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RNA-sequencing has revolutionized biomedical research and, in partic-
ular, our ability to study gene alternative splicing. The problem has impor-
tant implications for human health, as alternative splicing may be involved in
malfunctions at the cellular level and multiple diseases. However, the high-
dimensional nature of the data and the existence of experimental biases pose
serious data analysis challenges. We find that the standard data summaries
used to study alternative splicing are severely limited, as they ignore a sub-
stantial amount of valuable information. Current data analysis methods are
based on such summaries and are hence suboptimal. Further, they have lim-
ited flexibility in accounting for technical biases. We propose novel data sum-
maries and a Bayesian modeling framework that overcome these limitations
and determine biases in a nonparametric, highly flexible manner. These sum-
maries adapt naturally to the rapid improvements in sequencing technology.
We provide efficient point estimates and uncertainty assessments. The ap-
proach allows to study alternative splicing patterns for individual samples
and can also be the basis for downstream analyses. We found a severalfold
improvement in estimation mean square error compared popular approaches
in simulations, and substantially higher consistency between replicates in ex-
perimental data. Our findings indicate the need for adjusting the routine sum-
marization and analysis of alternative splicing RNA-seq studies. We provide
a software implementation in the R package casper.4

1. Introduction. RNA-sequencing (RNA-seq) produces an overwhelming
amount of genomic data in a single experiment, providing an unprecedented res-
olution to address biological problems. We focus on gene expression experiments
where the goal is to study alternative splicing (AS), which we briefly introduce.
AS is an important biological process by which cells are able to express several
variants, also known as isoforms, of a single gene. Each splicing variant gives rise
to a different protein with a unique structure that can perform different functions
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FIG. 1. Three splice variants for a hypothetical gene and their relative abundances. Exon 1 is
located at positions 101–400. Exon 2 at 1001–1100. Exon 3 at 2001–2500.

and respond to internal and environmental needs. AS is believed to contribute to
the complexity of higher organisms, and is in fact particularly common in humans
[Blencowe (2006)]. Additionally, it is known to be involved in multiple diseases
such as cancer and malfunctions at the cellular level. Despite its importance, due
to limitations in earlier technologies, most gene expression studies have ignored
AS and focused on overall gene expression.

Consider the hypothetical example of a gene with three splice variants shown
in Figure 1. The gene is encoded in the DNA in three exons, shown as boxes in
Figure 1. When the gene is transcribed as messenger RNA (mRNA), it can give
rise to three isoforms. Variant 1 is formed by all three exons, whereas variant 2
skips the second exon and variant 3 the third exon. Usually, multiple variants are
expressed simultaneously at any given time. In our example, variant 1 makes up
for 60% of the overall expression of the gene, variant 2 for 30% and variant 3 for
10%. In practice, these proportions are unknown and our goal is to estimate them
as accurately as possible.

We focus on paired-end RNA-seq experiments, as they are the current stan-
dard and provide higher resolution for measuring isoform expression than compet-
ing technologies, for example, microarrays [Pepke, Wold and Mortazavi (2009)].
RNA-seq sequences tens or even hundreds of millions of mRNA fragments, which
can then be aligned to a reference genome using a variety of software, for ex-
ample, TopHat [Trapnell, Pachter and Salzberg (2009)], SOAP [Li et al. (2009)]
or BWA [Li and Durbin (2009)]. Throughout, we assume that the software can
handle gapped alignments (we used TopHat in all our examples). Early RNA-seq
studies used single-end sequencing, where only the left or right end of a fragment
is sequenced. In contrast, paired-end RNA-seq sequences both fragment ends. Ta-
ble 1 shows three hypothetical sequenced fragments corresponding to the gene in
Figure 1. 75 base pairs (bp) were sequenced from each end. For instance, both ends
of fragment 1 align to exon 1. As the three variants contain exon 1, in principle,
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TABLE 1
Three paired-end RNA-seq fragments. Aligned chromosome and base pairs are indicated for both
ends, allowing for gapped alignments. The exon path indicates the sequence of exons visited by

each end. A typical experiment contains tens of millions of fragments

Chromosome Left read Right read Exon path

Fragment 1 chr1 110–185 200–274 {1}, {1}
Fragment 2 chr1 361–400; 1001–1035 2011–2085 {1, 2}, {3}
Fragment 3 chr1 301–375 1021–1095 {1}, {2}
· · ·

this fragment could have been generated by any variant. For fragment 2 the left
read aligned to exons 1 and 2 (i.e., it spanned the junction between both exons),
and the right read to exon 3. Hence, fragment 2 can only have been generated from
variant 1. Finally, fragment 3 visits exons 1 and 2 and, hence, it could have been
generated either by variants 1 or 3. The example is simply meant to provide some
intuition. In practice, most genes are substantially longer and have more compli-
cated splicing patterns. Precise probability calculations are required to ensure that
the conclusions are sound.

Ideally, one would want to sequence the whole variant, so that each fragment can
be uniquely assigned to a variant. Unfortunately, current technologies sequence
hundreds of base pairs, which are orders of magnitude shorter than typical vari-
ant lengths. Current statistical approaches are based on the observation that, while
most sequenced fragments cannot be uniquely assigned to a variant, it is possible
to make probability statements. For instance, fragment 3 in Table 1 may have orig-
inated either from variant 1 or 3, but the probability that each variant generates
such a fragment is different. As we shall see below, this observation prompts a
direct use of Bayes theorem.

In principle, one could formulate a probability model that uses the full data,
that is, the exact base pairs covered by each fragment such as provided in Table 1,
for example, Glaus, Honkela and Rattray (2012). However, our findings indicate
that such strategies can be computationally prohibitive and deliver no obvious im-
provement (Section 4). Further, data storage and transfer requirements impose a
need for reducing the size of the data. Several authors proposed summarizing the
data by counting the number of fragments either covering each exon or each exon
junction [e.g., Xing et al. (2006), Mortazavi et al. (2008), Jiang and Wong (2009)].
In fact, large-scale genomic databases report precisely these summaries, for exam-
ple, The Cancer Genome Atlas project.5 One can then pose a probability model
that uses count data from a few categories as raw data, which greatly simplifies

5http://cancergenome.nih.gov.

http://cancergenome.nih.gov
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computation. While useful, this approach is seriously limited to considering pair-
wise junctions, which discards relevant information. For instance, suppose that a
fragment visits exons 1, 2 and 3. Simply adding 1 to the count of fragments span-
ning exons 1–2 and 2–3 ignores the joint information that a single fragment visited
3 exons and decreases the confidence when inferring the variant that generated the
fragment. Our results suggest that ignoring this information can result in a serious
loss of precision. It is not uncommon that a fragment spans more than 2 exons.
Holt and Jones (2008) found a substantial proportion of fragments bridging sev-
eral exons in paired-end RNA-seq experiments. In the 2009 RGASP experimental
data set (Section 4) 38.0% and 40.9% of fragments spanned ≥3 exons in repli-
cate 1 and 2, respectively (we subdivided exons so that they are fully shared/not
shared by all variants in a gene). In the 2012 ENCODE data set we found 64.7%
and 65.2% in each replicate. The 2012 data had substantially longer reads and
fragments, which illustrates the rapid advancements in technology. As sequencing
evolves, these percentages are expected to increase further.

We propose novel data summaries that preserve most information relevant to
alternative splicing, while maintaining the computational burden at a manageable
level. We record the sequence of exons visited by each fragment end, which we
refer to as exon path, and then count the number of fragments following each exon
path. The left end of Fragment 2 in Table 1 visits exons 1 and 2 and the right
end exon 3, which we denote as {1,2}, {3}. Notice that a fragment following the
path {1}, {2,3} visits the same exons, so one could be tempted to simply record
{1,2,3} in both cases. However, the probability of observing {1,2}, {3} for a given
variant differs from {1}, {2,3} and, hence, combining the two paths would result
in a potential loss of information. Table 2 contains hypothetical exon path counts
for our example gene. We use these counts as the basic input for our probability
model.

Paired-end RNA-seq is critical for AS studies. Intuitively, compared to single-
end sequencing, it increases the probability of observing fragments that connect

TABLE 2
Exon path counts for hypothetical gene

Exon path Count

{1}, {1} 2824
{2}, {2} 105
{3}, {3} 5042
{1}, {2} 27
{1}, {1, 2} 423
{1}, {3} 127
{2, 3}, {3} 394
{1, 2}, {3} 2
{1}, {2, 3} 13
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exon junctions. Lacroix et al. (2008) showed that, although neither protocol guar-
antees the existence of a unique solution, in practice, paired-end (but not single-
end) can provide asymptotically correct estimates for 99.7% of the human genes.
In contrast, for single-end data the figure is 1.14%. Unfortunately, much of the
current methodology has been designed with single-end data in mind. Xing et al.
(2006) formulate the problem as that of traversing a directed acyclic graph and
formulate a latent variable based approach to estimate splice variant expression.
Jiang and Wong (2009) propose a similar approach within the Bayesian frame-
work. Both approaches were designed for single-end RNA-seq data. Ameur et al.
(2010) proposed strategies to detect splicing junctions, and Katz et al. (2010) and
Wu et al. (2011) introduced models to estimate the percentage of isoforms skip-
ping individual exons. However, these approaches do not estimate expression at
the variant level.

Several authors propose strategies that use paired-ends. Mortazavi et al. (2008),
Montgomery et al. (2010), Trapnell et al. (2010) and Salzman, Jiang and Wong
(2011) model the number of fragments spanning exon junctions. These approaches
focus on pairwise exon connections, ignoring valuable higher-order information,
and have limitations in incorporating important technical biases. First, the sam-
ple preparation protocols usually induce an enrichment toward the 3’ end of the
transcript, that is, fragments are not uniformly distributed along the gene. Roberts
et al. (2011a), Wu, Wang and Zhang (2011) or Glaus, Honkela and Rattray (2012)
relax the uniformity assumption. Further, the fragment length distribution plays an
important role in the probability calculations and needs to be estimated accurately.
While the approaches above acknowledge this issue, they either use sequencing
facility reports (i.e., they do not estimate the distribution from the data) or they im-
pose strong parametric assumptions. Our examples illustrate that facility reports
can be inaccurate and that parametric forms do not capture the observed asymme-
tries, heavy tails or multi-modalities. Further, all previous approaches assume that
fragment start and length distributions are constant across all genes. We provide
empirical evidence that this assumption can be flawed and suggest a strategy to
relax the assumption.

A concern with current genome annotations is that they may miss some splicing
variants. Our approach can be combined with methods that predict new variants
such as Cufflinks RABT module [Roberts et al. (2011b), Trapnell et al. (2010)],
Scripture [Guttman et al. (2010)] or SpliceGrapher [Rogers et al. (2012)]. This
option is implemented in our R package and illustrated in Section 4.3.

In summary, we propose a flexible framework to estimate alternative splicing
from RNA-seq studies, by using novel data summaries and accounting for exper-
imental biases. In Section 2 we formulate a probability model that goes beyond
pairwise connections by considering exon paths. We model the read start and frag-
ment size distributions nonparametrically and allow for separate estimation within
subsets of genes with similar characteristics. Section 3 discusses model fitting and
provides algorithms to obtain point estimates, asymptotic credibility intervals and
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posterior samples. We show some results in Section 4 and provide concluding re-
marks in Section 5.

2. Probability model. We formulate the model at the gene level and perform
inference separately for each gene. In some cases, exons from different genes over-
lap with each other. When this occurs we group the overlapping genes and consider
all their isoforms simultaneously. It is also possible that two variants share only a
part of an exon. We subdivide such exons into the shared part and the part that
is specific to each variant. For simplicity, from here on we refer to gene groups
simply as genes and to subdivided exons simply as exons.

Consider a gene with E exons starting at base pairs s1, . . . , sE and ending at
e1, . . . , eE . Denote the set of splicing variants under consideration by ν (assumed
to be known) and its cardinality by |ν|. Each variant is characterized by an in-
creasing sequence of natural numbers i1, i2, . . . that indicates the exons contained
therein.

2.1. Likelihood and prior. As discussed above, we formulate a model for exon
paths. Let k be the number of exons visited by the left read, and k′ be that for the
right read (i.e., k = k′ = 1 when both reads overlap a single exon). We denote
an exon path by ι = (ιl , ιr ), where ιl = (ij , . . . , ij+k) are the exons visited by
the left-end and ιr = (ij ′, . . . , ij ′+k′) those by the right-end. Let P∗ be the set of
all possible exon paths and P be the subset of observed paths, that is, the paths
followed by at least 1 sequenced fragment.

The observed data is a realization of the random variable Y = (Y1, . . . , YN),
where N is the number of paired-end reads and Yi ∈ {1, . . . ,P∗} indicates the
exon path followed by read pair i. Formally, Yi arises from a mixture of |ν| dis-
crete probability distributions, each component corresponding to a different splic-
ing variant. The mixture weights π = (π1, . . . , π|ν|) give the proportion of reads
generated by each variant, that is, its relative expression. That is,

P(Yi = yi |π, ν) =
|ν|∑

d=1

pyidπd,

where pkd = P(Yi = k|δi = d) is the probability of path k under variant d and δi

is a latent variable indicating the variant that originated Yi . Let Si and Li denote
the relative start and length (resp.) of fragment i. The exon path Yi is completely
determined given Si , Li and the variant δi . Hence,

pkd =
∫ ∫

I (Yi = k|Si = si,Li = li , δi = d)dPL(li |δi) dPS(si |δi,Li),(1)

where PL is the fragment distribution and PS is the read start distribution condi-
tional on L. As discussed in Section 2.2, by assuming that PS and PL are shared
across sets of genes with similar characteristics, it is possible to estimate them
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with high precision. Hence, for practical purposes we can treat pkd as known and
pre-compute them before model fitting. Full derivations for pkd are provided in
Appendix A.

Assuming that each fragment is observed independently, the likelihood function
can be written as

P(Y|π , ν) =
N∏

i=1

|ν|∑
d=1

pyidπd =
|P|∏
k=1

( |ν|∑
d=1

pkdπd

)xk

,(2)

where xk = ∑N
i=1 I(yi = k) is the number of reads following exon path k. Equa-

tion (2) is log-concave, which guarantees the existence of a single maximum. Log-
concavity is given by (i) the log function being concave and monotone increasing,
(ii)

∑|ν|
d=1 pkdπd being linear and therefore concave, and (iii) the fact that a com-

position g ◦ f where g is concave and monotone increasing and f is concave is
again concave. To see (iii), notice that

g ◦ f
(
tz1 + (1 − t)z2

) ≥ g
(
tf (z1) + (1 − t)f (z2)

)
≥ tg ◦ f (z1) + (1 − t)g ◦ f (z2),

where the first inequality is given by g being increasing and f concave, and the
second inequality is given by g being concave.

We complete the probability model with a Dirichlet prior on π :

π |ν ∼ Dir(q1, . . . , q|ν|).(3)

In Section 4 we assess several choices for qd . By default we set the fairly unin-
formative values qd = 2, as these induce negligible bias and stabilize the posterior
mode by pooling it away from the boundaries 0 and 1. It is easy to see that (3) is
log-concave when qd ≥ 1 for all d . Given that (2) is also log-concave, this choice
of q guarantees the posterior to be log-concave, and therefore the uniqueness of
the posterior mode.

2.2. Fragment length and read start distribution estimates. Evaluating the
exon path probabilities in (1) that appear in the likelihood (2) requires the frag-
ment start distribution PS and fragment length distribution PL. Given that it is not
possible to estimate (PL,PS) with precision for each individual gene, we assume
they are shared across multiple genes (restricting fragments to be no longer than
the variant they originated from). By default we assume that (PL,PS) are com-
mon across all genes, but we also studied posing separate distributions according
to gene length. Supplementary Section 1 shows experimental evidence that, while
PL remains essentially constant, PS can depend on gene length and the experi-
mental setup. While this option is implemented in our R package, to allow a direct
comparison with previous approaches here, we assumed a common (PL,PS).
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Denoting by T the length of variant δi (in bp), we let PL(l|δ) = PL(l|T ) =
P(L = l)I(l ≤ T )/P (l ≤ T ). That is, the conditional distribution of L given δ is
simply a truncated version of the marginal distribution.

Further, we assume a common fragment start distribution relative to the variant
length T . Conditional on L and T , PS is truncated so that the fragment ends before
the end of the variant. Specifically,

PS(S ≤ s|δi,L = l) = P

(
S

T
≤ z|T ,L = l

)
(4)

= ϕ(min{z, (T − l + 1)/T })
ϕ((T − l + 1)/T )

,

where z = s/T and ϕ(z) = P( S
T

≤ z) is the distribution of the relative read start
S
T

.
To estimate PL note that the fragment length is unknown for fragments that

span multiple exons, but it is known exactly when both ends fall in the same exon.
Therefore, we select all such fragments and estimate PL with the empirical prob-
ability mass function of the observed fragment lengths. In order to prevent short
exons from inducing a selection bias, we only use exons that are substantially
longer than the expected maximum fragment length (by default > 1000 bp).

Estimating the fragment start distribution PS is more challenging, as we do not
know the variant that generated each fragment and therefore its relative start po-
sition cannot be determined. We address this issue by selecting genes that have
a single annotated variant, as, in principle, for these genes all fragments should
have been generated by that variant. Of course, the annotated genome does not
contain all variants and, therefore, a proportion of the selected fragments may not
have been generated by the assumed variant. However, the annotations are ex-
pected to contain most common variants (i.e., with highest expression) and, hence,
most of the selected fragments should correspond to the annotated variant. Under
this assumption, we can determine the exact start Si and length Li for all selected
fragments. A difficulty in estimating the read start distribution is that the observed
(Si,Li) pairs are truncated so that Si + Li < T , whereas we require the untrun-
cated cumulative distribution function ρ(·) in (4). Fortunately, the truncation point
for each (Si,Li) is known and, therefore, one can simply obtain a Kaplan–Meier
estimate of ρ(·) [Kaplan and Meier (1958)]. We use the function survfit in the
R survival package [Therneau and Lumley (2011)].

3. Model fitting. We provide algorithms to obtain a point estimate for π ,
asymptotic credibility intervals and posterior samples.

Following a 0–1 loss, as a point estimate we report the posterior mode, which
is obtained by maximizing the product of (2) and (3), subject to the constraint∑|ν|

d=1 πd = 1. We note that maximum likelihood estimates are obtained by simply
setting qd = 1 in (3). This constrained optimization can be performed with many
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numerical optimization algorithms. Here we used the EM algorithm [Dempster,
Laird and Rubin (1977)], as it is computationally efficient even when the number
of variants |ν| is large. For a detailed derivation see Appendix B. As noted above,
for qd > 1 the log-posterior is concave and, therefore, the algorithm converges to
the single maximum. The steps required for the algorithm are as follows:

1. Initialize π
(0)
d = qd/

∑|ν|
d=1 qd .

2. At iteration j , update π
(j+1)
d = qd − 1 + ∑|P|

k=1 xk
pkdπ

(j)
d∑|ν|

i=1 pkiπ
(j)
i

.

Step 2 is repeated until the estimates stabilize. In our examples we required
|π(j+1)

d −π
j
d | < 10−5 for all d . Notice that pkd and xk remain constant through all

iterations and, hence, they need to be computed only once.
We characterize the posterior uncertainty asymptotically using a normal approx-

imation in the re-parameterized space θd = log(πd+1/π1), d = 1, . . . , |ν| − 1 and
the delta method [Casella and Berger (2001)]. Denote by μ the posterior mode for
θ = (θ1, . . . , θ|ν|−1) and by S the Hessian of the log-posterior evaluated at θ = μ.
Further, let π(θ) be the inverse transformation and G(θ) the matrix with (d, l) el-
ement Gdl = ∂

∂θl
πd(θ). Detailed expressions for S, π(θ) and G(θ) are provided in

Appendix C. The posterior for θ can be asymptotically approximated by N(μ,	),
where 	 = S−1. Hence, the delta method approximates the posterior for π with
N(π(μ),G(μ)′SG(μ)).

The asymptotic approximation is also useful for the following independent pro-
posal Metropolis–Hastings scheme. Initialize θ(0) ∼ T3(μ,	) and notice that a
prior Pπ(π) on π induces a prior Pθ(θ) = Pπ(π(θ)) × |G(θ)| on θ , where G(θ)

is as above. At iteration j , perform the following steps:

1. Propose θ∗ ∼ T3(μ,	) and let π∗ = π(θ∗).
2. Set θ (j) = θ∗ with probability min{1, λ}, where

λ = P(Y|π∗, ν)Pπ(π∗)|G(θ∗)|
P(Y|π (j−1), ν)Pπ(π (j−1))|G(θ (j−1))|

T3(θ
(j−1);μ,	)

T3(θ
∗;μ,	)

.(5)

Otherwise, set θ (j) = θ (j−1).

Posterior samples can be obtained by discarding some burn-in samples and re-
peating the process until practical convergence is achieved. By default we suggest
10,000 samples with a 1000 burn-in, as it provided sufficiently high numerical
accuracy when comparing two independent chains (Supplementary Section 2).

4. Results. We assess the performance of our approach in simulations and two
experimental data sets. We obtained the two human sample K562 replicates6 from
the RGASP project (www.gencodegenes.org/rgasp) and two ENCODE Project

6ftp://ftp.sanger.ac.uk/pub/gencode/rgasp/RGASP1/inputdata/human_fastq/.

http://www.gencodegenes.org/rgasp
ftp://ftp.sanger.ac.uk/pub/gencode/rgasp/RGASP1/inputdata/human_fastq/
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Consortium (2004) replicated samples obtained from A549 cells (accession num-
ber wgEncodeEH0026257). We compare our results with Cufflinks [Trapnell et al.
(2012)], FluxCapacitor [Montgomery et al. (2010)] and BitSeq [Glaus, Honkela
and Rattray (2012)]. Cufflinks is based on a probabilistic model akin to Casper, but
uses exon and exon junction counts instead of full exon paths, assumes that frag-
ment lengths are normally distributed and estimates the read start distribution in
an iterative manner. FluxCapacitor is also based on exon and exon junction counts,
but uses a method of moments type estimator. BitSeq uses a full Bayesian model
at the base-pair resolution (i.e., data is not summarized as counts) and estimates
the read start distribution with a two-step procedure.

Regarding sequence alignment, for Casper, Cufflinks and FluxCapacitor we
used TopHat [Trapnell, Pachter and Salzberg (2009)] with the human genome
hg19, using the default parameters and a 200 bp average insert size. BitSeq re-
quired aligning to the transcriptome with Bowtie [Langmead et al. (2009)].

4.1. Simulation study. We generated human genome-wide RNA-seq data, set-
ting the simulations to resemble the K562 RGASP data in order to keep them as
realistic as possible. Figure 2 (left) shows our estimates P̂S and P̂L. We set PS and
π for each gene with 2 or more variants to their estimates in the K562 data. For
each gene we simulated a number of fragments equal to that observed in the K562
sample.

We considered a Casper-based and a Cufflinks-based simulation scenario. In the
former we set π and PL to the Casper estimates (qd = 2). The second scenario was
designed to favor Cufflinks by using its π estimates and setting PL to its assumed
Normal distribution (mean = 200, standard deviation = 20). We indicated the data-
generating PL to Cufflinks, whereas the remaining methods estimated it from the
data. An important difference between scenarios is that Casper estimates with qd =
2 are pooled away from the boundary, hence, πd is never exactly 0 or 1, whereas the
Cufflinks estimates were often in the boundary (Supplementary Figure 4). Genes
with less than 10 reads per kilobase per million (RPKM) were excluded from all
calculations to reduce biases due to low expression.

We estimated π from the simulated data using our approach with prior parame-
ters qd = 1 and qd = 2, Cufflinks and FluxCapacitor. Table 3 reports the absolute
and square errors (|πd − π̂d | and (πd − π̂d)2) averaged across all 18,909 isoforms
and 100 simulated data sets for both simulation settings. We also report the average
squared bias and variance. The Cufflinks and FluxCapacitor MAE are over 2.5 and
2.7 folds greater than that for Casper with qd = 2 (1.5 and 1.6 for qd = 1, resp.) in
the Casper-based scenario. In the Cufflinks-based simulation the reductions were
1.14 and 1.24 fold (1.27 and 1.38 for qd = 1). The improvements in MSE are
even more pronounced, with an over 2 fold improvement for qd = 2 even in the

7genome.ucsc.edu/ENCODE.

http://genome.ucsc.edu/ENCODE
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FIG. 2. Estimated fragment length (top) and start (bottom) distributions in K562 data (left) and
A549 data (right). Black dotted line: difference in

√
PS between replicates (values in secondary

y-axis).

Cufflinks-based simulation. Casper also shows a marked improvement in bias for
qd = 1 and variance for qd = 2. See Supplementary Figure 4 for corresponding
plots.

Figure 3 (top) shows the MAE for each transcript as a function of RPKM, a mea-
sure of overall gene expression. Casper improves the estimates for essentially all
RPKM values in both simulation settings. Figure 3 (bottom) assesses the MAE
vs. the mean pairwise difference between variants in a gene (number of base pairs
not shared). When variants in a gene share most exons this difference is small,
that is, variants are harder to distinguish. Casper estimates are the most accurate at
all similarity levels, with the MAE decreasing as variants become more differen-
tiated. Interestingly, Cufflinks and FluxCapacitor show lower MAE as similarity
increases from low to medium, but then MAE becomes higher and more variable
in genes with medium-highly differentiated variants. These results illustrate the
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TABLE 3
Mean absolute and square errors, bias and variance for simulation study for Casper (top) and

Cufflinks estimates (bottom)

MAE MSE Bias sqrt Variance

Casper-based simulations
Casper (qd = 1) 0.094 0.028 0.004 0.024
Casper (qd = 2) 0.055 0.004 0.004 0.004
Cufflinks 0.141 0.050 0.028 0.022
FluxCapacitor 0.151 0.054 0.022 0.032

Cufflinks-based simulations
Casper (qd = 1) 0.100 0.055 0.021 0.034
Casper (qd = 2) 0.111 0.035 0.032 0.003
Cufflinks 0.127 0.073 0.045 0.028
FluxCapacitor 0.138 0.078 0.036 0.042

advantage of using full exon paths, which provide more resolution in assigning
reads to splicing variants.

Finally, we assessed the frequentist coverage probabilities for the asymptotic
95% credibility intervals (Section 3), finding that in 95.04% of the cases they con-
tained the true value.

4.2. Experimental data from RGASP project. The two K562 replicates were
sequenced in 2009 with Solexa sequencing. The read length was 75 bp and the
mean fragment length indicated in the documentation is 200 bp for both replicates.
Figure 2 (top, left) shows the estimated fragment length distributions. We observe
that the mean length differs significantly from 200 bp and that there are important
differences between replicates. Replicate 2 shows a heavy left tail that indicates
a subset of fragments substantially shorter than average. This distributional shape
cannot be captured with the usual parametric distributions. Figure 2 (left, bottom)
shows the relative start distribution. We observe more sequences located near the
transcript end in replicate 1, that is, a higher 3’ bias. The differences between
replicates illustrate the need of flexibly modeling these distributions for each sam-
ple separately. In fact, we found that P̂S differed across genes with varying length
(Supplementary Section 1 and Supplementary Figure 1), the 3’ bias being stronger
in genes shorter than 3 kilo-bases.

We estimated the expression of human splicing variants in the UCSC genome
version hg19 for the two replicated samples separately. Figure 4 (left) and Table 4
compare the estimates obtained in the two samples. The Mean Absolute Differ-
ence (MAD) between replicates was 0.064 for Casper, 0.126 for Cufflinks (97%
increase), 16.2 for FluxCapacitor (253% increase) and 8.5 for BitSeq (31% in-
crease). Figure 4 shows a roughly linear correlation for Casper, Cufflinks and Flux-
Capacitor, the latter two frequently providing π̂d = 0 in one replicate and π̂d = 1
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FIG. 3. Simulation study. Mean absolute error vs. RPKM for Casper estimates (a) and Cufflink
estimates (b) and the mean base pair difference between variants in a gene for Casper (c) and
Cufflinks-based simulations (d).

in the other. BitSeq avoids these boundaries but exhibits a strongly nonlinear asso-
ciation. In terms of computational time, all methods required roughly 10–20 min
on 4 processors. Because BitSeq models the data at the base-pair resolution, it
required substantially longer time to run on 12 cores.

These results suggest that Casper provides clear advantages even with earlier
sequencing technologies.

4.3. Experimental data from ENCODE project. The two A549 replicated sam-
ples were sequenced in 2012 using Illumina HiSeq 2000. The read length was
101 bp and the average fragment length was roughly 300 bp (Figure 2, top right).
These are substantially longer than the 2009 samples from Section 4.2, and reflect
the improvement in sequencing technologies. Similar to Section 4.2, Figure 2 re-
veals important differences in the fragment length (top, right) and start (bottom,
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(a)

(b)

(c)

FIG. 4. Comparison of estimated isoform expression πd between two replicates in K562 and EN-
CODE studies. (a) Casper with qd = 2; (b) Cufflinks; (c) FluxCapacitor; (d) BitSeq.
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(d)

FIG. 4. (Continued).

right) distributions between samples. See also Supplementary Section 1 and Sup-
plementary Figure 2, where P̂S exhibits a stronger 3’ bias for genes longer than 5
kilo-bases.

Figure 4 (left) and Table 4 compare the estimates obtained in the two replicates.
Similar to the RGASP study (Section 4.2), Casper shows a roughly linear associ-
ation and substantially higher consistency between replicates. The MAD between
replicates was 0.057 for Casper, 9.0 for Cufflinks (58% increase), 12.7 for FluxCa-
pacitor (223% increase) and 0.098 for BitSeq (72% increase). The computational
time for Casper was comparable to that of Cufflinks, higher than FluxCapacitor
and substantially lower than BitSeq. The findings show that the advantage of mod-
eling exon path counts over pairwise exon connections remains pronounced as
technology evolves to sequence longer fragments.

We now consider the possibility that some expressed transcripts may not be
present in the UCSC genome annotations. We used a Cufflinks RABT module to
identify novel transcripts, and then run Casper to jointly estimate their expression

TABLE 4
K562 and Encode studies. Mean absolute difference (MAD) in π̂d between replicates and CPU time

on 2.8 GHz, 32 Gb OS X computer (+: 4 cores; ∗: 12 cores)

K562 Encode

MAD CPU MAD CPU

Casper+ 6.4 × 10−2 11.1 min 5.7 × 10−2 2 h 11 min
Cufflinks+ 12.6 × 10−2 21.4 min 9.0 × 10−2 2h 13 min
Flux+ 16.2 × 10−2 9.0 min 12.7 × 10−2 1 h 17 min
BitSeq∗ 8.5 × 10−2 1 day 13 h 9.8 × 10−2 8 h 40 min
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with UCSC transcripts. Cufflinks-RABT found 12,512 gene islands with no new
transcripts, 6229 with some new transcripts and 1527 completely new genes in
sample 1. For sample 2 the figures were 11,912, 6983 and 1378 completely new
genes. While new transcripts had negligible influence on genes with no new tran-
scripts, in the remaining genes π̂d decreased so that a proportion of the expression
could be assigned to the new variants. For further details see Supplementary Sec-
tion 4. These findings suggest that current genome annotations may miss a non-
negligible number of expressed variants. For a careful assessment we recommend
following a strategy akin to ours here, that is, combining our approach with a de
novo transcript discovery method.

5. Discussion. We proposed a model to estimate the expression of a set of
known alternatively spliced variants from RNA-seq data. The model improves
upon previous proposals by using exon paths, which are more informative than
single or pairwise exon counts, and by flexibly estimating the fragment start and
length distributions. We provided computationally efficient algorithms for obtain-
ing point estimates, asymptotic credibility intervals and posterior samples.

We found that a fairly uninformative prior with qd = 2 improves precision rel-
ative to the typical qd = 1 equivalent to maximum likelihood estimation. The ad-
vantages stem from the usual shrinkage argument: qd = 2 pools the estimates away
from the boundaries and reduces variance. Compared to competing approaches,
we observed substantial MSE reductions in simulations and increased correlation
between experimental replicates. In modern studies we found that roughly 2 se-
quences out of 3 visited > 2 exon regions distinguishing variants, suggesting that
the current standard of reporting pairwise exon junctions adopted by most public
databases is far from optimal. Reporting exon paths would allow researchers to es-
timate isoform expression at a much higher precision. Given that the methodology
is implemented in the R package casper, we believe that it should be of great
value to practitioners.

APPENDIX A: DERIVATION OF EXON PATH PROBABILITIES

Here we describe how to compute the probability pkd of observing exon path k

for any splicing variant d . Equivalently, we denote d by δ = (i1, . . . , i|δ|), where
ij indicates the j th exon within d . Consider variant δ after splicing, that is, after
removing the introns. The new exon start positions are given by s∗

1 = 1 and s∗
k+1 =

s∗
k + eik − sik +1 for k = 1, . . . , |δ|−1. The end of exon k is s∗

k+1 −1. Denote by S

the read start position, L the fragment length, r the read length, and let T = s∗|δ| −1
be the transcript length of δ.

The goal is to compute P(ιl = (ij , . . . , ij+k), ιr = (ij ′, . . . , ij ′+k′)|δ). We note
that both ij , . . . , ij+k and ij ′, . . . , ij ′+k′ must be consecutive exons under variant δ,
otherwise the probability of the path is zero. The left read follows the exon path
ιl = (ij , . . . , ij+k) if and only if the read:
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1. Starts in exon j , that is, s∗
j ≤ S ≤ s∗

j+1 − 1.
2. Ends in exon j + k, that is, s∗

j+k ≤ S + r − 1 ≤ s∗
j+k+1 − 1.

Similarly, the right read follows ιr = (ij ′, . . . , ij ′+k′) if and only if s∗
j ′ ≤ S + L −

r ≤ sj ′+1 − 1 and s∗
j ′+k′ ≤ S + L − 1 ≤ s∗

j ′+k′+1 − 1. This implies that the desired
probability can be written as P(a1 ≤ S ≤ b1, a2 ≤ S + L ≤ b2|δ), where

a1 = max
{
s∗
j , s∗

j+k − r + 1
}
,

b1 = min
{
s∗
j+1 − 1, s∗

j+k+1 − r
}
,

(6)
a2 = max

{
s∗
j ′ + r, s∗

j ′+k′ + 1
}
,

b2 = min
{
s∗
j ′+1 + r − 1, s∗

j ′+k′+1
}
.

Assuming that the distribution of (S,L) depends on δ only through its transcript
length T , we can write P(a1 ≤ S ≤ b1, a2 ≤ S + L ≤ b2|T ) =∑

l

P (a1 ≤ S ≤ b1, a2 ≤ S + L ≤ b2|T ,L = l)P (L = l|T )

(7)
= ∑

l

P
(
max{a1, a2 − L} ≤ S ≤ min{b1, b2 − L}|T ,L = l

)
P(L = l|T ).

In order to evaluate (7), we need to estimate the fragment length distribution
P(L = l|T ) and the distribution of the read start position S given L. We as-
sume that P(L|T ) = P(L = l)I(l ≤ T )/P (L ≤ T ), that is, the conditional dis-
tribution of L given T is simply a truncated version of the marginal distribution.
Further, notice that the fragment end must happen before the end of the transcript,
that is, S + L − 1 ≤ T or, equivalently, the relative start position is truncated
S/T ≤ ST = (T − L + 1)/T . The relative start distribution is therefore truncated,
that is, P( S

T
≤ z|T ,L = l) = ϕ(min{z,ST })

ϕ(ST )
, where ϕ(z) = P( S

T
≤ z) is the distribu-

tion of the relative read start S
T

.
Under these assumptions, the probability of observing the exon path ιl =

(ij , . . . , ij+k), ιr = (ij ′, . . . , ij ′+k′) under variant δ is equal to∑
l

[(
ϕ

(
min

{
b1/T , (b2 − l)/T ,ST

})

− ϕ
(
min

{
max

{
(a1 − 1)/T , (a2 − l − 1)/T

}
, ST

}))
/ϕ(ST )

]
+P(L = l|T ),

where a1, b1, a2 and b2 are given in (6). Given that highly precise estimates of
P(L = l) and ϕ(·) are typically available, for computational simplicity we treat
them as known and plug them into (8).

APPENDIX B: EM ALGORITHM DERIVATION

1. E-step.
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Let δi ∈ {1, . . . , |ν|} be latent variables indicating the variant that reads i =
1, . . . ,N come from. The augmented log-posterior is proportional to

l0(π |y, δ) = logP(π |ν) + logP(y, δ|π)
(8)

=
|ν|∑

d=1

(qd − 1) log(πd) +
N∑

i=1

|ν|∑
d=1

I(δi = d)
[
log(pyid) + log(πd)

]
.

Considering δi as a random variable, the expected value of (8) given y and π =
π (j) is equal to

E
(
l0

(
π ′|y, δ

)|y,π (j))

=
|ν|∑

d=1

(qd − 1) log(πd)(9)

+
N∑

i=1

|ν|∑
d=1

P
(
δi = d|yi,π

(j))(log(pyid) + log
(
π ′

d

))
.

2. M-step.
The goal is to maximize (9) with respect to π ′. Let γid = P(δi = d|yi,π

(j)) and
re-parameterize π|ν| = 1 − ∑|ν|−1

d=1 πd . Setting the partial derivatives with respect
to π ′

d to zero gives the system of equations

π ′
d

1 − ∑|ν|−1
d=1 π ′

d

= qd − 1 + ∑N
i=1 γid

q|ν| − 1 + ∑N
i=1 γi|ν|

,

which has the trivial solution π ′
d ∝ qd − 1 + ∑N

i=1 γid . By plugging in γid =
pyidπ

(j)
d /

∑|ν|
d=1 pyidπ

(j)
d , we obtain

π ′
d ∝ qd − 1 +

N∑
i=1

pyidπ
(j)
d∑|ν|

d=1 pyidπ
(j)
d

.

Finally, since xk = ∑N
i=1 I(yi = k), we can group all yi ’s taking the same value

and find the maximum as

π ′
d ∝ qd − 1 +

|P|∑
k=1

xk

pkdπ
(j)
d∑|ν|

d=1 pkdπ
(j)
d

,(10)

re-normalizing π ′ so that
∑|ν|

d=1 π ′
d = 1.
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APPENDIX C: ASYMPTOTIC POSTERIOR APPROXIMATION

Here we derive an asymptotic approximation to P(π |ν,Y), the posterior dis-
tribution of the splicing variants expression π conditional on a model ν and
the observed data Y. Given that π = (π1, . . . , π|ν|) ∈ [0,1]|ν| with

∑|ν|
i=1 πi = 1,

we re-parameterize to θ = (θ1, . . . , θ|ν|−1) ∈ �|ν|−1, where θd = log(
πd+1
π1

) for
d = 1, . . . , |ν| − 1. The goal is to approximate P(θ |ν,Y) ∼ N(μ,	). For nota-
tional simplicity, in the remainder of the section we drop the conditioning on ν.

A prior Pπ(π) induces a prior Pθ(θ) = Pπ(π(θ)) × |G(θ)| on θ , where G(θ)

is the matrix with (d, l) element Gdl = ∂
∂θl

πd(θ) and inverse transform π1(θ) =
(1 + ∑|ν|−1

j=1 eθj )−1, πd(θ) = π1(θ) exp{θd−1} for d > 1.
Define f (θ) = log(P (Y|θ)) + log(Pθ (θ)). Up to an additive constant, f (θ) is

equal to the target log-posterior distribution of θ given Y. We center the approx-
imating Normal at the posterior mode, that is, μ = argmaxθ∈�|ν|−1 f (θ). We set
	 = S−1, where S is the Hessian of f (θ) evaluated at θ = μ with (l,m) element

Slm = ∂2

∂θl ∂θm
f (θ). We approximate μd = log(

π∗
d+1
πd

), where π∗ is the posterior
mode for π provided by the EM algorithm.

Under a π ∼ Dirichlet(q) prior, simple algebra gives σlm = ∂2

∂θl ∂θm
f (θ) =

|P|∑
k=1

xk

(
∑|ν|

d=1 pkdHdlm)(
∑|ν|

d=1 pkdπd(θ)) − (
∑|ν|

d=1 pkdGdl)(
∑|ν|

d=1 pkdGdm)

(
∑|ν|

d=1 pkdπd(θ))2

(11)

+
|ν|∑

d=1

(qd − 1)
Hdlmπd(θ) − GdlGdm

πd(θ)2 ,

where xk = ∑N
i=1 I(yi = k) is the number of reads following exon path k,

pkd = P(Yi = k|δ = d) is the probability of observing path k under variant d ,
the gradient for πd(θ) is Gdl = ∂

∂θl
πd(θ) as before and the Hessian is Hdlm =

∂2

∂θl ∂θm
πd(θ).

We complete the derivation by providing expressions for Gdl and Hdlm. Let
s(θ) = 1 + ∑|ν|−1

j=1 eθj , then Gdl =
−eθl

s(θ)2 if d = 1,

(12)
−eθd−1+θl

s(θ)2 + I(l = d − 1)
eθl

s(θ)
if d ≥ 2

and Hdlm =
2eθl+θm

s(θ)3 − I(l = m)
eθl

s(θ)2 if d = 1,(13)
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2eθd−1+θl+θm

s(θ)3 − I(l = d − 1)
eθl+θm

s(θ)
if d ≥ 2,m �= l,m �= d − 1,

−2e2θm

s(θ)2 + 2e3θm

s(θ)3 + eθm

s(θ)
− 2e2θm

s(θ)2 if d ≥ 2,m = l,m = d − 1,

−eθd−1+θl

s(θ)2 + 2eθd−1+θl+θm

s(θ)3 otherwise.
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SUPPLEMENTARY MATERIAL

Supplementary results (DOI: 10.1214/13-AOAS687SUPP; .pdf). In Rossell
et al. (2014) we assess the dependence of fragment start and length distributions
on gene length, show additional simulation results, assess MCMC convergence
and apply the approach to transcripts found de novo.

REFERENCES

AMEUR, A., WETTERBOM, A., FEUK, L. and GYLLENSTEN, U. (2010). Global and unbiased de-
tection of splice junctions from RNA-seq data. Genome Biol. 11 R34.

BLENCOWE, B. J. (2006). Alternative splicing: New insights from global analyses. Cell 126 37–47.
CASELLA, G. and BERGER, R. L. (2001). Statistical Inference, 2nd ed. Duxbury, N. Scituate.
DEMPSTER, A. P., LAIRD, N. M. and RUBIN, D. B. (1977). Maximum likelihood from incomplete

data via the EM algorithm. J. R. Stat. Soc. Ser. B Stat. Methodol. 39 1–38. MR0501537
ENCODE PROJECT CONSORTIUM (2004). The ENCODE (ENCyclopedia Of DNA Elements)

Project. Science 306 636–640.
GLAUS, P., HONKELA, A. and RATTRAY, M. (2012). Identifying differentially expressed transcripts

from RNA-seq data with biological variation. Bioinformatics 28 1721–1728.
GUTTMAN, M., GARBER, M., LEVIN, J. Z., DONAGHEY, J., ROBINSON, J., ADICONIS, X.,

FAN, L., KOZIOL, M. J., GNIRKE, A., NUSBAUM, C., RINN, J. L., LANDER, E. S. and
REGEV, A. (2010). Ab initio reconstruction of cell type-specific transcriptomes in mouse reveals
the conserved multi-exonic structure of lincRNAs. Nature Biotechnoly 28 503–510.

HOLT, R. A. and JONES, S. J. M. (2008). The new paradigm of flow cell sequencing. Genome
Research 18 839–846.

JIANG, H. and WONG, W. H. (2009). Statistical inferences for isoform expression in RNA-Seq.
Bioinformatics 25 1026–1032.

KAPLAN, E. L. and MEIER, P. (1958). Nonparametric estimation from incomplete observations.
J. Amer. Statist. Assoc. 53 457–481. MR0093867

KATZ, Y., WANG, E. T., AIROLDI, E. M. and BURGE, C. B. (2010). Analysis and design of RNA
sequencing experiments for identifying isoform regulation. Nat. Methods 7 1009–1015.

http://dx.doi.org/10.1214/13-AOAS687SUPP
http://www.ams.org/mathscinet-getitem?mr=0501537
http://www.ams.org/mathscinet-getitem?mr=0093867


ALTERNATIVE SPLICING FROM RNA-SEQ DATA 329

LACROIX, V., SAMMETH, M., GUIGO, R. and BERGERON, A. (2008). Exact Transcriptome Re-
construction from Short Sequence Reads. In Proceedings of the 8th International Workshop on
Algorithms in Bioinformatics. 50–63. Springer, Berlin.

LANGMEAD, B., TRAPNELL, C., POP, M. and SALZBERG, S. L. (2009). Ultrafast and memory-
efficient alignment of short DNA sequences to the human genome. Genome Biol. 10 R25.

LI, H. and DURBIN, R. (2009). Fast and accurate short read alignment with Burrows–Wheeler trans-
form. Bioinformatics 25 1754–1760.

LI, R., YU, C., LI, Y., LAM, T. W., YIU, S. M., KRISTIANSEN, K. and WANG, J. (2009). SOAP2:
An improved ultrafast tool for short read alignment. Bioinformatics 25 1966–1967.

MONTGOMERY, S. B., SAMMETH, M., GUTIERREZ-ARCELUS, M., LACH, R. P., INGLE, C., NIS-
BETT, J., GUIGO, R. and DERMITZAKIS, E. T. (2010). Transcriptome genetics using second
generation sequencing in a Caucasian population. Nature 464 773–777.

MORTAZAVI, A., WILLIAMS, B. A., MCCUE, K., SCHAEFFER, L. and B., W. (2008). Mapping
and quantifying mammalian transcriptomes by RNA-Seq. Nature Methods 5 621–628.

PEPKE, S., WOLD, B. and MORTAZAVI, A. (2009). Computation for ChIP-seq and RNA-seq stud-
ies. Nat. Methods 6 S22–S32.

ROBERTS, A., TRAPNELL, C., DONAGHEY, J., RINN, J. L. and PACHTER, L. (2011a). Improving
RNA-Seq expression estimates by correcting for fragment bias. Genome Biol. 12 R22.

ROBERTS, A., PIMENTEL, H., TRAPNELL, C. and PACHTER, L. (2011b). Identification of novel
transcripts in annotated genomes using RNA-Seq. Bioinformatics 27 2325–2329.

ROGERS, M. F., THOMAS, J., REDDY, A. S. and BEN-HUR, A. (2012). SpliceGrapher: Detecting
patterns of alternative splicing from RNA-Seq data in the context of gene models and EST data.
Genome Biol. 13 R4.

ROSSELL, D., STEPHAN-OTTO ATTOLINI, C., KROISS, M. and STÖCKER, A. (2014). Supplement
to “Quantifying alternative splicing from paired-end RNA-sequencing data.” DOI:10.1214/13-
AOAS687SUPP.

SALZMAN, J., JIANG, H. and WONG, W. H. (2011). Statistical modeling of RNA-Seq data. Statist.
Sci. 26 62–83. MR2849910

THERNEAU, T. and LUMLEY, T. (2011). Survival: Survival analysis, including penalised likelihood.
R package version 2.36-10.

TRAPNELL, C., PACHTER, L. and SALZBERG, S. L. (2009). TopHat: Discovering splice junctions
with RNA-Seq. Bioinformatics 25 1105–1111.

TRAPNELL, C., WILLIAMS, B. A., PERTEA, G., MORTAZAVI, A., KWAN, G., VAN BAREN, M. J.,
SALZBERG, S. L., WOLD, B. J. and PACHTER, L. (2010). Transcript assembly and quantifica-
tion by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentia-
tion. Nat. Biotechnol. 28 511–515.

TRAPNELL, C., ROBERTS, A., GOFF, L., PERTEA, G., KIM, D., KELLEY, D. R., PIMENTEL, H.,
SALZBERG, S. L., RINN, J. L. and PACHTER, L. (2012). Differential gene and transcript expres-
sion analysis of RNA-seq experiments with TopHat and Cufflinks. Nature Protocols 7 562–578.

WU, Z., WANG, X. and ZHANG, X. (2011). Using non-uniform read distribution models to improve
isoform expression inference in RNA-Seq. Bioinformatics 27 502–508.

WU, J., AKERMAN, M., SUN, S., MCCOMBIE, W. R., KRAINER, A. R. and ZHANG, M. Q.
(2011). SpliceTrap: A method to quantify alternative splicing under single cellular conditions.
Bioinformatics 27 3010–3016.

http://dx.doi.org/10.1214/13-AOAS687SUPP
http://www.ams.org/mathscinet-getitem?mr=2849910
http://dx.doi.org/10.1214/13-AOAS687SUPP


330 ROSSELL, STEPHAN-OTTO ATTOLINI, KROISS AND STÖCKER

XING, Y., YU, T., WU, Y. N., ROY, M., KIM, J. and LEE, C. (2006). An expectation–maximization
algorithm for probabilistic reconstructions of full-length isoforms from splice graphs. Nucleic.
Acids Res. 34 3150–3160.

D. ROSSELL

DEPARTMENT OF STATISTICS

UNIVERSITY OF WARWICK

GIBBEL HILL RD.
COVENTRY CV4 7AL
UNITED KINGDOM

E-MAIL: D.Rossell@warwick.ac.uk

C. STEPHAN-OTTO ATTOLINI

INSTITUTE FOR RESEARCH IN BIOMEDICINE

OF BARCELONA

BALDIRI REIXAC 10
BARCELONA 08028
SPAIN

E-MAIL: camille.stephan@irbbarcelona.org

M. KROISS

LMU MUNICH

GESCHWISTER-SCHOLL-PLATZ 1
MÜNCHEN 089 2180-0
GERMANY

E-MAIL: kroissm@in.tum.de

A. STÖCKER

TU MUNICH

GESCHWISTER-SCHOLL-PLATZ 1
MÜNCHEN 089 2180-0
GERMANY

E-MAIL: al.st@web.de

mailto:D.Rossell@warwick.ac.uk
mailto:camille.stephan@irbbarcelona.org
mailto:kroissm@in.tum.de
mailto:al.st@web.de

	Introduction
	Probability model
	Likelihood and prior
	Fragment length and read start distribution estimates

	Model ﬁtting
	Results
	Simulation study
	Experimental data from RGASP project
	Experimental data from ENCODE project

	Discussion
	Appendix A: Derivation of exon path probabilities
	Appendix B: EM algorithm derivation
	Appendix C: Asymptotic posterior approximation
	Acknowledgments
	Supplementary Material
	References
	Author's Addresses

