
The Annals of Applied Statistics
2014, Vol. 8, No. 2, 852–885
DOI: 10.1214/13-AOAS702
© Institute of Mathematical Statistics, 2014

SMALL AREA ESTIMATION OF GENERAL PARAMETERS
WITH APPLICATION TO POVERTY INDICATORS:

A HIERARCHICAL BAYES APPROACH
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Poverty maps are used to aid important political decisions such as al-
location of development funds by governments and international organiza-
tions. Those decisions should be based on the most accurate poverty figures.
However, often reliable poverty figures are not available at fine geographical
levels or for particular risk population subgroups due to the sample size limi-
tation of current national surveys. These surveys cannot cover adequately all
the desired areas or population subgroups and, therefore, models relating the
different areas are needed to “borrow strength” from area to area. In partic-
ular, the Spanish Survey on Income and Living Conditions (SILC) produces
national poverty estimates but cannot provide poverty estimates by Spanish
provinces due to the poor precision of direct estimates, which use only the
province specific data. It also raises the ethical question of whether poverty is
more severe for women than for men in a given province. We develop a hier-
archical Bayes (HB) approach for poverty mapping in Spanish provinces by
gender that overcomes the small province sample size problem of the SILC.
The proposed approach has a wide scope of application because it can be
used to estimate general nonlinear parameters. We use a Bayesian version of
the nested error regression model in which Markov chain Monte Carlo pro-
cedures and the convergence monitoring therein are avoided. A simulation
study reveals good frequentist properties of the HB approach. The resulting
poverty maps indicate that poverty, both in frequency and intensity, is local-
ized mostly in the southern and western provinces and it is more acute for
women than for men in most of the provinces.

1. Introduction. Before the recent world economic crisis, the goal of a 23%
maximum global poverty rate established in the United Nations Millennium De-
velopment Goals for the year 2015 seemed to be easy to achieve and there was
also a clear indication of progress in all the other goals. However, after the crisis
and also due to the late environmental disasters such as the drought in East Africa,
the situation regarding poverty is getting worse. A reliable and detailed statistical
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measurement is certainly essential in the assessment of the well being of different
regions, which will lead to the design of effective developmental policies.

Often, national surveys are not designed to give reliable statistics at the local
level. This is the case of the Spanish Survey on Income and Living Conditions
(SILC), which is planned to produce estimates for poverty incidence at the Span-
ish Autonomous Communities (large regions), but it cannot provide estimates for
Spanish provinces due to the small SILC sample sizes for some of the provinces.
The population subdivisions, not necessarily geographical, which constitute the
estimation domains, will be called in general “areas.” When estimating some ag-
gregate characteristic of an area, a “direct” estimator is the one that uses solely the
data from that area. These estimators are often design unbiased, at least approxi-
mately. However, they have overly large sampling errors for areas with small sam-
ple sizes. The areas with inadequate sample sizes are labeled as “small areas.” This
problem has given rise to the development of the scientific field called small area
estimation, which studies “indirect” estimation methods that “borrow strength”
from related areas. Some of these methods are based on explicit models that link
all areas through common parameters and making use of auxiliary information.
Such model-based techniques are appealing because they provide estimators with
high efficiency even under very small area-specific sample sizes. The monograph
of Rao (2003) contains a comprehensive account of small area estimation tech-
niques that appeared until the publication date; see Jiang and Lahiri (2006), Datta
(2009) and Pfeffermann (2013) for reviews of the more recent work.

Small area models may be classified into two broad types: (i) Area-level models
that relate small area direct estimates to area-specific covariates, and (ii) Unit-level
models that relate the unit values of a study variable to associated unit-specific
covariates and possibly also area-specific covariates. So far, most of the model-
based small area methods have focused on the estimation of totals and means, and
nonlinear parameters have not received much attention. However, many poverty
and inequality indicators are rather complex nonlinear functions of the income or
other welfare measures of individuals; see, for example, Neri, Ballini and Betti
(2005). The main purpose of this paper is to develop a suitable method, based
on the hierarchical Bayes approach, to handle general nonlinear parameters. We,
however, focus on poverty indicators as particular cases due to the important socio-
economic impact of this application.

Hierarchical Bayesian models have been extensively used in small area estima-
tion; see Rao (2003), Chapter 10 and Datta (2009). A hierarchical Bayesian model
can accommodate very complex models for the data based on very simple models
as building blocks. For example, within the Bayesian paradigm, by making param-
eters stochastic, one can introduce an intracluster correlation and different sources
of variability can be also incorporated. In small area estimation, the hierarchical
Bayesian model provides the much needed “borrowing of strength” in a simple
manner; see, for example, Nandram and Choi (2005, 2010), where hierarchical
Bayesian models are used to study body mass index on the continuous scale. You
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and Zhou (2011) use a spatial hierarchical Bayes model in an application to health
survey data. Finally, Mohadjer et al. (2012) study small area estimation of adult lit-
eracy in the U.S. using unmatched sampling and linking models, using hierarchical
Bayes methods.

In the context of poverty estimation, area-level models have been used to esti-
mate the proportion of school age children under poverty at the county level under
the SAIPE program (Small Area Income and Poverty Estimates) of the U.S. Cen-
sus Bureau; for more details, see, for example, Bell (1997) or the program webpage
http://www.census.gov/did/www/saipe/. Using the Spanish SILC data, Molina and
Morales (2009) used an area-level model relating direct estimates of poverty pro-
portions and poverty gaps (defined in Section 2) to area covariates obtained from
a much larger survey, the Labor Force Survey (LFS). In this application, the areas
are the Spanish provinces. Results based on the empirical best (or Bayes) approach
for this area-level model indicated only marginal gains in efficiency over direct es-
timates.

Few approaches have appeared in the literature for efficient estimation of gen-
eral nonlinear indicators using unit-level models. Here we discuss the most popu-
lar ones. The first one, due to Elbers, Lanjouw and Lanjouw (2003), is the method
used by the World Bank (WB). This method was designed specially to deal with
complex nonlinear poverty indicators. It assumes that the log incomes of the in-
dividuals in the population follow a unit-level model similar to the nested error
linear regression model of Battese, Harter and Fuller (1988), but including ran-
dom effects for sampling clusters instead of area effects. After fitting the model
to survey data, the WB method generates by bootstrap resampling a number of
synthetic censuses making use of census auxiliary data and the fitted model. From
each synthetic census, a poverty indicator of interest is computed for each small
area. The average of the estimates over simulated censuses is then taken as the
point estimate of the poverty indicator, and the variance of the estimates is taken
as a measure of variability. The WB used the above simple method to produce
poverty maps for many countries, by securing census auxiliary data and income
data from a sample survey. In European countries, registers that provide unit-level
population data may be obtained through collaboration with statistical offices. In
Scandinavian countries and in Switzerland, continuously updated census auxiliary
unit-level data are available through statistical offices. We emphasize that unit level
auxiliary data for the population is needed to implement the WB method, based on
a unit-level model, to estimate small area poverty indicators or other complex pa-
rameters; area means of the auxiliary variables would be sufficient in the case of
estimating area means of a variable of interest.

The second approach for estimation of general small area parameters, based on
the empirical best/Bayes (EB) method, was recently introduced by Molina and Rao
(2010). This method gives estimators with minimum mean squared error called
best predictors or, more exactly, Monte Carlo approximations to the best predic-
tors. This is done under the assumption that there exists a transformation of the
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incomes of individuals or another welfare variable used to measure poverty such
that the transformed incomes follow the nested error regression model of Battese,
Harter and Fuller (1988). Mean squared errors of the EB estimators are estimated
by a parametric bootstrap method. The method of Molina and Rao (2010) also
requires unit-level auxiliary data for the population.

Both methods approximate an expected value by Monte Carlo, which requires
generation of many full synthetic censuses that might be of huge size (e.g., over
43 million in the Spanish application of Section 5). In addition, the mean squared
error is estimated using the bootstrap (or double bootstrap) in which the expected
values need to be approximated for each bootstrap (or double bootstrap) replicate.
The full procedure might be very intensive computationally and even may not
be feasible for very complex poverty indicators such as those requiring sorting
population elements or for very large populations such as Brazil or India.

The hierarchical Bayes method is a good alternative to EB because it does not
require the use of bootstrap for mean squared error estimation and it provides
credible intervals and other useful summaries from the posterior distributions with
practically no additional effort. We propose a very simple hierarchical Bayes (HB)
approach that is computationally much more efficient than the alternative EB pro-
cedure. Only noninformative priors are considered to save us from the introduction
of subjective information which might be controversial in official statistics applica-
tions. Moreover, using a particular reparameterization of the model and noninfor-
mative priors, we avoid the use of Markov chain Monte Carlo (MCMC) methods
and therefore also the need for monitoring convergence of the Markov chains for
each generated sample in the simulation studies, but ensuring propriety of the pos-
terior under general conditions. In our simulations, this HB method provides point
estimates that are practically the same as EB estimates and inferences that have
frequentist validity. This frequentist validity gives a strong support to the use of
the proposed HB method in practice.

2. Poverty indicators. Certainly, poverty and income inequality are broad
and complex concepts which cannot be easily summarized in one measure or indi-
cator. In the literature there are many different indicators intending to summarize
poverty or income inequality in one measure, each of them focusing on the mea-
surement of particular aspects of poverty. For a summary of poverty and inequality
indicators see, for example, Neri, Ballini and Betti (2005). Basic poverty indica-
tors are the head count ratio, referred to here as poverty incidence, which is simply
the proportion of individuals with welfare measure under the poverty line, and
the poverty gap, measuring the mean relative distance to the poverty line of the
individuals with welfare measure under the poverty line. The class of poverty in-
dicators introduced by Foster, Greer and Thorbecke (1984) contains the previous
two as particular cases. Other measures include the Sen Index, the Fuzzy monetary
and the Fuzzy supplementary poverty indicators [Betti et al. (2006)]. Practically all
poverty measures are rather complex nonlinear functions of the income or some
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other welfare measure of individuals. We will introduce HB methodology that is
suitable for the estimation of general nonlinear parameters, but we illustrate the
procedure by applying it to particular indicators of interest, namely, the poverty
incidence and the poverty gap as in Molina and Rao (2010). This will allow com-
parison with the EB method introduced in that paper.

Let us consider a population of size N that is partitioned into D subpopula-
tions of sizes N1, . . . ,ND and called small areas. Let Edi be a suitable quantitative
measure of welfare for individual i in small area d , such as income or expenditure,
and let z be the poverty line, that is, the threshold for Edi under which a person
is considered as “under poverty.” The family of poverty measures of Foster, Greer
and Thorbecke (1984) for a small area d may be expressed as

Fαd = 1

Nd

Nd∑
i=1

(
z − Edi

z

)α

I (Edi < z), α ≥ 0, d = 1, . . . ,D,

where I (Edi < z) = 1 if Edi < z or the person is under poverty and I (Edi < z) = 0
if Edi ≥ z or the person is not under poverty. Taking α = 0, we obtain the area
poverty incidence, which measures the frequency of the poverty, and α = 1 leads
to the area poverty gap, which quantifies the intensity of the poverty.

3. Hierarchical Bayes predictors of poverty indicators. Estimation of the
target area characteristics is based on a random sample drawn from the finite pop-
ulation according to a specified sampling design. Let P denote the set of indices of
the population units, s be the set of units selected in the sample, of size n < N , and
r = P − s be the set of the units, with size N − n, that are not selected. Let Pd , sd ,
rd , Nd and nd be, respectively, the set of population units, sample, sample comple-
ment, population size and sample size, restricted to area d . We allow zero sample
sizes for some of the areas. Without loss of generality, we assume that those areas
are the last D − D∗ areas, that is, nd > 0, for d = 1, . . . ,D∗, where D∗ ≤ D, and
nd = 0 for d = D∗ + 1, . . . ,D. Then the overall sample size is n = n1 +· · ·+nD∗ .
For d = D∗ + 1, . . . ,D with nd = 0, we have sd = ∅ and rd = Pd .

To estimate Fαd efficiently for each area d , we assume that there are p auxiliary
variables related linearly to some one-to-one transformation Ydi = T (Edi) of the
welfare variables. More concretely, we assume that the transformed population
values {Ydi; i = 1, . . . ,Nd} follow the nested error model

Ydi = x′
diβ + ud + edi, i = 1, . . . ,Nd, d = 1, . . . ,D,(1)

introduced by Battese, Harter and Fuller (1988), where xdi is the p × 1 vector
of auxiliary variables for unit i within area d , β is the p × 1 (constant) vector
of regression coefficients associated with xdi , ud is a random effect of area d ,
which models the unexplained between area variation, and edi is the individual
model error. Area effects ud and errors edi given all parameters are independent

and satisfy, respectively, ud |σ 2
u

i.i.d.∼ N(0, σ 2
u ) and edi |σ 2 i.i.d.∼ N(0, σ 2w−1

di ), where
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wdi > 0 is a known heteroscedasticity weight. In practice, these weights can be
obtained from a preliminary modeling of error variances using variables different
from those considered in the mean model as done in the WB method. We assume
that the values of the auxiliary variables are known for all population units.

MCMC is a popular tool used to implement the HB method and software such
as WinBUGS is readily available. However, running the Gibbs sampler requires
monitoring the convergence by making a long run, thinning and performing con-
vergence tests. In simulation studies, this monitoring process must be done for
each simulated data set. Failing to do this carefully might lead to gross approxi-
mation of the desired quantities. Instead, making random draws directly from the
posterior whenever possible avoids the need for monitoring the convergence and
can therefore save a considerable amount of time. Here we consider a particular
reparameterization of the model which, together with noninformative priors, pro-
vides a generally proper posterior, and at the same time a way to skip MCMC
procedures by randomly drawing from the posterior distribution using the chain
rule of probability. The new reparameterization is based on expressing the model
in terms of the intra-class correlation ρ = σ 2

u /(σ 2
u + σ 2) as

Ydi |ud,β, σ 2 ind∼ N
(
x′
diβ + ud, σ 2w−1

di

)
,(2)

ud |ρ,σ 2 ind∼ N

(
0,

ρ

1 − ρ
σ 2

)
, i = 1, . . . ,Nd, d = 1, . . . ,D,(3)

see, for example, Toto and Nandram (2010) for a similar formulation of the nested
error model (1).

We assume that the population model given by (2) and (3) holds for the sample
units sd and for the out-of-sample units rd ; that is, the sampling design is non-
informative and therefore sample selection bias is absent. We may also point out
that the WB method implicitly assumes that the model fitted for the sample data
also holds for the population in order to generate synthetic censuses of the variable
of interest. Pfeffermann and Sverchkov (2007) considered the estimation of small
area means under informative sampling in the context of two-stage sampling. This
method requires the modeling of sampling weights in terms of the variable of in-
terest and auxiliary variables. It is not clear how this method may be extended to
handle complex parameters such as poverty indicators and to other sampling de-
signs. In the application with data from the Spanish SILC described in Section 6,
we provide graphical diagnostics to check for informative sampling.

Note that the untransformed welfare variables Edi can be obtained from the
model responses as Edi = T −1(Ydi), where T −1(·) denotes the inverse transfor-
mation of T (·). Then, the FGT poverty indicator Fαd is a nonlinear function of
the vector yd = (Yd1, . . . , YdNd

)′ of response variables for area d . Thus, more gen-
erally, our aim is to estimate through the HB approach a general area parameter
δd = h(yd), where h(·) is a measurable function.
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In the case of estimating particular area parameters δd that have social relevance
such as poverty indicators or when the results are going to aid political decisions,
the introduction of subjective informative priors might not be acceptable. For this
reason, here we consider only noninformative priors for the unknown model pa-
rameters (β ′, σ 2, ρ). Consider the following simpler situation, without covariates
and with only one observation:

Y |μ ∼ N
(
μ,σ 2)

, μ ∼ N
(
θ, δ2)

.

Now, let us define the intraclass correlation ρ = δ2/(δ2 + σ 2) ∈ (0,1). By Bayes’
theorem, the posterior density of μ is μ|Y ∼ N{ρY + (1 −ρ)θ,ρσ 2}, which leads
to the shrinkage or reference prior for ρ given by ρ ∼ U(0,1); see Natarajan and
Kass (2000). Shrinkage priors lead to good frequentist properties of HB inferences.
In our model, to ensure propriety of the posterior of ρ = σ 2

u /(σ 2
u + σ 2), we con-

sider a uniform prior for ρ in any closed interval of (0,1), that is, in [ε,1 − ε],
ε > 0. In practice, taking ε = 0.0001 should suffice; see, for example, Figure 6.
Next, consider the simpler model

Y |σ 2 ∼ N
(
μ,σ 2)

.

Under this model, Jeffreys’ reference prior for σ 2 is π(σ 2) ∝ 1/σ 2, σ 2 > 0. Jef-
freys’ prior is said to be objective because it is the square root of Fisher’s in-
formation. It has three important properties. First, it is invariant to one-to-one
transformations of the parameter, which makes it convenient for scale parameters.
Second, it is constructed using only the likelihood function and no other subjective
judgement is needed. Third, it typically does not involve other hyperparameters
requiring the specification of further priors. For these reasons, Jeffreys’ prior is
widely accepted in the literature. Thus, for the unknown parameters (β ′, σ 2, ρ)

in model (2)–(3), we consider the noninformative prior

π
(
β, σ 2, ρ

) ∝ 1

σ 2 , ε ≤ ρ ≤ 1 − ε, σ 2 > 0,β ∈ R
p.(4)

Let u = (u1, . . . , uD)′ be the vector of random area effects and y = (y′
1, . . . ,y′

D)′
the vector containing all the population response variables. Sorting by sample and
out-of-sample units, this vector can be expressed as y = (y′

s,y′
r )

′, where ys con-
tains the elements of y corresponding to sample units and yr to out-of-sample
units. For convenience, we will use the notation θ = (u′,β ′, σ 2, ρ). The above
choice of priors allows us to avoid MCMC by using the chain rule of probability
to represent the joint posterior density of θ as follows:

π
(
u,β, σ 2, ρ|ys

)
(5)

= π1
(
u|β, σ 2, ρ,ys

)
π2

(
β|σ 2, ρ,ys

)
π3

(
σ 2|ρ,ys

)
π4(ρ|ys).

Here, π1(u|β, σ 2, ρ,ys), π2(β|σ 2, ρ,ys) and π3(σ
2|ρ,ys) in (5) have simple

closed forms, but π4(ρ|ys) is not simple; see Appendix A. However, random val-
ues from π4(ρ|ys) can be drawn using a grid method or an accept–reject algorithm;
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see Section 5. A similar drawing procedure using the chain rule was mentioned in
Berger (1985), Section 4.6. Datta and Ghosh (1991) also used this analytical ap-
proach for HB estimation of small area means under linear mixed models, but
employing gamma priors on the reciprocals of variance components. Lemma 1
in Appendix B states that the posterior density in (5) is proper provided that the
matrix X = col1≤d≤Dcoli∈sd (x

′
di) has full column rank and ε ≤ ρ ≤ 1 − ε, ε > 0.

Now since the model (2) holds for all the population units, given the vector of
parameters θ which includes area effects, out-of-sample responses {Ydi, i ∈ rd} are
independent of sample responses ys with

Ydi |θ ind∼ N
(
x′
diβ + ud, σ 2w−1

di

)
, i ∈ rd, d = 1, . . . ,D.(6)

Consider the sample and out-of-sample decomposition of the area vector yd =
(y′

ds,y′
dr)

′. The posterior predictive density of ydr is given by

f (ydr |ys) =
∫ ∏

i∈rd

f (Ydi |θ)π(θ |ys) dθ .

The HB estimator of the target parameter δd = h(yd) is then given by the posterior
mean

δ̂HB
d = E(δd |ys) =

∫
h(yds,ydr)f (ydr |ys) dydr ,

which can be approximated by Monte Carlo. This approximation is obtained by
first generating samples from the posterior π(θ |ys). For this, we first draw ρ from
π4(ρ|ys), then σ 2 from π3(σ

2|ρ,ys), then β from π2(β|σ 2, ρ,ys) and finally u
from π1(u|β, σ 2, ρ,ys). We can repeat this procedure a large number, H , of times
to get a random sample θ (h), h = 1, . . . ,H from π(θ |ys). Then, for each generated
θ (h), h = 1, . . . ,H , from π(θ |ys), we draw out-of-sample values Y

(h)
di , i ∈ rd , d =

1, . . . ,D, from the distribution in (6). Thus, for each sampled area d = 1, . . . ,D∗,
we have generated an out-of-sample vector y(h)

dr = {Y (h)
di , i ∈ rd} and we have also

the sample data yds available. Thus, we construct the full population vector y(h)
d =

(y′
ds, (y

(h)
dr )′)′.

For each nonsampled area d = D∗ + 1, . . . ,D, the whole vector y(h)
d = y(h)

dr is

generated from (6) since in that case rd = Pd . Using y(h)
d , we compute the area

parameter δ
(h)
d = h(y(h)

d ), d = 1, . . . ,D. In the particular case of estimating the

FGT poverty measure δd = Fαd , using y(h)
d , we calculate

F
(h)
αd = 1

Nd

[∑
i∈sd

(
z − Edi

z

)α

I (Edi < z) + ∑
i∈rd

(
z − E

(h)
di

z

)α

I
(
E

(h)
di < z

)]
,(7)

where Edi = T −1(Ydi), i ∈ sd and E
(h)
di = T −1(Y

(h)
di ), i ∈ rd , d = 1, . . . ,D. Thus,

in this way we have a random sample δ
(h)
d , h = 1, . . . ,H , from the posterior density

of the target parameter δd . Finally, the HB estimator δ̂HB
d , under squared loss, is the
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posterior mean obtained by averaging δ
(h)
d over h = 1, . . . ,H . As an uncertainty

measure, we consider the posterior variance obtained as the variance of the δ
(h)
d

values. Thus,

δ̂HB
d = E(δd |ys) ≈ 1

H

H∑
h=1

δ
(h)
d , V (δd |ys) ≈ 1

H

H∑
h=1

(
δ
(h)
d − δ̂HB

d

)2
.(8)

Other useful posterior summaries such as credible intervals can be computed in
a straightforward manner.

REMARK 1. When the target area parameter is computationally complex, such
as indicators based on pairwise comparisons or sorting area elements, or when the
population is too large, a faster HB approach can be implemented analogously
to the fast EB approach introduced in Ferretti and Molina (2012). For this, from
each Monte Carlo population vector y(h)

d we draw a sample s
(h)
d using the original

sampling design and, with this sample, we obtain a design-based estimator δ̂
(h)
d

of δ
(h)
d . This value would replace δ

(h)
d in (8), that is, the estimator would be given

by δ̂FHB
d = H−1 ∑H

h=1 δ̂
(h)
d . The posterior variance can be approximated similarly

by H−1 ∑H
h=1(δ̂

(h)
d − δ̂FHB

d )2.

4. Model validation. In practice, results based on a model should be validated
by analyzing how good the assumed model fits our data. Under the HB setup, sev-
eral validation measures have been proposed in the literature. Here we consider the
cross-validation approach advocated by Gelfand, Dey and Chang (1992), based on
looking at the predictive distribution of each observation when that observation
has been deleted from the sample. As validation statistics, we consider the stan-
dardized cross-validation residuals used in a similar model to ours by Nandram,
Sedransk and Pickle (2000) and the conditional predictive ordinates defined by
Box (1980) and studied under normal distributions by Pettit (1990).

Standardized cross-validation residuals are defined as

rdi = Ydi − E(Ydi |ys(di))√
V (Ydi |ys(di))

, i ∈ sd, d = 1, . . . ,D,(9)

where ys(di) is the data vector excluding observation Ydi . Recently, Wang et al.
(2012) used these residuals for a similar assessment on an agricultural application.
Interpretation of diagnostic plots obtained using these residuals needs to be cau-
tious because by construction they are correlated. However, in the application of
Section 6, diagnostic plots using these residuals look practically the same as those
obtained from the usual frequentist residuals delivered by a maximum likelihood
fit of the original nested error regression model (1). In the remainder of this section
we explain how to obtain Monte Carlo approximations of the expected value and
variance in (9).
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Following Gelfand, Dey and Chang (1992), if we generate H independent val-
ues θ (h) = ((u(h))′, (β(h))′, σ 2(h), ρ(h))′, h = 1, . . . ,H , from the posterior density
given all the data, π(θ |ys), the posterior expectation in (9) can be approximated
by a weighted average as

E(Ydi |ys(di)) =
∫

E(Ydi |ys(di), θ)π(θ |ys(di)) dθ

=
∫ {

x′
diβ + ud

}
π(θ |ys(di)) dθ

≈
H∑

h=1

{
x′
diβ

(h) + u
(h)
d

}
v

(h)
di , i ∈ sd, d = 1, . . . ,D.

Here, the weights v
(h)
di are given by

v
(h)
di =

[
f

(
Ydi |θ (h)) H∑

k=1

{
f

(
Ydi |θ (k))}−1

]−1

,(10)

where f (Ydi |θ) is the normal density indicated in (2). This has been obtained
from the fact that, given θ , all observations are independent and distributed as
indicated in (6), using Bayes’ theorem and taking into account that f (ys |θ) =
f (ys(di)|θ)f (Ydi |θ); for more details see Appendix C. To obtain the posterior vari-
ance V (Ydi |ys(di)) = E(Y 2

di |ys(di))−E2(Ydi |ys(di)), the expectation E(Y 2
di |ys(di))

can be approximated similarly, by

E
(
Y 2

di |ys(di)

) =
∫

E
(
Y 2

di |ys(di), θ
)
π(θ |ys(di)) dθ

=
∫ {

σ 2w−1
di + (

x′
diβ + ud

)2}
π(θ |ys(di)) dθ

≈
H∑

h=1

{
σ 2(h)w−1

di + (
x′
diβ

(h) + u
(h)
d

)2}
v

(h)
di , i ∈ sd .

To further assess the model, we use the conditional predictive ordinates (CPOs).
For observation Ydi , the CPO is defined as the predictive density of Ydi given the
sample data with that observation deleted, that is,

CPOdi = f (Ydi |ys(di)) =
∫

f (Ydi |ys(di), θ)π(θ |ys(di)) dθ .

Using similar arguments as those in Appendix C, it is easy to see that the CPO can
be obtained as

CPOdi =
{∫

π(θ |ys(di))

f (Ydi |θ)
dθ

}−1

≈
{

1

H

H∑
h=1

1

f (Ydi |θ (h))

}−1

.

Small values of CPOdi point out to observations that are surprising in light of the
knowledge of the other observations [Pettit (1990); Ntzoufras (2009)].
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5. Simulation study. The great social relevance of poverty estimation obliges
us to use methods that are widely accepted beyond the Bayesian community. The
EB estimators introduced in Molina and Rao (2010) are highly efficient (approxi-
mately the “best” according to mean squared error) under the assumed frequentist
model. It raises the question whether the HB procedure introduced in Section 3
also offers good frequentist properties. To answer this question, a simulation ex-
periment was conducted under the frequentist setup. In this simulation study,
HB estimators of poverty incidence and gap are compared with the alternative
EB estimators of Molina and Rao (2010). For this, unit level data were gener-
ated similarly as in Molina and Rao (2010). The population was composed of
N = 20,000 units distributed in D = 80 areas with Nd = 250 units in each area,
d = 1, . . . ,D. Imitating a situation in which only categorical auxiliary variables
are available, as in the application with Spanish data described in Section 6, we
considered two dummies X1 and X2 as explanatory variables in the model, apart
from the intercept. The population values of these variables were generated as
Xk ∼ Bin(1,pkd), k = 1,2, with success probabilities p1d = 0.3 + 0.5d/D and
p2d = 0.2, d = 1, . . . ,D, and held fixed. We took β = (3,0.03,−0.04)′, σ 2 = 0.52

and ρ = 0.82, so that σ 2
u = 0.152 as in Molina and Rao (2010). Then, using the

population values of the auxiliary variables, population responses were generated
from (2)–(3) with wdi = 1 for all i and d . The poverty line is taken as z = 12.
This value is roughly equal to 0.6 times the median welfare for a population gen-
erated as described before, which is the official poverty line used in EU countries.
With this poverty line, the population poverty incidence is about 16%. A sample
sd of size nd = 50 is drawn by simple random sampling without replacement from
area d , for d = 1, . . . ,D, independently for all areas. Let s = ⋃D

d=1 sd be the whole
sample and let (ys,Xs) be the sample data.

For a given population and sample generated as described above, HB estimates
were computed as follows. Generate H = 1000 independent samples from the pos-
terior predictive distribution of Fαd by implementing the following steps, where
new notation is defined in Appendix A:

(1) Generation of intra-class correlation coefficient ρ(h): Take a grid of
R = 1000 points in the interval [ε,1 − ε], for ε = 0.0005,

ρr = (r − 0.5)/R, r = 1, . . . ,R − 1.

Let us define the kernel of the posterior density of ρ as

k4(ρ) =
(

1 − ρ

ρ

)D/2∣∣Q(ρ)
∣∣−1/2

γ (ρ)−(n−p)/2
D∏

d=1

λ
1/2
d (ρ).

Calculate k4(ρr), r = 1,2, . . . ,R − 1 and take

π4(ρr) = k4(ρr)∑R
r=1 k4(ρr)

, r = 1,2, . . . ,R − 1.
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Then generate ρ(h) from the discrete distribution {ρr,π4(ρr)}R−1
r=1 . Since these gen-

erated values are discrete, jitter each generated value by adding to it a uniform
random number in the interval (0,1/R).

(2) Generation of error variance: First draw σ−2(h) from the distribution

σ−2(h)|ρ,ys ∼ Gamma
(

n − p

2
,
γ (h)

2

)
,

where γ (h) = γ (ρ(h)). Then, take σ 2(h) = 1/σ−2(h).
(3) Generation of regression coefficients: Draw β(h) from the distribution

β(h)|σ 2(h), ρ(h),ys ∼ N
(
β̂

(h)
, σ 2(h)(Q(h))−1)

,

where β̂
(h) = β̂(ρ(h)) and Q(h) = Q(ρ(h)).

(4) Generation of random area effects: Draw {u(h)
d ;d = 1, . . . ,D} from

u
(h)
d |β(h), σ 2(h), ρ(h),ys

ind∼ N

[
λ

(h)
d

(
ȳd − x̄′

dβ(h)), (
1 − λ

(h)
d

)σ 2(h)ρ(h)

1 − ρ(h)

]
,

where λ
(h)
d = λd(ρ(h)), d = 1, . . . ,D.

(5) Generation of out-of-sample elements: Draw Y
(h)
di , i ∈ rd , from their distri-

bution given all parameters θ (h) = (u
(h)
1 , . . . , u

(h)
D ,β(h), σ 2(h)ρ(h))′, given by

Y
(h)
di |ys, θ

(h) ∼ N
(
x′
diβ

(h) + u
(h)
d , σ 2(h)), i ∈ rd .

Then y(h)
rd = {Y (h)

di ; i ∈ rd} is the vector containing all generated out-of-sample el-
ements from domain d , d = 1, . . . ,D.

(6) Calculation of poverty indicator: Consider the vector with sample el-
ements attached to generated out-of-sample elements from domain d , y(h)

d =
(y′

sd , (y(h)
rd )′)′. Calculate the poverty indicator for domain d as in (7) using y(h)

d ,
d = 1, . . . ,D.

At the end of steps (1)–(6), we get a sample of independent values F
(h)
αd , h =

1, . . . ,H . Finally, compute the posterior mean and the posterior variance as indi-
cated in (8).

A total of I = 1000 population vectors y(i) were generated from the true model
described above. For each population i = 1, . . . , I , the following process was re-
peated: first, we calculated true area poverty incidences and gaps; then, we selected
the population elements corresponding to the sample indices, assuming that those
sample indices are constant over Monte Carlo simulations, that is, following a
strictly model-based approach. Using the sample elements, we computed EB esti-
mates following the procedure in Molina and Rao (2010), and HB estimates using
the approach described in (1)–(6).

The left panel of Figure 1 displays means over Monte Carlo replicates of HB
estimates of poverty incidences for each area against corresponding means of EB
estimates. The right panel gives the frequentist mean squared errors of HB esti-
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FIG. 1. On the left, means ×100 over simulated populations of HB estimates of poverty incidence
F0d against the analogous means for EB estimates, for each area d . On the right, mean squared
errors ×104 of HB estimators against those of EB estimators.

mates against those of EB estimates for each area. Thus, from a frequentist point
of view, we can see that the two estimators are practically the same, probably be-
cause only noninformative priors have been considered. The true mean squared
errors of EB estimators are slightly smaller than those of HB estimates, which is
somewhat sensible since the EB estimates are approximately the best under the fre-
quentist paradigm. Figure 2 shows similar results for the poverty gap. Both figures
show that the HB estimates display good frequentist properties.

In addition to point estimates, the HB approach can also deliver credible in-
tervals. It is interesting to see whether these intervals satisfy the basic frequentist
property of covering the true value. The left panel of Figure 3 displays the frequen-
tist coverage of 95% credible intervals for the area poverty incidences, calculated
as a percentage of Monte Carlo replicates in which credible intervals contain true
values. We have plotted the coverages of equal tails credible intervals together with
those of highest probability density intervals [Chen and Shao (1999)]. This figure
reveals a slight undercoverage of less than 1% for the two types of intervals. The
estimated coverage of credible intervals with only H = 1000 replicates might not
be very accurate, so we guess that a larger H could show a smaller undercoverage.
On the right panel of the same figure we report the mean widths of the two types of
intervals. As expected, the highest posterior density intervals are clearly narrower.
Similar conclusions can be drawn from Figure 4 for the poverty gap.

Finally, to analyze the effect of the sample size on the performance of the HB es-
timators, a new simulation experiment was conducted with increasing area sample
sizes nd in the set {20,30,40,50}, with each value repeated for 20 areas and with
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FIG. 2. On the left, means ×100 over simulated populations of HB estimators of the poverty gap
F1d against the analogous means for EB estimators, for each area d . On the right, mean squared
errors ×104 of HB estimators against those of EB estimators.

a total number of areas D = 20 × 4 = 80 as before. In this experiment we omitted
the covariates that could distort the results and consider only a mean model with
intercept β0 = 3 as before. Figure 5 plots the mean coefficients of variation (CVs)
of HB estimators of poverty incidences and poverty gaps. The estimated CV of an

FIG. 3. Percent coverage, left panel, and mean widths, right panel, over Monte Carlo populations
of equal tails and highest posterior density intervals for poverty incidence F0d for each area d .
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FIG. 4. Percent coverage, left panel, and mean widths, right panel, over Monte Carlo populations
of equal tails and highest posterior density credible intervals for poverty gap F1d for each area d .

HB estimator is taken as the square root of the posterior variance divided by the
estimate. Observe that, on average, the CVs increase about 3% when decreasing
the area sample size in 10 units. Moreover, in this simulated example, it turns out
that at least nd = 50 units need to be observed in area d to keep the CV of HB
estimators of poverty incidences below 20%. For the poverty gap, which is more
difficult to estimate, the same sample size ensures a maximum CV of 25%.

FIG. 5. Mean over Monte Carlo simulations of CVs of HB estimators of poverty incidence (left
panel) and poverty gap (right panel).
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6. Poverty mapping in Spain. This section describes an application of the
proposed HB method to poverty mapping in Spanish provinces by gender. The
data come from the SILC conducted in Spain in year 2006 and is the same used by
Molina and Rao (2010). The SILC collects microdata on income, poverty, social
exclusion and living conditions, in a timely and comparable way across European
Union (EU) countries. The results of this survey are then used for the structural in-
dicators of social cohesion such as poverty incidence, income quintile share ratio
and gender pay gap. Indeed, equality between women and men is one of the EU’s
founding values; see, for example, http://ec.europa.eu/justice/gender-equality/.
Thus, the EU is especially concerned about gender issues, fostering research
devoted to the quantification or measurement of equality. For example, one of
the commitments of the SAMPLE project funded by the European Commis-
sion (http://www.sample-project.eu/) was to obtain poverty indicators in Spanish
provinces by gender.

The Spanish SILC survey design is as follows. An independent sample is drawn
from each of the Spanish Autonomous Communities using a two-stage design with
stratification of the first stage units. The first stage or primary sampling units are
census tracks and they are grouped into strata according to the size of the munici-
pality where the census track is located. Census tracks are drawn within each stra-
tum with probability proportional to their size. The secondary sampling units are
main family dwellings, which are selected with equal probability and with random
start systematic sampling. Within those last stage units, all individuals with usual
residence in the dwelling are interviewed. This procedure results in self-weighted
samples within each stratum. This survey is planned to provide reliable estimates
only for the overall Spain and for the Autonomous Communities which are large
Spanish regions, but it cannot deliver efficient estimates for the Spanish provinces
disaggregated by gender due to the small sample size (provinces are nested within
Autonomous Communities). Therefore, small area estimation techniques that “bor-
row strength” from other provinces are needed. The HB methodology proposed in
this paper allows us to produce efficient estimates of practically any poverty indi-
cator for the Spanish provinces by gender, using a computationally fast procedure,
and provides at the same time all pertinent output such as uncertainty measures
and credible intervals.

In this application, the target domains are the D = 52 Spanish provinces. Since
many studies on poverty in developing countries point to more severe levels of
poverty for females than for males, it is very important to analyze if this happens
in Spain as well. Thus, we are interested in giving estimates also by gender. To this
end, we applied the HB procedure described in Section 5 separately for each gen-
der, obtaining estimates of poverty incidences and gaps for the Spanish provinces,
together with 95% highest posterior density intervals. The HB procedure was ap-
plied with a grid of R = 1000 values of ρ and H = 1000 Monte Carlo replicates.
For comparison, the EB method of Molina and Rao (2010) was also applied sepa-
rately for each gender. Since this method is computationally slower, we considered

http://ec.europa.eu/justice/gender-equality/
http://www.sample-project.eu/
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only L = 50 Monte Carlo simulations as in Molina and Rao (2010). The paramet-
ric bootstrap approach proposed in the same paper for mean squared error (MSE)
estimation of EB estimates was applied with B = 200 bootstrap replicates.

The overall sample size is 16,650 for males and 17,739 for females. The popu-
lation size is 21,285,431 for males and 21,876,953 for females, with a total pop-
ulation size of over 43 million. We considered the same auxiliary variables as in
Molina and Rao (2010), namely, the indicators of five quinquennial age groups, of
having Spanish nationality, of the three levels of the variable education level, and of
the three categories of the variable labor force status, “unemployed,” “employed”
and “inactive.” For each auxiliary variable, one of the categories was considered
as base reference, omitting the corresponding indicator and including an intercept
in the model.

When making use of continuous covariates, all the methods (HB, EB and WB)
require a full census of those covariates. In this application, however, only dummy
indicators were included in the model and, therefore, only the counts of people
with the same vector of x-values are needed. However, to make the computations
as general as possible, we imitated the case of having continuous covariates by
constructing the full census matrices Xd = (xd1, . . . ,xdNd

)′. This was done using
the data from the Spanish Labour Force Survey (LFS), which has a much larger
sample size than the SILC (155,333 as compared with 34,389) and therefore offers
information with much better quality. Each LFS vector x′

di was replicated a number
of times equal to its corresponding LFS sampling weight; the resulting matrix Xd

may be treated as a proxy of the true census matrix. As noted in Section 1, the
WB was able to secure true census matrices Xd from statistical offices of many
countries.

The welfare variable provided by the SILC for each individual and used to mea-
sure poverty by the Spanish Statistical Institute (INE in Spanish) and also by the
European Statistical Office Eurostat is the so-called equivalized annual net income,
which is the household annual net income, divided by a measure of household size
calculated according to the scale defined by the OCDE. The resulting quantity can
be interpreted as a kind of per capita income and for this reason it is assigned to
each household member. Using instead the total household income would require
the definition of a different poverty line for each possible household size and would
not allow us to estimate by gender. For this reason, in this application we consider
that the units are the individuals and, as welfare measure Edi , we consider the
equivalized annual net income. Due to the clear right skewness of the histogram of
Edi values, we consider the transformation Ydi = T (Edi) = log(Edi + c), where
c ≥ max{0,−min(Edj ) + 1} is a constant selected in such a way that all shifted
incomes Edi + c are positive (there are few negative Edi) and for which the distri-
bution of model residuals is closest to being symmetric. To select c, we took a grid
of points in the range of income values and the model was fitted for each point in
the grid. Then c was selected as the point in this grid for which Fisher’s asymmetry
coefficient of model residuals (third order centered sample moment divided by the
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cube standard deviation) was closest to zero. It turned out to be exactly the same
value in the two models for Males and Females.

Since samples are drawn independently for each of the 18 Autonomous Com-
munities and these regions might have different socio-economic levels, trying to
accommodate the sampling design, we also fitted a model with Autonomous Com-
munity effects. However, the goodness of fit of the model including these effects,
as measured by AIC and BIC, became worse for the two genders. Thus, we con-
sider a more parsimonious model without Autonomous Community effects.

Figure 6 shows the posterior density of the intraclass correlation ρ obtained in
the models for males and females, using a grid of 5000 values of ρ in the interval
[0.0001,0.9999]. The two plots show that the mass of the posterior density of ρ

is mostly concentrated in [0.04,0.1] and, therefore, the use of the truncation point
ε = 0.0001 in the two extremes of the range of ρ to ensure a proper posterior does
not have any effect in this application. In fact, trying to analyze the sensitivity
to varying ε, we also used ε = 0.001 and ε = 0.005 and we found virtually no
difference in the resulting posterior densities of ρ.

Figure 7 shows the histograms of the posterior distributions of poverty inci-
dences, upper panel, and poverty gaps, lower panel, for the first 4 provinces in the
alphabetical order, in the model for females. Note that these histograms are slightly
skewed. Therefore, we considered highest posterior density intervals instead of
credible intervals with equal probability tails. These intervals were computed as
described in Chen and Shao (1999). Figure 8 plots HB estimates of poverty inci-
dences together with their corresponding 95% highest posterior density intervals
for each gender and for each province, with areas sorted by increasing sample size.
This figure shows that the length of the intervals decreases as the area sample sizes

FIG. 6. Posterior density of ρ in the model for males, left panel, and females, right panel, obtained
drawing from a grid in [ε,1 − ε] with ε = 0.0001.
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FIG. 7. Histograms of posterior distributions of poverty incidences, upper panel, and poverty gaps,
lower panel, for areas d = 1,2,3,4, respectively, in columns, for females.

increase, as expected. It also shows that the estimated poverty incidences for males
are smaller than for females for most provinces, although the two corresponding
intervals cross each other for practically all provinces. Concerning the poverty gap,
which measures the degree of poverty instead of the frequency of poor, Figure 9
shows a very similar pattern, with point estimates for females larger than for males
in most provinces.

Figure 10 plots HB estimates of poverty incidence, left panel, and of poverty
gap, right panel, against direct estimates for each area d , using separate plotting
symbols for each gender. Observe that all points lie around the line, except for one
of them corresponding to the poverty gap for women. This point is separated from
the line because its direct estimate is much larger than the HB estimate. This occurs
because HB estimates shrink extreme direct estimates toward synthetic regression
ones for areas with small sample size.

Figure 11 plots HB estimates of poverty incidence, left panel, and of poverty
gap, right panel, against EB estimates for each gender and for each province. Ob-
serve that HB estimates are practically equal to the corresponding EB estimates.
Thus, in this application the point estimates obtained by the HB method proposed
in this paper agree to a great extent with those obtained by the EB method.



SMALL AREA ESTIMATION OF POVERTY INDICATORS 871

FIG. 8. Hierarchical Bayes estimates of poverty incidences with highest posterior density intervals
for each gender and for each area d . Areas are sorted by increasing sample size.

Turning to the measures of variability of EB and HB estimators, Figure 12 com-
pares the estimated MSEs of the EB estimators obtained by the parametric boot-
strap described in Molina and Rao (2010), with the posterior variances. Although
in principle these measures are not strictly comparable, it is interesting to see their
similarity, and this similarity increases for areas with larger sample sizes.

Concerning computational efficiency, in this application, the full EB proce-
dure consisting in the Monte Carlo approximation of the EB estimator with
L = 50 Monte Carlo replicates and the bootstrap method for MSE estimation with
B = 200 bootstrap replicates took 44.2 hours in a 2.67 GHz PC, whereas the HB
procedure takes 3.7 hours. If we wanted the bootstrap MSE estimates to have com-
parable precision as the HB posterior variances and take B = H = 1000 bootstrap
replicates, the computational time of the full EB method in this application would
be over 9 nonstop days on the same computer. Use of double bootstrap for bias
reduction of the bootstrap MSE estimator would increase the computational com-
plexity manyfold. Thus, for a larger number of auxiliary variables p, larger popula-
tion size or a more complex indicator, computational times might be considerable
for the EB method and in those cases the HB method represents a much faster
alternative.
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FIG. 9. Hierarchical Bayes estimates of poverty gaps with highest posterior density intervals for
each gender and for each area d . Areas are sorted by increasing sample size.

FIG. 10. Hierarchical Bayes estimates of poverty incidence F0d , left panel, and of poverty gap
F1d , right panel, against direct estimates for each province d .
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FIG. 11. Hierarchical Bayes estimates of poverty incidence F0d , left panel, and of poverty gap
F1d , right panel, against EB estimates for each province d .

To see more clearly the efficiency gain of the HB estimates over direct estimates,
in Figure 13 we plot the estimated CVs of direct estimators against those of HB
estimators for all provinces. Observe that the CVs of direct estimators are above the
45◦ line for all the provinces, indicating that HB estimates are more precise than

FIG. 12. Posterior variances of HB estimators and bootstrap mean squared errors of EB estimators
of poverty incidence for each province for males, left panel, and females, right panel. Provinces
sorted by increasing sample size.
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FIG. 13. Coefficients of variation of direct estimates of poverty incidence F0d , left panel, and of
poverty gap F1d , right panel, against coefficients of variation of HB estimates for each province d .

direct estimates for all the provinces. Moreover, the gains are larger for provinces
with smaller sample sizes and can be considerably large for some of the provinces.
In contrast, the results obtained by Molina and Morales (2009) under an area-level
model using the aggregated values of the same covariates provided only marginal
reductions in the CVs over direct estimates.

We have also done some diagnostic checks of the model assumptions using the
cross-validation residuals rdi introduced in (9). Index plots of residuals for males
and females are included in Figure 14. In Figure 15 we show the plots of stan-
dardized cross-validation residuals against predicted values. The points that appear
aligned at the bottom correspond to a number of zero incomes. Apart from this fact,
we can see that the plots look acceptable without any visible pattern. Concerning
CPOs, Figure 16 plots these validation measures against observed values Ydi for
males and females. As expected, there is high predicted power near the center of
the data. The percentage of observations with CPO values below 0.025 turns out to
be 1.5% for females and 1.2% for males, and the percentage below 0.014 (extreme
outliers) is 0.9% for females and 0.8% for males. These results do not show any
indication of serious departure from model assumptions; see Ntzoufras (2009).

Note that in this method, as in any other small area estimation procedure based
on a unit-level model, the model is assumed not only for the sample units but also
for the out-of-sample units. This assumption is reasonable as long as the design
is noninformative, that is, the inclusion probabilities of the units in the sample
are not related to the study variable (income) after accounting for the auxiliary
variables. The SILC data contains the sampling weights or inverses of inclusion
probabilities corrected for calibration and nonresponse. If the design is informa-
tive, model residuals should be related somehow with sampling weights. Thus, to
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FIG. 14. Index plot of standardized residuals for males, left panel, and females, right panel.

analyze whether there is any evidence of informative sampling, in Figure 17 we
have plotted cross-validation residuals rdi versus sampling weights for males (left)
and females (right) in the range 0–2000. There are sampling weights greater than
2000, but since the distribution is clearly right skewed with less large weights, for
clarity of the plots we have plotted here the main part of the distribution. The null
pattern of these plots indicate no evidence of informative sampling in this applica-
tion.

FIG. 15. Standardized residuals against predicted values by cross-validation, for males, left panel,
and females, right panel.
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FIG. 16. CPOs against observed values Ydi for males, left panel, and females, right panel.

Table 1 reports results obtained from the estimation of the poverty incidence,
for provinces with sample sizes closest to minimum, first quartile, median, third
quartile and maximum, for females and males. See that the posterior coefficient of
variation is below 20% even for the area with smallest sample size, the province
of Soria. Table 2 shows the corresponding results for the poverty gap, where the
maximum coefficient of variation is below 25%.

FIG. 17. Standardized residuals against sampling weights in the range 0–2000, for males, left
panel, and females, right panel.
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TABLE 1
Sample size, HB estimates of poverty incidence ×100, lower and upper limits of highest posterior density intervals and coefficients of variation of HB

estimates for the Spanish provinces with sample size closest to minimum, first quartile, median, third quartile and maximum, for each gender

Males Females

Province nd F̂ HB
0d ll(F0d) ul(F0d) cv(F̂ HB

0d ) Province nd F̂ HB
0d ll(F0d) ul(F0d) cv(F̂ HB

0d )

Soria 24 24.4 15.7 33.2 19.1 Soria 17 33.2 21.0 43.8 17.9
Lérida 127 24.8 20.3 29.8 9.9 Gerona 138 17.4 14.1 21.2 10.7
Jaén 233 28.8 25.1 33.0 7.1 Ciudad Real 239 30.5 26.4 34.4 6.7
Las Palmas 458 25.0 22.4 27.7 5.4 Sevilla 491 24.4 22.0 27.0 5.4
Barcelona 1358 11.1 10.2 12.1 4.5 Barcelona 1483 13.8 12.8 14.8 3.8

TABLE 2
Sample size, HB estimates of poverty gap ×100, lower and upper limits of highest posterior density intervals and coefficients of variation of HB

estimates for the Spanish provinces with sample size closest to minimum, first quartile, median, third quartile and maximum, for each gender

Males Females

Province nd F̂ HB
1d ll(F1d) ul(F1d) cv(F̂ HB

1d ) Province nd F̂ HB
1d ll(F1d) ul(F1d) cv(F̂ HB

1d )

Soria 24 8.7 4.9 12.8 24.5 Soria 17 12.5 6.6 17.9 24.0
Lérida 127 8.8 6.6 10.9 12.7 Gerona 138 5.6 4.3 7.2 13.3
Jaén 233 10.5 8.4 12.2 9.3 Ciudad Real 239 10.9 9.1 12.8 8.9
Las Palmas 458 8.8 7.6 10.0 7.0 Sevilla 491 8.2 7.1 9.3 7.0
Barcelona 1358 3.3 2.9 3.7 5.5 Barcelona 1483 4.1 3.7 4.5 4.8
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FIG. 18. Cartograms of estimated percent poverty incidences in Spanish provinces for men and
women, obtained using the HB method. Canary islands have been moved to the bottom-right corner.

Finally, the point estimates of poverty incidence and poverty gap obtained using
the HB procedure are plotted in the cartograms of Figures 18 and 19, for females
and males. Although the method has been applied separately for each gender in
contrast to the application done in Molina and Rao (2010) which treats provinces
crossed with gender as domains, we can see that the maps are very similar.

7. Discussion. The proposed HB procedure gives efficient estimates of gen-
eral nonlinear parameters in small areas using a model for unit-level data. It is a
computationally faster alternative to the EB method of Molina and Rao (2010) and
at the same time it provides a full description of the posterior distribution of the

FIG. 19. Cartograms of estimated percent poverty gaps in Spanish provinces for men and women,
obtained using the HB method. Canary islands have been moved to the bottom-right corner.
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target parameters, making it very easy to construct credible intervals or to obtain
other posterior summaries. The frequentist simulation study described in Section 5
and the application with Spanish SILC data given in Section 6 indicate that HB
point estimates agree to a great extent with EB estimates and that posterior vari-
ances are also comparable with frequentist MSEs. This good property arises from
the fact of using only noninformative priors. Thus, the proposed HB method is in
practice more feasible than the EB method for the estimation of general nonlinear
indicators under large populations.

In addition, the proposed HB approach provides estimators of poverty indicators
in Spanish provinces that are considerably more efficient than direct estimators;
see Figure 13. Results highlight larger point estimates of poverty incidence and
poverty gap for females in almost all provinces although credible intervals for the
two genders cross each other.

According to the resulting poverty maps, poverty (both in frequency and in-
tensity) is mainly concentrated in the south and west of Spain. Provinces with
critical estimated poverty incidences for men, with at least 30% of people un-
der the poverty line, are Almería, Badajoz, Albacete, Cuenca, Ávila and Zamora.
For women, almost all provinces get a larger point estimate of poverty incidence.
In particular, many more provinces join the set of provinces with critical values,
namely, practically all provinces in the region of Andalucía except for Sevilla and
Cádiz, all the provinces in Castilla la Mancha region except for Toledo and two
more provinces in Castilla León. Lleida in the north–east (region of Catalonia)
obtains a worrying poverty incidence for women as compared with the rest of the
provinces in the same region. In Spain the frequency of poverty as measured by
the poverty incidence seems to be very much related with the intensity of poverty
as measured by the poverty gap, with maps for the poverty gaps showing a similar
distribution of the poverty across provinces.

In contrast to the case of estimating area means or totals, the proposed method,
as any other unit-level method for estimating nonlinear parameters, requires the
values of the auxiliary variables for each population unit instead of area aggregates.
These data can be obtained from the last census or from administrative registers.
But due to confidentiality issues and depending on the particular regulation of
each country, census data might not be easily available for practitioners beyond
statistical offices personnel. In some other countries, access to census data can be
obtained by prior signature of strict data protection contracts. In other small area
applications, such as, for example, agriculture or forest research, the population of
x-values is fully available to the researcher from satellite or laser sensors images
[Battese, Harter and Fuller (1988); Breidenbach and Astrup (2012)].

A model with spatial correlation among provinces might be considered, but
there are serious difficulties in defining boundary conditions, especially for several
provinces such as islands. Even if spatial correlation could be considered for a sub-
set of the provinces, the number of provinces left is not large enough to estimate
accurately the spatial correlation, leading to weak significance of this parameter.
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An area-level model with spatial correlation among Spanish provinces is studied
by Marhuenda, Molina and Morales (2013), and their results for the SILC data
indicated very mild gains in efficiency due to the introduction of the spatial corre-
lation in the model. In any case, we leave this for further research.

APPENDIX A: DERIVATION OF POSTERIOR DENSITIES

Here we derive the conditional distributions appearing on the right-hand side
of the chain rule in (5). By Bayes’ theorem and using model assumptions (2)–(3)
together with the prior (4), the posterior distribution is given by

π
(
u,β, σ 2, ρ|ys

)

∝
{

D∏
d=D∗+1

π
(
ud |β, σ 2, ρ

)}(
1 − ρ

ρ

)D∗/2(
σ 2)−(((D∗+n)/2)+1)(11)

× exp

{
− 1

2σ 2

D∗∑
d=1

[∑
i∈sd

wdi

(
Ydi − x′

diβ − ud

)2 + 1 − ρ

ρ
u2

d

]}
,

where π(ud |β, σ 2, ρ) is the normal prior of ud given in (3). Let us define the
weighted sample means

x̄d = 1

wd·
∑
i∈sd

wdixdi, ȳd = 1

wd·
∑
i∈sd

wdiYdi,

where wd· = ∑
i∈sd

wdi , d = 1, . . . ,D∗. Integrating out u in (11), we obtain
π(β, σ 2, ρ|ys). Now dividing π(u,β, σ 2, ρ|ys) by π(β, σ 2, ρ|ys), we obtain

π
(
u|β, σ 2, ρ,ys

) =
{

D∏
d=D∗+1

π
(
ud |β, σ 2, ρ

)}{
D∗∏
d=1

π
(
ud |β, σ 2, ρ,ys

)}
,

where

ud |β, σ 2, ρ,ys
ind∼ N

[
λd(ρ)

(
ȳd − x̄′

dβ
)
,
{
1 − λd(ρ)

} ρ

1 − ρ
σ 2

]
(12)

for λd(ρ) = wd·[wd· + (1 − ρ)/ρ]−1, d = 1, . . . ,D∗. The second conditional den-
sity π2(β|σ 2, ρ,ys) in (5) is obtained by integrating out β in π(β, σ 2, ρ|ys) and
then dividing π(β, σ 2, ρ|ys) by π(σ 2, ρ|ys). Let

Q(ρ) =
D∗∑
d=1

∑
i∈sd

wdi(xdi − x̄d)(xdi − x̄d)′ + 1 − ρ

ρ

D∗∑
d=1

λd x̄d x̄′
d,

p(ρ) =
D∗∑
d=1

∑
i∈sd

wdi(xdi − x̄d)(Ydi − ȳd) + 1 − ρ

ρ

D∗∑
d=1

λd x̄d ȳd
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and β̂(ρ) = Q−1(ρ)p(ρ). Then, it follows that

β|σ 2, ρ,ys ∼ N
{
β̂(ρ), σ 2Q−1(ρ)

}
.(13)

Finally, integrating out σ 2 in π(σ 2, ρ|ys), we obtain

π4(ρ|ys) ∝
(

1 − ρ

ρ

)D∗/2∣∣Q(ρ)
∣∣−1/2

γ (ρ)−(n−p)/2
D∗∏
d=1

λ
1/2
d (ρ),

(14)
ε ≤ ρ ≤ 1 − ε,

where

γ (ρ) =
D∗∑
d=1

∑
i∈sd

wdi

{
Ydi − ȳd − (xdi − x̄d)′β̂(ρ)

}2

+ 1 − ρ

ρ

D∗∑
d=1

λd(ρ)
{
ȳd − x̄′

d β̂(ρ)
}2

.

Dividing π(σ 2, ρ|ys) by π4(ρ|ys) and making a change of variable, we finally
obtain

σ−2|ρ,ys ∼ Gamma
(

n − p

2
,
γ (ρ)

2

)
.(15)

APPENDIX B: PROPRIETY OF THE POSTERIOR DISTRIBUTION

LEMMA 1. Under the model defined by (2), (3) and (4), the posterior den-
sity π(u,β, σ 2, ρ | ys) is proper provided that the matrix defined by stacking
the rows x′

di in columns, X = col1≤d≤Dcoli∈sd (x
′
di), has full column rank and

ε ≤ ρ ≤ 1 − ε, ε > 0.

PROOF. We need to show that
∫∫∫∫

π(u,β, σ 2, ρ|ys) dudβ dσ 2 dρ is finite,
where the posterior π(u,β, σ 2, ρ|ys) is given in (5); see also Appendix A.

Now, using the expression for the posterior given in (5), the integral of the pos-
terior distribution is given by∫ ∫ ∫ ∫

π
(
u,β, σ 2, ρ|ys

)
dudβ dσ 2 dρ

=
∫ [∫ {∫ (∫

π1
(
u|β, σ 2, ρ,ys

)
du

)
π2

(
β|σ 2, ρ,ys

)
dβ

}

× π3
(
σ 2|ρ,ys

)
dσ 2

]
π4(ρ|ys) dρ.

Here π1(u|β, σ 2, ρ,ys) = ∏D
d=1 π1d(ud |β, σ 2, ρ,ys), and the distribution of

ud |β, σ 2, ρ,ys is given by (12), which is proper (integrates to one), because
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ρ ∈ [ε,1 − ε] for ε > 0. Similarly, the distribution of β|σ 2, ρ,ys is given in (13),
where the inverse of Q(ρ) exists whenever ρ ∈ [ε,1 − ε] for ε > 0 and X has full
column rank. Concerning σ 2, the density of σ−2|ρ,ys is given in (15). Making the
change of variable v = σ−2, we obtain

∫
π3(σ

2|ρ,ys) dσ 2 = 1.
Finally, we note that ρ cannot be integrated out analytically because the poste-

rior of ρ is given up to a constant by (14). However,

∫ 1−ε

ε

(
1 − ρ

ρ

)D∗/2∣∣Q(ρ)
∣∣−1/2

γ (ρ)−(n−p)/2
D∗∏
d=1

λ
1/2
d (ρ) dρ < ∞,

because the integrand is continuous for ρ ∈ [ε,1 − ε] provided that X has full
column rank. �

APPENDIX C: COMPUTATION OF STANDARDIZED
CROSS-VALIDATION RESIDUALS

Following Gelfand, Dey and Chang (1992), the expectation of any function
g(Ydi) can be expressed as

E
[
g(Ydi)|ys(di)

]
=

∫
E

[
g(Ydi)|ys(di), θ

]
π(θ |ys(di)) dθ(16)

=
∫

E[g(Ydi)|ys(di), θ]((π(θ |ys(di)))/(π(θ |ys)))π(θ |ys) dθ∫
((π(θ |ys(di)))/(π(θ |ys)))π(θ |ys) dθ

.

Now, to obtain the expectation E(Ydi |ys(di)), consider g(x) = x. The expecta-
tion within the integral in (16) is simply

E(Ydi |ys(di), θ) = E(Ydi |θ) = x′
diβ + ud,

because, given θ , all observations are independent and distributed as indicated
in (6). Thus, if we generate H values θ (h) = ((u(h))′, (β(h))′, σ 2(h), ρ(h))′, h =
1, . . . ,H , from the posterior density with all the data, π(θ |ys), then the desired
expectation would be obtained as

E(Ydi |ys(di)) ≈
H∑

h=1

(
x′
diβ

(h) + u
(h)
d

)
v

(h)
di , i ∈ sd, d = 1, . . . ,D,

where

v
(h)
di =

{
H∑

k=1

π(θ (k)|ys(di))

π(θ (k)|ys)

}−1
π(θ (h)|ys(di))

π(θ (h)|ys)
.
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But by Bayes’ theorem, we have

π(θ (h)|ys(di))

π(θ (h)|ys)
= f (ys(di)|θ (h))

f (ys |θ (h))

f (ys)

f (ys(di))
.

Therefore,

v
(h)
di = ((f (ys(di)|θ (h)))/(f (ys |θ (h))))((f (ys))/(f (ys(di))))∑H

k=1((f (ys(di)|θ (k)))/(f (ys |θ (k))))((f (ys))/(f (ys(di))))

= f (ys(di)|θ (h)){f (ys |θ (h))}−1∑H
k=1 f (ys(di)|θ (k)){f (ys |θ (k))}−1

.

Now since, given θ , all observations are independent, we have f (ys |θ) =
f (ys(di)|θ)f (Ydi |θ). Replacing this relation in v

(h)
di , we obtain the expression

in (10).
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