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Abstract. We present a robust method which translates information on the speed of coming down from infinity of a genealogical
tree into sampling formulae for the underlying population. We apply these results to population dynamics where the genealogy is
given by a Λ-coalescent. This allows us to derive an exact formula for the asymptotic behavior of the site and allele frequency
spectrum and the number of segregating sites, as the sample size tends to ∞. Some of our results hold in the case of a general
Λ-coalescent that comes down from infinity, but we obtain more precise information under a regular variation assumption. In this
case, we obtain results of independent interest for the time at which a mutation uniformly chosen at random was generated. This
exhibits a phase transition at α = 3/2, where α ∈ (1,2) is the exponent of regular variation.

Résumé. Nous présentons une méthode robuste qui permet de traduire des informations sur la vitesse de descente de l’infini d’un
arbre généalogique en formules d’échantillonnages pour la population sous-jacente. Nous appliquons cette méthode au cas où la
génélaogie est donnée par un Λ-coalescent. Nous en déduisons une formule exacte pour le comportement asymptotique du spectre
des fréquences alléliques et du nombre de sites de ségrégation, lorsque la taille de l’échantillon tend vers l’infini. Certains de ces
résultats sont valides dans le cas général où le coalescent descend de l’infini, tandis que d’autres plus précis sont obtenus sous
une hypothèse de variation régulière. Dans ce cas nous obtenons également des résultats, dont l’intérêt dépasse ce contexte, sur
le temps auquel une mutation choisie uniformément au hasard est apparue. Il apparaît que cette quantité connaît une transition de
phase autour de la valeur α = 3/2, où α est l’exposant de variation régulière.

MSC: 60J25; 60F99; 92D25

Keywords: Λ-coalescents; Speed of coming down from infinity; Exchangeable coalescents; Sampling formulae; Infinite allele model; Genetic
variation

1. Introduction and main results

Coalescents with multiple collisions, also known as Λ-coalescents, are a class of Markov coalescence models, intro-
duced and first studied by Pitman [25] and independently by Sagitov [27], and were already implicit in a contempo-
raneous work of Donnelly and Kurtz in [11]. They arise naturally as scaling limits for the genealogy of exchangeable
population dynamics, see Möhle and Sagitov [24]. This connection to population genetics has motivated many recent
studies on Λ-coalescents. For detailed introduction to this active area of research we refer the reader to the recent
surveys by Bertoin [8] and Berestycki [7].

The following question is natural in the context of population genetics: assuming that the genealogical tree of a sam-
ple is a Λ-coalescent (definitions will be given below), how much genetic variation do we expect to see? A complete
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answer exists in the special case where only pairwise collisions are possible, due to the celebrated Ewens sampling
formula [13] for the Kingman coalescent [19]. More recently, partial results have been obtained by Berestycki et al.
[6] in the particular case of Beta-coalescents (for a general overview of previous results on the subject, we refer the
reader to Durrett [12] or [7].)

The main goal of this paper is to address this question in general, by providing a robust method which translates
information about the speed of coming down from infinity of the genealogical tree into an explicit asymptotic formulae
(as the sample size increases to ∞) for quantifying the genetic variation. Since the speed of coming down from infinity
was recently analyzed by the authors in [3], this method in combination with results from [3] enables us to obtain the
following results:

(a) In Theorem 3, we obtain in complete generality (i.e., for arbitrary finite measures Λ such that the corresponding
Λ-coalescent comes down from infinity) a deterministic asymptotic rate of growth for the number of distinct alleles
in a sample and the number of segregating sites (the famous SNP count, or single nucleotide polymorphism). The
formula involves a certain function ψ , which is the Laplace exponent of a spectrally positive Lévy process whose
Lévy measure is precisely x−2Λ(dx). Furthermore, the above convergence in probability is strengthened to an almost
sure convergence, provided that the measure Λ satisfies an additional regular variation condition in the neighborhood
of zero (precise assumptions will be given below).

(b) In Theorem 8 we derive explicit almost sure asymptotic formulae for the frequency spectrum, in both the infinite
site and the infinite allele models, in the case where Λ is regularly varying near zero.

This last result is a significant improvement and a generalization of previous work of Berestycki et al. [5,6] and
of Schweinsberg [29], both in the sense that the result is valid for more general measures Λ, and in the sense that
the convergence holds almost surely rather than in probability. Our methodology is completely different from that
of [6] which relied on an embedding into stable continuous random trees (CRT), allowing for explicit computations.
As explained above, the argument here is based on the recent work by the authors on the speed of coming down
from infinity [3], and a novel general method which translates such results into results about sampling formulae. This
method is more robust than previous approaches to this problem, which explains why the results here are both stronger
and more general.

We note that the asymptotics in probability for the number of distinct alleles in a sample, under the model where
the genealogy is driven by the general (regular) Ξ -coalescent dynamics, was obtained in parallel by Limic [21] using
an adaptation of the martingale method that led to the results in [3] and Limic [20] (see also Remark 15).

In the sequel, the symbol ⇒ (resp.
d=) denotes convergence in distribution (resp. equality in distribution). We also

use the standard Bachmann–Landau notation ∼,O(·),o(·),� for comparing asymptotic behavior of deterministic and
stochastic functions and sequences.

1.1. Mutation models

We now describe the underlying framework for the sampling results in more detail. Consider a sample of n individuals,
where n is a (large) fixed number. Assume that the genealogical relationship between these individuals is given by a Λ-
coalescent, where Λ is an arbitrary finite measure on [0,1]. More precisely, assume that the ancestral partition process
(which encodes the genealogical tree) is a Markov process (Πn(t), t ≥ 0) on the space of partitions of {1, . . . , n} with
the following transition rates: whenever Πn has b blocks, any k-tuple of them merges at rate λb,k := ∫ 1

0 xk−2(1 −
x)b−kΛ(dx).

In order to discuss genetic variation, we need to specify a mutation model. (Readers unfamiliar with basic popu-
lation genetics terminology may wish to consult Section 2.2 of [7].) The two most widely used and tractable models
are the infinite sites model and the infinite alleles model. To familiarize oneself with these models, it is also useful
to think in terms of the forward-in-time evolution dynamics for the whole population (and not only in terms of the
backward-in-time coalescent dynamics).

In the classical infinite sites model, introduced by Kimura [18] in 1969, any individual is affected by neutral
mutations at constant rate θ > 0. Here it is also assumed that the number of loci (the size of the genome) is large,
so that each mutation occurs at a new locus. In particular, if an individual is affected by a mutation, then all the
descendants of this individual carry this mutation (see Fig. 1). Conversely, the genetic type of any individual in the
sample depends on the entire history of its ancestral lineage. We denote by Sn the number of segregating sites, or
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Fig. 1. The genealogical tree Tn for a sample of size n = 6. The mutations on the (vertical) branches of Tn are indicated as dots. The dot encircled
in black corresponds to the mutation which is not seen under the infinite alleles model. The dot encircled in gray will be referred to in Section 2.
Thus we have Sn = 5 while An = 4.

the total number of distinct genetic types in the sense just described. This is the same as the omnipresent SNP count
(single nucleotide polymorphism) from the biological literature.

The infinite alleles model is similar but with one difference. As above, any individual is affected by a mutation
at constant rate θ . However, it is now assumed that every mutation changes the allelic type of the individual into
something new, distinct from anything else (already seen or yet unseen) in the population. Thus, the allelic type of
an individual in the sample is entirely determined by the most recent mutation affecting the corresponding ancestral
lineage. The allelic partition is the partition of the sample (represented by a partition of {1, . . . , n}) obtained by
grouping together the individuals that carry the same allelic type. Denote by An the number of blocks in this partition,
or equivalently, the total number of allelic types expressed in the sample.

Remark 1. The two models differ only by the amount of information that is assumed to be available in the sample. In
the infinite sites model the assumption is that the precise allelic type (e.g., the entire DNA sequence) is known for each
individual in the sample. On the other hand, in the infinite alleles model, the only available information is whether
two individuals carry the same type or not. Hence for different types we do not know how they differ.

Thus the infinite alleles model contains less information than the infinite sites model, and is more appropriate in
practice for situations where the only available information is, for example, based on observed physiological differ-
ences. On the other hand the infinite sites model is more natural when the full genetic information (the DNA sequences
of each individual in the sample) is available.

The above random variables can be realized in a natural way on a common probability space as follows. Consider
a Λ-coalescent (Πt , t ≥ 0) that comes down from infinity, and let T be the associated coalescent tree. Then T is
a tree with infinitely many leaves 1,2, . . . , and the root given by the most recent common ancestor among all the
individuals. Each branch of T is endowed with a positive number, its length or the size of the interval of time that
elapsed between the two defining coalescent events for this branch (the one that started and the one that ended it).
Let P be a Poisson process of mutations on the branches of T, where the intensity of mutations is constant and equal
to θ per unit length. Restricting T to the first n leaves produces a finite tree (even if the Λ-coalescent does not come
down from infinity), denoted by Tn, that has the law generated by the same Λ-coalescent started from n particles. The
restriction of P to Tn is identified as the mutation process on Tn, and it is a sufficient statistic for Sn and An. It is
useful to note here that T and P alone determine, simultaneously for all n, the values of An and Sn, as well as various
related quantities to be introduced in the sequel. Moreover, the coupling induced by this procedure between Tn and
Tm for m < n, is canonical from the sampling perspective, in that the mutations that arrive onto Tn also arrive onto
Tm. On the asymptotically unlikely event {P ∩ Tn = ∅}, we declare An = Sn = 0.
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1.2. Sampling formulae

Consider any finite measure Λ on [0,1]. It can clearly be uniquely decomposed as Λ = Λ({0})δ0 +Λ′ where δ0 is the
Dirac measure at 0, and Λ′(dx) = Λ(dx)1(0,1](x). To any such Λ one can associate a function ψΛ = ψ defined by

ψ(q) :=
∫

[0,1]
(
e−qx − 1 + qx

)
x−2Λ(dx) (1)

= Λ
({0})q2

2
+

∫
[0,1]

(
e−qx − 1 + qx

)
x−2Λ′(dx),

where as usual one evaluates (e−qx −1+qx)x−2 at 0 in the sense of the limit limx→0(e−qx −1+qx)x−2 = q2/2. The
function ψ is the Laplace exponent of a Lévy process which is closely connected to the Λ-coalescent, as discussed in
a companion paper [4].

In this paper we will usually require that
∫ ∞

1

dq

ψ(q)
< ∞, (2)

which is known as Grey’s condition. As was proved by Bertoin and Le Gall [9] (see also [4] for a probabilistic proof),
this is equivalent to the requirement (of Schweinsberg [28]) that the Λ-coalescent comes down from infinity.

Definition 2. We say that Λ has strong α-regular variation at zero if Λ(dx) = f (x)dx where f (x) ∼ Ax1−α as
x → 0 for some 1 < α < 2 and A > 0.

We decide to use adjective “strong” here since the hypothesis is stronger than that of the (standard) regular variation.
One can check (see e.g. [14], Section XIII.6) that in the case of strong α-regularly varying Λ one has

ψ(q) ∼ A
(2 − α)

α(α − 1)
qα, as q → ∞, (3)

where A is the constant from Definition 2, so in particular the Grey condition (2) holds if α ∈ (1,2). Our first result
concerns the asymptotic behavior of the number Sn of segregating sites and the size An of the allelic partition. We
typically write (ψ(q))−1 as ψ(q)−1 in the rest of the paper.

Theorem 3. Assume (2) and let Xn denote either An or Sn. Then

Xn∫ n

1 qψ(q)−1 dq
−→ θ, (4)

in probability as n → ∞. Moreover, if Λ has strong α-regular variation at zero, then the above convergence holds
almost surely, implying

nα−2Xn −→ θB, almost surely, (5)

where B = B(A,α) := α(α − 1)/[A
(2 − α)(2 − α)].

Remark 4. If Λ({0}) > 0, the Λ-coalescent has the so-called Kingman component, and its speed of CDI is completely
determined by Λ({0}) (see Corollary 15 in [3]). Even though here one needs some extra care in defining ψ in (1), our
technique applies to all such coalescents. (The case of Λ({1}) > 0 is covered by the theorem, see Section 2.4.)

Remark 5. If
∫ 1

0 x−1Λ(dx) < ∞ (equivalently, the coalescent has dust almost surely [25] and hence in particular
does not come down from infinity), Möhle [23] proved that Xn/n ⇒ V , where the law of V is explicitly identified in
[23]. See Freeman [15] for a recent classification of Λ-coalescents with respect to the cardinality of dust and non-dust
blocks.
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Conjecture 6. Though our proofs rely on the fact that the Λ-coalescent comes down from infinity, we observe that the
above statement does not appeal to the existence of function v defined in 13 below, and hence could hold in general.
Due to the result of Basdevant and Goldschmidt [2] (see also Remark 8 in [21] for a short and more robust argument)
on the number of allelic families in the Bolthausen–Sznitman coalescent, it is easy to check that (4) holds in this special
case, whereas (2) does not hold. We conjecture that (4) holds for all the Λ-coalescents satisfying

∫
[0,1] x

−1Λ(dx) = ∞
even in the L1 convergence sense.

Remark 7. Let ψ̄(q) := ∫
[0,1]((1 − x)q − 1 + qx)/x2Λ(dx) be a close relative of ψ (the integrand is again evaluated

at 0 via a limiting procedure). Note that |ψ̄(q) − ψ(q)| = O(q) and moreover that ψ̄(q) ∼ ψ(q) as q → ∞. It is not
difficult to see that the following process

(∫ n

NΛ,n(t)

q

ψ̄(q)
dq −

∫ t

0
NΛ,n(u)du, t ≥ 0

)

is a submartingale (see [22], (25) and Section 1.2 for analogous calculations). An application of the optional stopping
formula gives an expectation upper bound in support of the above conjecture. We refer the reader to (11) for the rest of
the notation, and to the above mentioned remark in [20] as well as the argument leading to (25) in [22] for applications
of similar processes in the study of coming down from infinity.

We also obtain precise results for the full frequency spectrum in both infinite sites and infinite alleles models. For
each n consider a sample of size n, and for each k ∈ {1, . . . , n}, let Fk,n be the number of families of size k in its allelic
partition, and Mn,k be the number of mutations affecting precisely k of its individuals under the infinite sites model.

Theorem 8. Suppose that Λ has strong α-regular variation at zero. Recall the constant B ≡ B(α,A) from Theorem 3.
Let Xk,n denote Mk,n or Fk,n, where 1 ≤ k ≤ n. As n → ∞,

Xk,n

n2−α
→ θB

(2 − α)
(k + α − 2)

k!
(α − 1)
, a.s. (6)

Moreover, if P1,P2, . . . are the ordered allele frequencies in the population, then

Pj ∼ Cj−1/(2−α), (7)

almost surely as j → ∞, and C = (θB/
(α − 1))1/(2−α).

By the properties of the Gamma function, another expression for the constant on the right-hand side of (6) is

θB(2 − α)
(α − 1) · · · (α + k − 3)

k! .

Example 9. The Beta(2 −α,α)-coalescent is the Λ-coalescent such that Λ is the Beta(2 −α,α) law, or equivalently,
such that Λ(dx) = x1−α(1 − x)α−1/(
(2 − α)
(α))dx, x ∈ (0,1). In this special case we have

Xk,n

n2−α
→ θα(α − 1)
(α)


(k + α − 2)

k!
(α − 1)
= θα(α − 1)2 
(k + α − 2)

k! ,

using properties of the Gamma function. This matches the constant appearing in Theorem 9 of [6], where the conver-
gence was in probability. Furthermore,

Pj ∼ Cj−1/(2−α),

with C = [α(α − 1)2/(2 − α)]1/(2−α).
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As mentioned in the introduction, the above results are improvements over previously known results, since the
convergence (6) was known to hold only in probability in the case of Beta-coalescents (see [6]), while (7) was not
known to hold even in this special case.

One key ingredient for our arguments, beside our earlier work [3] on the speed of coming down from infinity, is
the here presented asymptotic study of the time at which a randomly chosen (uniformly) mutation was generated.
More precisely, let the time run in the “coalescent direction” (backward from the point of view of the population
dynamics), so that the leaves of the tree are present at time 0, and the number of branches decreases in time. Denote
by Mn the time-coordinate (age) of a point chosen at random from P ∩ Tn. On the (asymptotically unlikely) event
{P ∩ Tn = ∅} = {Sn = An = 0}, we set Mn = 0. Note however that this value could be set to anything between 0 and
the time of the MRCA (the most recent common ancestor, i.e., the root of Tn) and the next result would still hold.

Define

g(n) =
⎧⎨
⎩

n1−α if 1 < α < 3/2 ,
n−1/2 logn if α = 3/2 ,
nα−2 if 3/2 < α < 2 .

(8)

Theorem 10. Suppose that Λ has strong α-regular variation at zero, for some α ∈ (1,2).

(a) We have

Mn

n1−α
⇒ α

A
(2 − α)

(
U−(α−1)/(2−α) − 1

)
, (9)

where U has uniform distribution on [0,1].
(b) If in addition Λ[1 − η,1] = 0 for some η > 0, then there exists c1 ≡ c1(α) ∈ (0,∞), such that for g given by (8)

lim
n→∞

E(Mn)

g(n)
= c1. (10)

Example 11. In the case of the Beta-coalescents (see Example 9) (9) becomes:

Mn

n1−α
⇒ α
(α)

(
U−(α−1)/(2−α) − 1

)
.

Interestingly, in this particular setting, Dhersin et al. [10] obtain a similar looking limiting behavior for Tn, the time
until the first coalescence for a fixed individual.

Remark 12. Note that Mn and E(Mn) are only of the same order of magnitude if α < 3/2. Naturally, this is because
the limit variable is integrable if and only if α < 3/2. Interestingly, g(n) observed as a function of α decreases on
(1,3/2) and increases on (3/2,2), and moreover has a discontinuity on both sides at α = 3/2. It seems difficult to see
intuitively why this happens.

Remark 13. We believe that the result (10) should hold without any further restriction on Λ than that of having strong
regular variation. The techniques used in the proof of (10) can be used to show, with some additional effort, that the
sequence E(Mn)/g(n) is bounded away from 0 and infinity when no assumption is made on the support of Λ. However,
in the interest of brevity we decided to omit these arguments.

The link between Theorem 3 and Theorem 8 is provided by a remarkable Tauberian theorem for random partitions
of Gnedin, Hansen and Pitman [16]. The assumptions of this theorem were recently extended in an independent but
related work of Schweinsberg [29], to deal with convergence in probability (to which the approach of [16] could
not apply). This allowed him to obtain the convergence in probability of Theorem 8 for the limiting behavior of Fk,n

(though not for that of Mk,n). Gnedin, Hansen and Pitman [16] also derive a central limit theorem for Fk,n. It is natural
to ask whether this result can be extended to our setting with random frequencies. Kersting [17] has recently obtained
precise fluctuation results for the length of the genealogical tree in the regularly varying case. In particular, it follows
from his Theorem 1 that these fluctuations are not Gaussian. In order to resolve the just mentioned open problem, one
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would need to analyze the complex interplay between the fluctuations of the tree length and the Poisson fluctuations
of the mutations.

1.3. Organization of the rest of the paper

Section 2 is devoted to proving the results on the mutation frequency spectrum, announced in Section 1.1. More
precisely, we prove Theorem 10 in Section 2.1, Theorem 3 in Section 2.2, and Theorem 8 in Section 2.3. The final
section relaxes the technical condition on the support of Λ needed in the proofs of Theorems 3 and 8.

2. Proofs

Fix some θ > 0. For each n ∈ N and t ≥ 0, let NΛ,n(t) denote the number of ancestral lineages of the first n indi-
viduals remaining at time t . In particular, (NΛ,n(t), t ≥ 0) is a continuous-time Markov jump process, starting from
NΛ,n(0) = n. We assume throughout this section that (2) holds, or that equivalently, the Λ-coalescent comes down
from infinity:

NΛ(t) := lim
n→∞NΛ,n(t) = sup

n≥1
NΛ,n(t) < ∞ ∀t > 0. (11)

We will need some further notations. Define for k,n ∈ N,

τn
k = inf

{
t ≥ 0 : NΛ,n(t) ≤ k

}
and τk ≡ τ∞

k = lim
n→∞ τn

k = inf
{
t ≥ 0 : NΛ(t) ≤ k

}
. (12)

In particular τn
1 = inf{t ≥ 0 : NΛ,n(t) = 1} is the time of the MRCA (introduced above display (8)) for the sample

containing the first n individuals, and Ln = ∫ τn
1

0 NΛ,n(t)dt is the total length of the tree Tn.
Consider the genealogical tree T, which consists of the leaves (representing the individuals sampled at time 0) and

their ancestors at any point in the past. To any point x in T one can associate a number t = t (x) called the time-
coordinate or the age of x, where −t is the time at which this particular ancestor was alive, that is, born (in this way,
any particular segment of the tree is identified with a continuum of ancestors). Let T̂n be the subtree of T consisting
of all the points in T with age in [τn, τ1]. Then L̂n = ∫ τ1

τn
NΛ(u)du is the length of T̂n. The function

v(t) := inf

{
s ≥ 0 :

∫ ∞

s

dq

ψ(q)
< t

}
(13)

plays a central role in the analysis of asymptotic behavior of T̂n. Finally, define tn as

tn :=
∫ ∞

n

dq

ψ(q)
≡ v−1(n). (14)

The following lemma gathers some asymptotic results which we will use in the rest of the proof. Set

ᾱ = 2 − α

α − 1
∈ (0,∞). (15)

Lemma 14. Assume (3) and define c = c(A,α) = α/(A
(2 − α)) (compare with the constant in (9)). Then, as
n → ∞, we have almost surely:

1. τn ∼ cn1−α and
2. tn ∼ cn1−α .

Furthermore, there exist c1 = c(Λ) > 0, and c2 = c(A,α) ∈ (0,∞), such that

3. P(τ1 > x) ≤ e−c1·x , for all x ≥ 1,

4. L̂n = ∫ τ1
τn

NΛ(u)du ∼ ∫ 1
tn

v(u)du ∼ c1/(α−1)

ᾱ
(τn)

−ᾱ ∼ c
ᾱ
n2−α , a.s. as n → ∞,
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5. as x → 0

∫ τ1

x

uNΛ(u)du ∼
⎧⎨
⎩

c2x
−ᾱ+1, ᾱ > 1,

c2 log(1/x), ᾱ = 1,

Y, ᾱ < 1,

a.s. and
∫ 1

x

uv(u)du ∼
⎧⎨
⎩

c2x
−ᾱ+1, ᾱ > 1,

c2 log(1/x), ᾱ = 1,

c2, ᾱ < 1,

(16)

where c2 = c2(α) and Y := ∫ τ1
0 uNΛ(u)du is a finite random variable if ᾱ < 1.

Proof. Theorem 1 in [3] and (3) yield

NΛ(t) ∼ v(t) ∼ c1/(α−1)t−1/(α−1), as t → 0, almost surely, (17)

where c = c(A,α) is as specified above. The asymptotic behavior (17) implies that NΛ(τn) = n(1 + o(1)), almost
surely, as n → ∞. Indeed, since τn → 0, we have NΛ(τn) ∼ v(τn) = v(τn−) ∼ NΛ(τn−), and at the same time,
P(NΛ(τn) ≤ n < NΛ(τn−)) = 1. Since, again due to (17) NΛ(τn) ∼ c1/(α−1)(τn)

−1/(α−1), we obtain claim 1. Claim 2
is directly seen from (14) and the asymptotic behavior of v in (17).

Claims 4 and 5 are derived similarly. One notes first that, due to P(τ1 > 0) = 1 and (17),

∫ τ1

x

NΛ(u)du ∼
∫ 1

x

v(u)du ∼ c1/(α−1)

ᾱ
x−ᾱ as x → 0,

and then uses the facts that τn → 0, tn → 0 as well as claims 1 and 2 to obtain claim 4. For claim 5, we use
uNΛ(u) ∼ c1/(α−1)u−1/(α−1)+1 = c1/(α−1)u−ᾱ , and this uniquely determines c2. If ᾱ < 1, then both

∫ 1
0 uv(u)du

and
∫ τ1

0 uNΛ(u)du are finite.
It remains to verify claim 3. Due to monotonicity of the coalescent and the simple Markov property, we have

P(τn
1 ≥ m + 1|τn

1 ≥ m) ≤ P(τn
1 ≥ 1). In turn, letting n → ∞,

P(τ1 ≥ m + 1|τ1 ≥ m) ≤ P(τ1 ≥ 1) for each m ≥ 1.

Hence, by induction, P(τ1 > m) ≤ e−c1m for all m ≥ 0, with c1 = logP(τ1 ≥ 1). �

2.1. Proof of Theorem 10

Our first goal will be to prove Theorem 10. Let An
1 = {Sn ≥ 1} = {An ≥ 1}. Since the length Ln of Tn diverges, we

have that P(An
1) → 1, as n → ∞. Recall that on An

1 , Mn is the age of a randomly chosen mutation in Tn, and that
on the complement of An

1, Mn is set to 0. Due to basic properties of Poisson point processes, on the event An
1 (of

overwhelming probability), the random mutation is positioned as a point P ∗
n chosen uniformly at random from Tn. In

symbols,

Mn = M∗
n · 1An

1
+ 0 · 1(An

1)c , (18)

where M∗
n is the time-coordinate of P ∗

n , and P ∗
n is independent of An

1 . Due to this independence, and the fact P(An
1) →

1 as n → ∞, we have that E[M∗
n ·1(An

1)c ] = E(M∗
n)P((An

1)c) = o(E(M∗
n)), and therefore E(Mn) ∼ E(M∗

n), as n → ∞.
Similarly

P
(
Mn · nα−1 ≤ x

) = P
(
M∗

n · nα−1 ≤ x
) + O

(
P
((

An
1

)c)) ∀x ≥ 0,

therefore (9) is equivalent to

M∗
n

n1−α
⇒ c

(
U−(α−1)/(2−α) − 1

)
, (19)

where U has uniform distribution on [0,1]. Hence we proceed by studying M∗
n .
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Now recall the subtree T̂n of T. Consider a uniform random point on T̂n and let M̂n be its age minus τn. Let
En = {NΛ

τn
= n} be the event that Π ever attains a configuration with exactly n blocks. Due to the consistency property

and the Markov property of (Πt , t ≥ 0),

the conditional law of T̂n given Fτn on the event En equals the law of Tn. (20)

This clearly induces the equivalence of the conditional law of M̂n given Fτn on En and the law of M∗
n , which will be

used below. Recalling (12), we have

P(M̂n ≥ x|T̂n) =
∫ τ1
τn+x

NΛ(u)du

L̂n

, x ∈ [0, τ1 − τn].

So, recalling ᾱ from (15), we have for a fixed y ∈ (0,1)

P
(
(M̂n/τn + 1)−ᾱ ≤ y

) = E

[∫ τ1
τny−1/ᾱ∧τ1

NΛ(u)du

L̂n

]
. (21)

By the argument used to show claim 4 of Lemma 14 and P(τ1 > 0) = 1, we conclude

∫ τ1

τny−1/ᾱ∧τ1

NΛ(u)du ∼ c′[τny
−1/ᾱ ∧ τ1

]−1/(α−1)+1 ∼ c′[τny
−1/ᾱ

]−1/(α−1)+1 = c′τ−ᾱ
n y, a.s.

as n → ∞, where c′ = c1/(α−1)/ᾱ. Due to claim 4 of Lemma 14 we now see that the random variable inside the
expectation on the RHS of (21) converges to y, almost surely. Since

∣∣E[
P
(
(M̂n/τn + 1)−ᾱ ≤ y|Fτn

)
1En

] − yP(En)
∣∣ ≤ E

[
1En

∣∣∣∣
∫ τ1
τny−1/ᾱ NΛ(u)du

L̂n

− y

∣∣∣∣
]
,

and since the bounded (by 2) random variable inside the expectation converges to 0 almost surely, the dominated
convergence theorem implies that the left-hand side converges to 0. Recalling (20), or its consequence for random
points, this quantity can be rewritten as |P((M∗

n/τn + 1)−ᾱ ≤ y) − y|P(En). Theorem 1.8 in [5] gives P(En) → α − 1
as n → ∞, hence P((M∗

n/τn +1)−ᾱ ≤ y) → y, for all y ∈ [0,1]. This, together with claim 1 of Lemma 14, implies (9).

The proof of (10) is analogous but technically more delicate. Due to P(M∗
n ≥ x|Tn) = ∫ τn

1
x

NΛ,n(u)du/Ln and
Fubini’s theorem, we have

E
(
M∗

n |Tn

) =
∫ ∞

0

∫ τn
1

x
NΛ,n(u)dudx

Ln

=
∫ τn

1
0 uNΛ,n(u)du∫ τn

1
0 NΛ,n(u)du

. (22)

Therefore, E(M∗
n) = E[Yn], where

Yn =
∫ τn

1
0 uNΛ,n(u)du∫ τn

1
0 NΛ,n(u)du

. (23)

Due to (20), the variable Yn is equal in law to

Ŷn =
∫ τ1
τn

(u − τn)N
Λ(u)du∫ τ1

τn
NΛ(u)du

=
∫ τ1
τn

uNΛ(u)du∫ τ1
τn

NΛ(u)du
− τn, given Fτn , on the event En. (24)

Using Lemma 14 one can analyze the asymptotic behavior of Ŷn/g(n) in each of the three cases ᾱ > 1, ᾱ < 1 and
ᾱ = 1 (corresponding respectively to α < 3/2, α > 3/2 and α = 3/2). First observe that τn/g(n) → 0 almost surely
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if α ≥ 3/2, and otherwise τn/g(n) → c almost surely, where c is the constant from claim 1 of Lemma 14. One can
apply claims 4 and 5 (plugging in τn as x) of Lemma 14 to the first term in (24). More precisely, if we let c3 = c2ᾱ/cᾱ

and c4 = ᾱ/c, then:

1. If ᾱ > 1 then
∫ τ1
τn

uNΛ(u)du ∼ c2τ
−ᾱ+1
n so Ŷn/g(n) ∼ c3 − c, almost surely.

2. If ᾱ < 1 then
∫ τ1
τn

uNΛ(u)du ∼ Y so Ŷn/g(n) ∼ c4Y , almost surely.

3. If ᾱ = 1 then
∫ τ1
τn

uNΛ(u)du ∼ −c2 log τn ∼ c2(α − 1) logn so Ŷn/g(n) ∼ (α − 1)c2/c, almost surely.

With a slight abuse of notation, let Y := limn→∞ Ŷn/g(n), almost surely. Clearly P(Y ≥ 0) = 1. Denote by Dc(Y ) the
set of points of continuity for the distribution function of Y . Then for any x > 0 in Dc(Y ) and any sequence (Bn)n≥1
of events, where Bn ∈ Fτn , n ≥ 1, we have

E
(
1BnE(|1{Ŷn/g(n)≤x} − 1{Y≤x}||Fτn)

) = o(1), as n → ∞. (25)

We claim that

Yn

g(n)
⇒ Y, as n → ∞, (26)

which can be verified as follows. Note that, due to (20), for each fixed x > 0

P

(
Yn

g(n)
≤ x

)
= E[1En

P(Ŷn/g(n) ≤ x|Fτn)]
P(En)

,

Backward martingale convergence and measurability Y ∈ F0 imply limn P(Y ≤ x|Fτn) = P(Y ≤ x|F0) = P(Y ≤ x).
Combined with (25) and the fact lim infn P(En) > 0, this gives limn P( Yn

g(n)
≤ x) = P(Y ≤ x), for each x ∈ Dc(Y ), or

equivalently, the convergence (26).
To conclude (10) from (26), it thus suffices to show that (Yn/g(n))n≥1 is a uniformly integrable family. In fact we

will now show that this family is uniformly bounded in L2. Due to (23), we have P(Yn ≤ τn
1 ) = 1, and in particular

Yn1{τn
1 ≤g(n)} ≤ g(n), almost surely.

Due to claims 4 and 5 of Lemma 14 we know that g(n) ∼ c
∫ 1
tn

uv(u)du/
∫ 1
tn

v(u)du for some c = 1/C ∈ (0,∞).
Therefore

Yn

g(n)
≤ C

∫ τn
1

0 uNΛ,n(u)du∫ 1
tn

uv(u)du
·

∫ 1
tn

v(u)du∫ τn
1

0 NΛ,n(u)du
1{τn

1 >g(n)} + 1. (27)

Denote by An (resp, Bn) the first (resp. second) ration on the LHS of (27), so that Yn

g(n)
≤ CAn · Bn1{τn

1 >g(n)} + 1.
We will bound separately the terms An and Bn1{τn

1 >g(n)}. Let bn := min(1 − tn, τ
n
1 ) ≤ τ1 (note that bn → 1 ∧ τ1 a.s.),

choose some k0 such that tk0 < 1/2, and henceforth assume WLOG that n ≥ k0. Then tn ≤ 1/2 so that

An ≤
( ∫ bn

0 uNΛ,n(u)du∫ bn

0 (u + tn)v(u + tn)du
+

∫ τ1
bn

uNΛ,n(u)du∫ 1
1/2 uv(u)du

)
.

For h1, h2 two strictly positive integrable functions over some interval [a, b] we always have that
∫ b
a h1(u)du∫ b

a h2 du
≤

supu∈[a,b]
h1(u)
h2(u)

. Therefore

An ≤ sup
u∈[0,bn]

NΛ,n(u)

v(tn + u)
+ O

(∫ τ1

bn

uNΛ,n(u )du

)

= sup
u∈[0,1]

NΛ,n(u)

v(tn + u)
+ O

(
NΛ(1/2)(τ1)

2), (28)
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due to bn ≤ 1 and NΛ,n(bn) = 1{bn=τn
1 <1−tn} + NΛ,n(1 − tn)1{bn=1−tn≥1/2} ≤ NΛ(1/2), a.s. Similarly we have

Bn1{τn
1 >g(n)} =

∫ τn
1

0 v(u + tn)du∫ τn
1

0 NΛ,n(u)du
·
∫ 1−tn

0 v(u + tn)du∫ τn
1

0 v(u + tn)du
1{τn

1 >g(n)}

≤ sup
u∈[0,τ1]

v(tn + u)

NΛ,n(u)
·

∫ 1
tn

v(u)du∫ tn+g(n)

tn
v(u)du

.

Observe that due to tn ∼ cn1−α (claim 1 of Lemma 14) we have tn = o(g(n)) if α ≥ 3/2, and tn/g(n) → c′ ∈ (0,∞)

if α < 3/2. Due to the asymptotic form (17) for v, the sequence (
∫ 1
tn

v(u)du/
∫ tn+g(n)

tn
v(u)du)n≥k0 is uniformly

bounded. We conclude that

Bn1{τn
1 >g(n)} = O

(
sup

u∈[0,τ1]
v(tn + u)

NΛ,n(u)

)
. (29)

Combining (27)–(29), we obtain

Yn

g(n)
= O

[(
sup

u∈[0,1]
NΛ,n(u)

v(tn + u)
+ NΛ(1/2)(τ1)

2
)(

sup
s∈[0,τ1]

v(tn + u)

NΛ,n(u)

)]
+ 1, ∀n ≥ k0.

By the Cauchy–Schwarz inequality, it suffices to show that, for all n sufficiently large, each factor in the brackets
above is bounded in L4. This follows immediately from:

(i) [3], Eq. (38), applied with s = 1 and n ≥ n0 ∨ k0 (see above (33) in [3] for the definition of r(x; s), Lemma 19
in [3] for the choice of n0, and note that this step uses the condition Λ[1 − η,1] = 0 for some η > 0),

(ii) NΛ(1/2) ∈ Lp for all p ≥ 1 (a consequence of Theorem 2 in [3]),
(iii) claim 3 of Lemma 14.

This proves the uniform integrability of (Yn/g(n))n≥1, and completes the proof of (10).

2.2. Proof of Theorem 3

Recall the construction of Section 1.1, where the genealogy with mutations is realized for all n simultaneously, with
nice monotonicity properties. In this and the next subsection we will often refer to it under the name the full genealogy
(construction or coupling). Furthermore, we are going to prove Theorems 3 and 8 under the additional assumption

∃η > 0 : Λ[1 − η,1] = 0,

and we will then explain how this hypothesis can be relaxed in Section 2.4.
Case Xn = Sn. For each s > 0 we have, due to Theorem 5 in [3],

lim
n→∞

∫ s

0 NΛ,n(t)dt∫ s

0 v(tn + t)dt
= 1, in probability. (30)

For the Kingman and the regular variation coalescents (see Definition 2) the above convergence holds almost surely.

The total length of Tn is Ln = ∫ τn
1

0 NΛ,n(t)dt . Observe that | ∫ τn
1

1 NΛ,n(u)du/
∫ s

0 v(tn + t)dt | → 0 almost surely

since in all cases | ∫ τn
1

1 NΛ,n(u)du| ≤ | ∫ τ1
1 NΛ(u)du| < ∞ a.s., and

∫ s

0 v(tn + t)dt diverges in n. Applying (30) with
s = 1, we deduce that

Ln ∼
∫ 1

0
v(tn + t)dt
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in probability (i.e., the ratio of the two sides tends to 1 in probability), and almost surely in the regular variation case.
Using the facts that v(tn) = n and v′(q) = −ψ(v(q)) for all q > 0, and applying a change of variables q = v(t), we
obtain

∫ 1

0
v(tn + t)dt =

∫ n

v(1+tn)

q

ψ(q)
dq ∼

∫ n

v(1)

q

ψ(q)
dq ∼

∫ n

1

q

ψ(q)
dq, as n → ∞,

since v(1 + tn) → v(1) ∈ (0,∞), and since the integral of q/ψ(q) is finite (resp. infinite) over [a, b] (resp. [a,∞)),
for all fixed a, b ∈ (0,∞).

Recall again the fact that Sn has Poisson (θLn) distribution, given Tn. Now due to Ln → ∞, almost surely, we
obtain

Sn∫ n

1 qψ(q)−1 dq
−→ θ, (31)

in probability, as claimed. In the regular variation case, this last convergence holds again in the almost sure sense due
the fact that in the full genealogy coupling Sn ≤ Sn+1, for all n, almost surely, and that

∫ n

1 qψ(q)−1 dq is asymptotic
to a multiple of n2−α . To obtain the final claim, we recall (3). Integrating the RHS and recalling (31), we deduce that
Sn ∼ θBn2−α , almost surely, where B is as stated in Theorem 3, in consistence with Theorem 1.9 of [5]. �

For Xn = An, our strategy is as follows: we first establish the convergence in probability of An in the general case,
and then show the almost sure convergence in the strong regular variation case.

Case Xn = An, convergence in probability. In the full genealogy construction, we have An ≤ Sn + 1 for each n,
almost surely. Therefore, (31) implies that for any ε > 0,

P

(
An ≥ (1 + ε)θ

∫ n

1
qψ(q)−1 dq

)
→ 0. (32)

It remains to prove the matching lower-bound. To do this, for each mutation (or mark) x on Tn, consider the path
γ = γ (x) ⊂ Tn defined as follows. Consider a mutation or mark x ∈ Tn with age t . Then γ (x) is defined as the path
connecting the mark to the leaf carrying the smallest label possible. Since all points of γ lie below x, the age of any
point y ∈ γ is at most t . For example, the γ of the mutation encircled in gray on Fig. 1 is the path linking it to the
leaf labeled by 1. We say that a mark x is unblocked if γ (x) carries no other mutation than x, and otherwise call it
blocked. Observe that if x is unblocked then it is guaranteed to contribute one allelic type to An. Intuitively, it is rather
likely that γ (x) is unblocked. Indeed, since the age Mn of a randomly chosen point on Tn is typically small, then
e−θMn ≈ 1 − θMn, so the probability that a typical mutation is blocked is of order θE(Mn) → 0. This suggests that
the proportion of blocked mutations is negligible, which is sufficient to yield the desired result.

More rigorously, given Tn and Sn, the mutations fall on Tn as Sn i.i.d. uniformly chosen random points. For
1 ≤ i ≤ Sn, let Ki,n be the “good” event that the ith mutation is unblocked, and define

Yn :=
Sn∑
i=1

1Ki,n
,

the total number of unblocked mutations. As already argued, we have Yn ≤ An ≤ Sn + 1 almost surely, so in view of
(31) it suffices to prove

lim
n→∞

Yn

Sn

= 1, in probability. (33)

Note that, given Tn and Sn, the events (Ki,n)i=1,...,Sn are exchangeable. In particular, almost surely,

P(K1,n|Tn, Sn) = P(Ki,n|Tn, Sn), i = 1, . . . , Sn.
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Note in addition that the age of the mutation corresponding to K1,n is equal in distribution to Mn from Proposition 10.
Due to the above discussion, we have

P(K1,n|Tn, Sn,Mn) =
(

1 − Mn

Ln

)(Sn−1)+
(34)

almost surely on the event {Sn > 0}. We extend the definition of K1,n using the above on the complement {Sn = 0},
making K1,n certain in this case. Fix ε > 0 and note that by Markov’s inequality, we have

P
(
Yn ≤ (1 − ε)Sn|Tn, Sn

) = P(Sn − Yn ≥ εSn|Tn, Sn) ≤ E(Sn − Yn|Tn, Sn)

εSn

,

with the convention 0/0 = 1. Therefore, due to the above discussion and (34), we obtain

P
(
Yn ≤ (1 − ε)Sn

) ≤ 1

ε
E

[
E(Sn − Yn|Tn, Sn)

Sn

]
= 1

ε
E

[
P
(
Kc

1,n|Tn, Sn,Mn

)]

≤ 1

ε
E

[
1 −

(
1 − Mn

Ln

)(Sn−1)+]
. (35)

The random variable (conditional probability) in this last expectation is bounded by 1, almost surely. Therefore, in
order to show that it converges to 0 in the mean (in L1), it suffices to show that it converges to 0 in probability. Now
note that, since 1 − (1 − x)n ≤ nx for n ∈ N and x ≥ 0,

1 −
(

1 − Mn

Ln

)(Sn−1)+
≤ 2θMn1{Sn/Ln≤2θ} + 1{Sn/Ln>2θ}. (36)

So, for a fixed small δ > 0, we have

P

(
1 −

(
1 − Mn

Ln

)(Sn−1)+
> δ

)
≤ P(2θMn > δ) + P(Sn > 2θLn). (37)

Due to Proposition 10(a), the first term on the RHS in (37) vanishes as n → ∞, and since Sn has Poisson (rate θLn)
distribution, given Ln, the second term also vanishes. Therefore (35) converges to 0 as n → ∞, implying (33). �

Case Xn = An with strong α-regular variation. Here we use a variation of (36):

1 −
(

1 − Mn

Ln

)(Sn−1)+
≤

(
Mn · Sn

Ln

)
∧ 1 ≤ 2θMn1{Sn/Ln≤2θ} +

(
Mn ∧ 1

2θ

)
· Sn

Ln

1{Sn/Ln>2θ}. (38)

Therefore, applying the Cauchy–Schwarz inequality,

E

[
1 −

(
1 − Mn

Ln

)(Sn−1)+]
≤ 2θE(Mn) +

√
E

[(
Mn ∧ 1/(2θ)

)2] · E
[
(Sn/Ln)2

]
.

Due to Proposition 10(b), the first term above is O(n−2δ) for some δ > 0. For the second one, note that E[(Mn ∧
1/(2θ))2] ≤ E(Mn)/(2θ) = O(n−2δ/θ) and that E[(Sn/Ln)

2] = O(θ2 ∨ θ). Indeed, since Sn is Poisson (rate θLn),
given Ln, we have (assuming n ≥ 3)

E
[
(Sn/Ln)

2] = E
[
E

(
S2

n|Ln

)
/L2

n

] = E
[
θ2 + θ/Ln

] ≤ θ2 + θE(1/L3),

where it is simple to verify that E(1/L3) < ∞. As a consequence, E(1 − (1 − Mn/Ln)
(Sn−1)+)) = O(n−δ). Due to

(35), we deduce

P
(
Yn ≤ (1 − ε)Sn

) ≤ cn−δ

ε
(39)
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for some δ > 0, and c < ∞ which depends only on θ . Consider the subsequence nk = �k2/δ�, k ≥ 1. By the Borel–
Cantelli lemma and (39), Yn/Sn tends to 1 along the subsequence (nk). Moreover, since both An ≤ An+1 and Sn ≤
Sn+1, for all n, almost surely, we have

Snk

Snk+1

Ank

Snk

≤ An

Sn

≤ Ank+1

Snk+1

Snk+1

Snk

whenever n ∈ [nk,nk+1] for some k ≥ 1. (40)

Since we already verified at the beginning of the argument that Snk
/Snk+1 ∼ (nk/nk+1)

2−α , almost surely, and since
(nk/nk+1)

2−α → 1, as k → ∞, the almost sure convergence along the subsequence (nk)k≥1 and (40) imply that
An/Sn → 1 almost surely. This finishes the proof of Theorem 3. �

Remark 15. As already mentioned, the above convergence in probability for Xn = An is proved in [21] for a more
general class of regular Ξ -coalescents, using a compact martingale argument that accounts for all the mutations in a
dynamic way (from the point of view of coalescent evolution), which can be easily extended to handle randomly (and
nicely) varying mutation rates. However, that approach is not well-suited for obtaining qualitative or quantitative
information about a random (typical) mutation. The present approach could be used even in the setting without
martingale structure, once given the estimates in the form of Proposition 10. Furthermore, the random mutation
analysis enables us to easily identify the asymptotic behavior of Mk,n with that of Fk,n (see the end of the proof of
Theorem 8).

2.3. Proof of Theorem 8

Recall the setting of Theorem 8. We first concentrate on the result (6) in the case of the allelic partition, which we
restate here for convenience: if Fk,n denotes the number of allelic types in the allelic partition carried by exactly k

individuals, then for any fixed k ≥ 1,

Fk,n

n2−α
→ θB(2 − α)

(α − 1) · · · (α + k − 3)

k! , a.s. (41)

as n → ∞. The key to proving (41) is to apply Corollary 21 in [16], which could be thought of as a Tauberian
theorem for random exchangeable partitions, that establishes the mutual equivalence between the strong almost sure
asymptotics (5), (6) and (7).

We now recall the setting in [16]. Let �p = (p1,p2, . . .) be a deterministic sequence such that p1 ≥ p2 ≥ · · · ≥ 0 and∑
i pi = 1. Suppose that Θ = Θ �p is an exchangeable random partition on N, obtained by performing the paintbox

construction generated by �p (see, e.g., [1] or Definition 1.2 in [7]). Let Θn denote the restriction of Θ onto [n] =
{1, . . . , n}. Let Kn be the number of blocks in Θn, and for each r = 1, . . . , n, let Kn,r be the number of blocks in Θn

containing exactly r elements. The frequency vector �p is said to be regularly varying with index γ if
∑

i

1{pi≥x} ∼ �(1/x)x−γ

as x → 0, where � is a slowly varying function.

Lemma 16. (Corollary 21 in [16]) There is equivalence between the following statements.

(a) �p is regularly varying with index γ .
(b) Kn ∼ 
(1 − γ )nγ �(n), almost surely as n → ∞.

If either (a) or (b) holds, then for each fixed r ≥ 1,

Kn,r ∼ γ
(r − γ )

r! nγ �(n), almost surely.

We refer the reader to Theorem 1.11 in [7] for an overview and a sketch of proof, and to Schweinsberg [29] for a
version of this result where the assumptions and conclusions are convergence in probability, rather than almost surely.
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Proof of Theorem 8. We apply the above lemma to the allelic partition Θ , which is an exchangeable random partition.
As the reader is about to see, for this particular application the almost sure convergence in (5) of Theorem 3 is crucial.
Since Θ is random exchangeable, by Kingman’s representation theorem (Theorem 1.1 in [7]), all the blocks of Θ

have a well-defined asymptotic frequency. We let �P be the sequence of block frequencies in decreasing order. Thus
�P ∈ ∇≤1 = {(p1,p2, . . . , ): p1 ≥ p2 ≥ · · · ≥ 0,

∑∞
i=1 pi ≤ 1}. Moreover, given �P , Θ has the law of a paintbox

partition derived from �P . Note that An then corresponds to the total number of blocks of Θn, while Fk,n is the
number of blocks of size exactly k. In particular, since An = o(n) almost surely, it must be that P( �P ∈ ∇1) = 1, where
∇1 = {(p1,p2, . . . , ): p1 ≥ p2 ≥ · · · ≥ 0,

∑∞
i=1 pi = 1}. That is, Θ has no singletons (or no “dust”) almost surely.

Moreover, since P(An ∼ θBn2−α) = 1 by (5), then also

P
(
An ∼ θBn2−α| �P ) = 1, a.s.

Therefore, Corollary 21 in [16] implies that

P( �P is regularly varying with index 2 − α) = 1,

and, moreover that, if N(x) = ∑
i≥1 1{Pi≥x}, then

N(x) ∼ θB


(α − 1)
xα−2, almost surely.

Furthermore,

P

(
Fk,n ∼ θB · (2 − α)
(k − 2 + α)

r!
(α − 1)
n2−α

∣∣∣ �P
)

= 1, a.s.

Taking expectations in the last identity yields (41).
It remains us to prove (6) in the case where Xk,n = Mk,n, the number of genetic types under the infinite sites model.

Observe another important property of our full genealogy coupling (cf. Fig. 1): a family of size k in the infinite allele
model necessarily descends from the same mutation, and therefore this mutation affects at least k leaves. Thus, for all
n ≥ 1, and for all fixed k ∈ {1, . . . , n}, we have that

F̄k,n ≤ M̄k,n, (42)

where F̄k,n = ∑n
j=k Fj,n and M̄k,n = ∑n

j=k Mj,n are the cumulative number of families of size larger or equal to k.
Let

ck = (2 − α)
(α − 1) · · · (α + k − 3)

k!
so that Fk,n ∼ n2−αθBck. Observe that F̄1,n = An and thus (since F̄k+1,n = F̄k,n − Fk,n) we deduce by induction on
k ≥ 1 that F̄k,n ∼ n2−αθBc̄k , where c̄k = ∑∞

j=k cj . Here we use the fact c̄1 = 1 (see [6], Lemma 30 or [26], display
(3.38)).

Therefore, Theorem 8 will be proved, provided we show that, for each fixed k ≥ 1,

M̄k,n ≤ F̄k,n + o
(
n2−α

)
, (43)

almost surely as n → ∞. This can be done by the following adaptation of the argument for Theorem 3.
Fix k ≥ 1. We extend the definition of an unblocked mutation as follows.
Recall that any point x ∈ Tn corresponds uniquely to a block B of the coalescing partition Πt , where t is the age

of x. Suppose that B = {i1 < · · · < im}, for some m ∈ N, and define T (x) ⊂ Tn to be the restriction of the coalescence
subtree generated by the paths that lead from x to the leaves labeled by i1, . . . , im∧k . For example, for the mutation
encircled in black on Fig. 1, this subtree has four leaves labeled by {2,3,5,6}. Note furthermore that, for k = 1, T (x)

coincides with the path γ (x) defined in the proof of Theorem 3, and that the total length of T (x) cannot exceed kt .
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Let us say that x ∈ Tn is k-unblocked if T (x) carries no other mark than x, and otherwise call it k-blocked. Similarly
to the proof of Theorem 3, define K̄i,n as the event that the ith mutation (picked at random without replacement) is k-
unblocked, and let Ȳk,n := ∑Sn

i=1 1K̄i,n
. Reasoning as for (35), and using the fact that the length of T which corresponds

to the randomly picked mutation is at most kMn, we obtain, for all fixed ε > 0,

P
(
Ȳk,n ≤ (1 − ε)Sn

) ≤ 1

ε
E

[
1 −

(
1 − kMn

Ln

)(Sn−1)+]
.

Since k is fixed, the bound (38) with Mn replaced by kMn will lead to

P
(
Ȳk,n ≤ (1 − ε)Sn

) ≤ ckn−δ

ε
, (44)

where δ is as in (39), and c depends only on θ . Therefore, we have as before Ȳk,n/Sn → 1 almost surely along the
subsequence (nj ), where nj = �j2/δ�, j ≥ 1. In particular, Snj

− Ȳk,nj
= o(n2−α

j ), j ≥ 1.

Denote by M̄ ′
k,n the number of k-unblocked mutations that span at least k leaves. For each such mutation, the

corresponding family in the allelic partition is of size at least k, so M̄ ′
k,n ≤ F̄k,n. Moreover,

0 ≤ M̄k,n − M̄ ′
k,n ≤ Sn − Ȳk,n

since Sn − Ȳk,n accounts for all the k-blocked mutations, even if they span fewer than k leaves. Thus, due to the
previous observations,

M̄ ′
k,nj

= M̄k,nj
− o

(
n2−α

j

) ≤ F̄k,nj
≤ M̄k,nj

, j ≥ 1, (45)

implying (43) with nj in place of n, and in particular M̄k,n ∼ F̄k,n, along the subsequence (nj )j≥1. Since we already
know that F̄n,k ∼ θBc̄kn

2−α almost surely, and since both (F̄n,k)n≥1 and (M̄n,k)n≥1 are non-decreasing, almost surely,
reasoning as in (40) gives

M̄k,n ∼ θBc̄kn
2−α,

as n → ∞, which finishes the proof of Theorem 8. �

Here is an interesting consequence about the structure of Tn ∩ P , Let #�T (x) be the number of leaves of Tn

contained in T (x). If x is a randomly chosen mutation, then denote its #�T (x) simply by #�T .

Corollary 17. We have limk→∞ limn→∞ P(#�T ≥ k) = 0.

This claim is weaker than the statement that #�T is stochastically bounded.

Proof. Given Tn, P , the probability that #�T ≥ k equals precisely M̄k,n/Sn. Due to Theorem 8, the almost sure limit
of this is c̄k , defined in the proof above. Since M̄k,n/Sn ∈ [0,1], this convergence is also in L1, and the corollary
follows due to limk c̄k = 0. �

2.4. Relaxing the condition Λ[1 − η,1] = 0

Define Λη(dx) := Λ(dx)1[0,1−η](x). Then it is easy to see (or consult, e.g., [3]) that there exists a path-wise full
genealogy coupling of the corresponding Λ-coalescent and Λη-coalescent, so that, almost surely, for each n ≥ 1,
NΛ,n(t) = NΛη,n(t), for all t ∈ [0, Tη], and NΛ,n(t) ≤ NΛη,n(t) for all t > Tη, where Tη is an exponential (rate∫
(1−η,1] 1/x2Λ(dx) < ∞) random variable. By the “full genealogy” coupling, we also mean that the same realization

of the mutation process P is used for both the restriction of TΛ
n onto [0, Tη], and the restriction of T

Λη
n onto [0, Tη],

simultaneously for all n.
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The crucial fact is that then the family of non-negative random variables

max

{∫ 1∨τ
n;Λ
1

Tη

NΛ,n(t)dt,

∫ 1∨τ
n;Λη
1

Tη

NΛη,n(t)dt

}
, n ≥ 1,

is bounded from above by a finite random variable, almost surely. Therefore, LΛ
n ∼ L

Λη
n almost surely, as well as,

SΛ
n ∼ S

Λη
n and AΛ

n ∼ A
Λη
n , again almost surely, as n → ∞. This implies Theorem 3 in the general case. And similarly,

in the above coupling, we have FΛ
n,k ∼ F

Λη

n,k and MΛ
n,k ∼ M

Λη

n,k , for each fixed k, almost surely as n → ∞, yielding
Theorem 8.
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