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Data used to assess acute health effects from air pollution typically have
good temporal but poor spatial resolution or the opposite. A modified longitu-
dinal model was developed that sought to improve resolution in both domains
by bringing together data from three sources to estimate daily levels of nitro-
gen dioxide (NO2) at a geographic location. Monthly NO2 measurements at
316 sites were made available by the Study of Traffic, Air quality and Respi-
ratory health (STAR). Four US Environmental Protection Agency monitoring
stations have hourly measurements of NO2. Finally, the Connecticut Depart-
ment of Transportation provides data on traffic density on major roadways,
a primary contributor to NO2 pollution. Inclusion of a traffic variable im-
proved performance of the model, and it provides a method for estimating
exposure at points that do not have direct measurements of the outcome. This
approach can be used to estimate daily variation in levels of NO2 over a re-
gion.

1. Introduction. The relationship between traffic and air pollutants such as
NO2 has been examined using many different approaches [e.g., Maantay (2007),
McConnell et al. (2010)]. Proximity to traffic has frequently been used as a proxy
for traffic related air pollution exposure in environmental health [Jerrett et al.
(2005), McConnell et al. (2006)]. In such studies, the goal is to determine whether
there is a relationship between air pollution and health outcomes. When direct
measurements of specific pollutant levels are not available, proximity to roadways
and traffic levels are sometimes used as proxies. In general, NO2 levels decline
with distance from a highway [Cape et al. (2004), Frati et al. (2006), Gilbert et al.
(2003), Rodes and Holland (1981)].

While data on proximity to major roads have proven to be a cost-effective ap-
proach in epidemiological studies of traffic exposure, they do not necessarily ac-
count for traffic volume. Inclusion of volume further improves the quality of traf-
fic exposure measurement [Rose et al. (2009)]. For instance, Gauvin et al. (2001)
found that including an index of traffic intensity and proximity in a model, along
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with an indicator of gas cooker use in the home, improved the correlation between
model estimates and levels of nitrogen dioxide measured from a monitor located
close to a child’s home or school. Other studies [e.g., Brauer et al. (2003), Carr
et al. (2002), Cesaroni et al. (2008), Heinrich et al. (2005), Ryan et al. (2005),
Schikowski et al. (2005), Venn et al. (2000)] also used traffic volume to improve
the quality of exposure information.

One way to include traffic volume information in a model is to introduce ve-
hicular counts within a buffer zone, which Rose et al. (2009) call weighted-road-
density. The idea is to calculate the total (road length × traffic volume) for a given

circle and divide it by the area, that is,
∑n

i=1 LiVi

πr2 , where Li is the length of a seg-
ment, Vi the traffic volume and r the radius of the circle. Either actual traffic counts
or a road classification system can be used for Vi . The authors found that actual
traffic counts were better at predicting NO2 than a simple hierarchical classifica-
tion of roads. In addition, weighted road density was found to be a better predictor
than proximity to a major road.

Rose et al.’s (2009) method assumed that all roads within a circle had the same
effect regardless of distance to the point of interest. Holford et al. (2010) proposed
a method that made use of road density, traffic volume and distance to roads from
points of interest. They were able to estimate a dispersion function for a pollutant,
which improved estimates of NO2 over those obtained using only average daily
traffic (ADT: number of vehicles/day) on the closest highway, ADT on the busiest
highway within a buffer and the sum for all road segments within a buffer.

The underlying framework for the methods reviewed above is land use regres-
sion which uses traffic-related variables as predictors for NO2 [e.g., Briggs et al.
(1997), Gilbert et al. (2005), Gonzales et al. (2005), Jerrett et al. (2007), Rosenlund
et al. (2008), Ross et al. (2006), Wheeler et al. (2008)]. Ibarra-Berastegi et al.
(2003) added a time-varying component to a model using multiple linear regres-
sion to forecast NO2 levels up to 8 hours in advance by using current and past 15
hours meteorology along with traffic information.

Further methods for assessing intraurban exposure were reviewed by Jerrett
et al. (2005): (i) statistical interpolation [Jerrett et al. (2001)], (ii) line dispersion
models [Bellander et al. (2001)], (iii) integrated emission-meteorological mod-
els [Frohn, Christensen and Brandt (2002)], and (iv) hybrid models combining
personal or household exposure monitoring with one of the preceding methods
[Kramer et al. (2000), Zmirou et al. (2002)], or combining two or more of the pre-
ceding methods with regional monitoring [Hoek et al. (2001)]. Rose et al. (2009)
broke down the alternatives into just two categories: dispersion-based models and
empirical models.

As pointed out by Jerrett et al. (2005), a disadvantage of geostatistical interpola-
tion is the limited availability of monitoring data. This approach requires a reason-
ably dense network of sampling sites. Government monitoring data generally come
from a sparse network of stations, giving rise to systematic errors in estimates at
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sites far from the monitoring stations. Increasing the number of monitoring sites
can be helpful but costly, so it has not been used extensively. Researchers often
have to use pollution measurements over relatively short time periods as a sub-
stitute for the comparatively long periods covered by health histories. This poses
a choice between relying on a government network that provides temporal detail
for a limited number of sites or on their own more detailed spatial network, which
usually covers a short period of time.

To address the limitations inherent in each source of available data, Zhang
(2011) applied a longitudinal model that established a relationship between data
from US Environmental Protection Agency (EPA) monitoring sites with daily or
finer temporal resolution and those from the Study of Traffic, Air quality and Res-
piratory health in children (STAR) with monthly resolution. It was assumed that
the relationship at the monthly level held at the daily level, using a model in which
data from EPA sites were used to estimate pollution information at study sites. This
model performed well as measured by R2 in a simple linear model that used STAR
site observations as the response variable and the predictions based on EPA mea-
surements as the predictor variable. The model showed that about 73% of the vari-
ability at the STAR sites can be explained by the predictions. This article extends
and seeks to improve Zhang’s (2011) method by including traffic as predictors in
the model. A traffic-related variable can then be used to explain the spatial varia-
tion observed in the random intercept of the longitudinal model, thus providing a
practical way for estimating the temporal/spatial distribution of NO2 in a region.

2. Methods.

2.1. EPA and STAR data. STAR is an epidemiological study of childhood
asthma designed to investigate whether common air contaminants are related to
disease severity. Four monthly outdoor NO2 measurements were taken for each
subject, with three months separating each consecutive measurement. Observa-
tions used in this analysis were taken between April 25, 2006 and March 21, 2008.
In contrast to the STAR study, the EPA monitoring sites provide hourly NO2 mea-
surements. Average daily NO2 was calculated from these hourly measurements.
Figure 1 shows the locations of four EPA sites in Connecticut and 316 STAR
study sites used in this analysis. We selected randomly 266 STAR learning sites
for model development and the remaining 50 sites were used for model validation.

Inverse distance weighting (IDW) was used to interpolate daily NO2 values at
STAR sites based on daily averages at the four EPA sites. Let Zi,j denote the
j th NO2 measurement at STAR site i (between days t1 to t2, say), and let Vi,t

denote the IDW interpolated NO2 value at site i on day t , for i = 1,2, . . . , n, and
t = 1,2, . . . , T . A new variable Ui,j can be created by taking the average of Vi,t

for site i over the same period as Zi,j . Figure 2 plots Zi,j against Ui,j for the 316
sites in Figure 1, where weights are the reciprocal of distance.
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FIG. 1. Locations of 4 EPA sites which have hourly NO2 measurements and 316 STAR sites which
have monthly measurements.

2.2. Traffic data. The Connecticut Department of Transportation reports ADT
for all state roads on a three-year cycle. The data for 2006 were used in this analy-
sis. Figure 3 shows these road segments which have reported ADT. There are 5196
road segments, with lengths ranging from 16 meters to 12,295 meters, median of

FIG. 2. Observed NO2 values at 316 STAR sites (Zi,j ) vs average of IDW interpolated values from
EPA NO2 measurements over the same period as Zi,j .
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FIG. 3. Roads with traffic information in Connecticut.

740 meters and mean of 1207 meters. The range for ADT was 0 to 184,000 (mean
of 22,323 and median of 11,400).

2.3. Models. Three models were compared in this study. First, we considered
a linear model:

Yi = α0 + α1 × xi + ∑
k

γkWi,k + εi,(2.1)

where Yi denotes the ith NO2 measurement on the natural log scale, xi is the nat-
ural log of the average IDW interpolated NO2 for that site over the corresponding
period, Wi,k is the traffic information (ADT), and εi ∼ N(0, σ 2) is some random
error, for i = 1,2, . . . ,1064.

Second, we specified a longitudinal model with random effects for sites:

Yi,j = β0 + b0,i + β1 × xi,j + ∑
k

γkWi,k + εi,j ,(2.2)

where Yi,j denotes the j th NO2 measurement at STAR site i on the natural log
scale, xi,j is the corresponding average of IDW interpolated NO2 on the natural
log scale, Wi,k is the traffic information, b0,i ∼ N(0, σ 2

b ) is a random intercept
for site i, and εi,j ∼ N(0, σ 2

Y ) is some random error, for i = 1,2, . . . ,266 and
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FIG. 4. Observed NO2 levels vs averages of IDW interpolated NO2 levels for six randomly selected
STAR sites, with lines connecting values in temporal order.

j = 1,2,3,4. The random effects b0,i and εi,j are mutually independent. A scatter
plot showing this relationship for these data is shown in Figure 4, which shows
Zi,j (the j th NO2 measurement at site i) against Ui,j (average of IDW interpolated
daily NO2 values at site i over the period corresponding to Zi,j ) for six randomly
selected sites, with lines connecting values for a site in temporal order.

Finally, we specified a modified longitudinal model which allowed for spa-
tial correlation among site effects for the model in equation (2.2), that is, b0 =
(b0,1, b0,2, . . . , b0,n)

T ∼ N(0, σ 2
b × �(φ)). Elements in the covariance matrix

�(φ) are given by exp(− d
φ
), where d denotes spatial distance. The random ef-

fects b0 and εi,j ’s are mutually independent.
We adjusted for traffic effects using the integrated exposure model proposed

by Holford et al. (2010) which introduced covariates into the linear predictor in a
regression model. The contribution of traffic was expressed as∫

z(s)φ(s) ds,

where z(s) denotes ADT for point s on a line representing a highway and φ(s)

is a dispersion function for the pollutant generated at s. We can achieve com-
putational efficiency with little loss in accuracy by representing this contribution
numerically—taking the sum of the product of ADT, the segment length and the
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unknown dispersion function which depends on distance. Holford et al. (2010) dis-
cussed alternative forms of linear dispersion functions, for example, stepped, poly-
nomial or spline. In this example we used a step function, in which we estimated
a value for the level of dispersion between specified distance intervals, Dk−1 and
Dk :

∑
j zk,j γkδk,j = γk

∑
j zk,j δk,j , where γk is the pollution effect from a unit

intensity source within the interval, zk,j is ADT, and δk,j is length of the segment.
The linear predictor related to traffic effects can now be written as∫

z(s)φ(s) ds = ∑
k

(
γk

∑
j

zk,j δk,j

)
= ∑

k

γkWk,

where Wk = ∑
j zk,j δk,j .

ADT is reported in highly variable lengths, and while this approach might work
well for short segments, it can become problematic for long segments, for example,
if the center of one road is close to a site but most of the remaining segments are
relatively far away. To mitigate this problem, we divided the segments into smaller
subsegments and found that 50-meter segments provided an adequate accuracy.
To show this, we tested lengths such as 10-meter, 50-meter, 100-meter and up
to 5000-meter and found little difference in the resulting estimates between 10
and 50 meters. For this example, we used 50-meter. Segments were divided into
subsegments using a Python (http://www.python.org/) script which calls relevant
ArcGIS [Environmental Systems Resource Institute (2010)] functions.

Values of Dk’s were predetermined by our experience with earlier analysis. Set-
ting the values of Dk beforehand leaves the values of γk’s to be estimated as regres-
sion parameters. Two possible approaches for incorporating traffic effects were
examined: a single-step model which sets the contribution of highway segments
within 2000 meters as equal and for distances farther than 2000 meters as 0; and a
multi-step model with steps at 400 meters, 800 meters, 1200 meters, 1600 meters
and 2000 meters.

While models (2.1) and (2.2) were fitted using a frequentist approach, we ob-
tained parameter estimates for the third model under the Bayesian framework.

The three models were fitted to NO2 levels at the 266 learning sites and the
results were used to estimate levels not only at these sites but at the 50 validation
sites as well. By assuming that the relationship at the monthly level also holds
at the daily level, we also obtained daily estimates. One predictor variable was
based on daily pollution levels obtained by interpolating with IDW measurements
from the four EPA sites. We also included the remaining predictors representing
traffic-related effects Wi,k .

Once daily NO2 predictions at the sites were obtained, they were averaged over
the same periods as the STAR observations. Systematic departures for site esti-
mates were evaluated using simple linear regression:

Zi,j = α0 + α1 ∗ Pij + εi,j ,(2.3)

http://www.python.org/
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where Zi,j is the j th observation at STAR site i, Pi,j is the average of the estimated
daily NO2 values at site i over the same period as Zi,j , and εi,j ∼ N(0, σ 2). In
addition, we calculated the root mean square error (RMSE):√

�n
i=1�

4
j=1(Zi,j − Pi,j )2

4n
.

3. Results. Table 1 shows results from fitting the model in equation (2.1) us-
ing the single-step and multi-step dispersion models for the traffic effect. Table 2
shows results from fitting the corresponding longitudinal model in equation (2.2).
In Table 1, the results from the multi-step dispersion model reveal that the effects
of the first two steps (0–400 m and 400–800 m) are not significantly different from
zero at the 0.05 significance level. While parameter estimates of the next three
steps (800–1200 m, 1200–1600 m and 1600–2000 m) are significantly different
from zero, their values are nearly the same (0.0622, 0.0675 and 0.0495). Similar
observations can be made on the results from the longitudinal model in Table 2.
While one might expect values to decline with distance, this could be due to the
high correlation among traffic covariates for the five steps. The variance inflation
factor (VIF) for each traffic variable in model (2.1) was above one and the VIFs
for two of them were above three. While multi-collinearity does not greatly affect
prediction severely in general, it can be difficult to diagnose the potential issue
of extrapolation with multiple predictors when making a prediction at a new site.
Moreover, note from Table 1 that the adjusted R2 only improved marginally with
the use of multi-step variables. For these reasons we focused on the model using
the single-step traffic variable.

The single-step dispersion function was also used for the modified longitudinal
model and the results are shown in Table 3. Table 4 summarizes results from a
comparison of the fitted and the observed levels at the 50 validation sites using

TABLE 1
Results from fitting the linear model in (2.1) with different traffic variables

Traffic Estimate SE t-value p-value Adjusted R2

Single-step α0 −0.3728 0.1181 −3.1570 0.0016 0.3857
α1 0.9428 0.0447 21.0930 <0.0001
γ 0.1524 0.0098 15.5110 <0.0001

Multi-step α0 −0.3963 0.1184 −3.3470 0.0008 0.3911
α1 0.9341 0.0446 20.9230 <0.0001
γ1 −0.0133 0.0283 −0.4710 0.6378
γ2 0.0062 0.0236 0.2630 0.7926
γ3 0.0622 0.0233 2.6660 0.0078
γ4 0.0675 0.0151 4.4810 <0.0001
γ5 0.0495 0.0099 4.9900 <0.0001
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TABLE 2
Results from fitting the longitudinal model in (2.2) with different traffic variables

Traffic Estimate SE DF t-value p-value

Single-step β0 −0.5974 0.1033 797 −5.7826 <0.0001
β1 1.0281 0.0389 797 26.4628 <0.0001
γ 0.1529 0.0146 264 10.5075 <0.0001
σ 2
b 0.0402

σ 2
Y 0.0619

Multi-step β0 −0.6344 0.1053 797 −6.0222 <0.0001
β1 1.0250 0.0389 797 26.3591 <0.0001
γ1 −0.0117 0.0419 260 −0.2797 0.7800
γ2 0.0070 0.0350 260 0.1985 0.8428
γ3 0.0627 0.0346 260 1.8149 0.0707
γ4 0.0653 0.0223 260 2.9300 0.0037
γ5 0.0503 0.0147 260 3.4294 0.0007

σ 2
b 0.0398

σ 2
Y 0.0619

the model in equation (2.3). Also included are a comparison of results for mod-
els with and without the traffic variable. Including the traffic variable improved
performance of both the linear and the longitudinal models. For instance, the pre-
dictive R2 for model (2.3) changed from 0.2617 to 0.4375 and RMSE from 2.9527
to 2.5763 after including traffic variable in the longitudinal model. The additive
bias α0 in the longitudinal model changed from 1.0821 (p-value 0.283) to 1.2584
(p-value 0.0637).

For the modified longitudinal model that included spatial correlation, the es-
timated α0 was not significantly different from zero, thus being similar to the
estimates from the model without the traffic variable. However, when the traffic
variable was included in this model, the predictive R2 was 0.6106, which was

TABLE 3
Results from fitting the modified longitudinal model that includes spatial

correlation in (2.2) with a single-step traffic variable

Mean SE 2.50% 50% 97.50%

β0 −0.8524 0.0896 −0.9838 −0.8748 −0.6251
β1 1.0828 0.0312 1.0068 1.0828 1.1365
γ 0.1023 0.0153 0.0725 0.1023 0.1333
σ 2
b 0.0748 0.0203 0.0419 0.0722 0.1207

σ 2
Y 0.0648 0.0033 0.0588 0.0647 0.0716

φ 12.3184 3.6682 6.5307 12.2449 19.5918
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TABLE 4
Results from a comparison of predicted and observed values for the 50 validation sites

Estimate SE t-value p-value Predictive R2 RMSE Traffic

Linear α0 0.1163 1.1220 0.104 0.9180 0.2605 2.9687 N
model α1 1.0526 0.1260 8.352 <0.0001

α0 0.8978 0.7073 1.269 0.206 0.4342 2.5843 Y
α1 0.9468 0.0768 12.327 <0.0001

Longi- α0 1.0821 1.0057 1.076 0.2830 0.2617 2.9527 N
tudinal α1 0.9333 0.1114 8.377 <0.0001
model α0 1.2584 0.6748 1.865 0.0637 0.4375 2.5763 Y

α1 0.8998 0.0725 12.409 <0.0001

Modified α0 0.5247 0.5539 0.947 0.3450 0.5807 2.2081 N
longi- α1 0.9703 0.0586 16.560 <0.0001
tudinal α0 0.6802 0.5131 1.326 0.1860 0.6106 2.1311 Y
model α1 0.9527 0.0541 17.622 <0.0001

slightly higher than 0.5807 for the model without traffic. Comparing RMSEs led
to similar conclusions, that is, the model that included traffic had a lower RMSE
compared with the model without traffic. Figure 5 shows a scatter plot of observed
vs predicted NO2 from the modified longitudinal model with traffic effects.

FIG. 5. Observed vs predicted NO2 values at 50 validation STAR sites.
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FIG. 6. Semivariograms of the random intercept in the longitudinal model, before and after includ-
ing the predictor for traffic effect.

To see whether traffic effects explain the spatial correlation in the random in-
tercepts of the longitudinal model, we compared the sample semivariograms for
two versions of the longitudinal model (2.2), one with traffic and the other without
(Figure 6). We can see that the semivariogram after accounting for traffic is almost
flat compared with the one without traffic. This suggests that the spatial correlation
in the random intercept has been partially explained by the inclusion of traffic in
the model.

4. Discussion. Based on the estimated α0, predictive R2 and RMSE for the 50
validation sites, we concluded that inclusion of traffic effects improved the linear,
the longitudinal and the modified longitudinal models. In addition, the modified
longitudinal model worked reasonably well for making predictions at random sites.

In the modified longitudinal model, no temporal correlation structure was as-
sumed for the residual εi,j . An area for future research would be to develop a
model that allows for both spatial and temporal correlation. Brown et al. (2001)
and Romanowicz et al. (2006) demonstrated how such models could be estimated.
From an application perspective, however, assuming only spatial correlation has
the advantage of being less computationally demanding. One would need to weigh
the benefits and costs of using a more complex model that includes a spatiotempo-
ral correlation structure.
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Another area for further research is to allow for additional predictors such as
land use, population density and elevation similar to that used by Skene et al.
(2010). In addition, one needs to explore whether these models can be applied to
different temporal resolutions. The EPA sites record NO2 levels on an hourly basis,
so if the level of pollutant varies with time of day as a subject moves from place to
place, this could have relevant health consequences.

It would also be useful to determine whether the proposed model can be applied
to other pollutants generated by traffic. The US EPA monitors a variety of relevant
pollutants, including carbon monoxide, ozone, particulate matter 2.5 and sulfur
dioxide. Epidemiological studies have been carried out to explore the relationship
between exposure to these pollutants and health [e.g., Bell and Dominici (2006),
Islam et al. (2008), Son, Bell and Lee (2011)]. If this approach also performs well
for these pollutants, one would be able to study the effect of daily pollution levels
on health.

Finally, it would be interesting to develop alternative models for estimating the
daily pollution levels at multiple sites, for example, similar to the latent spatial pro-
cess used by Smith, Zhang and Field (2007). As a result, it would be no longer nec-
essary to assume that the relationship between monthly EPA measures and STAR
sites would hold at the daily level. However, implementation of such models would
be computationally expensive, which could pose a significant challenge for poten-
tial users.
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