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This work is motivated by the analysis of the extremal behavior of buoy
and satellite data describing wave conditions in the North Atlantic Ocean.
The available data sets consist of time series of significant wave height (Hs)
with irregular time sampling. In such a situation, the usual statistical methods
for analyzing extreme values cannot be used directly. The method proposed
in this paper is an extension of the peaks over threshold (POT) method, where
the distribution of a process above a high threshold is approximated by a max-
stable process whose parameters are estimated by maximizing a composite
likelihood function. The efficiency of the proposed method is assessed on an
extensive set of simulated data. It is shown, in particular, that the method is
able to describe the extremal behavior of several common time series models
with regular or irregular time sampling. The method is then used to analyze
Hs data in the North Atlantic Ocean. The results indicate that it is possible to
derive realistic estimates of the extremal properties of Hs from satellite data,
despite its complex space–time sampling.

1. Introduction. Extreme events are a major concern in statistical modeling,
and appropriate methods are needed to derive estimates of the extremal properties
of various phenomena from complex observations. For example, the 100-year re-
turn level of significant wave height is often used in the design of marine structures
as a criterion to characterize the extreme waves that a structure may face during
its lifetime. Significant wave height, generally denoted Hs, can be interpreted as a
measure of an average wave height in a sea state. Three main sources of data can
be used to assess the statistical properties of Hs:

• Reanalysis data provide long time series (typically a few decades) everywhere
in the oceans at a regular time step and without missing values, but tend to
smooth out extreme values.

• Buoy data are generally more accurate, but cover shorter time periods (typically
a few years with missing values) and have a poor spatial distribution.

• Satellite data are also accurate observations and are available on the last
20 years. However, the time series obtained by selecting all satellite data avail-

Received February 2013; revised December 2013.
Key words and phrases. Extreme values, time series, max-stable process, composite likelihood,

irregular time sampling, significant wave height, satellite data.

622

http://www.imstat.org/aoas/
http://dx.doi.org/10.1214/13-AOAS711
http://www.imstat.org


MODELING EXTREME VALUES OF PROCESSES 623

FIG. 1. 3D representation of the available data for 12/16/2002. The 2D fields at times 0, 6, 12 and
18 correspond to reanalysis data, the 24 observations at the same location correspond to buoy data
(hourly data), and the other data to the various satellite tracks.

able at a given location exhibits complex irregular time sampling depending on
the number and tracks of the operating satellites.

A typical example of the data coverage over a 24-hour time window in the North
Atlantic is given in Figure 1. The motivation for the work presented here was to
develop statistical methods for analyzing the extremal properties of Hs based on
such data sets. In particular, our proposed method can be used to estimate various
characteristics of the extremal behavior of processes (e.g., high quantiles, return
periods, storm durations, etc.) observed at regular or irregular time steps, whereas
most existing methods are inappropriate in the latter case.

Two methods are commonly used for estimating extreme quantiles [see, e.g.,
Embrechts, Klüppelberg and Mikosch (1997), Coles (2001), Beirlant et al. (2004),
de Haan and Ferreira (2006) and the references therein]. The first one, generally
referred as the block maxima method, relies on probabilistic results, which sug-
gest the use of the generalized extreme-value (GEV) distribution for modeling the
maximum of a large number of identically distributed random variables. The main
drawback of this approach is the waste of data induced by taking the maximum
over a large block, typically one year for meteorological applications, before fitting
the GEV distribution. The second approach, generally referred to as peaks over
threshold (POT), involves keeping only the observations above a certain thresh-
old chosen to be sufficiently high to ensure that the distribution of excesses above
that threshold is well approximated by a generalized Pareto distribution (GPD).
A problem that arises in using the POT approach for time series is that clusters
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of consecutive dependent exceedances are generally observed, particularly when
the time-lag between successive observations is smaller than the characteristic du-
ration of extreme events. In this case a “declustering” step is generally applied
before fitting the GPD distribution to the sample of cluster maxima. This method
also leads to a waste of data since only one value per cluster is kept to fit the GPD,
and it relies on arbitrary rules for declustering the data. Those rules are even more
difficult to choose in the presence of missing values or irregular time sampling.

Another approach, initially proposed in Smith, Tawn and Coles (1997), retains
all of the exceedances and models them as a first-order Markov chain whose tran-
sition kernel is derived from bivariate extreme value theory. A concurrent strategy,
adopted, for example, in Bortot and Gaetan (2014), consists of modeling the ex-
ceedances conditionally on a latent process. Both approaches have been success-
fully applied to various meteorological time series [see, e.g., Ribatet et al. (2009)],
but they cannot be adapted straightforwardly to time series with irregular sampling
[see also Reich, Shaby and Cooley (2013)]. In this paper, we propose an alterna-
tive approach in which the time series of exceedances above a high threshold is
assumed to be a realization of a censored max-stable process. This model is moti-
vated by probabilistic results from extreme value theory. Since the full likelihood
cannot be obtained analytically, we follow recent works on spatial and space–time
extremes, and base the statistical inference on a composite likelihood approach.
The proposed model can be easily simulated, thereby allowing estimation of vari-
ous quantities of interest for applications, such as quantiles, return periods or the
characteristics of sojourns above high thresholds using Monte Carlo simulations.
Parametric bootstrap can also be used to assess the accuracy of the estimators.

The model is introduced in Section 2. Section 3 studies the composite likeli-
hood approach and discusses the properties of the estimators using simulations.
Section 4 describes simulation results to validate our approach on classical time-
series models and Section 5 discusses its application to Hs data.

2. Censored max-stable processes.

2.1. Threshold models and censoring in the independent case. Probably the
most classical approach to modeling the extremal properties of an independent and
identically distributed (i.i.d.) sample X1, . . . ,Xn consists in using “block maxima.”
It relies on probabilistic results originating in Fisher and Tippett (1928) which sug-
gest approximating the distribution of Mn = maxi=1,...,n Xi by a GEV distribution
with the following cumulative distribution function (c.d.f.):

F(x;μ,σ, ξ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

exp
{
−

[
1 + ξ

x − μ

σ

]−1/ξ}
(ξ �= 0),

exp
{
− exp

[
−x − μ

σ

]}
(ξ = 0),

(1)
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defined for x such that 1+ξ
x−μ

σ
> 0 with parameters μ ∈R, σ > 0 and ξ ∈R. For

applications, the data are grouped into blocks of equal length, and a GEV distri-
bution is fitted to the sample of block maxima. The choice of block size is critical
in practice. For environmental time series, the GEV distribution is generally fit-
ted to the time series of annual maxima to remove seasonal effects. This leads to
a waste of data, and the sample size used to estimate the three parameters of the
GEV distribution is the number of years with no or few missing values (a few
decades in the best-case scenario). Although many methods have been proposed
to provide estimates which exhibit a good behavior on small samples [see, e.g.,
Ailliot, Thompson and Thomson (2011) and the references therein], such estima-
tion remains an important issue in applications.

The POT approach is the classical alternative to the block maxima approach.
It is less wasteful of data since it keeps all data above a high threshold u, which
is chosen such that the conditional distribution P[Xi ≤ x|Xi > u] is well approxi-
mated by a GPD with c.d.f.

G(x;μ,σ, ξ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 −
(

1 + ξ
x − μ

σ

)−1/ξ

(ξ �= 0),

1 − exp
[
−x − μ

σ

]
(ξ = 0),

defined for x ≥ μ such that 1 + ξ
x−μ

σ
≥ 0 with μ = u and parameters σ > 0 and

ξ ∈ R. Again, the use of the GPD is motivated by probabilistic results, and various
methods have been proposed for estimating parameters, based on the sample of
exceedances and the choice of u, although the latter is a more difficult problem [see
Davison and Smith (1990)]. Once u is chosen, the standard method for estimating
the unknown parameters is to maximize the likelihood function

L(λ,σ, ξ ;X1, . . . ,Xn)

= λNu(1 − λ)n−Nu
∏

i∈{1,...,n}|Xi>u

g(xi;u,σ, ξ)(2)

= ∏
i∈{1,...,n}|Xi≤u

λ
∏

i∈{1,...,n}|Xi>u

(1 − λ)g(xi;u,σ, ξ),

where λ = P(Xi ≤ u), Nu is the number of observations below the threshold u,
and g(x;μ,σ, ξ) is the probability density function (p.d.f.) of the GPD. It is well
known that the conditional distribution of the exceedances of a GPD above an
arbitrary threshold is also a GPD, which allows us to interpret (2) as the likeli-
hood of an i.i.d. sample of a GPD censored at the threshold u. More precisely, let
X̃1, X̃2, . . . , X̃n be an i.i.d. sample of a GPD with parameter (μ, σ̃ , ξ), and con-
sider the censored random variable

Yi = u1[X̃i≤u] + X̃i1[X̃i>u] =
{

u, if X̃i ≤ u,
X̃i, if X̃i > u,
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where the threshold u belongs to the support of the GPD distribution. We have
P(Yi = u) = λ with λ = G(u;μ, σ̃ , ξ) and, for x > u,

P(Yi ≥ x) = P(X̃i ≥ u)P(X̃i ≥ x|X̃i ≥ u)

= (
1 − G(u;μ, σ̃ , ξ)

)1 − G(x;μ, σ̃ , ξ)

1 − G(u;μ, σ̃ , ξ)

= (1 − λ)
(
1 − G(x;u,σ, ξ)

)
with σ = σ̃ (1 + ξ

u−μ
σ̃

), and, thus, (2) is the likelihood of (Y1, . . . , Yn). Finally, the
assumptions made when using the POT approach are equivalent to assuming that
the original sample X1, . . . ,Xn satisfies

u1[Xi≤u] + Xi1[Xi>u] = u1[X̃i≤u] + X̃i1[X̃i>u](3)

for all i ∈ {1, . . . , n}, where X̃1, . . . , X̃n is an i.i.d. sample of a GPD.
We will see below that this interpretation of the POT approach in terms of cen-

soring has advantages for modeling purposes. From a numerical point of view, it
can be viewed as a reparametrization of the likelihood function. Maximizing (2)
over (λ, σ, ξ) leads to the estimate λ̂ = Nu

n
for λ, which has the desirable properties

of being easy to interpret and of being independent of the estimates of σ and ξ . At
the same time, maximizing (2) over (μ, σ̃ , ξ) leads to a more complicated three-
dimensional optimization problem and correlated estimates, which can be prob-
lematic for certain applications, as discussed in Section 5 and in Ribereau, Naveau
and Guillou (2011).

Although the GPD distribution is the most common choice for modeling ex-
ceedances over a high threshold, other tail approximations have been proposed in
the literature. In particular, it is known that GEV and GPD have the same tail be-
havior [see Drees, de Haan and Li (2006)], and this suggests that similar results
will be obtained if we model the distribution of X̃i by a GEV distribution instead
of a GPD. Various tests on simulated samples have confirmed that both approxi-
mations lead to similar results in practice.

The tail approximations discussed above remain valid for dependent sequences
under mild conditions [see Leadbetter, Lindgren and Rootzén (1983)], which jus-
tifies the use of both the block maxima and POT approaches for analyzing the
extremes of time series. One difficulty with using the POT approach in this con-
text is that clusters of consecutive dependent exceedances are generally observed,
whereas the likelihood function (2) is the joint distribution of the exceedances only
if they are independent. The most common POT method thus includes a declus-
tering step, with the maxima within each cluster kept only to obtain a sample of
approximately independent exceedances. It also leads to waste data and thus de-
grades the quality of the estimates. Alternative strategies, which keep all the ex-
ceedances in the fitting procedure but correct the estimation of the uncertainty of
the estimators to account for dependence, are proposed in Fawcett and Walshaw
(2007, 2012).
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2.2. Censored max-stable processes. We now consider a sample Xt1, . . . ,Xtn

of a stochastic process {Xt } observed at times t1, . . . , tn. It is generally assumed in
the literature that the observations are available at a regular time step [i.e., ti+1 −
ti = tj+1 − tj for all (i, j) ∈ {1, . . . , n − 1}], but we are interested in a method
that is sufficiently flexible to deal with irregular time sampling. We thus propose
analyzing the extremal behavior of such a data set by extending the POT approach
and modeling the exceedances of the process {Xt } above a high threshold u as
a censored max-stable process. The theory of max-stable processes [see de Haan
(1984), de Haan and Ferreira (2006)] is a natural generalization of the traditional
univariate max-stable theory used to motivate the choice of the GEV distribution
in the i.i.d. case. Several families of max-stable processes have been proposed
in the literature [see, e.g., Smith (1990), Schlather (2002)]. Our focus here is on
the specific Gaussian extreme value process introduced in Smith (1990), although
the methodology introduced herein can easily be adapted to other models. More
precisely, we assume that

u1[Xt≤u] + Xt1[Xt>u] = u1[X̃t≤u] + X̃t1[X̃t>u](4)

holds for all t , where u is a fixed threshold and {X̃t } is a stationary Gaussian
extreme value process with parameter θ = (μ,σ, ξ, ν) ∈ (−∞,+∞)× (0,+∞)×
(−∞,+∞) × (0,+∞), as defined below:

• The marginal distribution of {X̃t } is a GEV distribution with parameter
(μ,σ, ξ). This assumption implies that the process {Zt } obtained by applying
the following marginal transformation,

Zt = − 1

log(F (X̃t ;μ,σ, ξ))
,(5)

is a stationary process with a unit Fréchet marginal distribution [i.e., GEV dis-
tribution with parameter (1,1,1)].

• We further assume that

Zt = max
{

ζi

ν
√

2π
exp

(
−(si − t)2

2ν2

)}
,(6)

where {(ζi, si), i ≥ 1} denote the points of a Poisson process on (0,∞)×R with
intensity measure ζ−2 dζ × ds.

We focus on Gaussian extreme value processes because they have a nice mete-
orological interpretation [see Smith (1990)], can easily handle observations avail-
able at irregular time steps, and are quick and easy to simulate [see Schlather
(2002)]. The following sections also show that these processes provide a flexible
class of models which is able to describe the extremal behavior of most standard
time series models and the Hs data considered in this work. The parameters μ,
σ and ξ are related to the marginal distribution and can be interpreted, respec-
tively, as location, scale and shape parameters, whereas the parameter ν is related
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to the temporal structure of the process and may be interpreted as the typical dura-
tion of storms. More precisely, we have [see Smith (1990)]

P(Zt1 ≤ zt1,Zt2 ≤ zt2) = FZ(zt1, zt2;ν) = exp
[−V (zt1, zt2;ν)

]
,(7)

where

V (zt1, zt2;ν) = 1

zt1

	

(
a

2
+ 1

a
log

zt2

zt1

)
+ 1

zt2

	

(
a

2
+ 1

a
log

zt1

zt2

)
(8)

with a = |t1−t2|
ν

, and 	 is the c.d.f. of the standard normal distribution. The limit
cases ν → 0 and ν → +∞ correspond to independence and perfect dependence,
respectively.

Applying the inverse marginal transformation leads to the following bivariate
c.d.f. for the Gaussian extreme value process {X̃t }:

F
X̃
(x̃t1, x̃t2; θ) = P(X̃t1 ≤ x̃t1, X̃t1 ≤ x̃t2)

(9)

= exp
[
− 1

zt1

	

(
a

2
+ 1

a
log

zt2

zt1

)
− 1

zt2

	

(
a

2
+ 1

a
log

zt1

zt2

)]

with zti = −1
logF(x̃ti

;μ,σ,ξ)
.

The bivariate distribution of (Yt1, Yt2), where Yt = u1[X̃t≤u] + X̃t1[X̃t>u] is the
censored Gaussian extreme value process, has the following bivariate p.d.f.:

pY (yt1, yt2; θ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F
X̃
(u,u; θ), if yt1 = u and yt2 = u,

∂F
X̃

∂x̃t1

(yt1, u; θ), if yt1 > u and yt2 = u,

∂F
X̃

∂x̃t2

(u, yt2; θ), if yt1 = u and yt2 > u,

∂2F
X̃

∂x̃t1∂x̃t2

(yt1, yt2; θ), if yt1 > u and yt2 > u

(10)

with respect to the product measure m ⊗ m, where m(dx) = δu(dx) + dx is the
measure obtained by mixing the Dirac measure at u with the Lebesgue measure.

Similar approximations, motivated by probabilistic results from bivariate ex-
treme value theory, are used in Smith, Tawn and Coles (1997) and Ribatet et al.
(2009) to model the bivariate distribution of successive exceedances. Those papers
further assume that the censored process is a Markov process and the full likeli-
hood function is derived from the bivariate distributions. More recently, threshold
versions of max-stable processes have also been proposed in a space–time context
[see Huser and Davison (2014), Jeon and Smith (2012)].

3. Parameter estimation.

3.1. Composite likelihood estimators. In this section (yt1, . . . , ytn) ∈
(u,+∞)n denotes a realization of a Gaussian extreme value process {Yt } with
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unknown parameter θ∗ = (μ∗, σ ∗, ξ∗, ν∗) censored at the threshold u ≥ 0 and
observed at times t1, . . . , tn. There is no known tractable expression for the full
likelihood. However, since the marginal and bivariate distributions have tractable
expressions, statistical inference can be based on one of the composite likelihood
functions introduced below [see also Lindsay (1988), Varin and Vidoni (2005),
Varin (2008), Cox and Reid (2004), Padoan, Ribatet and Sisson (2010)]:

• The independent likelihood function is defined as

IL(θ;yt1, . . . , ytn) =
n∏

i=1

pY (yti ; θ),(11)

where pY (yt ; θ) is the p.d.f. of the marginal distribution of Yt with respect to
the measure m. It is given by

pY (yt ; θ) =
{

F(u;μ,σ, ξ), if yt = u,
f (yt ;μ,σ, ξ), if yt > u,

where F and f denote the c.d.f. and the p.d.f. of the GEV distribution, respec-
tively. It corresponds to the likelihood function of an i.i.d. sample of a censored
GEV distribution (see Section 2.1) and does not invoke the parameter ν, which
describes the dependence structure of the process. We denote by MILE the esti-
mator of (μ,σ, ξ) obtained by maximizing this function.

• The pairwise likelihood function is defined as

PL(θ;yt1, . . . , ytn) =
n−1∏
i=1

∏
j>i

pY (yti , ytj ; θ)
ωti ,tj(12)

with pY (yti , ytj ; θ) given by (10) and ωti,tj ∈ {0,1} indicating whether the pair
of observations (yti , ytj ) contributes to the pairwise likelihood function. This
approach has already been considered for time series with regular time sampling
[see Varin (2008) and the references therein]. It is generally assumed that

ωti,tj = 1[|i−j |≤K],(13)

such that only the pairs of observations less than K time units apart are re-
tained to build the pairwise likelihood function. Hereafter, PLK denotes the cor-
responding pairwise likelihood function and MPLKE the estimator obtained by
maximizing this function. Retaining only the neighboring observations (i.e., us-
ing K = 1) has clear computational benefits since it significantly reduces the
number of terms in the product (12). It may also lead to more efficient estima-
tors in practice [see Varin (2008) and Section 3.2]. Another strategy is to retain
the pairs of observations separated by a time lag smaller than K and take

ωti,tj = 1[|ti−tj |≤K].(14)

This second strategy is similar to the first one when the process is observed
at regular time sampling but differs in the irregular case, which will be further
discussed using simulations in Section 3.2.



630 N. RAILLARD, P. AILLIOT AND J. YAO

• The Markovian likelihood function is defined as

ML(θ;yt1, . . . , ytn) = pY (yt1; θ)

n∏
i=2

pY (yti |yti−1; θ)

=
∏n

i=2 pY (yti , yti−1; θ)∏n−1
i=2 pY (yti ; θ)

(15)

= PL1(θ;yt1, . . . , ytn)

IL(θ;yt2, . . . , ytn−1)

and MMLE denotes the estimator obtained by maximizing this function. This
estimator is considered for comparison purposes. Indeed, when the process is
observed at a regular time step, we retrieve the Markovian model considered in
Smith, Tawn and Coles (1997) and Ribatet et al. (2009) for the specific bivariate
max-stable distribution associated with the Gaussian extreme value process.

From a numerical point of view, we find it useful to use a two-stage procedure,
where the parameters (μ,σ, ξ) of the marginal distribution are first estimated by
maximizing the independent likelihood function, and the dependence parameter
ν is then estimated by maximizing the pairwise likelihood function in ν with the
parameters of the marginal distribution kept fixed at the values obtained in the first
step. Doing so permits to reduce the computational time (the independent likeli-
hood function can be evaluated quickly compared to the pairwise likelihood func-
tion) and avoid the divergence problems which may occur when optimizing the
pairwise likelihood function simultaneously over all parameters with an inappro-
priate starting point. Then, we can perform a global optimization of the pairwise
likelihood function over the four parameters with the estimates obtained after the
two-stage procedure being used as the starting point. We performed various nu-
merical experiments, which confirmed that the estimators obtained from the two-
stage procedure are suboptimal compared to full optimization [see Silva and Lopes
(2008) for a discussion in the context of copulas].

The asymptotic properties of the composite likelihood estimators for max-stable
processes have been studied in several recent papers. In Padoan, Ribatet and Sis-
son (2010) it is shown that they are consistent and asymptotically normal when the
sample consists of i.i.d. replicates of max-stale fields. Two recent papers [Huser
and Davison (2014), Jeon and Smith (2012)] consider the general case of tem-
porally and spatially dependent max-stable processes. Although the asymptotic
results developed in Jeon and Smith (2012) apply to the estimators considered in
this paper, for the sake of completeness, an alternative proof of the consistency
of the MPL1E is provided in the supplementary article Raillard, Ailliot and Yao
(2013). That proof is provided in an idealized situation with no censoring and
known marginal distributions. Moreover, since the asymptotic covariance of the
estimator is too complicated to compute for practical applications, we use para-
metric bootstrap [see, e.g., Benton and Krishnamoorthy (2002)] to approximate
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the distribution of the estimators and provide confidence intervals, as discussed in
greater detail in Section 5.

3.2. Simulation study. A simulation study was undertaken to assess the accu-
racy of the estimators introduced in Section 3.1. Random samples were generated
from a Gaussian extreme value process with parameters μ = 0, σ = 1 and ξ = 0.3,
which correspond to realistic values for environmental applications. We performed
various experiments to investigate how the accuracy of the estimators is affected by
the sample size n, the dependence parameter ν, the threshold u and, finally, by the
strategy used to select the pairs of observations that contribute to the pairwise like-
lihood function. For each experiment, 1000 independent sequences of a Gaussian
extreme value process were generated and the various estimators of (μ,σ, ξ, ν)

computed for each sequence.
Let us first focus on the case in which the time step between successive observa-

tions is constant. According to the left plots of Figure 2, all of the estimators seem
to be consistent. We also checked empirically that, when multiplied by

√
n, the

errors are almost constant, demonstrating that we retrieve the usual speed of con-
vergence. The MILE is clearly the least efficient estimator, whereas the MPL1E,
MPL5E and MMLE produce similar results. A closer look reveals, however, that
the MPL5E is the least accurate of these three estimators. The MMLE slightly
outperforms the MPL1E in estimating the scale parameter σ and the shape pa-
rameter ξ , whereas the MPL1E provides the best estimator of the dependence pa-
rameter ν. The second column of Figure 2 shows that the root-mean-square error
(RMSE) of all the estimators decreases with the dependence parameter ν and that
it is more difficult to obtain reliable estimates when the dependence between suc-
cessive observations is strong. The efficiency of the MMLE generally deteriorates
quicker when ν increases. It provides the worst estimation of μ, σ and ν when
ν ≥ 1, but provides the best estimation of ξ for all the values of ν considered in
this experiment. These results indicate that the Markovian likelihood may not be
appropriate when the dependence is strong. The third column of Figure 2 depicts
the behavior of the different estimators when censoring occurs. As expected, they
all worsen when the threshold increases and the number of noncensored observa-
tions decreases. It can be seen that the estimator which suffers most from censoring
is the MILE, whereas the MMLE outperforms both the MPL1E and MPL5E in es-
timating the parameters of the marginal distribution. The MPL1E again provides
the best estimator of the dependence parameter ν.

The last column of Figure 2 shows the influence of the windows considered in
defining the neighborhood, which are taken into account in the pairwise likelihood
functions. The Gaussian extreme value process was simulated using an irregular
time sampling (the time lag between successive observations was drawn from a
uniform distribution on [0,2]) to allow comparison between the two strategies
discussed in Section 3.1: the first involves the use of the K closest observations
[see equation (13)], whereas the second takes into account all observations falling
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FIG. 2. RMSE (y-axis) as a function of sample size n (first column), dependence parameter ν (sec-
ond column), threshold u (third column) and neighborhood size K (last column). Results obtained
using 1000 simulations of a Gaussian extreme value process. Unless specified otherwise, the time
sampling is regular and the values μ = 0, σ = 1, ξ = 0.3, ν = 0.5, u = −∞ and n = 300 are used.
Solid line: MILE; dotted line: MMLE; dashed line: MPL1E; dashed-dotted line: MPL5E. For the last
column, the time step between successive observations is drawn from a uniform distribution on the
interval (0,2) and the dashed (resp., dashed-dotted) line corresponds to the MPLK E with the first
(resp., second) weighting strategy [see (13)] [resp., (14)].

within K time steps [see equation (14)]. We found the first strategy always to be
the best. The evolution of RMSE with K differs according to the strategy used. It is
increasing for the first strategy, meaning that the best estimators are obtained with
K = 1, but generally decreasing for the second, and the difference between the
strategies decreases when K increases. Comparison with the MILE and MMLE
indicates again that even when the time sampling is irregular the MMLE slightly
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outperforms the MPL1E in estimating μ, σ and ξ but the MPL1E provides the best
estimation of ν.

The results given in this section suggest that the MMLE or MPL1E are more fa-
vorable for practical applications since their RMSE are generally the lowest. The
two estimators have a similar computational cost. Although the former may pro-
vide a slightly better estimation when the dependence between successive obser-
vations is small, it is clearly less efficient when the dependence is strong. Finally, it
seems reasonable to use the MPL1E in practice and we will focus on this estimator
in the sequel.

4. Performance on classical time series models. The lack of data makes it
generally difficult to validate models for extreme values when facing real applica-
tions. In this section we perform a simulation study to check whether the proposed
methodology is able to capture the extremal properties of several widely used time
series models. In Section 4.1 we simulate large samples to obtain estimators with a
low variance and to check whether the Gaussian extreme value process provides an
appropriate approximation of the extremal behavior of the time series models un-
der consideration. Then, in Section 4.2 we simulate shorter time series to validate
the overall methodology in a more realistic context.

4.1. Model validation. We focus on the following time series models:

• IID: {Xt } is an i.i.d. sequence of standard normal variables.
• AR(1): {Xt } is a discrete time stationary process which satisfies

Xt = αXt−1 +
√

1 − α2εt

for all t , where α ∈ (−1,1) describes the dependence between successive obser-
vations and {εt } is an i.i.d. sequence of standard normal variables. The marginal
distribution of {Xt } is standard normal and the extremal index [see Coles (2001)]
is equal to one (no clustering of extremes). We use the value α = 0.2.

• logARMAX(1): {Xt } is a discrete time stationary process which satisfies Xt =
log(Ut ), where {Ut } is an ARMAX(1) process defined as

Ut = max
{
(1 − α)Ut−1, αεt

}
for all t , where α ∈ (0,1) describes the dependence between successive obser-
vations and {εt } is an i.i.d. sequence of unit Fréchet variables. The logarithmic
transformation is used to avoid the numerical problems which occur when esti-
mating quantities related to heavy tail distributions by simulation. The marginal
distribution of {Ut } is unit Fréchet, whereas the one of {Xt } is Gumbel. The
extremal index is α. We use the value α = 0.2.

• OU (Ornstein–Uhlenbeck): {Xt } is a continuous time stationary process which
satisfies

dXt = −αXt dt + √
2α dWt,
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where α > 0 describes the dependence structure and {Wt } is a standard Brown-
ian motion. The marginal distribution of {Xt } is a standard normal distribution,
and we retrieve the AR(1) model when the process is sampled at a regular time
step. We use the value α = 0.05, and the time lags between successive observa-
tions are drawn from a uniform distribution on [0,2].
For each of these models, we first generate a long realization (equivalent to 1000

years with one observation per day) and fit a Gaussian extreme value process to the
simulated sequence censored at the 95% quantile by computing the MPL1E. We
then compare the following characteristics of the reference model and the fitted
censored Gaussian extreme value process:

• mean number of up-crossings during a given time period (one year) as a function
of the threshold;

• mean length of the sojourns above a varying threshold; and
• mean length of the sojourns below a varying threshold.

These quantities were selected because they summarize important properties of
the extremal behavior of the processes and are important for practitioners. All
quantities were computed using long simulations of both the original time series
model [IID, AR(1), logARMAX(1) or OU generated using standard algorithms]
and the fitted Gaussian extreme value process. This is illustrated in Figure 3
which shows realizations of both the AR(1) model and the fitted Gaussian extreme
value process, whereas the second column of Figure 4 permits a more systematic
comparison of the extremal behavior of both processes. The fitted model is able
to reproduce both the frequency of the up-crossings and the durations between
successive up-crossings, even for high thresholds, but it slightly overestimates the
mean length of the clusters above high thresholds. Indeed, for the AR(1) model, the
mean length of the clusters tends to one when the threshold increases, as expected
from theory (no clustering of extremes), whereas the fitted Gaussian extreme value
process exhibits small extremal dependence and thus clustering of extremes. Using

FIG. 3. Short samples of the AR(1) model (solid line) and fitted Gaussian extreme value process
(dashed line). The horizontal dotted line is the threshold used for censoring.
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FIG. 4. Comparison of the extremal behavior of classical processes (solid line) against the fitted
Gaussian extreme value process (dashed line). From top row: mean number of up-crossings per
year, mean length of clusters and mean time between consecutive up-crossings as a function of the
threshold (x-axis). Results obtained by simulating 1000 years of each model (one observation per
day).

a higher threshold for censoring before fitting the Gaussian extreme value process
helps to improve these results and to retrieve extremal independence (not shown).
According to the first column of Figure 4, the results are better for the IID model,
which is a particular case of the AR(1) model with no dependence between suc-
cessive observations. It is not surprising to obtain similar results for the OU (see
the last column of Figure 4) and AR(1) models since they are equivalent when the
time sampling is regular.

In contrast to the other models, the extreme values of the logARMAX(1) pro-
cess tend to cluster. Figure 4 shows that the fitted model seems to be able to re-
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produce both the frequency of the up-crossings and the mean length of the clusters
that tend to a limit greater than one, as expected from theory. However, it seems to
overestimate the mean length of the sojourns below high thresholds, although the
erratic behavior of the curves suggests that the observed differences may be due to
sampling error.

These simulation results indicate that the Gaussian extreme value process is able
to capture important properties of the extremal behavior of several common time
series models, and similar results were obtained for various other models we have
tested (not reported).

4.2. Simulation results in a realistic context. In this section we validate our
proposed methodology on shorter synthetic time series that better correspond to the
amount of data typically available in environmental applications (i.e., a few years
of data). For each of the time series models introduced in the previous section, we
repeated the following numerical experiment 1000 times:

• generate a five-year sequence (one observation per day) of the reference time
series model;

• fit the censored Gaussian extreme value process to this sequence after censoring
at the 95% quantile; and

• compute the 100-year return level for the fitted model which is defined as the
level at which the mean number of clusters above this level in a 100-year time
period is equal to one. This return level was chosen because it is generally the
quantity of interest in practical applications. It depends on both the marginal
distribution and the dependence structure of the process. It was computed by
simulating a long realization (1000 years) of the fitted model.

It can be seen from Table 1 that the results obtained with the fitted censored
Gaussian extreme value process clearly outperform those obtained with the usual
POT method. The MMLE and CPL1E produce similar results for the three models
with no extremal dependence [IID, AR(1) and OU], but those obtained with the
CPL1E are clearly superior to those obtained with the MMLE in terms of accuracy

TABLE 1
Mean value of the estimated 100-year return level with 90% fluctuation intervals in parentheses.

Simulation results based on 200 independent five-year synthetic sequences of each model.
A declustering step was applied in the POT method [see Coles (2001)]

Method IID AR(1) logARMAX(1) OU

True value 4.03 4.03 8.90 3.79

POT 4.18 (3.12, 6.02) 4.16 (3.14, 5.68) 12.19 (5.31, 29.96) 3.21 (2.31, 5.04)
MMLE 3.89 (3.12, 5.15) 3.90 (3.09, 4.95) 18.77 (5.88, 36.96) 3.62 ( 2.61, 5.05)
CPL1E 3.84 (3.11, 5.17) 3.76 (3.16, 4.72) 9.52 (5.54, 17.09) 3.62 (2.61, 4.98)
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and bias for the logARMAX(1) model. The IID and AR(1) models have almost
the same 100-year return levels, which is expected from theory since they have the
same marginal distribution and no extremal dependence. The lower return period
of the OU process, which also has the same marginal distribution and no extremal
dependence when observed at a regular time step, may be due to the irregular
time sampling. The extremal dependence of the logARMAX(1) model leads to
a higher return level than the other models, but also to bigger bias and variance
in the estimators, which is in conformity with the simulation results reported in
Section 3.2 (see Figure 2).

5. Application to significant wave height. Significant wave height (Hs) is an
important oceanographic parameter that is directly related to the energy of a sea
state. It was originally defined as the mean height of the one-third highest waves,
and was thought to give about the same value as an experienced seaman’s eyeball
estimate of wave height. With the development of instruments producing more
accurate measurements of sea surface elevation, Hs was redefined as four times
the standard deviation of the sea surface elevation on a certain space–time domain
where the sea state conditions can be assumed to be stationary. The ratio of four
was chosen to ensure that the two definitions roughly coincide.

Offshore structures in particular must be designed to exceed a specific level of
reliability, which is typically expressed in terms of return periods of Hs. The three
sources of data (buoy, reanalysis and satellite) that can be used to estimate the
extremal behavior of Hs are introduced in Section 5.1. In Section 5.2 we focus
on a specific location in which buoy data are available and compare the results
obtained with the three data sets. The buoy and satellite data give similar results,
whereas the reanalysis data lead to significantly different results. Since the buoy is
generally considered to be the reference, it suggests the use of satellite data when
no buoy data are available at the location of interest. This is further discussed in
Section 5.3 which shows maps of Hs return-periods in the North Atlantic based on
satellite data.

5.1. Hs data. The data used in this work come from the three sources briefly
described below:

• Reanalysis data. The ERA-interim data set is a global reanalysis carried out by
the European Center for Medium-Range Weather Forecasts (ECMWF). It can be
freely downloaded and used for scientific purposes.1 In this work, we consider
21 years of data, from 1989 until 2009.

• Buoy data. We focus on data from the buoy Brittany (station 62,1632), which is
part of the UK Met Office monitoring network. It is located at position (47.5 N,

1http://data.ecmwf.int/data/.
2http://www.ndbc.noaa.gov/station_page.php?station=62163.

http://data.ecmwf.int/data/
http://www.ndbc.noaa.gov/station_page.php?station=62163
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8.5 W) and provides hourly Hs data. In this work, we consider 10 years of data,
from 1995 until 2005 (no data are available for 2000). Missing values represent
about 7.7% of the data and are generally associated with extreme events (as
breakdowns generally occur during storms), which is an important issue when
implementing block maxima or POT approaches.

• Satellite data. The observations consist of Hs measured at discrete locations
along one-dimensional tracks from seven different satellite altimeters which
have been deployed progressively since 1991. The data set and related infor-
mation can be freely downloaded.3 In this study, we consider data from 1992
until 2007.

A typical example of data coverage over a 24-hour time window in the North
Atlantic Ocean can be seen in Figure 1. The reanalysis data are available over a
regular 1.5×1.5-degree grid at synoptic times every six hours starting at midnight,
in contrast to the irregular space–time sampling provided by the satellite altimeter.
However, the reanalysis data tend to underestimate Hs variability (see the next
section) and they provide information only at a synoptic scale, whereas satellite
data give smaller-scale information as well.

Buoys provide accurate information on sea-state conditions but are sparsely dis-
tributed over the ocean, and there is generally no buoy at the location of interest
for a particular application. In such a situation, it is important to be able to derive
estimates of the extremal behavior of Hs from the other sources of data introduced
in this section, which are available all over the oceans. These data sets have been
considered in numerous studies interested in the distributional properties of Hs
[see, e.g., Challenor, Foale and Webb (1990), Tournadre and Ezraty (1990), Caires
and Sterl (2005), Menéndez et al. (2008), Vinoth and Young (2011)].

5.2. Single-site analysis. In this section we focus on the location of the buoy
Brittany and illustrate how the methodology introduced in this work can be used
to estimate the extremal behavior of Hs using the three data sets introduced in the
previous section.

Hs data are nonstationary with an important seasonal component. A classical
approach to treating seasonality in meteorological applications is to block the data
by month and fit a separate model each month, assuming that the different real-
izations of the same month across years are independent realizations of a common
stochastic process. We adopt this approach herein, focusing on the month of De-
cember. Blocking the data by month leads, however, to waste data and probably to
the loss of important information on extreme events. The development of nonsta-
tionary models which include seasonal and inter-annual components to cover the
whole time series would be a valuable topic for future research.

3ftp://ftp.ifremer.fr/ifremer/cersat/products/swath/altimeters/waves/.

ftp://ftp.ifremer.fr/ifremer/cersat/products/swath/altimeters/waves/
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Reanalysis and satellite data provide observations that are not exactly at the
location of interest. Interpolation methods could be used, but may smooth the data
[see Ailliot et al. (2011)]. We thus decided to consider:

• the reanalysis data available at location (48 N, 9 W), which is the closest grid
point to the buoy Brittany, and

• the time series obtained by retaining all of the closest observations to the buoy
in the satellite tracks which intersect a 3◦ × 3◦ box centered on the location
of interest [see Vinoth and Young (2011), Wimmer, Challenor and Retzler
(2006)].

Figure 5 shows the resulting reanalysis time series, which exhibits an impor-
tant inter-annual variability particularly when we look at the extreme values. There
were two severe storms in which Hs exceeded 12 meters in 1989 and 2007, whereas
for the other years Hs was always below 9 meters. These two storms exert a strong
influence on the results obtained from fitting a model to extreme events. To facil-
itate comparison with the buoy data (which are unavailable for 1989 and 2007),
we also consider a subset of reanalysis data for the years for which buoy data are
available (see Figure 5). This data set is referred to as “restricted reanalysis data,”
whereas the full reanalysis time series is named “full reanalysis data.”

Figure 6 shows all of the data available for December 2005. The agreement
between the reanalysis and buoy time series is generally good, although the re-
analysis data tend to be smoother and to exhibit lower extremes, as confirmed by
the quantile–quantile (QQ) plots in Figure 7, which show the buoy data to have
higher quantiles than the restricted reanalysis data. However, this no longer holds
true when we compare the quantiles of the buoy and full reanalysis data because
of the significant inter-annual variability (the months of December when the buoy
data are available correspond to years with generally low Hs). Finally, Figure 7
shows good agreement between the empirical quantiles of the buoy and satellite

FIG. 5. Reanalysis data for 21 months of December. The dotted vertical lines correspond to the
beginning of the monthly blocks (1st of December of each year) and the gray area corresponds to the
years in which both buoy and restricted reanalysis data are available.
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FIG. 6. Comparison of the three time series for December 2005. Solid line: buoy data (location
[47.5 N, 8.5 W]); dotted line: reanalysis data (location [48 N, 9 W]); plus points: closest satellite
observation to the buoy from each satellite track within a 3◦ box.

data, which suggests that the satellite data may constitute a better source of infor-
mation on high Hs than the reanalysis data. Figure 6 presents the complex temporal
sampling of the satellite data with clusters of several observations and long gaps
with no observation, which prevents the use of standard methods of extreme value
theory (i.e., block maxima and POT).

We first focus on buoy data since this data set is generally considered to be the
reference for the other data sets [see, e.g., Queffeulou (2004)]. The first step is
to choose a censoring threshold u. This is a crucial step since u must be high
enough to justify approximation by probabilistic models derived from extreme
value theory but not too high in order to keep enough observations to fit the model.
A common tool for selecting an appropriate threshold is to fit the model for various
thresholds and choose the lowest one that ensures the estimates are almost stable
for any higher threshold value. Indeed, from a theoretical point of view, if the fitted
censored Gaussian extreme value process is an appropriate model for describing
the behavior of the observed process above a threshold u, then it should also be
appropriate above a higher threshold. However, in practice, it is generally difficult
to come up with a decision using such diagnostic plots. Figure 8 shows that the es-

FIG. 7. QQ-plots of the empirical distribution of the buoy (x-axis) against the empirical distribu-
tion of the full reanalysis data (y-axis on the left panel), the reduced reanalysis data (y-axis on the
middle panel) and the satellite data (y-axis on the right panel).
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FIG. 8. Values of the MPL1E computed on buoy data as a function of threshold u (x-axis). From
left to right: estimates of μ, σ , ξ and ν. The dashed lines correspond to 95% confidence intervals
computed using parametric bootstrap (results based on 1000 independent replications of the fitted
model simulated with the temporal sampling of the original data).

timate of ν seems to stabilize only over the threshold u = 8 meters, which has been
selected in the sequel. This threshold roughly corresponds to the 99% quantile of
the marginal distribution.

The parameter values are given in Table 2 together with 95% confidence inter-
vals computed using parametric bootstrap. The shape parameter ξ is slightly neg-
ative (bounded tail), but the sampling distribution shown in Figure 9 indicates that

TABLE 2
Thresholds, parameter values and return levels for the different data sets. 95% confidence intervals
computed using parametric bootstrap are given in parentheses (results based on 1000 independent

replications of the fitted models simulated with the temporal samplings of the original data)

Full reanalysis Restricted reanalysis Buoy Satellite

Threshold

u 6 6 8 6
Nb obs > u 182 74 59 48

Parameter values

μ 4.20 (3.20,4.66) 2.19 (−6.85,3.80) 5.12 (−7.3,6.67) 3.80 (2.23,4.47)

σ 0.69 (0.41,1.31) 1.70 (0.81,8.83) 0.50 (0.11,7.23) 1.33 (0.86,2.69)

ξ 0.14 (−0.10,0.3) −0.17 (−0.6,−0.02) 0.07 (−0.40,0.32) 0.01 (−0.25,0.17)

ν 0.13 (0.10,0.17) 0.12 (0.07,0.18) 1e–3 (8e–4, 2e–3) 0.05 (0.03,0.08)

Return levels

q10 10.1 (8.5,12.3) 8.2 (7.3,9.1) 10.4 (9.3,12.2) 12.1 (10.7,14.6)

q20 11.0 (9.0,14.3) 8.5 (7.5,9.6) 10.8 (9.4,13.8) 12.9 (11.1,16.4)

q50 12.5 (9.5,17.9) 8.8 (7.6,10.1) 11.4 (9.6,16.0) 14.0 (11.5,19.1)

q100 13.6 (9.9,21.6) 9.0 (7.7,10.6) 11.8 (9.7,18.8) 14.7 (11.7,21.6)
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FIG. 9. Empirical distribution of the parameters obtained using parametric bootstrap and the
model fitted to buoy data. From left to right: estimates of μ, σ , ξ and ν. The diagonal plots show
histograms of the marginal distributions and the other plots are scatter plots of the bivariate distribu-
tions (results based on 1000 independent replications of the fitted model simulated with the temporal
sampling of the original data).

the difference from zero (Gumbel distribution) is not significant. This is in agree-
ment with previous studies [see, e.g., Caires and Sterl (2005)] in which ξ is often
fixed to be equal to zero. More generally, Figure 9 shows the empirical distribu-
tion of the parameters obtained using parametric bootstrap and the strong relations
between the estimates of the parameters μ, σ and ξ . High values for the position
parameter μ are generally associated with high values for the shape parameter ξ ,
which is compensated for by low values for the scale parameter σ . As a conse-
quence, any error on one parameter influences the values of the others, leading to
wide confidence intervals for μ, σ and ξ (see Table 2). The parameter ν is less cor-
related with the other parameters, although there is a noticeable positive correlation
with ξ . In applications, the end user is generally interested in return levels, which
are functions of the four parameters of the model, and, thus, the errors made on
individual parameters may compensate for one another [see also Ribereau, Naveau
and Guillou (2011)].

Figure 10 compares various important characteristics of the extremal behavior
of the data with those of the fitted model. The statistics computed from the data
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FIG. 10. Comparison of the extremal behavior of the buoy data and fitted model. First panel:
QQ-plot of the marginal distribution of the buoy (x-axis) against the fitted model. Second panel:
QQ-plot of the cluster maxima of the buoy (x-axis) against the fitted model (y-axis). Third
panel: mean number of up-crossings per month as a function of the level (x-axis) for the buoy data
(solid line) and fitted model (dashed line). The dashed-dotted lines represent 95% prediction in-
tervals computed by simulation (results based on 1000 independent replications of the fitted model
simulated with the temporal sampling of the original data).

always lie in the 95% prediction intervals for the fitted model and, thus, the model
seems to be able to reproduce both the marginal distribution and the dynamics of
the observed time series above the selected threshold. This gives us confidence in
the results obtained when extrapolating the extremal behavior of the data using the
model. Using a lower threshold u leads to estimates with smaller variances (see
Figure 8), but the fitted models are no longer able to reproduce the characteristics
of the data above high levels (results not shown).

The censored Gaussian extreme value process was also fitted to the reanalysis
and satellite data. For these data sets, we selected a lower threshold u = 6 meters.
This choice was based on the same diagnostic plots as those previously discussed
for buoy data and practical considerations (using the threshold u = 8 meters would
lead to retaining fewer than 10 observations above the threshold for the satellite
and restricted reanalysis data). The parameter values of the models fitted on the
buoy and satellite time series are broadly similar (see Table 2) but exhibit impor-
tant differences with those obtained on the two reanalysis data sets. In particular,
the parameter ν, which describes the dynamics of the process, is higher for the
reanalysis data sets. This is in agreement with Figure 6, which shows that the re-
analysis data tend to be smoother than the buoy data. The value of ξ is close to
zero for the buoy and satellite data, whereas it is significantly negative (bounded
tail) for the restricted reanalysis data and slightly positive for the full reanalysis
data, probably because of the influence of the two severe storms in 1989 and 2007
(see Figure 5). These results are also in agreement with Figure 7, which indicates
that the full reanalysis data set has a heavier tail than the buoy data set, whereas
the restricted reanalysis data set has a lighter tail.
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FIG. 11. Map of 20-year return levels in the North Atlantic Ocean. A 3◦-wide moving window was
used to build the time series at the different locations by retaining the value closest to the center for
each satellite track crossing the window. A variable threshold corresponding to the 95% quantile was
used.

5.3. Spatial analysis. Similar results were obtained at the other locations for
which buoy data were available. The buoy and satellite data generally lead to the
identification of similar models, whereas the reanalysis data identify more ex-
tremal dependence and longer storms. If we believe the buoy data to be a good
reference, then these results suggest that satellites may provide more accurate in-
formation on the extremal behavior of Hs than reanalysis data. In this context, the
proposed methodology can be an efficient tool for estimating the extremal proper-
ties of Hs at any ocean location for which satellite data are available.

This is illustrated in Figure 11, which shows 20-year return levels in the North
Atlantic computed using satellite data. To reduce the variability of the estimates,
we have fixed the tail parameter ξ to be equal to zero, which is a common as-
sumption when fitting extreme value models to Hs data [see, e.g., Caires and Sterl
(2005)] and is in agreement with our previous single-site analysis. The map in Fig-
ure 11 exhibits a clear spatial structure, coherent with that obtained using another
method in Wimmer, Challenor and Retzler (2006). Further improvements may be
obtained by constraining the parameters so that they vary smoothly in space [see,
e.g., Cooley, Nychka and Naveau (2007), Reich and Shaby (2012)], although such
a sophisticated development is beyond the scope of this study.

6. Conclusion. In this paper we propose an original method for analyzing the
extremal behavior of univariate time series. Our approach is motivated by the need
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to analyze environmental time series with missing values or irregular sampling.
Tests performed on classical time series models indicate that the proposed method
also performs well on time series with regular sampling compared to other meth-
ods proposed in the literature. The parameters are estimated using a composite
likelihood method, and both theory and simulations indicate that doing so leads
to consistent estimates. The results obtained on Hs data indicate that the proposed
methodology can be used to estimate the extremal behavior of Hs from satellite
data and produce an accurate climatology of extreme Hs all over the ocean.

We believe our methodology to be sufficiently flexible to build extensions useful
for a range of applications. For example, it could deal with other max-stable pro-
cesses, include nonstationary components or be extended to a space–time model.
These possible extensions will be the subject of future research.
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SUPPLEMENTARY MATERIAL

Supplementary material: Proof of the consistency of the MPL1E estimates.
(DOI: 10.1214/13-AOAS711SUPP; .pdf). In the attached supplemental material
[Raillard, Ailliot and Yao (2013)], we prove the consistency of the MPL1E estima-
tor in an idealized situation with no censoring and known marginal distributions.
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