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Abstract. We consider some random band matrices with band-width Nμ whose entries are independent random variables with
distribution tail in x−α . We consider the largest eigenvalues and the associated eigenvectors and prove the following phase tran-
sition. On the one hand, when α < 2(1 + μ−1), the largest eigenvalues have order N(1+μ)/α , are asymptotically distributed as a
Poisson process and their associated eigenvectors are essentially carried by two coordinates (this phenomenon has already been
remarked for full matrices by Soshnikov in (Electron. Comm. Probab. 9 (2004) 82–91, In Poisson Statistics for the Largest Eigen-
values in Random Matrix Ensembles (2006) 351–364) when α < 2 and by Auffinger et al. in (Ann. Inst. H. Poincarè Probab. Statist.
45 (2005) 589–610) when α < 4). On the other hand, when α > 2(1 + μ−1), the largest eigenvalues have order Nμ/2 and most
eigenvectors of the matrix are delocalized, i.e. approximately uniformly distributed on their N coordinates.

Résumé. On considère des matrices aléatoires à structure bande dont la bande a pour largeur Nμ et dont les coefficients sont
indépendants à queue de distribution en x−α . On s’intéresse aux plus grandes valeurs propres et aux vecteurs propres associés
et prouve la transition de phase suivante. D’une part, quand α < 2(1 + μ−1), les plus grandes valeurs propres ont pour ordre
N(1+μ)/α , sont asymptotiquement distribuées selon un processus de Poisson et les vecteurs propres associés sont essentiellement
portés par deux coordonnées (ce phénomène a déjà été remarqué pour des matrices pleines par Soshnikov dans (Electron. Comm.
Probab. 9 (2004) 82–91, In Poisson Statistics for the Largest Eigenvalues in Random Matrix Ensembles (2006) 351–364) quand
α < 2, et par Auffinger et al. dans (Ann. Inst. H. Poincarè Probab. Statist. 45 (2005) 589–610) quand α < 4). D’autre part, quand
α > 2(1 + μ−1), les plus grandes valeurs propres ont pour ordre Nμ/2 et la plupart des vecteurs propres de la matrice sont
délocalisés, i.e. approximativement uniformément distribués sur leurs N coordonnées.
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Introduction

Recently some growing interest has been laid on the understanding of the asymptotic behavior of both eigenvalues and
eigenvectors of random matrices in the large size limit. For Wigner random matrices, that is N × N Hermitian or real
symmetric random matrices with i.i.d. entries (modulo the symmetry assumption), the large-N -asymptotic behavior
is now well understood, provided the distribution of the entries has sub-exponential decay (or at least a large enough
number of moments). It is indeed known from the works of Erdös, Schlein and Yau, Knowles and Yin and Tao and
Vu ([14–16,19,32,33] and see also references therein) that:
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– eigenvalues are very close to their theoretical prediction given by well-chosen quantiles of the semi-circle distribu-
tion (the proof is based on a strong semi-circle law). This also yields universality of local statistics in the bulk and
at the edge under some appropriate moment assumptions (see Erdös [10] e.g. for a review of the recent results).

– eigenvectors are fully delocalized in the following sense. The localization length, L, of an eigenvector v is the
typical number of coordinates bearing most of its �2 norm. Then it is proved that with very “high probability” there
does not exist an eigenvector with localization length L � N . Or roughly speaking all coordinates are in the order
of N−1/2.

In this article, we want to fill in the gap of understanding the role of moments in the delocalization properties of
eigenvectors. We will be interested in a model of random matrices that we believe to be quite rich, namely random
band matrices with heavy-tailed entries.

More precisely, the matrices under consideration in this paper are Hermitian random matrices with at most Nμ

non-zero entries per row. In other words, we force some of the entries of a Wigner matrix to be zero. This model is
believed to be more complicated than Wigner ensembles due to the fact that there is no reference ensemble: there
does not exist a “simple” band random matrix ensemble for which eigenvalue/eigenvector statistics can be explicitly
computed as for the GUE/GOE in Wigner matrices. Thus usual comparison methods (four moments theorem, Green
function comparison method) cannot be used directly in this setting.

Such a model is also believed to exhibit a phase transition, depending on μ. On a physical level of rigor, Fyodorov
and Mirlin [18] e.g. have explained that for Gaussian entries, the localization length of a typical eigenvector in the
bulk of the spectrum shall be of order L = O(Nmin(2μ,1)) so that eigenvectors should be localized (resp. delocalized
or extended) if μ < 1/2 (resp. > 1/2). The only rigorous result in the direction of localization is by Schenker [24].
Therein it is proved that L � Nmin(8μ,1) for all eigenvectors of random band matrices with i.i.d. Gaussian entries on
the band. On the other hand, delocalization in the bulk is proved by Erdös, Knowles, Yau and Yin [13] when μ > 4/5.
In both regimes, it is known from Erdös and Knowles [11,12] that typically L ≥ N7μ/6 ∧ N for a certain class of
random band matrices (with sub-exponential tails and symmetric distribution). We refer the reader to Spencer [31]
and Erdös, Schlein and Yau [15] for a more detailed discussion on the localized/delocalized regime. Regarding the
edges of the spectrum, much less is known about the typical localization length of the associated eigenvectors. The
authors are not aware of a proof that eigenvectors at the edge are fully delocalized. However, Sodin’s statement [26]
combined with Erdös, Knowles, Yau and Yin’s results [13] suggest that this should be true when μ > 5/6.

We will also allow the i.i.d. non-zero entries to admit only a finite number of moments (which can actually be zero).
Allowing heavy-tailed entries allows some more localization, especially at the edge of the spectrum, as we can infer
from Wigner matrices. This is discussed in particular in the seminal paper by Cizeau and Bouchaud [8]. It is known
that the limiting spectral measure of such Wigner matrices is the semi-circle distribution provided that the variance
of the entries is finite (otherwise another limiting distribution has been identified by Guionnet and Ben Arous [5]).
Regarding eigenvectors, it was shown by Soshnikov [29,30] and Auffinger, Ben Arous and Péché [1] that eigenvectors
associated to the largest eigenvalues have a localization length of order 1 if the entries do not admit a finite fourth
moment. The localization length is not so clear in the bulk but some progress has been obtained by Bordenave and
Guionnet [7]. However it is commonly believed that the fourth moment shall be a threshold for the localization of
eigenvectors at the edge of the spectrum of full Wigner matrices. For band matrices when the bandwidth is negligible
w.r.t. the size N of the matrix, no such threshold has been intuited. This is also a gap we intend to fill in here.

Specifically, we prove the following phase transition, occurring when α = 2(1 + μ−1), i.e. when 1+μ
α

= μ
2 (note

that N(1+μ)/α is always the order of the largest entries of the matrix, while Nμ/2 is the order of the bulk of the spectrum
when α > 2). On the one hand, when α < 2(1+μ−1), the largest entries of the matrix give rise to isolated eigenvalues
with order N(1+μ)/α and eigenvectors essentially carried by two coordinates. This phenomenon has already been
noted for full matrices (μ = 1) by Soshnikov in [29,30] when α < 2, and by Auffinger et al. in [1] when α < 4. On the
other hand, when α > 2(1 + μ−1), we have N(1+μ)/α � Nμ/2, so largest entries no longer play any specific role and
the matrix is from this point of view like a matrix with non-heavy tailed entries. This is why the largest eigenvalues
have order Nμ/2 and most eigenvectors of the matrix are delocalized, i.e. approximately uniformly distributed on their
N coordinates.

The paper is organized as follows. In Section 1, we state our two main theorems: Theorem 1.1 is the localization
result mentioned above about the extreme eigenvalues and eigenvectors in the case α < 2(1 + μ−1) and Theorem 1.5
is the delocalization result mentioned above about the extreme eigenvalues of the matrix and most of its eigenvectors
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in the case α > 2(1 + μ−1). Sections 2, 3 and 4 are devoted to the proofs of these results and the Appendix is devoted
to the proof of several technical results, including Theorem A.3, a general result whose idea goes back to papers
of Soshnikov about the surprising phenomenon that certain Hermitian matrices have approximately equal largest
eigenvalues and largest entries.

Notation. For any functions (or sequences) f,g, we write f (x) ∼ g(x) (resp. f (x)
sl.∼ g(x)) when f (x)/g(x) −→ 1

(resp. f (x)/g(x) is slowly varying) as x → +∞. We denote by ‖v‖ the �2-norm of v ∈ C
N and by ‖A‖ the �2 → �2

operator norm of a matrix A. When A is normal, then ‖A‖ = ρ(A) where ρ(A) is the spectral radius of A and we use
equivalently both notations.

An event AN depending on a parameter N is said to hold with exponentially high probability (abbreviated w.e.h.p.
in the sequel) if P(AN) ≥ 1 − e−CNθ

for some C,θ > 0.

1. The results

Let us fix two exponents α > 0 and μ ∈ (0,1] and let, for each N , AN = [aij ]Ni,j=1 be a real symmetric (or complex
Hermitian) random matrix satisfying the following assumptions:

(i) For all i’s in {1, . . . ,N} except possibly o(N) of them,

�{j ; aij is not almost surely zero}
Nμ

= aN, (1)

where aN → 1 as N → ∞. For the other i’s, (1) still holds, but with ≤ instead of =. Thus AN is a sparse matrix
when μ < 1. We denote by B(N) the set of its non-a.s. zero entries:

B(N) := {
(i, j); aij is not almost surely zero

}
and set dN := aNNμ ∼ �B(N)/N .

(ii) The entries aij , (i, j) ∈ B(N), are i.i.d. modulo the symmetry assumption and such that for a slowly varying
function L not depending on N ,

G(x) := P
(|aij | ≥ x

) = L(x)x−α. (2)

If α ≥ 1 + μ−1, we also suppose that the aij ’s are symmetrically distributed. This symmetry assumption
simplifies the exposition of arguments but can be relaxed (we briefly indicate this possible extension in Remark 2.5
below). At last, if α > 2(1 + μ−1), the second moment of the non-identically zero entries of AN is equal to one.
Note that for all fixed i, j , aij might depend on N (think for example of the case where AN is a band matrix),
hence should be denoted by aij (N).

The standard example of matrices satisfying (1) is given by band matrices, i.e. matrices with entries aij such
that aij = 0 when |i − j | > Nμ/2. Another very close example is the one of cyclic band matrices, i.e. matrices
with entries aij such that aij = 0 when |i − j | > Nμ/2 and |i − j | > N − Nμ/2.

We denote by λ1 ≥ λ2 ≥ · · · the eigenvalues of AN (they depend implicitly on N ) and we choose some unit
associated eigenvectors

v1,v2, . . . .

Let us also introduce a set of pairs of indices (i1 ≤ j1), (i2 ≤ j2), . . . such that for all k, |aikjk
| is the kth largest entry,

in absolute value, of AN . Let θk ∈ R such that aikjk
= |aikjk

|e2iθk . The eigenvectors v1,v2, . . . are chosen such that for
each k,

e−iθk 〈vk, eik 〉 ≥ 0,

with e1, . . . , eN the vectors of the canonical basis.
As we shall see in the two following theorems, the asymptotic behavior of both the largest eigenvalues of AN and

their associated eigenvectors exhibit a phase transition with threshold α = 2(1 + μ−1).
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Theorem 1.1 (Subcritical case). Let us suppose that α < 2(1 +μ−1). Then for each fixed k ≥ 1, we have the conver-
gences in probability, as N → ∞,

λk

|aikjk
| −→ 1 (3)

and

vk − 1√
2

(
eiθk eik + e−iθk ejk

) −→ 0 (for the �2-norm). (4)

As a consequence of (3), for bN the sequence defined by (5) below, the random point process∑
k; |aikjk

|>0

δλk/bN

converges in law to the law of a Poisson point process on (0,+∞) with intensity measure α

xα+1 dx.

The sequence bN of the theorem is defined by

bN := inf

{
x ≥ 0; G(x) ≤ 1

#{non-identically zero independent entries of AN }
}
, (5)

where G(x) is defined by (2). It can easily be deduced from (1) and (2) that

bN
sl.∼ N(1+μ)/α. (6)

Roughly speaking, this theorem says that when α < 2(1 + μ−1), the largest eigenvalues of AN have order N(1+μ)/α ,
but no fixed limit when divided by N(1+μ)/α , because the limiting object is a Poisson process. Moreover, the corre-
sponding eigenvectors are essentially supported by two components. As we shall see in the following theorem, the
case α > 2(1 + μ−1) is deeply different: in this case, the largest eigenvalues of AN have order Nμ/2 and tend to
2 when divided by Nμ/2, whereas the eigenvectors are much more delocalized, i.e. supported by a large number of
components.

To be more precise, we use the following Definition 7.1 from Erdös, Schlein and Yau [15].

Definition 1.2. Let L be a positive integer and η ∈ (0,1] be given. A unit vector v = (v1, . . . , vN) ∈ C
N is said to be

(L,η)-localized if there exists a set S ⊂ {1, . . . ,N} such that |S| = L and
∑

j∈Sc |vj |2 ≤ η.

We shall also use the following slightly modified version of the above definition.

Definition 1.3. Let L be a positive integer and η ∈ (0,1] be given. A unit vector v = (v1, . . . , vN) ∈ C
N is said to be

(L,η)-successively localized if there exists a set S which is an interval of the set {1, . . . ,N} endowed with the cyclic
order such that |S| = L and

∑
j∈Sc |vj |2 ≤ η.

Remark 1.4. The larger L and η, the stronger a statement of the type “There is non-(L,η)-localized eigenvector” is.

Theorem 1.5 (Supercritical case). Let us suppose that α > 2(1 + μ−1) and that the aij ’s have variance one. Then
for each fixed k ≥ 1, as N → ∞, we have the convergence in probability

λk

Nμ/2
−→ 2. (7)

Moreover, for L := �Nc�, with c such that

c <
2

5
μ

α − 2

α − 1
(resp. c < μ) (8)
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for any η0 < 1/2, we have, as N → ∞,

P

( ⋃
η<η0

{∃k, |λk| >
√

2ηρ(A) and vk is (L,η)-localized
}) −→ 0 (9)

(resp. P(
⋃

η<η0
{∃k, |λk| > √

2ηρ(A) and vk is (L,η)-successively localized}) −→ 0).

Remark 1.6. Note that this theorem does not only apply to the edges of the spectrum, as η runs from 0 to η0 in (9).

Remark 1.7. Note that focusing on successively localized vectors, we would need to improve the bound c < μ in
order to get some flavor of the usual threshold of the so-called Anderson transition. The localization length L of
typical eigenvectors in the bulk is indeed supposed numerically to be in the order of L ≈ N2μ when μ < 1/2 for
entries with many moments. At the edge of the spectrum, the authors are not aware of any intuited (even at a physical
level of rigor) localization length in the localized regime.

To prove both above theorems, we shall also use the following result, which had not appeared at this level of
generality yet.

Theorem 1.8. We suppose that the hypotheses (1) and (2) hold with α > 2 and that the first and second moments
of the non-identically zero entries of AN are respectively equal to 0 and 1. Then the empirical spectral measure of
AN/Nμ/2 converges almost surely to the semi-circle law with support [−2,2].

Proof. The proof relies on a classical cutt-off and moments method, copying the proof of the convergence to the
semi-circle distribution for standard Wigner matrices (see for example [2], Theorem 2.5). �

2. A preliminary result: General upper-bound on the moments

The hypotheses made on the aij ’s are the ones presented in the beginning of Section 1.

Theorem 2.1. Assume that α > 2 and that the aij ’s have variance one. Consider some positive exponents γ, γ ′, γ ′′
such that

μ

2
≤ γ ′ and

μ

4
+ γ + γ ′′ < γ ′ (10)

and define the truncated matrix ÂN = [aij1|aij |≤Nγ ]Ni,j=1. Then for sN ≤ Nγ ′′
, there exists a slowly varying function

L0 such that

E
[
Tr

(
Â

2sN
N

)] ≤ L0(N)N1+2γ s
−3/2
N

(
2Nγ ′)2sN .

The following corollary follows directly from the theorem and from the Chebichev inequality.

Corollary 2.2. Under the above hypotheses, there exists a slowly varying function L0 such that for any κ < 1 (possibly
depending on N ),

P
(‖ÂN‖ ≥ κ × 2Nγ ′) ≤ κ−2sN L0(N)N1+2γ s

−3/2
N . (11)

Remark 2.3. Roughly speaking, this theorem says that for any ε > 0,

‖ÂN‖ ≤ (2 + ε)Nmax{μ/2,μ/4+γ+ε} for N � 1.

Remark 2.4. Note that for the theorem and its corollary to be true, one does not really need the size of the matrix to be
N , but just to be not more than a fixed power of N . This remark will allow us to apply the estimate (11) to submatrices
of AN .
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Proof of Theorem 2.1. Our strategy will be to use the ideas of Soshnikov, well explained in [25] (see also [28] or
[1]). We shall also need an estimate on the moments of the truncated variables âij := aij1|aij |≤Nγ . By Lemma A.8,
there is a slowly varying function L such that for any k ≥ 0, for any (non-identically null) aij ,

E
[|âij |k

] ≤
{

L(N) if k ≤ α,
L(N)Nγ (k−α) if k > α.

(12)

We have, suppressing the dependence on N to simplify the notation,

Tr Â2s =
∑

1≤i0,...,i2s≤N

i0=i2s

âi0i1 · · · âi2s−1i2s
.

To any i = (i0, . . . , i2s) such that i0 = i2s , we associate the non-oriented graph Gi := (Vi,Ei) with vertex set
{i0, . . . , i2s} and edges {i�−1, i�}, 1 ≤ � ≤ 2s and the closed path Pi = i0 → i1 → ·· · → i2s on this graph.

Since the aij ’s are symmetrically distributed, each edge of Gi has to be visited an even number of times by Pi for
the contribution of i to ETr Â2s to be non-zero.

To such a i, we associate a set Mi of s marked instants as follows. We read the edges of Pi successively. The instant
at which an edge {i, j} is read is then said to be marked if up to that moment (inclusive) the edge {i, j} was read an
odd number of times (note that the instant are counted from 1 to 2s, hence the instant where, for example, the edge
i0 → i1 is read is the instant 1). Other instants are said to be unmarked. Since each edge of Gi is visited an even
number of times by Pi, it is clear that

#Mi = s.

Note that at any moment of time t , the number of marked instants up to time t is greater (or equal) than the number
of unmarked instants. Thus one can associate to the sequence of marked/unmarked instants a unique Dyck path, that
is a trajectory in (Z+)2, started at (0,0) at time 0 and ending at (2s,0) at time 2s with possible steps (1,±1): for any
i = 1, . . . ,2s, step number i in the trajectory is (1,1) if and only if the instant i is marked.

Now, for each 0 ≤ k ≤ s, we define Ni(k) to be the set of i’s in {1, . . . ,N} occurring exactly k times as the current
vertex of a marked instant and nk be its cardinality. Let the family (n0, . . . , ns) be called the type of i. Note that we
have

s∑
k=0

nk = N and
s∑

k=0

knk = s. (13)

Let us now count the number of i’s with fixed type (n0, . . . , ns) (where the ni ’s satisfy (13)). To define such a i, one
first has to choose the set Mi of marked instants: there are as many possibilities as Dick paths, i.e. the Catalan number

Cs := 1

s + 1

(
2s

s

)
.

Then one has to choose an unlabelled partition of Mi defined by the fact that two marked instants are in the same class
if and only if the path Pi is at the same vertex of Gi at both of these instants. Such a partition is only required to have
nk blocks of cardinality k for each k = 1, . . . , s. Hence there are

s!∏s
k=1(k!)nk

× 1∏s
k=1 nk!

possibilities (the first factor counting the labelled partitions and the second one “delabelling”). At this point, one has
to choose the vertices of Gi. For i0, there are N possibilities. For each other vertex, there are at most dN possibilities.
There are at most n1 + · · · + ns other vertices. Indeed, except possibly i0, each vertex is occurring a certain number
of times as the current vertex of a marked instant (for example at the first time the vertex is visited by the path Pi).
Hence there are at most Nd

n1+···+ns

N possibilities for the choices of the vertices of Gi. There now remains to give an



Heavy tailed band matrices 1391

upper-bound on the number of ways to determine vertices at unmarked instants (such vertices will not be new, but still
have to be chosen among the before chosen vertices). Soshnikov proved in [28], Formula (4.3), or [27], first paragraph
on p. 6, that this number is not larger than

∏s
k=2(2k)knk (the idea is that if v is a vertex arising at k marked instants,

the number of ways to determine the endpoint of an edge starting from v at an unmarked instant is at most 2k).
To sum up, the number of i’s with fixed type (n0, . . . , ns) is at most

Cs

s!∏s
k=1(k!)nk

× 1∏s
k=1 nk! × Nd

n1+···+ns

N ×
s∏

k=2

(2k)knk .

Let us now give an upper bound on the expectation E[âi0i1 · · · âi2s−1i2s
] depending on the type of i. For i, j ∈ Vi,

let ij denote the edge {i, j} of Gi (this edge is unoriented, so ij = ji) and let k(ij) denote the half of number of
times that this edge is visited by Pi, i.e. the number of marked instants along edge ij . We also introduce ki;ij to be the

number of times that the vertex i is marked along the edge ij . Clearly,

k(ij) = ki;ij + kj ;ij and type(i) =
∑
j

ki;ij .

We know, by (12), that for a certain slowly varying sequence L(N) (that can change at every line)

E[âi0i1 · · · âi2s−1i2s
] =

∏
e∈Ei,

k(e)≥2

L(N)
∏

e∈Ei,

k(e)≥α

Nγ (2ke−α)

≤
∏

e∈Ei,

k(e)≥2

L(N)
∏

e∈Ei,

k(e)≥2

Nγ(2ke−2) = L(N)2EN−2γE
∏

e∈Ei,

k(e)≥2

N2γ ke ,

where E denotes the number of edges e such that k(e) ≥ 2. Let us now enumerate the edges via their extremities. Then∑
e∈Ei,

k(e)≥2

k(e) = #
{
marked instants along edges e such that k(e) ≥ 2

}

=
∑

(v,w)∈V 2
i

k(vw)≥2

kv;vw =
∑

(v,w)∈V 2
i

k(vw)≥2,type(v)=1

kv;vw +
∑

(v,w)∈V 2
i

k(vw)≥2,type(v)≥2

kv;vw.

Let us now use the fact, well known from [1,22,28] that if an edge vw is visited at least 4 times by the path Pi, then at
least one of v and w have type ≥ 2, except for the first visited vertex i0. It follows that the first sum above is ≤ E + 1
and also that E ≤ 1 + ∑s

k=2 knk . Hence∑
e∈Ei,

k(e)≥2

k(e) ≤ E + 1 +
∑

v∈Vi,type(v)≥2

∑
w

kv;vw

= E + 1 +
s∑

k=2

knk.

Hence E[âi0i1 · · · âi2s−1i2s
] ≤ L(N)2+2

∑s
k=2 knkN2γ (1+∑s

k=2 knk), using E ≤ 1 + ∑
k≥2 knk .

As a consequence,

E
[
Tr

(
Â2s

)]
/N2sγ ′ ≤ L(N)2N1+2γ−2sγ ′

Css!
∑

n1,...,ns

s.t. (13) holds

1∏s
k=1(k!)nk

× 1∏s
k=1 nk! × d

n1+···+ns

N ×
s∏

k=2

(2k)knk

× N2γ
∑s

k=2 knkL(N)2
∑s

k=2 knk .
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Let us now use the fact s! ≤ n1!s(s−n1) = n1!s
∑s

k=2 knk ≤ n1!Nγ ′′ ∑s
k=2 knk , dN ≤ Nμ and N−2sγ ′ = N−2γ ′ ∑s

k=1 knk . We
get

E
[
Tr

(
Â2s

)]
/N2sγ ′

≤ L(N)2N1+2γ Cs

∑
n1,...,ns

s.t. (13) holds

N(μ−2γ ′)n1

s∏
k=2

1

nk!
(

L(N)2kNμ(2kN2(γ−γ ′)+γ ′′
)k

k!
)nk

.

But by the hypothesis (10), μ − 2γ ′ ≤ 0, hence the first factor is ≤ 1, so, using the fact that by (13), n1 is determined
by the other nj ’s, we get

E
[
Tr

(
Â2s

)]
/N2sγ ′ ≤ L(N)2N1+2γ Cs

∑
n2,...,ns≥0

s∏
k=2

1

nk!
(

L(N)2kNμ(2kN2(γ−γ ′)+γ ′′
)k

k!
)nk

≤ L(N)2N1+2γ Cs

∑
n2,...,ns≥0

s∏
k=2

1

nk!
(

L(N)2kNμ(2N2(γ−γ ′+γ ′′))k

k!
)nk

≤ L(N)2N1+2γ Cs exp

(
s∑

k=2

L(N)2kNμ(2N2(γ−γ ′+γ ′′))k

k!

)

≤ L(N)2N1+2γ Cs exp

(
s∑

k=2

L(N)2k2kN−εk

k!

)

with ε = −2(
μ
4 + γ + γ ′′ − γ ′). By (10), we have ε > 0, so that the exponential term stays bounded as N → ∞.

Using the fact that L(x)2 varies slowly and Cs ∼ 4s(πs3)−1/2, we get Theorem 2.1. �

Remark 2.5. In the case where the entries aij ,1 ≤ i, j ≤ N , are not symmetrically distributed, one can prove a similar
statement as in Theorem 2.1. The proof is based on arguments already given in Section 4 of [1] and [22]. One can
indeed assume that the truncated entries are centered. Then, the main modification in evaluating E[Tr(Â2s)]/N2sγ ′

is
that one has to take into account the contribution of paths with edges seen an odd number of times. However any such
edge is seen at least 3 times, because the entries are centered. It can then be shown that the contribution of such paths
is negligible (provided s is small enough as in Theorem 2.1), as to each such edge corresponds a vertex of type > 1.

3. Proof of Theorem 1.1

We are going to prove Theorem 1.1 as an application of Theorem A.3 of the Appendix, for cn := bN , the sequence
defined by (5). More precisely, we shall use its “random versions”: the case α < 1 + μ−1 will be a consequence of
Corollary A.4, whereas in the case 1 + μ−1 ≤ α < 2(1 + μ−1), we need to truncate the entries, and the conclusion
will follow from Corollary A.5.

Hypothesis (2) implies that the distribution of the non-zero entries is in the max-domain of attraction of the Fréchet
distribution with exponent α (see [23], p. 54). By e.g. [21], Theorem 2.3.1, it implies that as N → ∞, the point process∑

k; |aikjk
|>0

δ|aikjk
|/bN

converges in distribution to a Poisson point process on (0,+∞) with intensity measure α/x(α+1) dx. It explains why
the second part of Theorem 1.1 is a consequence of its first part and why hypothesis (25) of the Corollaries A.4 and
A.5 is satisfied by the |aikjk

|’s.
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Note that by (2), for any θ > 0, for any non-indenticaly null aij ,

P
(|aij | > bθ

N

) sl.∼ b−αθ
N

sl.∼ N−θ(1+μ). (14)

The following claim (valid without any assumption on α) is a direct consequence of (14) and of the union bound.

Claim 3.1. For any η > 0, with probability going to one as N → ∞, we have:

(a) no row of AN has two entries larger, in absolute value, than b
(1+2μ)/(2(1+μ))+η
N (the exponent 1+2μ

2(1+μ)
increases

from 1
2 to 3

4 as μ increases from 0 to 1),

(b) the matrix AN has no diagonal entry larger, in absolute value, than b
1/(1+μ)+η
N .

So for any positive δ, δ′, parts (b.i) and (b.ii) of the random version of Hypothesis A.2 are satisfied with

κ := 1 + 2μ

2(1 + μ)
+ δ, τ := 1

1 + μ
+ δ′. (15)

Let us now verify part (b.iii).

3.1. Case where α < 1 + μ−1

Set

S :=
∑

j ; |aij |<bκ
N

|aij | (16)

(we suppress the dependence in N to simplify notation). We shall prove that there is ν < 1 such that P(SN > bν
N) is

exponentially small with some bounds that are uniform on i. The sum S can be rewritten S = S1 +S2 +S3 as follows:

S =
∑

|aij |≤N(μ/α)−η

|aij | +
∑

N(μ/α)−η<|aij |≤N(μ/α)+η

|a1i | +
∑

N(μ/α)+η<|aij |≤bκ
N

|aij |.

The sums S1, S2, S3 can be treated with respectively parts (a), (c) and (d) of Proposition A.6 of the Appendix. The

treatment of S1 uses the facts bN
sl.∼ N(1+μ)/α and that μ + μ

α
(1 − α)+ <

1+μ
α

, which is always true when α ≤ 1 and
which is a consequence of α < 1 + μ−1 when α > 1.

3.2. Case where 1 + μ−1 ≤ α < 2(1 + μ−1)

We have seen at (6) that bN
sl.∼ N(1+μ)/α . So to apply Corollary A.5 for cn = bN , we have to find a cut-off exponent γ

satisfying both following constraints:

(1) for κ defined by (15), there is ε > 0 such that with exponentially high probability,

S :=
∑

j ;Nγ <|aij |≤bκ
N

|aij | ≤ N(1+μ)/α−ε, (17)

(2) there is ε′ > 0 such that with probability tending to one, we have:

‖ÂN‖ ≤ N(1+μ)/α−ε′
(with ÂN := [aij1|aij |≤Nγ ]1≤i,j≤N).

By Corollary 2.2, the second condition is satisfied when max{μ
2 ,

μ
4 + γ } <

1+μ
α

. As α < 2(1 + μ−1), we have
μ
2 <

1+μ
α

, so for condition (2) to be verified, one only needs

γ <
1 + μ

α
− μ

4
.
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To treat the sum S of (17), one proceeds as we did to treat the sum S defined at (16) in the case α < 1 + μ−1, except
that now,

S1 =
∑

Nγ <|a1j |≤N(μ/α)−η

|a1j |

and S1 is treated thanks to part (b) of Proposition A.6. Indeed, part (b) of Proposition A.6 implies that w.e.h.p.,
S1 ≤ Nμ−γ (α−1)+η with η > 0 as small as we need. Hence to fulfill cndition (1), one needs γ to satisfy

μ − γ (α − 1) <
1 + μ

α
,

i.e. γ >
μ
α

− 1
α(α−1)

. To sum up, we need to find a cut-off exponent γ such that

μ

α
− 1

α(α − 1)
< γ <

1 + μ

α
− μ

4
.

Hence to conclude, it suffices to remark that α < 2(1 + μ−1) implies

μ

α
− 1

α(α − 1)
<

1 + μ

α
− μ

4
. (18)

4. Proof of Theorem 1.5

4.1. Eigenvalues

Let us first prove the part about the eigenvalues, i.e. Eq. (7). First, by Theorem 1.8, for any fixed k ≥ 1, we have

lim inf
λk

Nμ/2
≥ 2.

Let us now prove that

lim sup
λk

Nμ/2
≤ 2. (19)

To do that, we will prove that one can find a cut-off exponent γ such that for ÂN := [aij1|aij |≤Nγ ]1≤i,j≤N , we have

lim sup
‖ÂN‖
Nμ/2

≤ 2 and ‖AN − ÂN‖ = o
(
Nμ/2). (20)

To treat the first part of (20), we apply Corollary 2.2 with γ ′ = μ
2 and γ ′′ > 0 such that

μ

4
+ γ + γ ′′ < γ ′.

For such a γ ′′ to exist, the constraint on γ is that γ <
μ
4 . To treat the second part of (20), we use the following claim

and the fact that

‖AN − ÂN‖ = sup
λ eig. of AN−ÂN

|λ| ≤ ‖AN − ÂN‖�∞→�∞ ≤ max
i

∑
j ; |aij |>Nγ

|aij |. (21)

Claim 4.1. Under the hypothesis that α > 2(1 + μ−1), for any γ >
μ

2(α−1)
, there is η > 0 such that with probability

tending to one, we have:

max
i

∑
j ; |aij |>Nγ

|aij | ≤ Nμ/2−η.
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Let us conclude the proof of the eigenvalues part of Theorem 1.5 before proving the claim. All we need is to find a
cut-off exponent γ such that

μ

2(α − 1)
< γ <

μ

4
.

The existence of such a γ is equivalent to the fact that α − 1 > 2, which is true because α > 2(1 + μ−1) ≥ 4.

Proof of the Claim 4.1. Let S(i) be the sum in the statement. By (2), it is easy to see that for any θ >
1+μ

α
, with

probability tending to one, we have

max
ij

|aij | ≤ Nθ .

Hence by part (a) of Claim 3.1 (using the fact that bN
sl.∼ N(1+μ)/α), for such a θ , with probability tending to one, for

all i,

S(i) ≤
∑

j ;Nγ <|aij |≤Nθ

|aij | =
∑

j ;Nγ <|aij |≤Nμ/α

|aij | +
∑

j ;Nμ/α<|aij |≤N(1+μ)/α

|aij | +
∑

j ;N(1+μ)/α<|aij |≤Nθ

|aij |.

Using respectively parts (b), (c), (d) of Proposition A.6, for any ε > 0, we have, w.e.h.p.,∑
j ;Nγ <|aij |≤Nμ/α

|aij | ≤ Nμ−γ (α−1)+ε,
∑

j ;Nμ/α<|aij |≤N(1+μ)/α

|aij | ≤ N(1+μ)/α+ε

and ∑
j ;N(1+μ)/α<|aij |≤Nθ

|aij | ≤ Nθ+ε .

Hence as θ >
1+μ

α
, for any φ > max{μ − γ (α − 1), θ}, we have, w.e.h.p., uniformly on i,∑

j ;Nγ <|aij |≤Nθ

|aij | ≤ Nφ.

Now, to conclude the proof of the claim, it suffices to notice that the hypotheses γ >
μ

2(α−1)
and α > 2(1 + μ−1) are

respectively equivalent to μ − γ (α − 1) <
μ
2 and 1+μ

α
<

μ
2 , so that one can find some exponents θ,φ satisfying

1 + μ

α
< θ and max

{
μ − γ (α − 1), θ

}
< φ <

μ

2
.

�

4.2. Eigenvectors

We shall first prove the following lemma. Let us recall that a principal submatrix of a matrix H = [xij ]1≤i,j≤N is a
matrix of the type H = [xjkj�

]1≤k,�≤L, where 1 ≤ L ≤ N and 1 ≤ j1 < · · · < jL ≤ N . The submatrix will be said to be
successively extracted if the indices j1, . . . , jL form an interval of the set {1, . . . ,N} endowed with the cyclic order.

Lemma 4.2. Let H be a Hermitian matrix and ρL(H) (resp. ρsucc
L (H)) be the maximum spectral radius of its L × L

principal (resp. principal successively extracted) submatrices. Let λ be an eigenvalue of H and v an associated unit
eigenvector.

If v is (L,η)-localized, then |λ| ≤ ρL(H)+√
ηρ(H)√

1−η
.

If v is (L,η)-successively localized, then |λ| ≤ ρsucc
L (H)+√

ηρ(H)√
1−η

.
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Proof. Let j1 < · · · < jL be indices such that
∑L

�=1 |vj�
|2 ≥ 1 − η and let P be the orthogonal projection onto the

subspace generated by the vectors ej1, . . . , ejL
(the ej ’s are the vectors of the canonical basis). We have

λP v = PHv = PHP v + PH(1 − P)v.

Then the conclusion follows directly from the following

|λ| × √
1 − η ≤ |λ| × ‖P v‖ ≤ ρ(PHP) + ρ(H)

∥∥(1 − P)v
∥∥ ≤ ρ(PHP) + √

ηρ(H).

�

Claim 4.3. Let us suppose that α > 2(1 + μ−1).

(a) Let us fix c such that

c <
2

5
μ

α − 2

α − 1
. (22)

Then there is ε > 0 such that w.e.h.p., the following holds:

For any �Nc� × �Nc� principal submatrix B of AN,‖B‖ ≤ N(μ/2)−ε.

(b) Let us fix c such that

c < μ. (23)

Then there is ε > 0 such that w.e.h.p., the following holds:

For any �Nc� × �Nc� successively extracted principal submatrix B of AN, we have ‖B‖ ≤ N(μ/2)−ε.

Before proving the claim, let us conclude to the proof of the eigenvectors part of Theorem 1.5. We know
that ρ(A) ∼ 2Nμ/2 and that there is ε > 0 such that with probability tending to one, ρL(A) (resp. ρsucc

L (A))
is bounded from above by N(μ/2)−ε . Since 1√

1−η
< 1√

1−η0
<

√
2, the two assumptions |λk| >

√
2ηρ(A) and

vk is (L,η)-localized are then incompatible by Lemma 4.2. The case of successively extracted eigenvectors is handled
similarly.

Proof of Claim 4.3. We shall treat (a) and (b) in the same time. Let us first note that Eq. (22) (resp. Eq. (23)) is
equivalent to (resp. implies that)

c

4
+ μ

2(α − 1)
+ c <

μ

2

(
resp.

c

4
+ μ

2(α − 1)
<

μ

2

)
.

Hence one can choose some positive exponents ε, γ, γ ′, γ ′′ such that γ ′ ≥ c/2 and

γ >
μ

2(α − 1)
, γ ′′ > c (resp. γ ′′ > 0) and

c

4
+ γ + γ ′′ < γ ′ < μ

2
− ε. (24)

Any submatrix B = [ajkj�
]1≤k,�≤�Nc� can be written B = B̂ + (B − B̂), with B̂ := [ajkj�

1|ajkj�
|≤Nγ ]k,�. We know

(see e.g. (21)) that independently of the choice of the jk’s

‖B − B̂‖ ≤ max
1≤i≤N

∑
j s.t. |aij |>Nγ

|aij |.

Hence by Claim 4.1, the condition γ >
μ

2(α−1)
of Eq. (24) ensures us that for a certain η > 0, with probability tending

to one, independently of the choice of the jk’s ‖B − B̂‖ ≤ N(μ/2)−η. Hence one can focus on B̂ .
Let us now apply Corollary 2.2 and Remark 2.4. We get that for any choice of j1, . . . , j�Nc�, up to a polynomial

factor in the RHT,

P
(‖B̂‖ ≥ N(μ/2)−ε

) ≤ N−((μ/2)−ε−γ ′)2�Nγ ′′ �.
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But there are at most NNc
(resp. N ) ways to choose the indices j1, . . . , j�Nc� of the rows of the submatrix B (resp.

of the successively extracted submatrix B). Hence the probability that ‖B̂‖ ≥ N(μ/2)−ε for at least one of these

choices is ≤ N−((μ/2)−ε−γ ′)2�Nγ ′′ �+Nc
(resp. ≤ N−((μ/2)−ε−γ ′)2�Nγ ′′ �+1). Since by (24), γ ′′ > c (resp. γ ′′ > 0) and

μ
2 − ε − γ ′ > 0, the conclusion follows. �

Appendix

A.1. Eigenvalues and eigenvectors under perturbation

In this section, we state a result about eigenvectors and eigenvalues of perturbed Hermitian matrices. The part about
eigenvalues can be found in the literature (see the books by Bhatia [3,4]), but we did not find the part about the
eigenvectors in the literature.

Proposition A.1. Let H be a Hermitian matrix and v be a unit vector such that for a certain λ ∈R,

Hv = λv + εw,

with w a unit vector such that w ⊥ v and ε > 0.

(a) Then H has an eigenvalue λε in the ball B̄(λ, ε).
(b) Suppose moreover that H has only one eigenvalue (counted with multiplicity) in B̄(λ, ε) and that all other eigen-

values are at distance at least d > ε of λ. Then for vε a unit eigenvector associated to λε , we have

∥∥vε − Pv(vε)
∥∥ ≤ 2ε

d − ε
,

where Pv denotes the orthogonal projection onto Span(v).

Proof. Part (b) is a simple consequence of perturbation theory (see e.g. Lemma A.2 in [20]). Let vε be a normalized
eigenvector associated to λε . We decompose vε = 〈vε,v〉v + r with r ⊥ v. Then Hvε = 〈vε,v〉(λv + εw)+Hr. From
this we deduce that

(λ − H)r = 〈vε,v〉εw + (λ − λε)vε.

This yields the resut, by considering the norm of (λ − H) restricted to the subspace v⊥. �

A.2. Largest eigenvalues vs largest entries of matrices

In this section, we present a synthetic version of some ideas first appeared in Soshnikov’s paper [29]. We also extend
these ideas to the eigenvectors level. Theorem A.3 below gives a sufficient condition for a large deterministic Her-
mitian matrix to have its kth largest eigenvalue approximately equal to its kth largest entry in absolute value for all
fixed k. Note that this is not what happens usually: in some way the large entries need to overwhelm the other entries.

We also give sufficient condition so that the corresponding eigenvector is approximately equal to the eigenvector
of the symmetric matrix formed by forcing all but this kth largest entry to be 0. The sufficient condition is, roughly
speaking, that the largest entries and their spacings have an order cn � 1, are sufficiently well spread out in the matrix
and that, up to the removing of these largest entries, the sum of the terms of each row of the matrix have order � cn.
In Corollary A.4, we give the random matrix version of this theorem and in Corollary A.5, we explain how one is
allowed to first remove a part of the matrix which does not affect the largest entries.

For each n, let Hn be an n × n deterministic Hermitian matrix with entries hij . Let us denote by λ1 ≥ λ2 ≥ · · · the
eigenvalues of Hn (they depend implicitly on n) and let us choose some unit associated eigenvectors

v1,v2, . . . .
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Let us also introduce a set of pairs of indices (i1 ≤ j1), (i2 ≤ j2), . . . such that for all k, |hikjk
| is the kth largest entry,

in absolute value, of Hn. Let θk ∈R such that hikjk
= |hikjk

|e2iθk . The eigenvectors v1,v2, . . . are chosen such that for
each k, e−iθk 〈vk, eik 〉 ≥ 0. We make the following hypotheses.

Hypothesis A.2.

(a) There is a sequence cn −→ +∞ such that for any fixed k,
(a.i) cn+k ∼ cn,

(a.ii) 0 < lim inf
|hikjk

|
cn

≤ lim sup
|hikjk

|
cn

< ∞ and lim inf
|hikjk

|−|hik+1jk+1 |
cn

> 0.
(b) There exists three exponents κ, τ, ν ∈ (0,1) such that for n large enough,

(b.i) no row of Hn has two entries larger, in absolute value, than cκ
n ,

(b.ii) no diagonal entry of Hn is larger, in absolute value, than cτ
n ,

(b.iii) for each i ∈ {1, . . . , n},∑
j ; |hij |<cκ

n

|hij | ≤ cν
n.

Theorem A.3. Under Hypothesis A.2, as n → ∞, for any k ≥ 1 fixed,

λk

|hikjk
| −→ 1 and vk − eiθk eik + e−iθk ejk√

2
−→ 0 (for the �2-norm).

Before proving the theorem, let us state its two “random versions.”

Corollary A.4. Suppose now that the matrix Hn is random, that the sequence bn is deterministic and satisfies Hy-
pothesis A.2(a.i), replace Hypothesis A.2(a.ii) by

lim
ε→0

lim sup
n→∞

P

( |hikjk
|

cn

< ε

)
+ P

( |hikjk
|

cn

>
1

ε

)
+ P

( |hikjk
| − |hik+1jk+1 |

cn

< ε

)
= 0 (25)

and suppose that Hypothesis A.2(b) holds with probability tending to one. Then the conclusions of the theorem remain
true for the convergence in probability.

Proof. Recall that a sequence of real random variables converges in probability to a deterministic limit if and only
if from each of its subsequences, one can extract a subsequence converging almost surely. Hence it suffices to notice
that the deterministic theorem also holds (obviously) if one replaces the sequence Hn of n×n matrices, by a sequence
Hϕ(n) of ϕ(n) × ϕ(n) matrices with ϕ(n) → +∞. �

By Proposition A.1, one directly deduces the following corollary.

Corollary A.5. Suppose that one can write Hn = Ĥn + (Hn − Ĥn), where Hn − Ĥn satisfies the hypotheses of
Corollary A.4 and that for a certain ρ < 1,

‖Ĥn‖
c
ρ
n

converges in probability to zero. (26)

Then the conclusions of Theorem A.3 for Hn remain true for the convergence in probability.

Proof of Theorem A.3. We suppress the dependence on n to simplify notation.

Fact 1. We have ‖H‖�∞→�∞ = |hi1j1 |(1 + o(1)) (and as a consequence, λ1 ≤ |hi1j1 |(1 + o(1))).
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Indeed, ‖H‖�∞→�∞ = maxi

∑
j |hij | ≥ |hi1j1 |, thus to prove Fact 1, it suffices to notice that for n large enough,

for all i,∑
j

|hij | ≤
∑

j ; |hij |<cκ
n

|hij | + max
j

|hij | ≤ cν
n + max

j
|hij | ≤ cν

n︸︷︷︸
�|hi1j1 | by (a.ii)

+|hi1j1 |.

Fact 2. For any fixed k ≥ 1, λk ≤ |hikjk
|(1 + o(1)).

Indeed, the hypotheses ensure that for n large enough, the numbers i1, . . . , ik are pairwise distinct, so that the
largest entry, in absolute value, of the (n − k + 1) × (n − k + 1) matrix H(k), deduced from H by removing rows
and columns with indices i1, . . . , ik−1, is |hikjk

|. This matrix (more specifically: this sequence of matrices, because

n is an implicit parameter here) also satisfies the previous hypotheses (for the sequence c
(k)
n := cn+k−1). Hence by

the previous fact, λ1(H
(k)) ≤ |hikjk

|(1 + o(1)). But by Weyl’s interlacing inequalities, we have λk(H) ≤ λ1(H
(k)). It

allows to conclude.

Fact 3. For any fixed k ≥ 1, for v = eiθk eik
+e−iθk ejk√

2
, we have

Hv = |hikjk
|v + r, with ‖r‖ = o(cn).

Indeed, for r := Hv − |hikjk
|v, it is easy to see that

‖r‖ ≤ 1√
2

(
|hikik | + |hjkjk

| +
∑

i /∈{ik,jk}

(|hiki | + |hijk
|)).

We have ‖r‖ = o(cn) because by Hypothesis A.2(b), |hikik | + |hjkjk
| ≤ 2cκ

n and∑
i /∈{ik,jk}

(|hiki | + |hijk
|) ≤ 2cν

n.

Let us now conclude the proof of the theorem. Since |hikjk
| has order cn, Fact 3 and part (a) of Proposition A.1 imply

that for any fixed k ≥ 1, H has an eigenvalue equal to |hikjk
|(1 + o(1)). Hence by Fact 2 and Hypothesis A.2(a.ii),

λk = |hikjk
|(1 + o(1)). By Hypothesis A.2(a.ii) again, it follows that |λk − λk+1| has order cn and so one can apply

part (b) of Proposition A.1 to deduce from Fact 3 that∥∥∥∥vk − eiθk eik + e−iθk ejk√
2

∥∥∥∥ −→ 0.

�

A.3. Sums of truncated heavy-tailed random variables

In this section, we give exponential estimates on the concentration of sums of truncated heavy-tailed variables. In
the paper, these estimates are needed for example to give upper bounds on the spectral radius of matrices via the
maximum of the sums of the entries along the rows.

Let us consider some i.i.d. variables Yi ≥ 0 such that for a certain α > 0,

P(Y1 > y)
sl.∼ y−α as y → ∞. (27)

Let us also fix a sequence dn
sl.∼ nμ for a fixed μ > 0.
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Proposition A.6.

(a) For any sequence βn
sl.∼ nb with 0 ≤ b ≤ μ/α and any ε > 0, we have w.e.h.p.

dn∑
j=1

Yj1Yj ≤βn ≤ nμ+b(1−α)++ε.

(b) If α ≥ 1, for any sequences αn
sl.∼ na , βn

sl.∼ nb with 0 ≤ a < b ≤ μ/α and any ε > 0, we have w.e.h.p.

dn∑
j=1

Yj1αn<Yj ≤βn ≤ nμ−a(α−1)+ε.

(c) For any sequences αn
sl.∼ n(μ/α)−η, βn

sl.∼ n(μ/α)+η′
, with η,η′ ≥ 0 and any ε > αη + η′, we have w.e.h.p.

dn∑
j=1

Yj1αn<Yj ≤βn ≤ n(μ/α)+ε.

(d) For any sequences αn
sl.∼ n(μ/α)+η with η > 0, βn

sl.∼ nβ , with β > 0 and any γ > β , we have w.e.h.p.

dn∑
j=1

Yj1αn<Yj ≤βn ≤ nγ .

Before proving the proposition, we shall first state the following concentration result for sums of Bernoulli vari-
ables, which is a direct consequence of Bennett’s inequality [9], p. 11.

Lemma A.7. For each n ≥ 1, let X1, . . . ,Xm be some independent Bernoulli variables with paramater p (m, the
Xi ’s and p depending on the parameter n). Suppose that mp ≥ Cnθ for some constants C,θ > 0. Then for any fixed
η > 0, we have w.e.h.p.∣∣∣∣∣ 1

m

m∑
i=1

Xi − p

∣∣∣∣∣ ≤ ηp.

Proof of Proposition A.6. (a) First, one gets rid of the j ’s such that Yj ≤ 1 because their sum is ≤ dn. Then, set

Sn :=
dn∑

j=1

Yj11<Yj ≤βn

and kε := �b/ε�. We have θ := μ−αkεε
2 > 0 and for n large enough, βn ≤ n(kε+1)ε , so

Sn ≤
kε∑

k=0

dn∑
j=1

Yj1nkε<Yj ≤n(k+1)ε ≤
kε∑

k=0

dn∑
j=1

1nkε<Yj ≤n(k+1)ε

︸ ︷︷ ︸
:=Z

(n)
k

n(k+1)ε.

For each k, Z
(n)
k is a sum of dn

sl.∼ nμ independent Bernoulli variables with parameter pk(n)
sl.∼ n−αkε . We have

dnpk(n)
sl.∼ nμ−αkε hence for n large enough, dnpk(n) ≥ nθ (where θ is defined above). As a consequence, by

Lemma A.7, w.e.h.p., for each k,

Z
(n)
k ≤ 2dnpk(n).



Heavy tailed band matrices 1401

This implies that

Sn ≤
kε∑

k=0

2dnpk(n)n(k+1)ε ≤ nμ+b(1−α)++ε.

(b) Let Sn be the considered sum. The proof works in the same way as the one of (a), introducing kε := �(b−a)/ε�,
θ := μ−α(a+kεε)

2 > 0 and writing

Sn ≤
kε∑

k=0

dn∑
j=1

1αnnkε<Yj ≤αnn(k+1)εαnn
(k+1)ε.

(c) This is a direct application of Lemma A.7, since the considered sum is ≤ βn × the sum of dN Bernoulli variables

with parameter
sl.∼ n−μ+αη.

(d) Note that if the considered sum is >nγ , then there are at least nγ /βn non-zero terms in the sum. By the union
bound, this happens with probability at most

d
�nγ /βn�
n × P(Y1 > αn)

�nγ /βn�

(indeed, there are at most d
�nγ /βn�
n subsets of cardinality �nγ /βn� in {1, . . . , dn}). Using (27), one can easily check

that this probability is exponentially small. �

A.4. A uniform bound for truncated moments of heavy tailed variables

The following result is a “uniform in k and x” version of a well known result that we use in the proof of Theorem 2.1.

Lemma A.8. Let A be a non-negative random variable such that for all x ≥ 0,

P(A ≥ x) = �(x)x−α,

with � a slowly varying function and α > 0. Then there exists a slowly varying function L0 such that for any positive
integer k, any x ≥ 0,

E
[
Ak1A≤x

] ≤
{

L0(x) if k ≤ α,
L0(x) k

k−α
xk−α if k > α. (28)

Proof. First, for k > α,

E
[
Ak1A≤x

] =
∫ x

0
ktk−1

P(t ≤ A ≤ x)dt ≤
∫ x

0
ktk−1�(t)t−α dt ≤ �̃(x)

k

k − α
xk−α,

with �̃(x) := sup{�(t); t ∈ [0, x]}. Second, for k = α,

E
[
Ak1A≤x

] ≤ P(A ≤ 1) + �̃(x)α logx.

At last, we know, by [17], Chap. VIII.9, Th. 2.23, that E[Ak] < ∞ when k < α. Set

L(x) := �̃(x) + P(A ≤ 1) + �̃(x)α logx + max
{
E

[
Ak

]; k = 1, . . . , �α�}.
Then (28) is satisfied for L instead of L0. Hence it suffices to prove that there is a slowly varying function L0 such
that L ≤ L0. By Karamata’s representation theorem [6], Th. 1.3.1 (and as � is bounded on any bounded interval), one
can find a constant C and a measurable function ε with null limit at +∞ such that for all t ≥ 0,

�(t) ≤ C exp
∫ t

0

ε(u)

u
du,
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so that

�̃(x) ≤ C exp
∫ x

0

|ε(u)|
u

du,

which is slowly varying by Karamata’s theorem again. This allows to conlude. �
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