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INTERPOLATION OF NONSTATIONARY HIGH FREQUENCY
SPATIAL–TEMPORAL TEMPERATURE DATA1

BY JOSEPH GUINNESS AND MICHAEL L. STEIN

University of Chicago

The Atmospheric Radiation Measurement program is a U.S. Depart-
ment of Energy project that collects meteorological observations at several
locations around the world in order to study how weather processes affect
global climate change. As one of its initiatives, it operates a set of fixed but
irregularly-spaced monitoring facilities in the Southern Great Plains region
of the U.S. We describe methods for interpolating temperature records from
these fixed facilities to locations at which no observations were made, which
can be useful when values are required on a spatial grid. We interpolate by
conditionally simulating from a fitted nonstationary Gaussian process model
that accounts for the time-varying statistical characteristics of the tempera-
tures, as well as the dependence on solar radiation. The model is fit by max-
imizing an approximate likelihood, and the conditional simulations result in
well-calibrated confidence intervals for the predicted temperatures. We also
describe methods for handling spatial–temporal jumps in the data to interpo-
late a slow-moving cold front.

1. Introduction. When analyzing surface meteorological data, we often en-
counter observations that are recorded at regular and frequent intervals in time but
at irregular and sparse locations in space. The data usually come in the form of
multiple time series, in which a small number of lengthy time series are associated
with fixed locations in space. The methods developed in Stein (2005, 2009) ex-
ploit this structure in constructing computationally efficient likelihood approxima-
tions for data that may be modeled as a realization of a stationary spatial–temporal
Gaussian process or a very constrained type of nonstationary Gaussian process. To
model the temperature data that we consider in this paper, a more flexible nonsta-
tionary time series model is needed to capture accurately the statistical properties
of the data, especially the dependence on solar radiation and time of day. The time
series model that we employ relies on the idea of the evolutionary spectrum, as in-
troduced by Priestley (1965) and advanced theoretically by Dahlhaus (1996, 2012).
Through a simple modification of the nonseparable spatial–temporal covariance
function in Stein (2005, 2009), we incorporate evolutionary spectra to introduce
nonstationary behavior in the time domain of the spatial–temporal process. Using
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the computational techniques described in Guinness and Stein (2013), we are able
to efficiently compute and maximize approximate Gaussian likelihoods for these
data, which comprise 648,000 temperature observations. We also develop special-
ized methods for modeling and interpolating spatial–temporal jumps in the data.

The goal of this work is to develop methods for producing accurate space–time
interpolations of temperature data at sites for which no observations are available.
This objective has a long history in the meteorological literature, and many re-
searchers have made important contributions, including Daly, Neilson and Phillips
(1994), who interpolate precipitation data in the U.S., and Hijmans et al. (2005),
who interpolate several climate variables at a high resolution with global land cov-
erage. While we have similar goals, our methods differ in that we characterize the
entire spatial–temporal statistical distribution of the temperature process so that
we may naturally incorporate uncertainty into the interpolations. Specifically, we
use the fitted statistical model to produce a suite of simulated temperature data
at unobserved locations conditional on the observed temperature data, accounting
for the various uncertainties associated with the fitted model. Such simulations are
similar in spirit to the idea of multiple imputations [Rubin (1987)] and have been
referred to as data ensembles [Schneider (2006), Stein (2009)]. In the geostatis-
tics literature, this approach is usually called geostatistical simulation [Lantuéjoul
(2002), e.g.]. Because our statistical model tries to reflect the nonstationary nature
of the temperature records, the resulting conditional simulations closely resemble
the observed temperature data; not only are the simulations accurate, but the vari-
ance and the correlation structure are consistent with the observations. Such sim-
ulations may be useful in any application that requires a measure of uncertainty in
addition to a point interpolation of temperature. For example, a high resolution re-
gional climate model may require meteorological fields on a spatial grid as inputs,
and the simulations provide a way to propagate the uncertainty of the interpola-
tions through the climate model.

2. Atmospheric radiation measurement program data. The data are pro-
vided by the Atmospheric Radiation Measurement (ARM) Program, which was
established by the U.S. Department of Energy in 1989 to study how weather
processes, especially cloud formation, affect global climate. The ARM program
includes several mobile measurement facilities, but the majority of the observa-
tions come from permanent facilities in three primary regions: the North Slope
of Alaska, the Tropical Western Pacific, and the Southern Great Plains (SGP).
The SGP field measurement site consists of a central facility in northern Ok-
lahoma and a modest number of extended facilities spread over 55,000 square
miles in northern Oklahoma and southern Kansas. The data analyzed in this pa-
per were collected at the SGP site, and all of the data may be accessed on the
web at http://www.archive.arm.gov. The extended facilities collect a host of me-
teorological observations, including surface measurements of air temperature, air
pressure, relative humidity, and horizontal wind speed and direction. We analyze

http://www.archive.arm.gov
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FIG. 1. Locations and elevations (meters) of the monitoring sites and their October 2005 average
temperatures (◦C). One degree latitude is approximately 111 km, and one degree longitude at 37
degrees latitude is approximately 89 km. The central facility is located at site EF-13.

the temperature data from 15 extended facilities from the first 30 days of Octo-
ber, 2005, and we also make use of a solar radiation measurement collected at
the central facility. The positions and the elevations of the 15 monitoring sites
and the average temperatures from the first 30 days of October 2005 are plot-
ted in Figure 1. The temperature data are collected every minute to the nearest
0.01◦C. Modeling and analysis of meteorological data at such a high temporal
frequency are of basic scientific interest, as evidenced by the emergence of the
field of micrometeorology, which aims to describe the physical properties of at-
mospheric processes on very fine scales. In addition, the high frequency inter-
polations may be of use as inputs to high resolution regional climate models.
When a regional climate model has a spatial resolution of 10 km or less, it is
typically run at time steps of less than one minute. Such high resolution models
include the SPoRT-WRF model, which includes some 1 km resolution modeling



NONSTATIONARY SPATIAL–TEMPORAL INTERPOLATION 1687

FIG. 2. Temperature record for October 1–30 at 15 ARM SGP extended facilities. The tick marks
on the vertical axis are separated by 20◦C, and the sites are ordered from north (top series) to south
(bottom series) and offset from each other by 20◦C.

(http://weather.msfc.nasa.gov/sport/modeling/), and HIRLAM-B, which has a tar-
get resolution of 2.5 km (http://hirlam.org). The ARM SGP data we analyze are
of high quality in that only 50 are missing out of 648,000, and since the missing
data are so few, we simply linearly interpolate them in time. Figure 2 plots the
temperature time series from each site.

As expected, on most days the temperature data exhibit a clear diurnal cycle
in which the temperature begins to increase shortly after sunrise, warms through-
out the morning, and then begins to cool in the late afternoon. In addition, the
temperatures in the middle of the day usually display more temporal variability
than the nighttime temperatures do. As a result, it is clear that a model for the
temperature (or differences of temperature) time series with a stationary variance
function is not sufficient for these data. Several authors, including Benth and Šal-
tytė Benth (2007) and Campbell and Diebold (2005), have addressed the issue of
nonstationary variance in temperature observations in the context of pricing finan-
cial products on the weather derivatives markets. Their work mostly focuses on
modeling seasonal variances for mean daily temperatures, whereas here we con-
sider very high frequency data. For one-minute time resolution data, there may be
some hope in explaining the changing variability of the temperature differences
with other meteorological covariates. In fact, incoming solar radiation, which is
measured at the central facility at one minute increments, has a strong connection
to the temperature variability, as seen in Figure 3. We explore this connection more

http://weather.msfc.nasa.gov/sport/modeling/
http://hirlam.org
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FIG. 3. Comparison between solar radiation measured at the central facility and temperature dif-
ferences measured at two sites, EF-13 and EF-24. Site EF-13 is the site nearest the central facility,
where the solar radiation is measured.

closely in Section 6. In addition to modeling a nonstationary variance, we model a
nonstationary correlation function, the details of which are discussed in Sections 5
and 6. Another conspicuous aspect of the data is the existence of extreme jumps in
temperature, most notably during the fifth day, when the temperature at each site
drops suddenly over a short period of time. In Section 4 we develop methods for
interpolating the jumps to unobserved sites.

3. Statistical model. We model the temperature process X at time t and lo-
cation u as

X(t,u) = m(t) + s(u) + J (t,u) + Y(t,u),(1)

and we observe X(t,uj ) for t = 1, . . . , T = 43,200 and for j = 1, . . . , n = 15,
the number of observation locations. The function m is a nonrandom temporal
mean function, s is a spatial Gaussian process, J is a random spatial–temporal
jump process, and Y is a nonstationary spatial–temporal Gaussian process. The
temporal mean function, m, is estimated by smoothing the time series of spatially
averaged temperatures. Specifically, we compute

X(t) = 1

n

n∑
j=1

X(t,uj ),(2)
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and we smooth X(t) in time with a 20-minute-bandwidth Daniell kernel ap-
plied three times to obtain m̂(t). The bandwidth was chosen manually to balance
smoothness and fit. We treat s(u) as known at each observation location and set its
value to

s(uj ) = 1

T

T∑
t=1

X(t,uj ) − X,(3)

where X is the grand mean of all observed temperatures. The spatial Gaussian
process model for s allows us to provide predictions and conditional simulations
of the spatial means at unobserved locations.

The random spatial–temporal jump process, J , is discussed in Section 4. The
residual term, Y , is modeled as a nonstationary spatial–temporal Gaussian pro-
cess using techniques from the spectral analysis of nonstationary time series. We
discuss the details of the time series model in Sections 5 and 6, and we describe
how we combine the time series models into a spatial–temporal process model in
Section 7.

4. Spatial–temporal jump process. It is clear that incorporating nonstation-
arity into the temporal domain will provide a significant improvement to the fit.
There is, however, one important aspect of the data that remains difficult to capture
if we are to keep the amount of nonstationarity relatively constrained: the extreme
drop in temperature occurring on October 5, plotted in Figure 4. On this day, each
site experiences a rapid drop in temperature of roughly 4 to 10◦C within a period
of no more than 20 minutes, during which the first differences of temperature can
be as high as 2◦C. In contrast, the differences during the rest of the month have a
sample standard deviation of 0.06◦C. The issue is further complicated by the fact
that the temperature drops are not simultaneous across the sites. Indeed, the site
in the southeastern corner of the region records its drop more than 12 hours after
the site in the northwestern corner records its drop. There seems to have been a
weather system moving slowly across the region on that day.

We do not think it would be a good idea to model the jumps as part of the
nonstationary spatial–temporal Gaussian process. For these data, such a Gaussian
process model would need to be sufficiently pathological that it would violate the
idea that the model is nearly stationary on short time scales. A more suitable option
is to fit a random spatial–temporal jump process model in which the timing, sizes
and steepness of the jumps are random spatial processes. This not only allows us
to interpolate the jumps at unobserved sites but also provides a way to model the
uncertainty of the interpolated jumps.

Consider the following parametric form for the jump process:

J (t,u) =
{

f
(
t; τ(u),D(u), λ(u)

)
, if 1440 × 4 < t ≤ 1440 × 5,

0, if otherwise,
(4)
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FIG. 4. Temperature record for October 5 at 15 ARM SGP extended facilities. On the lower plot,
the vertical axis tick marks are separated by 10◦C, and the temperatures are offset by 4◦C per site,
ordered by the time of the extreme temperature drop.

so that the jump process is nonzero only on day 5, and where f is a nonrandom
function of time given τ(u), the time the jump occurs, D(u), the size of the jump,
and λ(u), the steepness of the jump. We introduce randomness into the jump pro-
cess by modeling these parameters as random spatial processes, allowing us to
model the uncertainty in the timing, size and steepness of the jumps. The idea is
that if we can estimate these parameters using the data from locations (u1, . . . ,un),
we can conditionally simulate the parameters at unobserved sites (u01, . . . ,u0m)
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FIG. 5. Example of fitted jump processes at sites EF-07 and EF-20. The fitted jump processes are
the dashed lines, the temperatures from site EF-07 are the solid gray line, and the temperatures from
site EF-20 are the solid black line.

via the spatial models and plug the conditionally simulated parameters into f to
construct conditionally simulated jump processes at the unobserved sites. Two ex-
amples of the fitted jump processes are included in Figure 5.

Choosing the specific form for f requires careful input from the modeler, and
we leave the details to Appendix A. The particular formulation that we chose is
highly specialized for these data, so we do not propose that our analysis may be
blindly applied to other non-Gaussian features in the data or even other jumps. We
do not see at present a way to automate the modeling of this kind of feature in
high frequency meteorological data. However, we may in general be able to apply
the idea of fitting parametric functions to features in the data at each site and then
interpolating the feature to unobserved sites by spatially interpolating the fitted
parameters.

In addition to the extreme drops in temperature, sites EF-11 and EF-15 record
short upward bursts in which the temperatures are raised by several degrees Celsius
and subsequently return to the pre-burst temperature a short time later, usually
within 30 minutes. The bursts are recorded on two separate days, Oct. 11 and 25.
Because the bursts are short-lived and do not cause any major shift in the process,
we simply remove and replace them with linear functions connecting the pre- and
post-burst temperatures. We do not know what is causing the bursts; however, it
is interesting to note that the bursts occur at two sites separated by 50 km and the
burst at the northern site follows the burst at the southern site by 75 minutes on
day 11 and by 125 minutes on day 25. In any case, since they are short-lived, and
the temperatures return to near the pre-burst temperatures, little is lost in ignoring
them. In contrast, the drop on Oct. 5 is sustained, so it is not possible to ignore it.

Once the mean functions and the jump process have been estimated, we may
subtract them from the data and fit a nonstationary spatial–temporal Gaussian pro-
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cess model to

Ŷ (t,uj ) = X(t,uj ) − m̂(t) − s(uj ) − Ĵ (t,uj ),(5)

where m̂(t) and s(uj ) are described in Section 3, and Ĵ (t,uj ) is the estimate of
the jump process, which is outlined in Appendix A. The details of the model for Ŷ

are to be described in the following sections.

5. Locally stationary time series model. The spatial–temporal model for the
residuals, which will be discussed in Section 7, specifies nonstationary marginal
time series models at fixed locations in space. Before describing the spatial–
temporal model, it is instructive to first introduce some concepts from nonsta-
tionary time series. Dahlhaus (1996, 2012) introduced an asymptotic framework
for nonstationary time series in which the process may be considered station-
ary over short time scales, thus allowing for consistent estimation of the model.
Dahlhaus’s work builds on the idea of the evolutionary spectrum, introduced by
Priestley (1965). Specifically, let T be a positive integer and Z be a complex or-
thogonal increment process on T, the unit circle, subject to the constraint that
Z(ω) = Z(−ω)∗, where ∗ denotes the complex conjugate. Furthermore, let A be a
complex function on [0,1] × T with A(u,ω) = A(u,−ω)∗ for every u and ω, and∫
T

|A(u,ω)|2 dω < ∞ for every u. Then

XT (t) =
∫

T

A(t/T ,ω)eiωt dZ(ω)(6)

is a real-valued nonstationary process on t = 1, . . . , T .
Estimation of the model amounts to estimation of A, which is a time-varying

transfer function, or, more frequently, of |A|2, which is usually called an evolu-
tionary spectrum. Dahlhaus (1997, 2000) proposes Gaussian likelihood approxi-
mations that may be maximized over some parametric family for |A|2. Guinness
and Stein (2013) provide an improved Gaussian likelihood approximation. Their
likelihood approximates the integral in (6) with a sum over Fourier frequencies,
ωj = 2πj/T , so that the nonstationary time series vector XT may be written ap-
proximately as a linear transformation of a vector of uncorrelated random vari-
ables Ẑ,

XT ≈ CT (A)Ẑ,(7)

where CT (A) is a T × T matrix with (t, j + 1)th entry A(t/T ,ωj ) exp(iωj t).
Therefore, the linear transformation CT (A)−1XT is approximately decorrelating,
and the negative loglikelihood approximation has the form

lT (A) = T

2
log(2π) + log

∣∣detCT (A)
∣∣ + 1

2

∥∥CT (A)−1XT

∥∥2
.(8)

The likelihood approximation effectively makes the same approximation that the
Whittle likelihood [Whittle (1953)] makes for stationary time series. In practice,
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computation of the log determinant part of the likelihood is costly, so Guinness
and Stein [(2013), Equation 10] provide an approximation to that term. At present,
their log determinant approximation does not carry any known general theoreti-
cal guarantees, but it works well and outperforms other existing approximations
in many examples. The quadratic form term may be computed efficiently using
iterative methods and a fast Fourier transform (FFT), especially when A takes the
form

A(t/T ,ω) =
K∑

k=1

mk(t/T )μk(ω)(9)

with K being a small integer [Guinness and Stein (2013), Section 2]. We will
always make the additional assumption that mk and μk are nonnegative. The form
in (9) includes the stationary model as a special case with K = 1 and m1 constant.
It also includes the uniformly modulated model as described by Priestley (1965),
with K = 1 and m1 not constant. When K > 1, we refer to the μk’s as “regimes,”
so that at any time t/T , the transfer function is a positive linear combination of
the various regimes. This representation is similar to the approach taken in hidden
state modeling, where the process can be described at any time by a particular state
or a superposition of several states. Fuentes (2002) proposed a similar formulation
in which the nonstationary process is a spatially-varying superposition of several
independent stationary processes.

For a spectral analysis of time series, it is often advantageous to prewhiten the
data to smooth out peaks in the power spectrum [Priestley (1981)]. The spectra
of the high frequency temperature time series tend to have peaks at the origin,
and one way to smooth out a peak at the origin is to prewhiten the data with
the difference filter, that is, perform a spectral analysis on the first differences,
�X(t) = X(t)−X(t − 1). Differencing is exactly a transformation to white noise
when the time series is Brownian motion. For the temperature time series, we argue
that differencing is too strong a filter because temperatures do exhibit some mean-
reversion over monthly time scales, whereas Brownian motion does not over any
time scale. Therefore, we propose to perform the analysis on partial differences,
defined as

�αX(t) = X(t) − αX(t − 1).(10)

The parameter, α ∈ [0,1], which controls the amount of differencing, may be esti-
mated with maximum likelihood. Partial differencing also stabilizes the simulated
time series upon the operation of undifferencing, which has a huge impact on the
usefulness of the conditional simulations (see Appendix C).

6. Solar radiation and choosing regimes. One striking feature of the data
set is the relationship between the temporal variability in the first differences of
temperature and the amount of incoming solar radiation: large amounts of sun-
shine usually result in more variable temperatures. Figure 3 shows an example of



1694 J. GUINNESS AND M. L. STEIN

the relationship. Meteorologists have hypothesized that convective forces in the
atmosphere, which are most active during the middle of the day, may be driving
the variability. One theory predicts that the standard deviation of surface air tem-
perature changes should be linearly related to the heat flux at the earth-atmosphere
boundary raised to the 2/3 power [Arya (2001), page 183]. We have found that,
for these data, the standard deviation of the partial differences is approximately
linearly related to incoming solar radiation. We use the radiation as a covariate to
attempt to standardize the temporal variance in the differences. In order to quan-
tify the ability of solar radiation to explain the time-varying variance, we fit three
spatial–temporal models to the first differences of temperature at the 15 monitor-
ing locations: (a) a stationary model, as described in Stein (2009), (b) a model that
is stationary except for a separate variance for day and night, and (c) a model that
is stationary except for a standard deviation that depends linearly on smoothed
solar radiation measured at the central facility (the smoothing is described be-
low). The day/night model increased the loglikelihood by 67,543 units over the
stationary model, and the radiation-dependent model increased the loglikelihood
by 104,286 units over the stationary model, so by any measure such as AIC or BIC,
the additional variance parameters in both models are highly meaningful, and solar
radiation explains the variance significantly better than does time of day alone.

To get a preliminary estimate for the relationship between the differences and
solar radiation, we find â0 and â1 by fitting the model

�αŶ (t,u) = [
a0 + a1r

(
t − θu′φ

)]
ε(t,u),(11)

where ε(t,u) are i.i.d. N(0,1). The smoothed radiation, r(t), is obtained by apply-
ing a left-sided, 10-minute-bandwidth Daniell kernel three times to the observed
radiation. The parameters θ and φ control the size and direction of the phase. For
radiation from the sun, the phase should move west [φ = (−1,0)′] at a speed of
θ = 4 minutes per degree longitude. Later, we will refine the estimates of a0 and a1
by maximizing the full approximate likelihood over them. Figure 3 shows first dif-
ferences of temperature at site EF-13, which is located at the central facility where
the radiation is measured, and at site EF-24, which is more than 200 km away
from the central facility. It is not surprising that the relationship between variabil-
ity and solar radiation is weaker when the site is far away from where the radiation
measurement was taken. If one-minute resolution radiation data were available at
every site, using that data would be preferable, but the extended facilities record
radiation data only on the hourly resolution. There is also a matter of convenience:
if central radiation measurements are used, there is no need to interpolate the ra-
diation to unobserved sites. Despite these shortcomings, since a single covariate
explains so much of the changing variability, it is worthwhile to include it in the
model.

Another feature of the data, although less striking than the radiation phe-
nomenon, is that the spectral properties of the time series differ depending on
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FIG. 6. Log average daytime (gray) and nighttime (black) periodograms computed with no sunrise
or sunset offsets. Daytime (nightime) average is taken over all daytime (nighttime) blocks over all
sites.

the time of day. Furthermore, the difference cannot be explained with a uniform
modulating function; the mean-zero daytime process is not simply a multiple of
the mean-zero nighttime process. To illustrate this point, after dividing �1Ŷ (t,u)

by â0 + â1r(t − θu′φ), we partition the data into daytime and nighttime blocks
according to approximate local sunrise and sunset times,2 compute periodograms
for each block of data, and average all the periodograms from all the daytime
blocks from all the sites to get an average daytime periodogram, and we average
all the periodograms from all the nighttime blocks from all the sites to get an av-
erage nighttime periodogram. We plot the two averages in Figure 6. It is clear that
the daytime spectrum cannot be modeled as a multiple of the nighttime spectrum.
This means that not only does the variance of the process change over time, but
the correlation structure changes as well.

Based on this evidence, we propose that the time series model requires at least
two regimes [K = 2 in (9)], and a simple candidate model is one with a “daytime”
regime and a “nighttime” regime. It is not clear how one would automatically
estimate the two regimes, μ1 and μ2, via maximum likelihood. However, if we take
the regimes to be fixed and known, it is possible to maximize the likelihood over

2The exact time of each day’s local sunrise and sunset at the central facility was recorded, and
then the approximate local sunrises and sunsets at the other sites were assumed to be offset by four
minutes per degree longitude from the sunrise and sunset at the central facility on each day. At the
beginning of the month, this approximation is nearly exact, as Oct. 1 is close to the equinox. At the
end of the month, the approximation is off by roughly four minutes for the most northern site, which
for our purposes is an acceptable error.
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a family of modulating functions. Therefore, we estimate the regimes beforehand
and treat them as fixed when we maximize the likelihood. In short, after defining
the time at which the day starts and ends, which we do not assume is exactly at
local sunrise and sunset, we estimate the regimes by fitting B-splines to the log of
the average daytime and nighttime periodograms. One issue with the daytime and
nighttime periodograms is that they do not provide information about the very low
frequency behavior of the process because the periodograms are taken over short
blocks of data. To estimate the very low frequency behavior, we borrow some
information from the periodograms of the entire month of data. The details of the
estimation of the regimes are left to Appendix B.

With the regimes fixed, we introduce a parametric form for the modulating func-
tions, m1 and m2, in (9). We partition the time interval into B blocks, and we as-
sume that, aside from a radiation-dependent uniform modulation, the evolutionary
spectrum is constant in time on the blocks

M(t/T ,ω) =
2∑

k=1

B∑
b=1

wkb1b(t/T )μk(ω),

(12)
A(t/T ,ω) = (

a0 + a1r(t)
)
M(t/T ,ω),

where wkb > 0, the μk’s are the regimes, and 1b(x) is an indicator function that
equals 1 if x ∈ block b and 0 otherwise. Therefore, the parameters wkb determine
the weight assigned to regime k in block b. The model in (12) bears some resem-
blance to a cyclostationary model, in which the process is nonstationary within
each day, but the nonstationary structure exactly repeats itself every day [Gardner,
Napolitano and Paura (2006)]. Here, we do not require the spectrum to be cyclic,
but we do enforce a relatively simple dependence on just two “regimes.”

Because the regimes are taken to be fixed, a maximum approximate likelihood
procedure involves choosing the linear radiation coefficients, the weights assigned
to the regimes within each block, and the positions of the changepoints defining the
blocks (in addition to fitting the spatial dependence structure, which is discussed in
Section 7). Guinness and Stein (2013) implemented a genetic algorithm to find the
changepoints, which works well when there are 1–10 changepoints. Here, how-
ever, where there are 60 changepoints per site, a more constrained search is neces-
sary. We propose that it is reasonable to impose that the changepoints occur a fixed
amount of time before or after local sunrise and sunset at each site and on each
day. This constraint leaves us with just two changepoint parameters to estimate, so
we may perform a grid search to find the best sunrise and sunset offsets accord-
ing to the associated likelihoods. For each choice of sunrise and sunset offsets, we
re-estimate the daytime and nighttime regimes as outlined in this section and max-
imize the likelihood over the radiation coefficients, the wkb’s, and the parameters
describing the spatial dependence to be described in Section 7.
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7. Nonstationary spatial–temporal Gaussian process model. Recent work
on incorporating nonstationarity into Gaussian process models has come in sev-
eral forms. One of the approaches is to assume that data come from an isotropic
random field on an unobserved domain E, and the domain on which we observed
the data, D, is related to E via an unknown invertible mapping. Early work on
this approach is due to Sampson and Guttorp (1992), and more recent advances
include Anderes and Stein (2008) and Anderes and Chatterjee (2009). Several au-
thors have constructed nonstationary processes via the convolution of a family of
independent (of each other) stationary Gaussian processes. Nonstationarity enters
when the convolution kernels are allowed to vary across the domain. Higdon, Swall
and Kern (1999) use squared exponential covariance functions for the component
processes, and Paciorek and Schervish (2006) provide an approach to include the
Matérn class of covariance functions. Fuentes (2002) expresses the nonstationary
process at each spatial location as a spatially-varying linear combination of station-
ary processes and estimates the model in the spectral domain. Others have modeled
the nonstationary process in the spectral domain through the use of spatially- or
spatial-temporally-varying spectral densities, analogous to the evolutionary spec-
trum approach studied in Section 5. Fuentes, Chen and Davis (2008) propose a
class of nonseparable and nonstationary covariance functions through the use of a
spectrum that varies across space and time.

The stationary, nonseparable covariance function in Stein (2009) is specially
suited to facilitate fast approximate likelihood computations when the data are
collected at a sparse set of fixed monitoring stations at regular intervals in time. In
particular, he considered stationary spatial–temporal covariance functions of the
form

K(t,u) =
∫ π

−π
S(ω)R

(|u|/γ (ω)
)
eiω(t−θu′φ) dω,(13)

where S is a spectral density, R is a one-dimensional correlation function invoking
spatial coherence, γ is a positive function allowing the coherence to vary with
temporal frequency, θ is a scalar, and φ is a 2 × 1 vector. The parameters θ and φ
give the size and direction of the phase shift.

We construct a process that can be considered nonstationary in time by allow-
ing the spectrum in (13) to depend on time. Rather than writing the covariance
function, we give a spectral representation of the process,

�αY(t,u) =
∫ π

−π
A

((
t − θu′φ

)
/T ,ω

)
eiωt dZu(ω).

Because the temporal argument of A is shifted based on the location u, we make
the slight modification that A is a function defined on R×T. In practice, the phase
shift parameters have a very small effect on the likelihood, but rather than setting
θ = 0 and ignoring the phase, the default phase should correspond to a shift to local
time because we know the temperature process is dependent on the time of day,
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so we fix φ = (−1,0)′, and θ = 4 minutes per degree longitude. The orthogonal
increment process, Zu, has spatial coherence

E
(
dZu(ω)dZv(ω)∗

) = R

( |u − v|
γ (ω)

)
e−iθω(u−v)′φ dω,

where R is again a one-dimensional correlation function. We take R(d) =
exp(−|d|), and use the convention that R(0/0) = 1. We parameterize γ (ω) as a
B-spline whose derivative at ω = 0 is 0, equals 0 for all |ω| > ω0, and whose first
and second derivatives at ω = ω0 are 0. We choose ω0 to be 48 cycles per day, and
we place the interior knots in the B-spline at (1, 3, 6, 12, 24) cycles per day, leaving
us with 5 basis functions in the B-spline representation for γ . To ensure γ (ω) ≥ 0,
we require that the B-spline coefficients be greater than 0. The purpose of γ is to
allow the low (temporal) frequency fluctuations of the process to be more strongly
correlated across space than the high frequency fluctuations of the process are,
a phenomenon observed in the analysis of the Irish wind data [Haslett and Raftery
(1989), Stein (2005)] and the ARM SGP air pressure data [Stein (2009)]. By set-
ting γ (ω) = 0 for all |ω| > ω0, we are assuming that there is no spatial coherence
above the 48 cycles per day frequency. This assumption is not unrealistic, at least
at the available spacings between monitoring sites for these data, and it provides
significant computational advantages in the likelihood approximation. Stein (2009)
also considered a spatial nugget effect, but for these data and choice of coherence
function, a nugget did not improve the fit, so we ignore it here.

In principle, one could allow the spectrum to depend on space as well. In fact,
our spectrum does depend on space through the phase shift, but this is a very con-
strained dependence. For the ARM temperature data, which have just 15 spatial
locations, we do not attempt to model any nonstationary aspects of the spatial
covariance function. However, in the temporal domain, where we have 43,200 ob-
servations over the month per site, introducing nonstationarity has a substantial
impact on the model fit.

8. Likelihood approximation and model fitting. We fit a spatial–temporal
model to the data with two sites removed, site EF-08, which is on the western edge
of the observation domain, and EF-09, which is near the center of the observation
domain. We refer to their locations as u01 and u02. Given fixed values of the sun-
rise and sunset offsets and the differencing parameter, our method for fitting the
spatial–temporal model proceeds as follows:

1. Estimate the temporal and spatial mean functions (Section 3) and the jump
process parameters (Section 4).

2. Construct Ŷ (t,uj ) as in equation (5).
3. Preliminarily estimate a0 and a1 by fitting the model in (11) to obtain ã0 and ã1.
4. Divide each time series �αŶ (t,uj ) by ã0 + ã1r(t) and estimate the regimes

using the average daytime and nighttime periodograms, where the start of the
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daytime and nighttime blocks are determined by local sunrise and sunset plus
the offsets.

5. Maximize the approximate likelihood, which will be described at the end of
this section, simultaneously over a0, a1, the 122 wbk parameters and the 5 pa-
rameters describing the B-spline representation for γ (ω).

To speed the optimization, we compute analytic gradients of the likelihood with
respect to a0, a1 and each wbk , and we compute finite difference gradients with
respect to the γ (ω) parameters. It should also be noted that the model in (12) is
overspecified in that we may multiply the radiation coefficients by a constant and
divide all the weights by the same constant and arrive at the same function A. In
the optimization procedure, we fit the overspecified model, as the naturally spec-
ified model tends to get stuck in local minima. For fixed values of the offsets and
differencing parameter, the time it takes to complete the optimization will vary but
usually takes on the order of 2–3 hours on a single processor. In Figure 7 we plot
the maximum likelihood weights, wbk . As expected, the daytime blocks usually
receive more weight from the “daytime” regime, and the nighttime blocks usu-
ally receive more weight from the “nighttime” regime, although there are some
exceptions. The maximum likelihood coherence, C(|d|/γ (ω)), as a function of
frequency at various distances is plotted in Figure 8. The fitted model for the tem-
perature data exhibits much weaker spatial coherence than is estimated for the
pressure data in Stein (2009).

To explore the effect of the sunrise and sunset offsets, we repeat the optimization
first over a coarse grid and then over a finer grid of sunrise and sunset offsets (with
α fixed at 0.99). Once we have obtained results on the finer grid, which has 10
minute spacings, we fit a quadratic to the points near the maximum and then repeat
the optimization procedure at several points near the maximum of the quadratic fit.

FIG. 7. Maximum likelihood estimates of the weights assigned to the daytime (triangles) and night-
time (circles) regimes within each block. The filled markers indicate regimes that match the time of
day, that is, if it is daytime, then the triangles are filled, and if it is nighttime, the circles are filled,
so we expect the filled markers to receive more weight (e.g., we expect the daytime blocks to receive
more weight from the daytime regime). We also plot the time series of partial differences for one of
the sites, EF-27.
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FIG. 8. Maximum likelihood estimate of the coherence as a function of frequency. Each line corre-
sponds to the coherence at a fixed spatial distance. The coherence function was allowed to be nonzero
at up to 48 cycles per day.

The optimization over a grid is easily parallelizable because we can assign each
grid point to a processor, so the grid search is relatively fast when one has access to
multiple processors. The results of the grid search are given in Table 1. The offset
parameters have a big effect on the likelihood, and we find that sunrise offset 111
minutes and sunset offset −125 minutes give the highest maximum approximate
likelihood; the temperature process seems to undergo a change roughly two hours
after sunrise and two hours before sunset.

One may also attempt to obtain a higher likelihood by altering α, the amount of
partial differencing. Assuming that the differencing does not alter the locations of
the changepoints of the process, we may use the estimates of the sunrise and sun-
set offsets obtained previously, then repeat the likelihood optimization as before
over a grid of differencing parameters. In Figure 9 we plot the maximum approx-
imate likelihood as a function of α for sunrise offset 111 and sunset offset −125.
Choosing α = 0.997 gives the highest maximum approximate likelihood.

The Gaussian likelihood approximation for the spatial–temporal data proceeds
in much the same way as it does for the time series data. After the mean func-
tions and the estimated jump process have been removed from the data, we con-
struct �αŶj , which is the vector of partial differences of the residuals at site uj ,
for j = 1, . . . , n − 2 = 13, the number of observed sites. For some choice of A,
and for each site uj , we compute the approximate transformation to independence
Ẑj = CT (A)−1

j �αŶj , where the subscript j on CT (A)j reminds us that the phase
shift in the temporal argument of A depends on location uj (we omit from the
notation the dependence on θ and φ, which are taken to be fixed). The inverse
transformation is efficiently computed using an iterative algorithm and the FFT, as
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TABLE 1
Results of the grid search over sunrise and sunset offsets (minutes) with differencing parameter

α = 0.99. Table entries refer to difference in loglikelihood from that found at sunrise offset 111 and
sunset offset −125. The units are thousands of loglikelihood units

Sunrise
offset

Sunset offset

−200 −150 −100 −50 0 50

−50 10.05 8.32 8.03 8.30 8.22 10.34
0 8.43 6.47 6.31 6.92 7.03 9.55

50 5.96 3.51 3.41 5.00 5.53 8.38
100 3.78 0.71 0.51 3.43 5.03 7.80
150 4.28 1.45 1.68 4.67 6.31 9.19
200 7.22 5.39 6.07 7.73 8.63 11.81

−150 −140 −130 −120 −110 −100

80 1.426 1.047 0.940 0.948 1.062 1.243
90 1.050 0.648 0.533 0.537 0.655 0.848

100 0.712 0.302 0.177 0.176 0.303 0.506
110 0.603 0.187 0.069 0.068 0.205 0.425
120 0.682 0.278 0.162 0.174 0.326 0.566
130 0.737 0.345 0.241 0.264 0.438 0.694

described in Guinness and Stein (2013). Then the approximate covariance matrix
of (Ẑ1, . . . , Ẑn) is block diagonal with block sizes equal to the number of spatial
locations because we allowed for spatial correlation in the orthogonal increment
process. Inverting this block diagonal covariance matrix is much easier than invert-
ing the full covariance matrix of the differences of the residuals, especially since

FIG. 9. Results of a grid search over α, the differencing parameter. Here we plot the difference
from the loglikelihood maximized when α = 0.997. We use sunrise offset 111 and sunset offset −125.
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we assume that the spatial correlation in Zu is zero for all frequencies greater than
48 cycles per day. The log determinant term is computed as in Guinness and Stein
(2013) with the modification that the spatial correlation of (Ẑ1, . . . , Ẑn) must be
accounted for, but this is also quite simple because the log determinant of a block
diagonal matrix is easily obtained when the block sizes are small.

9. Conditional simulations. Here we describe how we conditionally simu-
late the process at the unobserved sites, u01 and u02. To account for some of the
uncertainty in the fitted model, we construct Ã with weights w̃kb that are sam-
pled from the asymptotic distribution of the maximum likelihood weights, ŵkb,
whose covariance is given by the inverse Hessian of the loglikelihood. We simu-
late the partially differenced process in the spectral domain by jointly simulating
the complex Fourier coefficients Z01 and Z02 from the multivariate complex nor-
mal distribution conditional on the coefficients from the other sites, (Ẑ1, . . . , Ẑn),
where the coefficients at the same frequency from different sites are related with
the spatial coherence function, and coefficients at differing frequencies are uncor-
related. The partially differenced process is then constructed with the transforma-

tion �α̂Y0j = CT (Ã)0j Z0j , with j = 1,2.
As part of fitting the jump process to the observed sites, we estimated three pa-

rameters for each site: τ(u), the time of the jump at site u; D(u), the size of the
jump; and λ(u), the steepness of the jump. To interpolate the jump process at the
unobserved sites, we model the three parameters, τ(u), logD(u) and log 1/λ(u),
as independent intrinsic stationary spatial Gaussian processes with mean functions
dk − θku′φk (which can be written as a linear function of the coordinates) and gen-
eralized covariance functions Gk(d) = −ηkd [k = 1,2,3 refers to the parameters
τ(u), D(u), λ(u)]. The best linear unbiased predictors of the jump process parame-
ters depend only on contrasts of the observed jump process parameters, so we may
use restricted maximum likelihood to estimate ηk and to predict the parameters at
the unobserved sites [see, e.g., Stein (1999), page 171]. We conditionally simulate
the jump process parameters at the unobserved sites using bivariate t distributions
on 10 degrees of freedom (13 observed sites—3 mean parameters) to account for
uncertainty in the estimates of ηk . We then reconstruct the jump process from the
conditionally simulated jump process parameters. As an example, we plot in Fig-
ure 10 the data from October 5 at site EF-09, along with 20 conditional simulations
of the jump process and 2 conditional simulations of the temperature process.

We also model the spatial mean function as a spatial Gaussian process (inde-
pendent of the other processes). Its generalized covariance has the same form as
that of the jump process parameters, and its mean function is linear in latitude and
elevation. We use the fitted model to simulate (s(u01), s(u02)) jointly and condi-
tionally on the means from the other sites. The conditionally simulated process at
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FIG. 10. 20 conditionally simulated jump processes (gray), along with the data (thick black line)
and 2 full conditional simulations (thin black lines) corresponding to the earliest and latest simulated
jump times among the 20.

site u0j is then constructed with

Ŷ (1,u0j ) = 0,

Ŷ (t,u0j ) = α̂Ŷ (t − 1,u0j ) + �α̂Ŷ (t,u0j ), t > 1,

X̂(t,u0j ) = Ŷ (t,u0j ) + m̂(t) + s(u0j ) + Ĵ (t,u0j ).

We simulate 99 conditionally independent bivariate time series using the meth-
ods described above. The simulations are very fast; each bivariate simulation takes
just a few seconds on a single processor. Confidence bands may be constructed
by computing the quantiles at each time point among the conditional simulations.
To evaluate our conditional simulations, we constructed 90% confidence bands and
found that they had a coverage rate of 89.6% for the central site and a coverage rate
of 93.3% for the peripheral site. The roughly accurate coverage rates are a promis-
ing result, although we are slightly conservative for the peripheral site. Table 2
shows that the predicted temperatures at the peripheral site and during the daytime
have wider confidence bands. This is not surprising, as we expect it to be more

TABLE 2
Average width of 90% confidence intervals in ◦C for

predicted temperatures at the two unobserved sites over
daytime blocks, nighttime blocks and overall. Sample

standard deviations are given in parentheses

Daytime Nighttime Overall

Peripheral 5.95 (1.23) 4.79 (1.08) 5.14 (1.24)
Central 5.03 (1.17) 3.90 (1.00) 4.24 (1.18)
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FIG. 11. 90% confidence bands for predicted temperature at the two held-out sites over days 3
through 7. This time period includes the extreme drop in temperature, which occurred on day 5.

difficult to predict temperatures at the boundary of the observation region, and
the daytime temperatures tend to be more variable. The confidence bands around
the time of the jump become very wide; at the peripheral site, which undergoes
a smaller jump because the drop occurs earlier in the day, the confidence band is
wider than 8◦C for more than 40 minutes, and at the central site, the confidence
band is wider than 9.5◦C for 30 minutes near the time of its drop. In Figures 11
and 12 we plot a portion of the data from the unobserved sites along with the 90%
confidence bands for predicted temperature.

10. Conclusions. We have proposed a spatial–temporal model that aims to
capture nonstationary variance and correlation in a set of high frequency tempera-
ture data. The model also allows for the variance to depend on another meteorolog-
ical covariate, solar radiation, and includes spatial–temporal jumps. We provided
computationally efficient methods for fitting the model to a large data set and for
generating spatial–temporal simulations from the model, conditional on the obser-
vations. Most of the computational effort is spent on fitting the model. Once the
model is fit, the conditional simulations can be computed very quickly. The condi-
tional simulations result in a suite of temperature values at unobserved locations,
and we have shown that the simulated data reflect some of the uncertainties that
we expect, namely, that the interpolations are more uncertain during the daytime,
that there is more uncertainty in predicting at a peripheral location than there is in
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FIG. 12. 90% confidence bands for predicted temperature at the two held-out sites over days 16
through 21. The confidence bands are usually wider during the daytime, and the peripheral site’s
confidence band is generally wider than that of the central site.

predicting at an interior location, and the uncertainties are inflated near the time of
the jump.

APPENDIX A: PARAMETRIC FORM AND FITTING OF JUMP PROCESS

As seen in Figure 4, the temperatures at each site follow the usual diurnal cycle
until the jump occurs, when they undergo a very sharp drop followed by a slow
decay toward a fixed temperature, roughly 15◦C. This suggests that the following
may be an appropriate formulation of the jump process:

J (t,u) =
⎧⎨
⎩

b1(t) − m(t), if 4 × 1440 < t < τ(u),
b∗(t,u), if τ(u) ≤ t ≤ 5 × 1440,
0, otherwise,

(14)

where b1 is a mean function that shadows the diurnal cycle, and

b∗(t,u) = [
b1

(
τ(u)

) − m
(
τ(u)

)]
exp

(−ν1
(
t − τ(u)

))

− D(u)

∫ t−τ(u)

0

λ(u)β

�(β)
xβ−1 exp

(−λ(u)x
)
dx

(15)
+ D(u)

[
1 − exp

(−ν2
(
t − τ(u)

))]
+ [

b2(t) − m(t)
][

1 − exp
(−ν3

(
t − τ(u)

))]
.
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The integral term is simply the incomplete gamma function with rate λ(u) and
shape β . We use the incomplete gamma function to model the drop because the
first differences of temperature immediately following the jump resemble gamma
densities. Additionally, we could allow the shape parameter, β , to vary with loca-
tion, but for simplicity, we assume that β is constant in space and fix it at β = 1.3.
The function b2 is a post-jump mean that we take to be linear. The rates ν1, ν2
and ν3 are less critical, so they may be taken to be equal, but they should be much
smaller than λ(u). In our analysis, we assume νj = 0.01 for each j .

To fit b1(t), we compute a moving average of the average temperature at time t ,
where the average is taken over the sites that have not undergone a jump up to
time t . Thus, for each u, we must find a preliminary estimate of τ(u), which we call
τ(u), found by taking the first time at each site for which the first differences are
below −0.35◦C. Later, the estimates of the jump times will be refined. To estimate
b2(t), we fit a linear function to the average of the temperatures at time t from the
sites for which τ(u) + 60 < t . The line is constrained so that b2(1440 × 5 + 1) =
m(1440 × 5 + 1), the value of the temporal mean function at the start of the sixth
day. To fit τ(u), D(u) and λ(u), we minimize the sum of squared differences
between the first differences of the fitted jump process with those parameters and
the first differences of temperature, where the sum of squares is taken over all sites
and for times τ(u) − 3, . . . , τ (u) + 20.

APPENDIX B: CHOOSING THE REGIMES

One problem with the average daytime and average nighttime periodograms is
that the periodograms are taken over blocks of data that are never longer than 18
hours, so they do not give any information about the very low frequency (less than
1 or 2 cycles per day) behavior of the process. Therefore, we are forced to try to
learn something about the low frequency behavior from periodograms taken over
longer blocks of data. We estimate the shape of A at low frequencies (−ωS,ωS)

by computing the periodogram using the entire month of data at each site and
averaging the periodograms over the sites, which we call the average monthly pe-
riodogram. Here, we take ωS = 2 cycles per day.

Based on the nonmonotonic shape of the daytime and nighttime periodograms
and the requirement that the regimes be positive, it seems reasonable to fit cubic B-
splines to one half of the log of the periodograms to model the regimes. The knots
are chosen manually, and we take them to be more dense at lower frequencies.
The positions of the knots are (1/3,2/3,1,4/3,5/3,2,4,8,12,24,60,120,360)

in units of cycles per day. Under the constraints that the first derivative of μk(ω)

at ω = 0 and π be equal to zero, and μk(ω) = μk(−ω), we are left with 15 basis
functions per regime in the cubic B-spline representation, of which 8 are nonzero
in the interval (−ωS,ωS). We fit the coefficients for those 8 basis functions by min-
imizing the sum of squares between the associated B-spline and one half the log
of the average monthly periodogram at the frequencies in the interval (−ωS,ωS).
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Holding those 8 coefficients constant at their least squares estimates, we choose
the remaining 7 coefficients for each regime by minimizing the sum of squares
between the associated B-spline and one half the log of the average daytime (and
nighttime) periodogram. This procedure ensures that μ1 and μ2 are equal in the
interval (−ωS,ωS) but free to vary at higher frequencies.

APPENDIX C: MOTIVATION FOR PARTIAL DIFFERENCING

Until now, we have given only a brief explanation for the need for partial dif-
ferencing. If we set α = 1 and perform the analysis on the first differences of tem-
perature, the conditional simulations become almost useless. As the month pro-
gresses, the simulated temperatures tend to drift away from the data, resulting in
very wide confidence bands for most of the month. This is a problem that was
not observed in the analysis in Stein (2009), in which he fit and simulated from
a smooth, uniformly modulated model. Here, the undifferencing operation inter-
acts with the discontinuous jumps in A, causing the undifferenced simulations to
drift. More specifically, in the stationary case the basis functions for the process
are trigonometric functions, which integrate to zero over every cycle. In the lo-
cally stationary case, the basis functions are amplitude-modulated trigonometric
functions. When A is smooth as a function of time, as in Stein (2009), all but the
highest frequency functions may approximately integrate to zero, but when A has
jumps, this is no longer the case, so when the simulations are undifferenced, the
results can be quite unpredictable. Partial differencing appears to solve the prob-
lem and has some theoretical merit given the nature of the temperature process, as
discussed in Section 5.

REFERENCES

ANDERES, E. and CHATTERJEE, S. (2009). Consistent estimates of deformed isotropic Gaussian
random fields on the plane. Ann. Statist. 37 2324–2350. MR2543694

ANDERES, E. B. and STEIN, M. L. (2008). Estimating deformations of isotropic Gaussian random
fields on the plane. Ann. Statist. 36 719–741. MR2396813

ARYA, S. P. (2001). Introduction to Micrometeorology, 2nd ed. Academic Press, San Diego, CA.
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