of C◦
E analogous to that implied for D◦

E by
the preceding proof. The same five conditions (29), (30), (31), (32) and (33) char-
acterize C◦

E inside CE , except that, in (32), only the case m = 0 is allowed. Recall
that, under μE , for time–space starting points e = (s, x) and e′ = (s′, x′), the co-
ordinate processes Ze and Ze′

behave as independent Brownian motions up to

T ee′ = inf
{
t ≥ s ∨ s′ :Ze

t − Ze′
t ∈ Z

}
,

after which they continue to move as Brownian motions, but now with a constant
separation. In particular, if s = s ′ and x′ = x +n for some n ∈ Z, then T ee′ = 0, so
Ze′

t = Ze
t + n for all t ≥ s, so (29) holds almost surely.

Let (s, x) ∈ E and t, u ∈ Q, with s ≤ t < u. Consider the event

A =
{

sup
y∈Q,y<Z

(s,x)
t

Z(t,y)
u = Z(s,x)

u = inf
y′∈Q,y′>Z

(s,x)
t

Z(t,y′)
u

}
.
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Fix n ∈ N and set Y = n−1�nZ
(s,x)
t � and Y ′ = Y + 1/n. Then Y and Y ′ are Ft -

measurable, Q-valued random variables. Now P(Y < Z
(s,x)
t < Y ′) = 1 and{

Y < Z
(s,x)
t < Y ′}∩ {T (t,Y )(t,Y ′) ≤ u

}⊆ A.

By the Markov property of Brownian motion, almost surely,

P
(
T (t,Y )(t,Y ′) ≤ u|Ft

)≥ 2�

(
1

n
√

2(u − t)

)
,

and the right-hand side tends to 1 as n → ∞. So, by bounded convergence, we ob-
tain P(A) = 1. On taking a countable intersection of such sets A over the possible
values of s, x, t and u, we deduce that conditions (30), (31) and (33) hold almost
surely.

It remains to establish the continuity condition (32). For a standard Brownian
motion B starting from 0, we have, for n ≥ 4,

P
(
sup
t≤1

|Bt | > n
)

≤ e−n2/2.

Define, for δ > 0 and e = (s, x) ∈ E,

V e(δ) = sup
s≤t≤s+δ2

∣∣Ze
t − x

∣∣.
Then, by scaling,

P
(
V e(δ) > nδ

)≤ e−n2/2.

Consider, for each n ∈ N the set

En = {(j2−2n, k2−n) : j ∈ 1
2Z∩ [−22n,22n), k = 0,1, . . . ,2n − 1

}
and the event

An = ⋃
e∈En

{
V e(2−n)> n2−n}.

Then P(An) ≤ |En|e−n2/2, so
∑

n P(An) < ∞, so by Borel–Cantelli, almost surely,
there is a random N < ∞ such that V e(2−n) ≤ n2−n for all e ∈ En, for all n ≥ N .

Given ε > 0, choose n ≥ N such that (4n + 2)2−n ≤ ε and set δ = 2−2n−1.
Then, for all rationals s, t ∈ (−n,n) with 0 < t − s < δ and all rationals x ∈ [0,1],
there exist e± = (r, y±) ∈ En such that

r ≤ s < t ≤ r + 2−2n,

x + n2−n < y+ ≤ x + (n + 1)2−n,

x − (n + 1)2−n ≤ y− < x − n2−n.
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Then, Ze−
s < x < Ze+

s , so

x − ε ≤ Ze−
t ≤ Z

(s,x)
t ≤ Ze+

t ≤ x + ε.

Hence, ‖�(s,t] − id‖ ≤ ε, as required. �

Recall that �E denotes the inverse of the evaluation map ZE :D◦(E) → D◦
E .

PROPOSITION A.11. Let E be a countable subset of R2 containing Q2. Then
�E is continuous.

PROOF. Consider a sequence (zk :k ∈ N) in D◦
E and suppose that zk → z in

DE , with z ∈ D◦
E . Set φk = �E(zk) and φ = �E(z). By analogy with the standard

Skorohod topology, it will suffice to show that, for all n0 ∈ N and all continuity
points −n0 < t < n0, that is, φ{t} = id, we have sup−n0<s<t dD(φk

(s,t], φ(s,t]) → 0
as k → ∞. Given ε > 0, choose 0 < η < ε/3. As in the proof of separability in
Proposition A.7, there exist m,n ∈ N and discontinuity points −n0 = u0 < u1 <

· · · < un = n0 with 2/m+3η < ε such that if I ∩{u0, . . . , un} with sup I − inf I <

2/m, then ‖φI − id‖ < η. Consider the finite set

F = (m−1Z∩ [−n0, n0])× (m−1Z∩ [0,1)
)
.

There exists a K < ∞ such that, for all k ≥ K and all e0 = (s0, x0) ∈ F ,
de0(z

e0
k , ze0) < 1/m. Therefore, there exists some homomorphism of (s0,∞),

λ(= λk,e0), such that for all t ∈ (s0, n0]|λ(t) − t | < 1/m and∣∣φk,+
(s0,t](x0) − φ+

(s0,λ(t)](x0)
∣∣= ∣∣φk,−

(s0,t](x0) − φ−
(s0,λ(t)](x0)

∣∣< 1/m.

For all s ∈ [−n0, n0) and all x ∈ [0,1), there exists (s0, x0) ∈ F such that

s0 ≤ s < s0 + 1/m, x0 ≤ x + η + 2/m < x0 + 1/m.

Then

φ
k,+
(s0,s](x0) ≥ φ+

(s0,λ(s)](x0) − 1/m ≥ x0 − η − 1/m > x,

so

φ
k,+
(s0,t](x0) ≥ φ

k,+
(s,t](x), t ≥ s.

Now, for all t ∈ (s, n0] with |t − ul| > 1/m for all l ∈ {0, . . . , n}, we have
dD(φ(s0,λ(t)], φ(s,t]) < 2η, so

φ+
(s0,λ(t)](x0) ≤ φ+

(s,t](x0 + 2η) + 2η.

So,

φ
k,+
(s0,t](x0) ≤ φ+

(s0,λ(t)](x0) + 1/m ≤ φ+
(s,t](x0 + 2η) + 2η + 1/m,
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and so

φ
k,+
(s,t](x) ≤ φ+

(s,t](x + ε) + ε.

By a similar argument, for all t ∈ (s, n0] with |t − ul| > 1/m for all l ∈ {0, . . . , n},
φ

k,−
(s,t](x) ≥ φ−

(s,t](x − ε) − ε,

so dD(φk
(s,t], φ(s,t]) ≤ ε. As 1/m can be chosen to be arbitrarily small, the result

follows. �

A.3. List of notation. For ease of reference, we list below some of the no-
tation that appears in the paper. In all definitions, e = (s, x) ∈ R2, E = (ek =
(sk, xk) :k ∈ N) in R2, ε ∈ (0,1] and disturbance flows are with disturbance f .

Disturbance flows:
�n,m: The discrete disturbance flow in which disturbances are ap-

plied at integer times.
�: The lattice disturbance flow, in which the disturbances are

applied at times in the lattice Z/ρ, or the Poisson distur-
bance flow, in which the disturbances are applied at the
times of the atoms of a Poisson process with intensity ρ.

�̂: The time reversed disturbance flow given by �̂I = �−1
−I .

�ε: The ε-scale disturbance flow, that is, �ε
I = σε(�ε2I ).

Ze,±: The evaluation maps Ze,± :D◦(R,D) → De given by
Z

e,±
t (φ) = φ±

(s,t](x).
ZE,±: The evaluation maps ZE,± :D◦(R,D) → DE given by

ZE,±(φ) = (Zek,±(φ) :k ∈ N).
Že,±(φ): The extension of the evaluation maps from [s,∞) to the

whole of R.
�E,±: The inverse of ZE,± restricted to D

◦,±
E .

�E : The inverse of ZE,+ (or identically ZE,−) restricted to D◦
E .

Metric spaces:
(D, dD): The set of disturbances on the circle together with the met-

ric defined in (12).
(D̄, dD̄): The space of disturbances on the line together with the

metric defined in (26).
D∗: D∗ = {f ∈ D \ {id} :

∫ 1
0 (f (x) − x)dx = 0}.

(D(R, S), d): The Skorohod space of cadlag paths in a metric space S,
equipped with d, the Skorokhod metric on D(R, S).

(De, de): De = Dx([s,∞),R) is the Skorohod space of cadlag paths
starting from x at time s, equipped with de, the Skorokhod
metric on De.
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(DE,dE): DE =∏∞
k=1 Dek

and dE is the metric on DE defined in (9).
Ďe: Ďe = {ξ ∈ D(R,R) : ξs = x}.
ĎE : ĎE =∏∞

k=1 Ďek
.

Ce: The subspace of De consisting of continuous paths.
CE : The subspace of DE where each coordinate path is contin-

uous, that is, CE =∏∞
k=1 Cek

.
(C◦(R,D), dC): The set of continuous weak flows on the circle with values

in D together with the metric defined in (15).
C◦(R, D̄): The space of continuous weak flows on the line.

d
(n)
C : The semimetric on C◦(R,D), restricted to time taking val-

ues in (−n,n), as defined in (16).
C

◦,±
E : The subspace of CE given by C

◦,±
E = {ZE,±(φ) :φ ∈

C◦(R,D)}.
C◦(E): C◦(E) = {φ ∈ C◦(R,D) :ZE,+(φ) = ZE,−(φ)}.
C◦

E : C◦
E = {ZE(φ) :φ ∈ C◦(E)}.

(D◦(R,D), dD): The set of cadlag weak flows with values in D together
with the metric defined in (22).

D◦(R, D̄): The space of cadlag weak flows on the line.
d

(n)
D : The semimetric on D◦(R,D), on a restricted time-interval,

as defined in (20).
D

◦,±
E : The subspace of DE given by D

◦,±
E = {ZE,±(φ) :φ ∈

D◦(R,D)}.
D◦(E): D◦(E) = {φ ∈ D◦(R,D) :ZE,+(φ) = ZE,−(φ)}.
D◦

E : D◦
E = {ZE(φ) :φ ∈ D◦(E)}.

Distributions:
μe: The distribution on the Skorohod space De of a standard

Brownian motion starting from e.
μ

f
e : The distribution on De of the process (�(s,t](x))t≥s .

μE , μ̄E : The distribution on DE (or CE) of a sequence of coalesc-
ing Brownian motions on the circle, respectively on the
line, starting from E.

μ
f
E , μ

f,ε
E : The distributions on DE of (�(sk,·](xk) :k ∈ N),

(�ε
(sk,·](xk) :k ∈ N), respectively.

μA, μ̄A: The distribution on C◦(R,D), respectively on C◦(R, D̄),
of the coalescing Brownian flow on the circle, respectively
on the line.

μ
f
A, μ̂

f
A: The distributions on D◦(R,D) of �, �̂, respectively.

μ̌
f
E : The law on ĎE of (Žek :k ∈ N) under μ

f
A.

μ̌E : The law on ĎE of (Žek :k ∈ N) under μA.
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