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We consider a stochastic differential equation that is controlled by means
of an additive finite-variation process. A singular stochastic controller, who
is a minimizer, determines this finite-variation process, while a discretionary
stopper, who is a maximizer, chooses a stopping time at which the game ter-
minates. We consider two closely related games that are differentiated by
whether the controller or the stopper has a first-move advantage. The games’
performance indices involve a running payoff as well as a terminal payoff and
penalize control effort expenditure. We derive a set of variational inequalities
that can fully characterize the games’ value functions as well as yield Marko-
vian optimal strategies. In particular, we derive the explicit solutions to two
special cases and we show that, in general, the games’ value functions fail to
be C1. The nonuniqueness of the optimal strategy is an interesting feature of
the game in which the controller has the first-move advantage.

1. Introduction. We consider a one-dimensional càglàd process X that satis-
fies the stochastic differential equation

dXt = b(Xt) dt + dξt + σ(Xt) dWt, X0 = x ∈ R,(1)

where ξ is a càglàd finite variation adapted process such that ξ0 = 0, and W is a
standard one-dimensional Brownian motion. The games that we analyze involve
a controller, who is a minimizer and chooses a process ξ , and a stopper, who is a
maximizer and chooses a stopping time τ . The two agents share the same perfor-
mance criterion, which is given either by

J v
x (ξ, τ ) = E

[∫ τ

0
e−�t h(Xt) dt +

∫
[0,τ [

e−�t dξ̌t + e−�τ g(Xτ )1{τ<∞}
]

(2)

or by

Jw
x (ξ, τ ) = E

[∫ τ

0
e−�t h(Xt) dt +

∫
[0,τ ]

e−�t dξ̌t + e−�τ g(Xτ+)1{τ<∞}
]
,(3)
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where ξ̌ is the total variation process of ξ and

�t =
∫ t

0
δ̄(Xs) ds(4)

for some positive functions h,g, δ̄ :R → R+. The performance index J v reflects
a situation where the stopper has the “first-move advantage” relative to the con-
troller. Indeed, if the controller makes a choice such that �ξ0 �= 0 and the stopper
chooses τ = 0, then J v

x (ξ, τ ) = g(x). On the other hand, the performance index
Jw reflects a situation where the controller has the “first-move advantage” relative
to the stopper: if the controller makes a choice such that �ξ0 �= 0, and the stopper
chooses τ = 0, then Jw

x (ξ, τ ) = |�ξ0| + g(x + �ξ0).
Given an initial condition x ∈ R, (ξ∗, τ ∗) is an optimal strategy if

J f
x

(
ξ∗, τ

) ≤ J f
x

(
ξ∗, τ ∗) ≤ J f

x

(
ξ, τ ∗)

(5)

for all admissible strategies (ξ, τ ), where “f ” stands for either “v” or “w.” If opti-
mal strategies (ξ∗

v , τ ∗
v ), (ξ∗

w, τ ∗
w) exist for the two games for every initial condition

x ∈ R, then we define the games’ value functions by

v(x) = J v
x

(
ξ∗
v , τ ∗

v

)
and w(x) = Jw

x

(
ξ∗
w, τ ∗

w

)
,(6)

respectively.
Zero-sum games involving a controller and a stopper were originally studied

by Maitra and Sudderth [16] in a discrete time setting. Later, Karatzas and Sud-
derth [12] derived the explicit solution to a game in which the state process is a
one-dimensional diffusion with absorption at the endpoints of a bounded interval,
while, Weerasinghe [23] derived the explicit solution to a similar game in which
the controlled volatility is allowed to vanish. Karatzas and Zamfirescu [14] de-
veloped a martingale approach to general controller and stopper games, while,
Bayraktar and Huang [2] showed that the value function of such games is the
unique viscosity solution to an appropriate Hamilton–Jacobi–Bellman equation if
the state process is a controlled multi-dimensional diffusion. Further games involv-
ing control as well as discretionary stopping have been studied by Hamadène and
Lepeltier [9] and Hamadène [8]. To a large extent, controller and stopper games
have been motivated by several applications in mathematical finance and insur-
ance, including the pricing and hedging of American contingent claims (e.g., see
Karatzas and Wang [13]) and the minimization of the lifetime ruin probability; for
example, see Bayraktar and Young [3].

Games such as the ones we study here arise in the context of several applica-
tions. To fix ideas, consider the singular stochastic control problem that aims at
minimizing the performance criterion

E

[∫ ∞
0

e−�t h(Xt) dt +
∫
[0,∞[

e−�t dξ̌t

]
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over all controlled processes ξ subject to the dynamics given by (1). The solu-
tion to the special case of this problem that arises when b ≡ 0, σ ≡ 1, δ̄ > 0 is
a constant and h(x) = κx2, for some κ > 0, was derived by Karatzas [11] and is
characterized by a constant β: it is optimal to exercise minimal control so as to
keep the state process X inside the range [−β,β] at all times. The qualitative na-
ture of such a solution has lead to the study of several applications in which one
wants to keep a state process within an optimal range by means of singular stochas-
tic control. Such applications include: spaceship control (see Bather and Chernoff
[1] who introduced singular stochastic control) where, for example, X represents
the deviation of a satellite from a given altitude and ξ represents fuel expenditure;
the control of an exchange rate (see Miller and Zhang [17]) or an inflation rate
(see Chiarolla and Haussmann [4]) where, for example, X models a rate or the
fluctuations of a rate around a target, and ξ models the central bank’s cumulative
intervention efforts; the so-called goodwill problem (see Jack, Jonhnson and Zer-
vos [10]) where, for example, X is used to model the image that a product has in a
market, and ξ represents the cumulative costs associated with raising the product’s
image, for example, through advertising.1

Any of the applications discussed in the previous paragraph can give rise to a
zero-sum game between a controller and a stopper that are different incarnations
of the same decision maker. Such games in which the players model competing
objectives of the same decision maker have attracted considerable interest in the
context of several applications. For instance, they have been studied in the context
of robust optimization where “the agent maximizes utility by his choice of con-
trol, while an evil agent minimizes utility by his choice of perturbation” (Williams
[24]), or in the context of time-consistent optimization where a decision maker’s
problem is analyzed as a “game between successive selves, each of whom can
commit for an infinitesimally small amount of time” (Ekeland, Mbodji and Pirvu
[6]). In what follows, we focus on one of the applications of the games that we
study (several others arising in the context of the ones discussed in the previous
paragraph can be developed following similar arguments).

Consider a central bank that intervenes to keep fluctuations of an exchange rate
within an optimal range. At any time, the central bank could be confronted with
the costs of their policy, in particular, with the demand that its board should be
replaced. In this context, the controller can represent the central bank’s targeting
efforts, while the stopper can represent a political veto on their policy. In abstract
terms, such a problem can be viewed as one of optimization by a single agent.
However, its analysis and solution requires its formulation as a zero-sum game.
Indeed, the conflicting natures of such a decision maker’s objectives do not really
allow for them to be addressed by solving a (one-player) stochastic optimization

1We have included here only one indicative reference for each of the areas mentioned because
there is a rich literature for each of them.



A ZERO-SUM GAME 49

problem. For instance, the solution to the one-player problem derived by Davis
and Zervos [5], which is akin to the special case we solve in Section 5, involves
markedly different optimal strategies that would be absurd in the context of an
applications such as the one we discuss here.

In particular, the controller tries to minimize, for example, the performance in-
dex Jw given by (3). From the controller’s perspective, Jw penalizes large fluc-
tuations of the targeted rate for choices such as h(x) = κx2, for some κ > 0, as
well as the expenditure of intervention effort. On the other hand, the stopper tries
to maximize the same performance criterion Jw because large values of Jw in-
dicate that intervention is “expensive,” namely, unsustainable. From the stopper’s
perspective, the choice of the reward function g can be used to further quantify the
bank’s reluctance to intervene, for example, in situations where the rate assumes
values way off the target. Furthermore, the choice of Jw rather than J v can be
associated with a central bank that is more, rather than less, keen to intervene.

The development of a theory for zero-sum games such as the ones we study can
therefore provide a useful analytic tool to decision makers such as a central bank in
their considerations on whether and how to optimally target a state process such as
an exchange rate. Such analytic tools can be most valuable because getting a policy
wrong can have rather extreme economic and political consequences. For instance,
one can recall the UK’s crash out of the European Exchange Rate Mechanism
(ERM) in 1992.

The games that we study here are the very first ones involving singular stochas-
tic control and discretionary stopping. Combining the intuition underlying the so-
lution of standard singular stochastic control problems and standard optimal stop-
ping problems by means of variational inequalities (e.g., see Karatzas [11] and
Peskir and Shiryaev [18], resp.), we derive a system of inequalities that can fully
characterize the value function w. We further show that these inequalities can also
characterize the value function v as well as an optimal strategy. Surprisingly, we
have not seen a way to combine all of them into a single equation. Our main results
include the proof of a verification theorem that establishes sufficient conditions for
a solution to these inequalities to identify with the value function w and yield the
value function v as well as an optimal strategy, which we fully characterize. In
this context, we also show that the two games we consider share the same optimal
strategy, and we prove that

v(x) = max
{
w(x), g(x)

}
for all x ∈ R.

The nonuniqueness of the optimal strategy when the controller has the first-move
advantage is an interesting result that arises from our analysis; see Remark 1 at the
end of Section 4.

We then derive the explicit solutions to two special cases. The first one is the
special case that arises if X is a standard Brownian motion, and h, g are quadratics.
In this case, the value function w is C1, but the C1 regularity of the value function
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v may fail at a couple of points. The second special case is a simpler example
revealing that both of the value functions w and v may fail to be C1 at certain
points and showing that the optimal strategy may take qualitatively different form,
depending on parameter values.

The paper is organized as follows. Notation and assumptions are described in
Section 2, while, a heuristic derivation of the system of inequalities characterizing
the solution to the two games is developed in Section 3 (see Definition 1). In Sec-
tion 4, the main results of the paper, namely, a verification theorem (Theorem 1)
and the construction of the optimal controlled process associated with a function
satisfying the requirements of Definition 1 (Lemma 1) are proved. In Sections 5
and 6, the explicit solutions to two nontrivial special cases are derived.

2. Notation and assumptions. We fix a filtered probability space (
,F,

Ft ,P) satisfying the usual conditions and carrying a standard one-dimensional
(Ft )-Brownian motion W . We denote by As the set of all (Ft )-stopping times and
by Ac the family of all (Ft )-adapted finite-variation càglàd processes ξ such that
ξ0 = 0. Every process ξ ∈ Ac admits the decomposition ξ = ξ c + ξ j where ξ c,
ξ j are (Ft )-adapted finite-variation càglàd processes such that ξ c has continuous
sample paths,

ξ c
0 = ξ

j
0 = 0 and ξ

j
t = ∑

0≤s<t

�ξs for all t > 0,

where �ξs = ξs+ − ξs for s ≥ 0. Given such a decomposition, there exist (Ft )-
adapted continuous processes (ξ c)+, (ξ c)− such that(

ξ c)+
0 = (

ξ c)−
0 = 0, ξ c = (

ξ c)+ − (
ξ c)− and ξ̌ c = (

ξ c)+ + (
ξ c)−,

where ξ̌ c is the total variation process of ξ c.
The following assumption that we make implies that, given any ξ ∈ Ac, (1) has

a unique strong solution; see Protter [19], Theorem V.7.

ASSUMPTION 1. The functions b,σ :R →R satisfy∣∣b(x) − b(y)
∣∣ + ∣∣σ(x) − σ(y)

∣∣ ≤ K|x − y| for all x, y ∈ R,

for some constant K > 0, and σ 2(x) > σ0 for all x ∈ R, for some constant σ0 > 0.

We also make the following assumption on the data of the reward functionals
defined by (2)–(4).

ASSUMPTION 2. The functions δ̄, h, g :R → R+ are continuous, and there
exists a constant δ > 0 such that δ̄(x) > δ for all x ∈ R.

It is worth noting at this point that, given ξ ∈ Ac, we may have E[ξ̌t ] = ∞, for
some t > 0. In such a case, the reward functionals given by (2)–(3) are well defined
but may take the value ∞.
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3. Heuristic derivation of variational inequalities for the value function w.
Before addressing the game, we consider the optimization problems faced by the
two players in the absence of competition. To this end, we consider any bounded
interval ]γ1, γ2[, we denote by Tγ1 (resp., Tγ2 ) the first hitting time of {γ1} (resp.,
{γ2}), and we fix any constants Cγ1,Cγ2 ≥ 0.

Given an initial condition x ∈]γ1, γ2[, a controller is concerned with solving the
singular stochastic control problem whose value function is given by

vssc(x;γ1, γ2,Cγ1,Cγ2)

= inf
ξ∈Ac

E

[∫ Tγ1∧Tγ2

0
e−�t h(Xt) dt +

∫
[0,Tγ1∧Tγ2 [

e−�t dξ̌t(7)

+ e
−�Tγ1 Cγ11{Tγ1<Tγ2 } + e

−�Tγ2 Cγ21{Tγ2<Tγ1 }
]
.

In the presence of Assumptions 1 and 2, vssc is C1 with absolutely continuous first
derivative and identifies with the solution to the variational inequality

min
{
Lu(x) + h(x),1 − ∣∣u′(x)

∣∣} = 0

with boundary conditions

u(γ1) = Cγ1 and u(γ2) = Cγ2,

where the operator L is defined by

Lu(x) = 1
2σ 2(x)u′′(x) + b(x)u′(x) − δ̄(x)u(x);(8)

see Sun [22], Theorem 3.2. In this case, it is optimal to exercise minimal action so
that the state process X is kept outside the interior of the set

Cssc = {
x ∈]γ1, γ2[ |

∣∣u′(x)
∣∣ = 1

}
.

Given an initial condition x ∈]γ1, γ2[, a stopper faces the discretionary stopping
problem whose value function is given by

vds(x;γ1, γ2,Cγ1,Cγ2)

= sup
τ∈As

E

[∫ τ∧Tγ1∧Tγ2

0
e−�t h(Xt) dt + e−�τ g(Xτ )1{τ<Tγ1∧Tγ2 }(9)

+ e
−�Tγ1 Cγ11{Tγ1≤τ∧Tγ2 } + e

−�Tγ2 Cγ21{Tγ2≤τ∧Tγ1 }
]
,

where X is the solution to (1) for ξ ≡ 0. In this case, Assumptions 1 and 2 ensure
that vds is the difference of two convex functions and identifies with the solution,
in an appropriate distributional sense, to the variational inequality

max
{
Lu(x) + h(x), g(x) − u(x)

} = 0
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with boundary conditions

u(γ1) = Cγ1 and u(γ2) = Cγ2,

where L is defined by (8); see Lamberton and Zervos [15], Theorems 12 and 13.
In this case, the optimal stopping time τ ◦ identifies with the first hitting time of the
so-called stopping region

Sds = {
x ∈]γ1, γ2[ | u(x) = g(x)

}
,

namely, τ ◦ = inf{t ≥ 0 | Xt ∈ Sds}.
Now, we consider the game where the controller has the “first-move advan-

tage” relative to the stopper, and we assume that there exists a Markovian optimal
strategy (ξ∗, τ ∗) for the sake of the discussion in this section. We expect that this
optimal strategy involves the same tactics as the ones we have discussed above.
From the perspective of the controller, the state space R splits into a control re-
gion C and a waiting region Wc. Accordingly, ξ∗ should involve minimal action to
keep the state process in the closure R \ intC of the waiting region Wc for as long
as the stopper does not terminate the game. Similarly, from the perspective of the
stopper, the state space R splits into a stopping region S and a waiting region Ws,
and τ ∗ is the first hitting time of S .

Inside any bounded interval ]γ1, γ2[⊆Ws, the requirement that (ξ∗, τ ∗) should
satisfy (5) suggests that w should identify with vssc defined by (7) for Cγ1 = w(γ1)

and Cγ2 = w(γ2). Therefore, we expect that w should satisfy

min
{
Lw(x) + h(x),1 − ∣∣w′(x)

∣∣} = 0 inside Ws.(10)

Inside any bounded interval ]γ1, γ2[⊆ Wc, the requirement that (ξ∗, τ ∗) should
satisfy (5) suggests that w should identify with vds defined by (9) for Cγ1 = w(γ1)

and Cγ2 = w(γ2). Therefore, we expect that w should satisfy

max
{
Lw(x) + h(x), g(x) − w(x)

} = 0 inside Wc.(11)

To couple variational inequalities (10) and (11), we consider four possibilities.
The region WW = Wc ∩Ws where both players should wait is associated with the
inequalities

Lw + h = 0,
∣∣w′∣∣ < 1 and g < w.(12)

Inside the set CW = C∩Ws where the stopper should wait, whereas, the controller
should act, we expect that

Lw + h ≥ 0,
∣∣w′∣∣ = 1 and g < w.(13)

Inside the part of the state space WS = Wc ∩ S where the controller would rather
wait if the stopper deviated from the optimal strategy and did not terminate the
game, we expect that

Lw + h ≤ 0,
∣∣w′∣∣ < 1 and g = w.(14)
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Finally, the region CS = C ∩ S in which the stopper should terminate the game
should the controller deviate from the optimal strategy and did not act, we expect
that

Lw + h ∈ R,
∣∣w′∣∣ = 1 and g ≥ w.(15)

These inequalities give rise to the following definition. Here, as well as in the rest
of the paper, we denote by int� and cl� the interior and the closure of a set � ⊆ R,
respectively.

DEFINITION 1. A candidate for the value function w is a continuous function
u :R → R+ that is C1 with absolutely continuous first derivative inside R \ B,
where B is a finite set, satisfies∣∣u′(x)

∣∣ ≤ 1 for all x ∈ R \B,

and has the following properties, where

C = cl
[
int

{
x ∈ R \B | ∣∣u′(x)

∣∣ = 1
}]

,

SW = {
x ∈ R | u(x) = g(x)

}
, SC = cl

{
x ∈ R | u(x) < g(x)

}
,

S = SW ∪ SC and W = R \ (C ∪ S).

(I) Each of the sets C, SW and SC is a finite union of intervals, and B ⊆
SC ⊆ C.

(II) u satisfies

Lu(x) + h(x)

⎧⎪⎪⎨
⎪⎪⎩

= 0, Lebesgue-a.e. in W ,
≥ 0, Lebesgue-a.e. in int(C \ S),
≡ Lg(x) + h(x) ≤ 0, Lebesgue-a.e. in intSW ,
∈ R, Lebesgue-a.e. in intSC \B.

(III) If we denote by u′−(c) [resp., u′+(c)] the left-hand (resp., right-hand)
derivative of u at c ∈ B, then

either u′−(c) = 1 and u′+(c) < 1 or u′−(c) > −1 and u′+(c) = −1

for all c ∈ B.

In the following definition, we introduce some terminology we are going to use.

DEFINITION 2. Given a function u satisfying the conditions of Definition 1,
we call the regions W , C and S waiting, control and stopping, respectively. Also,
we call reflecting all finite boundary points x of C such that

u′(x − ε) < 1 and u′(x) = 1 or u′(x) = −1 and u′(x + ε) > −1

for all ε > 0 sufficiently small, and repelling all other finite boundary points of C.

It is worth noting that requirement (III) of Definition 1 implies that all points in
B are repelling. The special case that we solve in Section 5 involves only reflecting
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boundary points. On the other hand, the special case that we solve in Section 6
involves repelling as well as reflecting points and B �= ∅.

4. A verification theorem. Before addressing the main result on this section,
namely Theorem 1, we consider the following result, which is concerned with the
construction of the process ξ∗ that is part of the optimal strategy associated with
a given function satisfying the requirements of Definition 1. The main idea of its
proof is to paste solutions to (1) that are reflecting in appropriate boundary points.

LEMMA 1. Consider a function u :R → R+ that satisfies the conditions of
Definition 1. There exists a controlled process ξ∗ ∈Ac such that

the set
{
t ≥ 0 | X∗

t ∈ B
}

is finite,(16)

X∗
t ∈ R \ intC for all t > 0, u

(
X∗

t+
) − u

(
X∗

t

) = −∣∣�ξ∗
t

∣∣ = −∣∣�X∗
t

∣∣
(17)

for all t ≥ 0,

(
ξ∗c)+

t =
∫ t

0
1{u′(X∗

s )=−1} d
(
ξ∗c)+

s and
(
ξ∗c)−

t =
∫ t

0
1{u′(X∗

s )=1} d
(
ξ∗c)−

s

(18)
for all t ≥ 0,

where X∗ is the associated solution to (1).

PROOF. Given a finite interval [α,β] and a controlled process ξ ∈ Ac, suppose
that there exists a point x̄ ∈ [α,β] and an (Ft )-stopping time τ with P(τ < ∞) >

0 such that the solution to (1) is such that Xτ = x̄ on the event {τ < ∞}. On
the probability space (
,F,Gt ,Q), where (Gt ) is the filtration defined by Gt =
Fτ+t and Q is the conditional probability measure P(· | τ < ∞) that has Radon–
Nikodym derivative with respect to P given by

dQ

dP
= 1

P(τ < ∞)
1{τ<∞},

the process B defined by Bt = (Wτ+t − Wτ)1{τ<∞} is a standard (Gt )-Brownian
motion that is independent of G0 = Fτ ; see Revuz and Yor [20], Exercise IV.3.21.
In this context, there exist (Gt )-adapted continuous processes X̄ and ξ̄ such that ξ̄

is a finite variation process,

X̄t = x̄ +
∫ t

0
b(X̄s) ds + ξ̄t +

∫ t

0
σ(X̄s) dBs,

X̄t ∈ [α,β], ξ̄+
t =

∫ t

0
1{X̄s=α} dξ̄+

s and ξ̄−
t =

∫ t

0
1{X̄s=β} dξ̄−

s ;
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see El Karoui and Chaleyat-Maurel [7] and Schmidt [21]. Since (t − τ)+ is an
(Fτ+t )-stopping time, Gt = Fτ+t and B(t−τ)+ = (Wt − Wτ)1{τ<t} for all t ≥ 0,

X̄(t−τ)+ = x̄ +
∫ (t−τ)+

0
b(X̄s) ds + ξ̄(t−τ)+ +

∫ (t−τ)+

0
σ(X̄s) dBs

= x̄ +
∫ t

0
b(X̄(s−τ)+) d(s − τ)+ + ξ̄(t−τ)+ +

∫ t

0
σ(X̄(s−τ)+) dB(s−τ)+

= x̄ +
∫ t

0
1{τ≤s}b(X̄(s−τ)+) ds + ξ̄(t−τ)+ +

∫ t

0
1{τ≤s}σ(X̄(s−τ)+) dWs;

see Revuz and Yor [20], Propositions V.1.4, V.1.5. Similarly we can see, for exam-
ple, that

ξ̄+
(t−τ)+ =

∫ (t−τ)+

0
1{X̄s=α} dξ̄+

s =
∫ t

0
1{X̄(s−τ)+=α} dξ̄+

(s−τ)+ .

In view of this observation, we can see that, if we define

X̃t =
{

Xt, if t ≤ τ ,
X̄t−τ , if t > τ ,

and ξ̃t =
{

ξt , if t ≤ τ ,
ξ̄t−τ , if t > τ ,

(19)

then X̃ is the solution to (1) that is driven by ξ̃ ∈Ac,

X̃t ∈ [α,β], ξ̃+
t − ξ̃+

τ+ =
∫ t

τ
1{X̃s=α} dξ̃+

s and
(20)

ξ̃−
t − ξ̃−

τ+ =
∫ t

τ
1{X̃s=β} dξ̃−

s

for all t > τ .
Using the same arguments and references, we can show that, given an interval

[α,∞[, a point x̄ ∈ [α,∞[, a controlled process ξ ∈Ac and an (Ft )-stopping time
τ such that the solution to (1) is such that Xτ = x̄ on the event {τ < ∞}, there exist
processes X̃ and ξ̃ ∈Ac satisfying (1) and such that

X̃t = Xt and ξ̃t = ξt for all t ≤ τ,(21)

(22)
X̃t ∈ [α,∞[, ξ̃+

t − ξ̃+
τ+ =

∫ t

τ
1{X̃s=α} dξ̃+

s and ξ̃−
t − ξ̃−

τ+ = 0 for all t > τ.

Similarly, given an interval ]−∞, β], a point x̄ ∈]−∞, β], a controlled process
ξ ∈ Ac and an (Ft )-stopping time τ such that the solution to (1) is such that Xτ = x̄

on the event {τ < ∞}, there exist processes X̃ and ξ̃ ∈ Ac satisfying (1) and such
that

X̃t = Xt and ξ̃t = ξt for all t ≤ τ,(23)

(24)
X̃t ∈]−∞, β], ξ̃+

t − ξ̃+
τ+ = 0 and ξ̃−

t − ξ̃−
τ+ =

∫ t

τ
1{X̃s=β} dξ̃−

s for all t > τ.
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FIG. 1. Illustration of the functions ζ , �, r appearing in the proof of Lemma 1. The vertical solid
lines also demarcate the region C.

Given a function u that satisfies the requirements of Definition 1, we now use
the notation and the terminology introduced by Definitions 1 and 2 to iteratively
construct a process ξ∗ ∈ Ac such that (16)–(18) hold true by means of the construc-
tions above. To this end, we introduce the following notation, which is illustrated
by Figure 1. If intC �= ∅ and x ∈ C, then we recall that we use u′−(x) [resp., u′+(x)]
to denote the left-hand (resp., the right-hand) first derivative of u at x, we define

ζ(x) =
{

sup{y < x | y /∈ C}, if u′−(x) = 1,
inf{y > x | y /∈ C}, if u′+(x) = −1 and u′−(x) < 1,

and we note that ζ(x) ∈ R because u is real-valued. On the other hand, given any
x ∈ R, we define

�(x) = sup{y < x | y ∈ intC} and r(x) = inf{y > x | y ∈ intC},
with the usual conventions that sup∅ = −∞ and inf∅ = ∞. The algorithm that
we now develop terminates after finite iterations because each of the sets C, W is
a finite union of intervals.

STEP 0: Initialization. We consider the following four possibilities that can
happen, depending on the initial condition x of (1):

If intC �= ∅ and x ∈ intC (e.g., see the points x2, x3, x4 in Figure 1), then we
define ξ0

t = ζ(x) − x for all t > 0. If we denote by X0 the corresponding solution
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to (1), and we set τ0 = 0, then X0 has a single jump at time τ0,

u(X0
0+) − u(X0

0) = u(ζ(x)) − u(x) = −|ζ(x) − x| = −|�ξ0
0 |,

if ζ(x) < x, then X0
τ0+ = X0

0+ = ζ(x) = r(ζ(x)) = r(X0
0+) is reflecting

and if x < ζ(x), then X0
τ0+ = X0

0+ = ζ(x) = �(ζ(x)) = �(X0
0+) is reflecting.

In this case, X0 ∈ B if x ∈ B ⊆ C.
If �(x) = −∞ and r(x) = ∞, which is the case if intC = ∅, then we define

ξ0 = 0, we denote by X0 the corresponding solution to (1), and we let τ0 = ∞.
If intC �= ∅, x ∈ R \ intC and either of �(x), r(x) is reflecting (e.g., see the

points x1, x5 in Figure 1), then we define ξ0 = 0, we denote by X0 the correspond-
ing solution to (1), and we set τ0 = 0.

If intC �= ∅, x ∈ R \ intC, and both �(x), r(x) are repelling if finite (e.g., see
the point x6 in Figure 1), then we consider the (Ft )-stopping times

T�(x) = inf
{
t ≥ 0 | X†

t ≤ �(x)
}
, Tr(x) = inf

{
t ≥ 0 | X†

t ≥ r(x)
}
,

where X† is the solution to (1) for ξ = 0, and we set

ξ0
t = [

ζ
(
�(x)

) − �(x)
]
1{T�(x)<Tr(x)∧t} + [

ζ
(
r(x)

) − r(x)
]
1{Tr(x)<T�(x)∧t},

in which expression, we define ζ(�(x))− �(x) [resp., ζ(r(x))− r(x)] arbitrarily if
�(x) = −∞ [resp., r(x) = ∞]. If we denote by X0 the corresponding solution to
(1), and we set τ0 = Tr(x) ∧ T�(x), then X0 has a single jump at the (Ft )-stopping
time τ0,

X0
t ∈ R \ intC and u

(
X0

t+
) − u

(
X0

t

) = −∣∣�ξ0
t

∣∣ for all t ≤ τ0,

on the event {T�(x) < Tr(x)} ∈Fτ0, the point X0
τ0+ = ζ(�(x)) is reflecting

and on the event {Tr(x) < T�(x)} ∈ Fτ0, the point X0
τ0+ = ζ(r(x)) is reflecting.

In this case, we may have X0
τ0

∈ B but X0
τ0+ /∈ B and X0

t /∈ B for all t < τ0.
STEP 1: Induction hypothesis. We assume that we have determined an (Ft )-

stopping time τj , and we have constructed a process ξj ∈ Ac such that, if we
denote by Xj the associated solution to (1), then (16)–(18) are satisfied for ξj , Xj

in place of ξ∗, X∗ and for all t ≤ τj instead of all positive t . Also, we assume that,
if P(τj < ∞) > 0, then one of the following two possibilities occur:

(I) there exists a point xj such that X
j
τj = xj on the event {τj < ∞};

(II) there exist points x
j
1 , x

j
2 ∈ R and events A

j
1,A

j
2 ∈ Fτj

forming a partition

of {τj < ∞} such that P(A
j
k) > 0, X

j
τj+ = x

j
k on the event A

j
k and at least one of

�(x
j
k ), r(x

j
k ) is finite and reflecting, for k = 1,2.

Step 0 provides such a construction for j = 0. In particular, the last possibility
there gives rise to Case (II) for

A0
1 = {T�(x) < Tr(x)}, A0

2 = {Tr(x) < T�(x)},
x0

1 = ζ
(
�(x)

)
and x0

2 = ζ
(
r(x)

)
.
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On the other hand, the second possibility there is such that P(τj < ∞) = 0, while
the remaining two possibilities give rise to Case (I).

STEP 2. If P(τj < ∞) = 0, then define ξ∗ = ξj , X∗ = Xj and stop. Otherwise,
we proceed to the next step.

STEP 3. We address the situation arising in the context of Case (II) of Step 1; the
analysis regarding Case (I) is simpler and follows exactly the same steps. To this
end, we first consider the (Ft )-stopping time τ̂ = τj 1

A
j
1
+∞1

A
j
2
, and we note that

X
j

τ̂
= x

j
1 on the event {τ̂ < ∞}. We are faced with the following possible cases.

If both of �(x
j
1 ), r(x

j
1 ) are finite and reflecting, then we appeal to the construc-

tion associated with (19)–(20) for ξ = ξj , X = Xj , x̄ = x
j
1 and τ = τ̂ to obtain

processes ξ̃ , X̃ that are equal to ξj , Xj up to time τ̂ and satisfy (20) for all t > τ̂ .
We then define

ξj+1 = ξ̃ , Xj+1 = X̃ and τj+1 = ∞1
A

j
1
+ τj 1

A
j
2
.

The result of this construction is such that X
j+1
τj+1+ = x

j
2 on the event {τj+1 < ∞} =

A
j
2, which puts us in the context of Case (I) of Step 1.

If �(x
j
1 ) is finite and reflecting and r(x

j
1 ) = ∞ [resp., �(x

j
1 ) = −∞ and r(x

j
1 )

is finite and reflecting], then we proceed in the same way using the construction
associated with (21)–(22) [resp., (23)–(24)].

If �(x
j
1 ) is finite and reflecting and r(x

j
1 ) is finite and repelling, then we consider

(21)–(22) and, as above, we construct processes ξ̃ , X̃ that are equal to ξj , Xj up
to time τ̂ and satisfy (22) for all t > τ̂ . We then consider the (Ft )-stopping time
τ̂ † and the process ξj+1 ∈ Ac given by

τ̂ † = inf
{
t ≥ τ̂ | X̃t ≥ r

(
x

j
1

)}
and

ξ
j+1
t =

{
ξ̃t , if t ≤ τ̂ †,
ξ̃τ̂ † + ζ

(
r
(
x

j
1

)) − r
(
x

j
1

)
, if t > τ̂ †,

we denote by Xj+1 the associated solution to (1), and we define

τj+1 = τ̂ †1
A

j
1
+ τj 1

A
j
2
, A

j+1
1 = {

τ̂ † < ∞}
, A

j+1
2 = A

j
2,

x
j+1
i = ζ

(
r
(
x

j
1

))
and x

j+1
2 = x

j
2 .

In this case, we may have Xτj+1 ∈ B but Xτj+1+ /∈ B and Xt /∈ B for all t ∈
]τj , τj+1[.

Finally, if �(x
j
1 ) is finite and repelling, and r(x

j
1 ) is finite and reflecting, then we

are faced with a construction that is symmetric to the very last one using (23)–(24).
STEP 4. Go back to Step 2. �

We now prove the main result of the section. It is worth noting that we can relax
significantly assumptions (27)–(28). However, we have opted against any such re-
laxation because (a) this would require a considerable amount of extra arguments
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of a technical nature that would obscure the main ideas of the proof, and (b) (27)–
(28) are plainly satisfied in the special cases that we explicitly solve in Sections 5
and 6.

THEOREM 1. Consider a function u :R → R+ that satisfies the conditions of
Definition 1, let ξ∗ ∈ Ac be the control strategy constructed in Lemma 1, let X∗ be
the associated solution to (1) and define

v(y) = max
{
u(y), g(y)

}
and w(y) = u(y) for y ∈ R.(25)

Also, given any ξ ∈ Ac, define

τ ∗
v = τ ∗

v (ξ) = inf{t ≥ 0 | Xt ∈ S}, τ ∗
w = τ ∗

w(ξ) = inf{t ≥ 0 | Xt+ ∈ S},(26)

where X is the associated solution to (1), and note that τ ∗
v ∨ τ ∗

w = τ ∗
w . In this

context, the following statements are true:

(I) J v
x (ξ∗, τ ) ≤ v(x) and Jw

x (ξ∗, τ ) ≤ w(x) for all τ ∈ As and all initial con-
ditions of (1).

(II) v(x) = J v
x (ξ∗, τ ∗

v ) and w(x) = Jw
x (ξ∗, τ ∗

w) for every initial condition x of
(1) such that

sup
t≥0

u
(
X∗

t

) ≤ K1(27)

for some constant K1 = K1(x).
(III) If there exists a constant K2 such that

u(y) ≤ K2 for all y ∈ R \ S,(28)

then v(x) ≤ J v
x (ξ, τ ∗

v ) and w(x) ≤ Jw
x (ξ, τ ∗

w) for every initial condition x of (1).
(IV) If u satisfies (28), then (ξ∗, τ ∗

v ) [resp., (ξ∗, τ ∗
w)] is an optimal strategy for

the game with performance criterion given by (2) [resp., (3)] and v and w are the
value functions of the two games.

PROOF. Given a function u satisfying the conditions of Definition 1, we de-
note by u′′ the unique, Lebesgue-a.e., first derivative of u′ in R \B, and we define
u′′(x), u′(x) arbitrarily for x in the finite set B. In view of (16), we can use Itô’s
formula and the integration by parts formula to calculate

e−�T u
(
X∗

T

) = u(x) +
∫ T

0
e−�tLu

(
X∗

t

)
dt +

∫
[0,T [

e−�t u′(X∗
t

)
dξt

+ ∑
0≤t<T

e−�t
[
u
(
X∗

t+
) − u

(
X∗

t

) − u′(X∗
t

)
�X∗

t

] + M∗
T ,

where

M∗
T =

∫ T

0
e−�t σ

(
X∗

t

)
u′(X∗

t

)
dWt .(29)
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Rearranging terms and using (17)–(18), we obtain∫ T

0
e−�t h

(
X∗

t

)
dt +

∫
[0,T [

e−�t dξ̌∗
t + e−�T u

(
X∗

T

)

= u(x) +
∫ T

0
e−�t

[
Lu

(
X∗

t

) + h
(
X∗

t

)]
dt +

∫ T

0
e−�t

[
1 + u′(X∗

t

)]
d
(
ξ∗c)+

t

+
∫ T

0
e−�t

[
1 − u′(X∗

t

)]
d
(
ξ∗c)−

t

+ ∑
0≤t<T

e−�t
[
u
(
X∗

t+
) − u

(
X∗

t

) + ∣∣�X∗
t

∣∣] + M∗
T

= u(x) +
∫ T

0
e−�t

[
Lu

(
X∗

t

) + h
(
X∗

t

)]
dt + M∗

T .

It follows that, given any finite (Ft )-stopping time τ̂ ,∫ τ̂

0
e−�t h

(
X∗

t

)
dt +

∫
[0,τ̂ [

e−�t dξ̌∗
t + e−�τ̂ g

(
X∗

τ̂

)

= u(x) + e−�τ̂
[
g
(
X∗

τ̂

) − u
(
X∗

τ̂

)] +
∫ τ̂

0
e−�t

[
Lu

(
X∗

t

) + h
(
X∗

t

)]
dt + M∗

τ̂

(30)
= u(x)1{0<τ̂ } + e−�τ̂

[
g
(
X∗

τ̂

) − u
(
X∗

τ̂

)]
1{0<τ̂ } + g(x)1{τ̂=0}

+
∫ τ̂

0
e−�t

[
Lu

(
X∗

t

) + h
(
X∗

t

)]
dt + M∗

τ̂ .

Similarly, we can calculate∫ τ̂

0
e−�t h

(
X∗

t

)
dt +

∫
[0,τ̂ ]

e−�t dξ̌∗
t + e−�τ̂ g

(
X∗

τ̂+
)

= u(x) + e−�τ̂
[
g
(
X∗

τ̂+
) − u

(
X∗

τ̂+
)]

(31)

+
∫ τ̂

0
e−�t

[
Lu

(
X∗

t

) + h
(
X∗

t

)]
dt + M∗

τ̂ .

Combining (30) with (17) and the facts that 0 ≤ g(x) ≤ u(x) for all x ∈ R \C =
int(W ∪SW) and Lu(x)+h(x) ≤ 0 Lebesgue-a.e. in R \C, we can see that, given
any T > 0 and any (Ft )-stopping time τ ,∫ T ∧τ

0
e−�t h

(
X∗

t

)
dt +

∫
[0,T ∧τ [

e−�t dξ̌∗
t + e−�τ g

(
X∗

τ

)
1{τ≤T }

(32)
≤ u(x)1{0<τ } + g(x)1{τ=0} + M∗

T ∧τ ≤ v(x) + M∗
T ∧τ ,

the last inequality following thanks to (25). These inequalities and the positivity of
h, g imply that the stopped process M∗τ is a supermartingale and E[M∗

T ∧τ ] ≤ 0.
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Therefore, we can take expectations in (32) and pass to the limit T → ∞ using
Fatou’s lemma to obtain the inequality J v

x (ξ∗, τ ) ≤ max{u(x), g(x)} = v(x). With
reasoning similar to (31), we derive the inequality Jw

x (ξ∗, τ ) ≤ u(x) = w(x), and
(I) follows.

To prove (II), we consider the (Ft )-stopping time τ ∗
v defined by (26) with X∗

instead of X, and we note that

X∗
t ∈ clW = R \ int(C ∪ S) for all 0 < t ≤ τ ∗

v .

Combining this observation and the definition of τ ∗
v with the facts that g(x) ≤

u(x) = v(x) for all x ∈W and v(x) = g(x) for all x ∈ S , we can see that

u
(
X∗

τ∗
v

)
1{τ∗

v >0} = g
(
X∗

τ∗
v

)
1{τ∗

v >0},
v(x)1{τ∗

v =0} = g(x)1{τ∗
v =0} and v(x)1{τ∗

v >0} = u(x)1{τ∗
v >0}.

In view of these observations, (30) and the fact that Lu(x) + h(x) = 0 Lebesgue-
a.e. in W , we can see that, given any T > 0,∫ T ∧τ∗

v

0
e−�t h

(
X∗

t

)
dt +

∫
[0,T ∧τ∗

v [
e−�t dξ̌∗

t + e
−�τ∗

v g
(
X∗

τ∗
v

)
1{τ∗

v ≤T }

+ e−�T u
(
X∗

T

)
1{T <τ∗

v }

= u(x)1{0<τ∗
v } + e

−�τ∗
v
[
g
(
X∗

τ∗
v

) − u
(
X∗

τ∗
v

)]
1{0<τ∗

v ≤T } + g(x)1{τ∗
v =0}

+ M∗
T ∧τ∗

v

= v(x) + M∗
T ∧τ∗

v
.

If we denote by (�n) a localizing sequence for the stopped local martingale M∗τ∗
v

such that �n > 0 for all n ≥ 1, then we can see that these identities imply that

E

[∫ �n∧τ∗
v

0
e−�t h

(
X∗

t

)
dt +

∫
[0,�n∧τ∗

v [
e−�t dξ̌∗

t + e
−�τ∗

v g
(
X∗

τ∗
v

)
1{τ∗

v ≤�n}

+ e−��n u
(
X∗

�n

)
1{�n<τ∗}

]
= v(x).

In view of (27) and Assumption 2, we can pass to the limit as n → ∞ using
the monotone and the dominated convergence theorems to obtain J v

x (ξ∗, τ ∗) =
max{u(x), g(x)} = v(x).

We can use (31) and the observations that

X∗
t ∈ clW = R \ int(C ∪ S) for all 0 < t ≤ τ ∗

w and u
(
X∗

τ∗
w+

) = g
(
X∗

τ∗
w+

)
to show that Jw

x (ξ∗, τ ∗) = u(x) = w(x) similarly.
To establish Part (III), we consider any admissible ξ ∈ Ac and we note that (30)

remains true with ξ , X instead of ξ∗, X∗ if τ̂ is replaced by τ̂ ∧ τ ∗
v because B ⊆ S .

Also, we note that

Xt ∈ R \ S = (W ∪ C) \ S for all t < τ ∗
v .(33)
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In view of the facts that g(x) ≤ u(x) = v(x) for all x ∈ R \ S and u(x) ≤ g(x) =
v(x) for all x ∈ S , we can see that this observation and the definition of τ ∗

v imply
that

u(Xτ∗
v
)1{τ∗

v >0} ≤ g(Xτ∗
v
)1{τ∗

v >0},
v(x)1{τ∗

v =0} = g(x)1{τ∗
v =0} and v(x)1{τ∗

v >0} = u(x)1{τ∗
v >0}.

Combining these observations with the fact that Lu(x) + h(x) ≥ 0 Lebesgue-a.e.
inside int[(W ∪ C) \ S], we can see that (30) implies that, given any T > 0,∫ T ∧τ∗

v

0
e−�t h(Xt) dt +

∫
[0,T ∧τ∗

v [
e−�t dξ̌t + e

−�τ∗
v g(Xτ∗

v
)1{τ∗

v ≤T }

+ e−�T u(XT )1{T <τ∗
v }

≥ u(x)1{0<τ∗
v } + e

−�τ∗
v
[
g(Xτ∗

v
) − u(Xτ∗

v
)
]
1{0<τ∗

v ≤T } + g(x)1{τ∗
v =0}

+ MT ∧τ∗
v

≥ v(x) + MT ∧τ∗
v
,

where M is defined as in (29). If (�n) is a localizing sequence for the stopped local
martingale Mτ∗

v such that �n > 0 for all n ≥ 1, then these inequalities imply that

E

[∫ �n∧τ∗
v

0
e−�t h(Xt) dt +

∫
[0,�n∧τ∗

v [
e−�t dξ̌t + e

−�τ∗
v g(Xτ∗

v
)1{τ∗

v ≤�n}

+ e−��n u
(
X∗

�n

)
1{�n<τ∗}

]
≥ v(x).

In view of (28) and Assumption 2, we can pass to the limit as n → ∞ using
the monotone and the dominated convergence theorems to obtain J v

x (ξ, τ ∗) ≥
max{u(x), g(x)} = v(x).

In general, the inequality τ ∗
v ≤ τ ∗

w may be strict because, for example, we may
have x ∈ S and x + �ξ0 ∈ R \ S . In such a case, the set {t ∈ [0, τ ∗

w[ | Xt ∈ B} may
not be empty, but it is finite. Therefore, we can use Itô’s formula to derive (30)
with ξ , X instead of ξ∗, X∗ and with τ̂ ∧ τ ∗

v replacing τ̂ . Combining this result
with the observations that

Xt ∈ cl(R \ S) for all 0 < t < τ ∗
w and u(Xτ∗

w+) ≤ g(Xτ∗
w+),

we can derive the inequality Jw
x (ξ, τ ∗) ≥ u(x) = w(x) as above.

Finally, Part (IV) follows immediately from Parts (I)–(III). �

REMARK 1. An inspection of the proof of Theorem 1 reveals that the optimal
strategy (ξ∗, τ ∗

w) of the game where the controller has the first-move advantage
is highly nonunique. Indeed, in the presence of (28), (ξ∗, τ̃ ∗

w), where τ̃ ∗
w is any

(Ft )-stopping time such that X∗
τ̃∗
w+1{τ̃∗

w<∞} ∈ S , in particular, (ξ∗,∞), is also an
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optimal strategy. It is worth noting that a similar observation cannot be made for
the game where the stopper has the first-move advantage. Both of the special cases
considered in the following two sections provide cases illustrating this situation;
see Propositions 4, 5, 7 and 8.

5. The explicit solution to a special case with quadratic reward functions.
We now derive the explicit solution to the special case of the general problem that
arises when

b(x) = 0, σ (x) = 1, δ̄(x) = δ, h(x) = κx2 + μ and

g(x) = λx2 for all x ∈ R,

for some constants δ, κ, λ > 0 and μ ≥ 0. In our analysis, we exploit the symmetry
around the origin that the problem has, we consider only sets � ⊆ R such that
{−x | x ∈ �} = � and we denote �+ = � ∩[0,∞[. Also, we recall that the general
solution to the ODE

Lf (x) + h(x) ≡ 1
2f ′′(x) − δf (x) + κx2 + μ = 0

is given by

f (x) = A cosh
√

2δx + B sinh
√

2δx + κ

δ
x2 + κ + δμ

δ2

for some constants A,B ∈R.
In the special case that we consider in this section, the controller should exert

effort to keep the state process close to the origin. On the other hand, the stopper
should terminate the game if the state process is sufficiently far from the origin. In
view of these observations, we derive optimal strategies by considering functions
satisfying the requirements of Definition 1 that are associated with the regions

S+ = [α,∞[, C+ = [β,∞[ and W+ = [0, α ∧ β[(34)

for some constants α,β > 0; see Definition 1. In particular, we derive three qual-
itatively different cases that are characterized by the relations β < α, α < β or
α = β , depending on parameter values; see Figures 2–4 as well as Remark 2.

In this context, Theorem 1 implies that the associated optimal strategies can
be described informally as follows. The controlled process ξ∗ has an initial jump
equal to −(x + β) [resp., −(x − β)] if the initial condition x of (1) is such that
x < −β (resp., x > β). Beyond time 0, ξ∗ is such that the associated solution to
(1) is reflecting in −β in the positive direction and in β in the negative direction.
On the other hand, the optimal stopping times τ ∗

v , τ ∗
w are the first hitting times of

S as defined by (26). In view of these observations, we focus on the construction
of the function u satisfying the requirements of Definition 1 in what follows.

In the first case that we consider, u identifies with the value function of the
singular stochastic control problem that arises if the stopper never terminates the
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FIG. 2. The functions v and w in the context of Proposition 2 (β < α).

game (see Figure 2). In particular, we look for a solution to the variational inequal-
ity

min
{1

2u′′(x) − δu(x) + κx2 + μ,1 − ∣∣u′(x)
∣∣} = 0(35)

of the form

u(x) =
⎧⎨
⎩A cosh

√
2δx + κ

δ
x2 + κ + δμ

δ2 , if |x| ≤ β,

x − β + u(β), if |x| > β.
(36)

The requirement that u should be C2 along the free-boundary point β , which is as-
sociated with the so-called “principle of smooth fit” of singular stochastic control,
implies that the parameter A should be given by

A = − κ

δ2 cosh
√

2δβ
,(37)

while β > 0 should satisfy

tanh
√

2δβ = δ(2κβ − δ)

κ
√

2δ
.(38)

We also define α > 0 to be the unique solution to the equation

u(α) = λα2.(39)

We prove the following result, as well as the other ones we consider in this
section, in Appendix I.
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FIG. 3. The functions v and w in the context of Proposition 3 (α < β = 1
2λ

).

PROPOSITION 2. Equation (38) has a unique solution β > 0, which is strictly
greater than δ

2κ
, while equation (39) has a unique solution α > 0. Furthermore,

α > β if and only if

δλ − κ < 0 or δλ − κ = 0 and μ > 0
(40)

or δλ − κ > 0 and tanh

√
2δμ

δλ − κ
<

√
2δμ

δλ − κ
− δ2

κ
√

2δ
,

in which case, α > 1
2λ

and the function u defined by (36) for A < 0, given by (37),
satisfies the conditions of Definition 1; see Figure 2 for a depiction of the value
functions v and w.

We next consider the possibility that the value function of the game where the
stopper has the “first-move advantage” identifies with the value function of the
optimal stopping problem that arises if the controller never acts; see Figure 3. In
this case, we look for a solution to the variational inequality

max
{1

2v′′(x) − δv(x) + κx2 + μ,λx2 − v(x)
} = 0

of the form

v(x) =
⎧⎨
⎩A cosh

√
2δx + κ

δ
x2 + κ + δμ

δ2 , if |x| ≤ α,

λx2, if |x| > α.
(41)

The requirement that v should be C1 along the free-boundary point α, which is
associated with the so-called “principle of smooth fit” of optimal stopping, implies
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that the parameter A should be given by

A = δ(δλ − κ)α2 − (κ + δμ)

δ2 cosh
√

2δα
,(42)

while α > 0 should satisfy

tanh
√

2δα =
√

2δ(δλ − κ)α

δ(δλ − κ)α2 − (κ + δμ)
.(43)

In this context, the function u defined by

u(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

A cosh
√

2δx + κ

δ
x2 + κ + δμ

δ2 , if |x| ≤ α,

λx2, if |x| ∈
]
α,

1

2λ

]
,

1

4λ
, if |x| > 1

2λ
,

(44)

provides an appropriate choice for a function satisfying the requirements of Defi-
nition 1 as long as α < 1

2λ
.

PROPOSITION 3. Suppose that δλ − κ > 0. Equation (43) has a unique solu-

tion α > 0, which is strictly greater than
√

κ+δμ
δ(δλ−κ)

. This solution is less than or
equal to 1

2λ
if and only if

1

2λ
>

√
κ + δμ

δ(δλ − κ)
and tanh

√
2δ

2λ
≥

√
2δ(δλ − κ)λ

δ(δλ − κ) − 4(κ + δμ)λ2 ,(45)

in which case, the function u defined by (44) for A > 0, given by (42), satisfies the
requirements of Definition 1; see Figure 3 for a depiction of the value functions v

and w.

The third case that we consider “bridges” the previous two and is characterized
by the fact that the free-boundary points α, β may coincide in a generic way. In
particular, we look for a function u satisfying the requirements of Definition 1 that
is given by

u(x) =
⎧⎨
⎩A cosh

√
2δx + κ

δ
x2 + κ + δμ

δ2 , if |x| ≤ α,

x − α + u(α), if |x| > α,
(46)

for some α > 0, and satisfies

u(α) = λα2;(47)

see Figure 4. The requirements that u should satisfy (47) and be C1 at α imply that
the parameter A should be given by

A = δ(δλ − κ)α2 − (κ + δμ)

δ2 cosh
√

2δα
,(48)
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FIG. 4. The functions v and w in the context of Propositions 4 and 5 (α = β).

while the free-boundary point α > 0 should satisfy

tanh
√

2δα = δ(δ − 2κα)√
2δ[δ(δλ − κ)α2 − (κ + δμ)] .(49)

PROPOSITION 4. Suppose that δλ− κ > 0 and
√

κ+δμ
δ(δλ−κ)

�= δ
2κ

. Equation (49)
has a unique solution α > 0 such that

if
δ

2κ
<

√
κ + δμ

δ(δλ − κ)
, then

1

2λ
<

δ

2κ
< α <

√
κ + δμ

δ(δλ − κ)
,(50)

while

if

√
κ + δμ

δ(δλ − κ)
<

δ

2κ
, then

√
κ + δμ

δ(δλ − κ)
< α <

δ

2κ
.(51)

If the parameters are such that (50) is true, then the function u defined by (46) for
A < 0, given by (48), satisfies the conditions of Definition 1 if and only if

tanh

√
2δμ

δλ − κ
≥

√
2δμ

δλ − κ
− δ2

κ
√

2δ
.(52)

On the other hand, if the parameters are such that (51) is true, then 1
2λ

< α if and
only if

1

2λ
≤

√
κ + δμ

δ(δλ − κ)
or(53)
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1

2λ
>

√
κ + δμ

δ(δλ − κ)
and tanh

√
2δ

2λ
<

√
2δ(δλ − κ)λ

δ(δλ − κ) − 4(κ + δμ)λ2 ,

in which case, the function u defined by (46) for A > 0, given by (48), satisfies
the conditions of Definition 1; see Figure 4 for a depiction of the value functions v

and w.

The results that we have established thus far involve mutually exclusive condi-
tions on the problem data. To exhaust all possible parameter values, we need to
consider the following result that is associated with the regions

B = SW =∅, C+ = S+
C =

[
δ

2κ
,∞

[
and W+ =

[
0,

δ

2κ

[
,(54)

which are consistent with (34) for α = β = δ
2κ

, and the proof of which is straight-
forward.

PROPOSITION 5. Suppose that δλ − κ > 0 and
√

κ+δμ
δ(δλ−κ)

= δ
2κ

. The function
u defined by

u(x) =

⎧⎪⎪⎨
⎪⎪⎩

κ

δ
x2 + κ + δμ

δ2 , if |x| ≤ δ

2κ
,

x − δ

2κ
+ λδ2

4κ2 , if |x| > δ

2κ
,

(55)

is a C1 function that satisfies the requirements of Definition 1.

REMARK 2. Suppose that δλ− κ > 0. The conditions differentiating between
the different cases we have considered are mutually exclusive and exhaustive in
the sense that they cover the entire range of possible parameter values. To see this
claim, we define

Q1 =
√

2δμ

δλ − κ
− δ2

κ
√

2δ
, Q2 =

√
κ + δμ

δ(δλ − κ)

and

Q3 =
√

2δ(δλ − κ)λ

δ(δλ − κ) − 4(κ + δμ)λ2 = 2λ√
2δ(1 − 4λ2Q2

2)
.(56)

In view of the implications

Q1 > 0 ⇒ δ

2κ
< Q2 and Q2 <

1

2λ
⇔ 0 < Q3,

we can see that the following table summarizes the conditions of Propositions 2,
3, 4 and 5:
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Proposition 2 (β < α) tanh
√

2δμ
δλ−κ

< Q1

Proposition 3 (α < β = 1
2λ

) 1
2λ

> Q2 and tanh
√

2δ
2λ

> Q3

Propositions 4, 5 (β = α) δ
2κ

< Q2 and tanh
√

2δμ
δλ−κ

> Q1

or 1
2λ

≤ Q2

or 1
2λ

> Q2 and tanh
√

2δ
2λ

< Q3

For instance, if

δ = 4, κ = 1, λ = 1
2 and μ = 9,

then Q1 = 2
√

2, and we are in the context of Proposition 2 if

δ = 2, κ = 1
100 , λ = 1

2 and μ = 0,

then 1
2λ

= 1 > 1√
198

= Q2, tanh
√

2δ
2λ

� 0.9640 > 0.5025 � 99
197 = Q3, and we are

in the context of Proposition 3 if

δ = 2, κ = 199
300 , λ = 1

2 and μ = 0,

then 1
2λ

= 1 >
√

199
202 = Q2, tanh

√
2δ

2λ
= tanh 2 < 101

3 = Q3, and we are in the con-
text of Proposition 4, while if

δ = 1
2 , κ = 1

8 , λ = 1
2 and μ = 0,

then 1
2λ

= 1 <
√

2 = Q2, and we are again in the context of Proposition 4.

6. A special case with value functions that are not C1. We now solve the
special case of the general problem that arises when

b ≡ 0, σ ≡ 1, δ̄ ≡ δ, h ≡ 0 and

g(x) =
{−λx2 + λ, if |x| ∈ [0,1],

0, if |x| > 1,

for some constants δ, λ > 0. In this context, the controller has no incentive to exert
any control action other than to counter the stopper’s action because h ≡ 0. We
therefore solve the problem by first viewing the game from the stopper’s perspec-
tive. Also, we exploit the problem’s symmetry around the origin in the same way
as in the previous section.

We first consider the possibility that a function u satisfying the requirements of
Definition 1 identifies with the value function of the optimal stopping problem that
arises if the controller never takes any action. To this end, we look for a solution
to the variational inequality

max
{1

2u′′(x) − δu(x),−λx2 + λ − u(x)
} = 0
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FIG. 5. The functions v and w in the context of Proposition 6.

of the form

u(x) =
{

−λx2 + λ, if |x| ≤ α,

Ae−√
2δx, if |x| > α,

(57)

for some constants A and α ∈]0,1[. A function of this form is associated with the
regions

B = C = SC = ∅, S+
W = [0, α] and W+ =]α,∞[,(58)

and is depicted by Figure 5. To determine the constant A and the free-boundary
point α, we appeal to the so-called “principle of smooth-fit” of optimal stopping.
We therefore require that u is C1 at −α and α to obtain

A = λ
(
1 − α2)

e
√

2δα and α = − 1√
2δ

+
√

1

2δ
+ 1.(59)

In this case, Theorem 1 implies that the associated optimal strategy can be de-
scribed informally as follows. The controller should never act (i.e., ξ∗ = 0), while
the stopper should terminate the game as soon as the state process takes values in
S = [−α,α] (i.e., τ ∗

v = τ ∗
u is the first hitting time of [−α,α]).

We prove the following result, as well as the other ones we consider in this
section, in Appendix II.

PROPOSITION 6. The function u defined by (57) for A > 0, α ∈]0,1[ given by
(59) satisfies the requirements of Definition 1 if and only if

α ≤ 1

2λ
⇔ λ ≤ 1

2

(
− 1√

2δ
+

√
1

2δ
+ 1

)−1

;(60)
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FIG. 6. The functions v and w in the context of Proposition 7.

see Figure 5 for a depiction of the value functions v and w.

If the problem data is such that (60) is not true, then we consider the possibility
that an optimal strategy is characterized by a function u satisfying the requirements
of Definition 1 that is associated with the regions

B+ = {β}, S+
W = [0, β], C+ = S+

C = [β,α] and
(61)

W+ = ]α,∞[
for some 0 ≤ β < α < 1, and is depicted by Figure 6. In particular, we consider
the function

u(x) =
⎧⎪⎨
⎪⎩

−λx2 + λ, if |x| ≤ β,
−x − λα2 + α + λ, if |x| ∈ ]β,α],
Ae−√

2δx, if |x| > α.

(62)

The requirement that u should be continuous at β yields

λβ2 − β = λα2 − α,(63)

while, the requirement that u should be C1 along −α, α, implies that

A = λ
(
1 − α2)

e
√

2δα and α =
√

1 − 1

λ
√

2δ
.(64)

In view of Theorem 1, we can describe informally the associated optimal strat-
egy as follows. If the initial condition x of (1) belongs to ]−β,β[, then the con-
troller should wait until the uncontrolled state process hits {−β,β}, at which time,
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FIG. 7. The functions v and w in the context of Proposition 8.

the controller should apply an impulse to instantaneously reposition the state pro-
cess at −α or α, whichever point is closest. As soon as the state process takes
values in ]−∞,−α] (resp., [α,∞[), the controller should exert minimal effort to
reflect the state process in −α in the negative direction (resp., in α in the positive
direction). On the other hand, the stopper should terminate the game as soon as the
state process takes values in S = [−α,α].

PROPOSITION 7. The point α defined by (64) is strictly greater than 1
2λ

, and
there exists β ∈ [0, α[ satisfying (63) if and only if

1

2

(
− 1√

2δ
+

√
1

2δ
+ 1

)−1

< λ ≤
(
− 1√

2δ
+

√
1

8δ
+ 1

)−1

,(65)

in which case, β < 1
2λ

. If the problem data satisfy these inequalities, then the func-
tion u defined by (62), for A > 0, α ∈]0,1[ given by (64), satisfies the conditions
of Definition 1; see Figure 6 for a depiction of the value functions v and w.

The final possibility that may arise is associated with the regions

B = {0}, SW =∅, C+ = S+
C = [0, α] and W+ =]α,∞[(66)

for some α ∈]0,1[, and is depicted by Figure 7. In this case, a function u satisfying
the requirements of Definition 1 is given by

u(x) =
{

−x − λα2 + α + λ, if |x| ∈ [0, α],
Ae−√

2δx, if |x| > α.
(67)
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The constant A and the free-boundary point α are characterized by the requirement
that u should be C1 along −α, α, and are given by (64).

In this case, Theorem 1 implies that the associated optimal strategy can be de-
scribed informally as follows. The controlled process ξ∗ has an initial jump equal
to −(x+α) [resp., −(x−α)] if the initial condition x of (1) is such that x ∈]−α,0]
(resp., x ∈]0, α]). Beyond time 0, ξ∗ is such that the associated solution to (1) is
reflecting in −α in the negative direction if X∗

0+ ≤ −α and in α in the positive di-
rection if X∗

0+ ≥ α. On the other hand, the stopping time τ ∗
v = τ ∗

v is the first hitting
time of S = [−α,α].

PROPOSITION 8. The function u defined by (62) for A > 0, α ∈]0,1[ given by
(64) satisfies the conditions of Definition 1 if and only if

(
− 1√

2δ
+

√
1

8δ
+ 1

)−1

< λ;(68)

see Figure 7 for a depiction of the value functions v and w.

APPENDIX I: PROOFS OF RESULTS IN SECTION 5

PROOF OF PROPOSITION 2. It is straightforward to see that equation (38)
has a unique solution β > 0 and that this solution is strictly greater than δ

2κ
. In

particular, we can verify that

tanh
√

2δx − δ(2κx − δ)

κ
√

2δ

{
> 0, for all x ∈ [0, β[,
< 0, for all x ∈]β,∞[.(69)

For this value of β and for A < 0 given by (37), the function u defined by (36) is
C2 and satisfies the variational inequality (35) because∣∣u′(x)

∣∣ ≤ 1 for all |x| ∈ [0, β],(70)

Lu(x) + h(x) ≡ 1
2u′′(x) − δu(x) + κx2 + μ

(71)
≥ 0 for all |x| ∈ [β,∞[.

To see (70), we first note that u′′′(x) = (2δ)3/2A sinh
√

2δx < 0 for all x ∈ [0, β[,
which implies that the restriction of u′′ in [0, β] is strictly decreasing. Combining
this observation with the identities

u′′(0) = 2κ

δ

(
1 − 1

cosh
√

2δβ

)
> 0 and u′′(β) = 0,

we can see that u′′(x) > 0 for all x ∈ [0, β[. It follows that u is an even convex
function, which, combined with the identities u′(0) = 0 and u′(β) = 1, implies
(70).
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To prove (71), it suffices to show that

f0(x) ≥ 0 for all x ≥ β,(72)

where

f0(x) = 1
2u′′(x) − δu(x) + κx2 + μ = κx2 − δx + δβ − δu(β) + μ.

The definition and the C2 continuity of u imply that f0(β) = 0, for x ≥ 0. Com-
bining this observation with the inequality f ′

0(x) = 2κ(x − δ
2κ

) > 0 for all x ≥ β ,
which follows from the fact that β > δ

2κ
, we can see that (72) is true.

To see that equation (39) has a unique solution α > 0, we define f1(x) = λx2 −
u(x). In view of the calculations

f ′′′
1 (x) = −(2δ)3/2A sinh

√
2δx > 0 for x < β and

f ′′
1 (x) = 2λx > 0 for x > β,

we can see that either f1 is convex, or there exists x1 ∈]0, β[ such that f ′′
1 (x) < 0

for all x < x1 and f ′′
1 (x) > 0 for all x > x1. In the first case, f ′

1(x) > 0 for all
x > 0, while, in the second case, there exists x2 > x1 such that f ′

1(x) < 0 for all
x ∈]0, x2[ and f ′

1(x) > 0 for all x > x2 because f ′
1(0) = 0. In either case, we can

see that the equation f1(x) = 0 has a unique solution α > 0 because

f1(0) = − κ

δ2

(
1 − 1

cosh
√

2δβ

)
− μ

δ
< 0 and lim

x→∞f1(x) = ∞.

To show that the point α defined by (39) is strictly greater than β if and only if
(40) is true, we note that the linearity of u in [β,∞[ implies that there exists α > β

such that (39) is true if and only if u(β) > λβ2. In particular, if such α exists, then
α > 1

2λ
. Using the definition (36) of u, we calculate

u(x) − λx2 = κ

δ2

(
1 − cosh

√
2δx

cosh
√

2δβ

)
− δλ − κ

δ
x2 + μ

δ
for |x| ≤ β.

If δλ − κ < 0, then this identity implies trivially that

u(x) > λx2 for all |x| ≤ β.(73)

Similarly, if δλ−κ = 0 and μ > 0, then (73) is true. On the other hand, if δλ−κ >

0, then (73) is true if and only if β <
√

μ
δλ−κ

because the function x �→ u(x)−λx2

is strictly decreasing in [0, β]. Therefore, if δλ − κ ≥ 0, then (73) is true if and
only if the very last inequality in (40) holds true, thanks to (69). It follows that the
equation u(x) = λx2 has a unique solution α > β ∨ 1

2λ
if and only if (40) is true.

Finally, it is straightforward to check that, if (40) is true, then u is associated
with the regions B = SW = ∅, C+ = [β,∞[, S+

C = [α,∞[ and W+ = [0, β[, and
satisfies all of the conditions required by Definition 1. �
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PROOF OF PROPOSITION 3. The calculation

d

dα

α

δ(δλ − κ)α2 − (κ + δμ)
= − δ(δλ − κ)α2 + κ + δμ

[δ(δλ − κ)α2 − (κ + δμ)]2 < 0

implies that the right-hand side of (43) defines a strictly decreasing function on
R+ \ {

√
κ+δμ

δ(δλ−κ)
}. Combining this observation with the fact that tanh is a strictly

increasing function, we can see that (43) has a unique solution α > 0 and that this

solution is strictly greater than
√

κ+δμ
δ(δλ−κ)

. In particular, we can see that

tanh
√

2δx −
√

2δ(δλ − κ)x

δ(δλ − κ)x2 − (κ + δμ)
(74) ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
> 0, if x ∈

]
0,

√
κ + δμ

δ(δλ − κ)

[
∪]α,∞[,

< 0, if x ∈
]√

κ + δμ

δ(δλ − κ)
,α

[
,

which implies that the solution α of (43) is less than or equal to 1
2λ

if and only if
the inequalities in (45) are true.

In what follows, we assume that the problem data satisfy (45), in which case,
u is associated with the regions B = ∅, S+

W = [α, 1
2λ

], C+ = S+
C = [ 1

2λ
,∞[ and

W+ = [0, α[. We will show that u satisfies all of the conditions in Definition 1 if
and only if we prove that

u′(x) ≤ 1 for all x ∈ [0, α],(75)

u(x) − λx2 ≥ 0 for all x ∈ [0, α],(76)

Lu(x) + h(x) ≡ 1

2
u′′(x) − δu(x) + κx2 + μ

(77)

≤ 0 for all x ∈
]
α,

1

2λ

[
.

Inequality (75) follows immediately from the convexity of u and the fact that
u′(α) = 2λα ≤ 1. Inequality (76) is equivalent to

δ(δλ − κ)α2 − (κ + δμ)

cosh
√

2δα
≥ f2(x) for all x ∈ [0, α],(78)

where

f2(x) = δ(δλ − κ)x2 − (κ + δμ)

cosh
√

2δx
.
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Since α >
√

κ+δμ
δ(δλ−κ)

, (78) is plainly true for all x ≤
√

κ+δμ
δ(δλ−κ)

. On the other hand,
we can use (75) to calculate

f ′
2(x) =

√
2δ[δ(δλ − κ)x2 − (κ + δμ)]

cosh
√

2δx

[ √
2δ(δλ − κ)x

δ(δλ − κ)x2 − (κ + δμ)
− cosh

√
2δx

]

> 0 for all x ∈
]√

κ + δμ

δ(δλ − κ)
,α

[
,

and (76) follows.
Inequality (77) is equivalent to

λ − (δλ − κ)x2 + μ ≤ 0 for all x ∈
]
α,

1

2λ

[
⇔ α ≥

√
λ + μ

δλ − κ
.

In view of (75), this is true if and only if

tanh

√
2δ(λ + μ)

δλ − κ
<

√
2δ(λ + μ)

δλ − κ

because
√

2δ(λ+μ)
δλ−κ

>
√

κ+δμ
δ(δλ−κ)

⇔ δλ − κ > 0. This inequality is indeed true be-

cause
√

2δ(λ+μ)
δλ−κ

> 1 ⇔ δλ + κ + 2δμ > 0, and (77) follows. �

PROOF OF PROPOSITION 4. If we denote by f3(α) the right-hand side of (49),
then we can check that

f ′
3(α) = −

√
2δκ[δ(δλ − κ)α2 − (κ + δμ)] + δ

√
2δ(δλ − κ)(δ − 2κα)α

[δ(δλ − κ)α2 − (κ + δμ)]2(79)

and

f ′′
3 (α) = δ

√
2δ(δλ − κ)(6κα − δ)

[δ(δλ − κ)α2 − (κ + δμ)]2 + 4δ2
√

2δ(δλ − κ)2(δ − 2κα)α

[δ(δλ − κ)α2 − (κ + δμ)]3 .

If δ
2κ

<
√

κ+δμ
δ(δλ−κ)

, then these calculations imply that

f ′
3(α) > 0 and f ′′

3 (α) > 0 for all α ∈
]

δ

2κ
,

√
κ + δμ

δ(δλ − κ)

[
.

Combining these inequalities with the observations that

f3(α) < 0 for all α ∈
[
0,

δ

2κ

[
∪

]√
κ + δμ

δ(δλ − κ)
,∞

[
,

f3

(
δ

2κ

)
= 0 and lim

α↑√
(κ+δμ)/(δ(δλ−κ))

f3(α) = ∞
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and the fact that the restriction of tanh in R+ is strictly concave, we can see that
equation (49) has a unique solution α > 0, which satisfies (50). In particular, we
can see that

tanh
√

2δα − δ(δ − 2κα)√
2δ[δ(δλ − κ)α2 − (κ + δμ)]

(80) ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

> 0, if x ∈]0, α[∪
]√

κ + δμ

δ(δλ − κ)
,∞

[
,

< 0, if x ∈
]
α,

√
κ + δμ

δ(δλ − κ)

[
.

If
√

κ+δμ
δ(δλ−κ)

< δ
2κ

, then (79) implies that

f ′
3(α) < 0 for all α ∈

]√
κ + δμ

δ(δλ − κ)
,

δ

2κ

[
.

This inequality and the calculations

f3(α) < 0 for all x ∈
[
0,

√
κ + δμ

δ(δλ − κ)

[
∪

]
δ

2κ
,∞

[
,

lim
α↓√

(κ+δμ)/(δ(δλ−κ))
f3(α) = ∞ and f3

(
δ

2κ

)
= 0,

imply that equation (49) has a unique solution α satisfying (51). In particular, we
can see that

1

2λ
< α ⇔ (53) is true.

We will show that the function u satisfies all of the requirements of Definition 1
if and only if we prove that∣∣u′(x)

∣∣ ≤ 1 for all |x| ≤ α.(81)

If the parameters are such that (51) is true, then this inequality follows imme-
diately from the boundary conditions u′(0) = 0, u′−(α) = 1 and the fact that u

is convex, which is true because A > 0. If the parameters are such that (50) is
true, then A < 0. In this case, u′′′(x) = (2δ)3/2A sinh

√
2δx < 0 for all x ∈ [0, α[,

which implies that u′′ is strictly decreasing in [0, α[. Combining this observation
with the fact that u is an even function, we can see that (81) is true if and only if
limx↑α u′′(x) ≥ 0, which is equivalent to α ≥

√
μ

δλ−κ
. In view of (81) and the fact

that
√

μ
δλ−κ

<
√

κ+δμ
δ(δλ−κ)

, we can see that this indeed the case if and only if (52) is
true. �
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APPENDIX II: PROOFS OF RESULTS IN SECTION 6

PROOF OF PROPOSITION 6. In view of (58), we will prove that u satisfies the
conditions of Definition 1 if we show that

u′(x) ≥ −1 for all x ≥ 0,(82)

u(x) ≥ −λx2 + λ for all x ≥ α(83)

and

Lu(x) + h(x) ≡ 1
2u′′(x) − δu(x)

(84)
≤ 0 for all x ∈ [0, α].

Inequality (83) follows immediately by the facts that u is C1 at α and the restriction
of x �→ u(x) + λx2 − λ in [α,∞[ is strictly convex. Inequality (85) is equivalent
to x2 ≤ 1 + δ−1 for all x ∈ [0, α], which is true because α < 1. Finally, inequality
(82) is true if and only if u′(α) ≥ −1 because the restriction of u′ in [0,∞[ has a
global minimum at α. Combining this observation with the identity u′(α) = −2λα

and (59), we can see that (82) is satisfied if and only if (60) true. �

PROOF OF PROPOSITION 7. It is a matter of straightforward algebra to verify
that α > 1

2λ
if and only if the first inequality in (65) is true, which we assume in

what follows. Similarly, it is a matter of algebraic manipulations to show that the
constant on the left-hand side of (65) is strictly less than the constant on the right-
hand side of (65). Combining the inequality α > 1

2λ
with the strict concavity of the

function x �→ λx2, we can see that there exists β ∈ [0, α[ such that the function
u defined by (62) is continuous and u(x) < λx2 for all x ∈]β,α[ if and only if
λ ≤ −λα2 + α + λ, which is equivalent to the second inequality in (65).

We now assume that the problem data is such that (65) is true. In view of the
arguments above and (62), we will prove that u satisfies the requirements of Defi-
nition 1 if we show that

u′(x) ≥ −1 for all x ∈ [0, β[∪ ]α,∞[,(85)

u(x) ≥ −λx2 + λ for all x ≥ α,(86)

and

Lu(x) + h(x) ≡ 1
2u′′(x) − δu(x)

(87)
≤ 0 for all x ∈ [0, β].

The inequalities (85) and (86) follow immediately by the facts that u is C1 at α, the
restriction of x �→ u(x) + λx2 − λ in [α,∞[ is strictly convex and 0 < β < 1

2λ
<

α < 1. Finally, the inequality (88) is equivalent to x2 ≤ 1 + δ−1 for all x ∈ [0, β],
which is plainly true because β < 1. �
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PROOF OF PROPOSITION 8. The inequality u(x) < λx2 for all x ∈ [0, α[ that
characterizes the region Sc = [−α,α] is true if and only if λ > −λα2 + α + λ,
which is equivalent to (68). Otherwise, the proof of this result is very similar to the
proof of Proposition 7. �
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