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ON THE STOCHASTIC BEHAVIOUR OF OPTIONAL PROCESSES
UP TO RANDOM TIMES

BY CONSTANTINOS KARDARAS1

London School of Economics and Political Science

In this paper, a study of random times on filtered probability spaces is
undertaken. The main message is that, as long as distributional properties
of optional processes up to the random time are involved, there is no loss of
generality in assuming that the random time is actually a randomised stopping
time. This perspective has advantages in both the theoretical and practical
study of optional processes up to random times. Applications are given to
financial mathematics, as well as to the study of the stochastic behaviour of
Brownian motion with drift up to its time of overall maximum as well as up
to last-passage times over finite intervals. Furthermore, a novel proof of the
Jeulin–Yor decomposition formula via Girsanov’s theorem is provided.

Introduction. Consider a filtered measurable space (�,F), where F =
(Ft )t∈R+ is a right-continuous filtration, as well as an underlying sigma-algebra
F over � such that F ⊇ F∞ := ∨

t∈R+ Ft , where the last set-inclusion may be
strict. A random time is a [0,∞]-valued, F -measurable random variable. The in-
terplay between random times and the filtration F goes a long way back, with
the pioneering work of [1, 3, 37]; see also the volume [16]. Interest in random
times has been significant, especially in connection with applications in financial
mathematics, such as reduced-form credit risk modelling; see, for example, [7, 27]
and [15].

A common approach to constructing random times is via the use of randomised
stopping times (also called Cox’s method; see [28]). Let Q be a probability on
(�,F), and suppose that there exists an F -measurable random variable U that
is stochastically independent of F∞ and has the standard uniform law under Q.
For a given F-adapted, right-continuous and nondecreasing process K = (Kt)t∈R+
such that 0 ≤ K ≤ 1, define the random time ψ := inf{t ∈ R+|Kt ≥ U}, where by
convention we set ψ = ∞ if the last set is empty. For such a duple (ψ,Q), we say
that ψ is a randomised stopping time on (�,F,F,Q). Randomised stopping times
have several noteworthy properties:

• The independence of U and F∞ under Q implies that Q[ψ > t |Ft ] = 1 − Kt ,
for all t ∈ R+. Therefore, 1−K represents the conditional survival process asso-
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ciated to ψ under any probability Q which makes U and F∞ independent. The
latter fact is useful in modelling, for example, since Q[ψ ≤ t] = EQ[Kt ] holds
for t ∈ R+, Q can be chosen in order to control the unconditional distribution
of ψ , while keeping the conditional survival probabilities fixed.

• Although ψ is not a stopping time on (�,F), it is in some sense very close
to being one. Indeed, ψ is a stopping time of an initially enlarged filtration,
defined as the right-continuous augmentation of (Ft ∨ σ(U))t∈R+ . Importantly,
due to the independence of U and F∞ under Q, each martingale on (�,F,Q)

is also a martingale on the space with the enlarged filtration—in other words,
the immersion property ([36], also called hypothesis (H) in [3]) holds. This
opens the door to major theoretical analysis of such random times using tools of
martingale theory.

• From a more practical viewpoint, it is straightforward to simulate processes up
to time ψ under Q. One first simulates a uniform random variable U ; then, in
an independent fashion, one continues with simulating the process K until the
point in time that it exceeds U , along with other processes of interest.

In view of the usefulness of randomised stopping times, it is natural to ex-
plore their generality. Of course, it is not possible that an arbitrary random time
is a randomised stopping time, since for the latter there is a need for the extra
“randomisation” coming from the uniform random variable. There is a further,
more fundamental reason that an arbitrary random time cannot be realised as a
randomised stopping time. Typically, for a random time ρ on a filtered probabil-
ity space (�,F,F,P), the nonnegative process R+ � t 	→ P[ρ > t |Ft ] fails to
be nonincreasing, which would have to be the case if ρ was a randomised stop-
ping time on (�,F,P). Nevertheless, the main message of the paper is the follow-
ing:

With a given a pair (ρ,P) of a random time ρ and a probability P on (�,F ,F), one
can essentially associate a pair (ψ,Q), where Q is a probability on (�,F) and ψ is a
randomised stopping time on (�,F ,F,Q), such that for any F-optional process Y , the
law of (Yρ∧t )t∈R+ under P is identical to the law of (Yψ∧t )t∈R+ under Q.

Therefore, as long as distributional properties of optional processes on (�,F) un-
der P up to the random time ρ are concerned, there is absolutely no loss of infor-
mation in passing from (ρ,P) to the more workable pair (ψ,Q).

There is a reason for the qualifying “essentially” in the claim that the above
association can be carried out. To begin with, F should be large enough to sup-
port a random variable U that will be independent of F∞ under Q. This is hardly
a concern; if the original filtered space (�,F,F) is not rich enough, one can al-
ways enlarge it in a minimal way, without affecting the structure of F, in order to
make the previous happen. However, there is another, more technical obstacle. As
will be argued in Section 1 of the text, what is guaranteed is the existence of a
nonnegative local martingale L on (�,F,P) with L0 = 1 that is a candidate for a
local (through a specific localising sequence of stopping times) density process of
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Q with respect to P. Then an argument ensuring that a consistent family of prob-
abilities constructed in ever-increasing sigma-algebras has a countably additive
extension to the limiting sigma-algebra is needed. Such an issue has appeared in
different contexts in stochastic analysis; see [4, 10, 29]. Under appropriate topolog-
ical assumptions on the underlying filtrations, for example, working on canonical
path-spaces as discussed in [31]; one can successfully construct a probability Q

out of L.
The aforementioned purely technical issue notwithstanding, the usefulness of

the above philosophy is evident. In fact, as will be made clear in the text, even if
the probability Q cannot be constructed, the representation pair consisting of the
process K in the definition of ψ and the local martingale L on (�,F,P) encodes
significant information regarding the structure of random times.

In order to carry out the above-described program in practice, given a random
time ρ on (�,F,F,P) one needs to identify the pair (K,L) associated with ρ.
There are indeed formulas in the paper that provide (K,L) in terms of the process
R+ � t 	→ P[ρ > t |Ft ] of conditional survival probabilities of ρ, as well as the
optional compensator on (�,F,P) of the nondecreasing process R+ � t 	→ I{ρ≤t}.
Closed-form expressions for the previous quantities are sometimes available—this
is, for example, the case when times of maximum and last-passage times for certain
nonnegative local martingales are considered. In order to illustrate the theoretical
results, applications are presented in the context of financial mathematics, and dis-
cussion is provided regarding times of maximum and last-passage times for finite
time-horizon Brownian motion with drift.

The dominant approach toward the study random times in the literature is that
of progressive enlargement of filtrations. This theory has produced remarkable
results, one of the most important due to Jeulin and Yor [17], providing the canon-
ical representation of semimartingales up to random times under progressive en-
largement of filtrations. This result is revisited in the text, where a novel proof
of the Jeulin–Yor decomposition formula via the use of Girsanov’s theorem—a
certainly more familiar result—facilitates understanding by shedding an extra in-
tuitive light.

Structure of the paper. This introductory part ends with general remarks that
will be used throughout the text. In Section 1, the canonical pair of processes asso-
ciated with a random time is introduced, and certain of its properties are explored
in Section 1. Section 2 deals with a rigorous statement of the main message of
the paper, regarding the law of optional processes up to random times. Section 3
contains some first examples. Section 4 presents applications of the theory in fi-
nancial settings. Section 5 contains a discussion on the stochastic behaviour of
Brownian motion with drift over finite time-intervals until its time of maximum
and until last-passage times. Finally, in Section 6 the statement and a new proof of
the Jeulin–Yor decomposition formula is provided.



432 C. KARDARAS

General probabilistic remarks. The underlying filtration F = (Ft )t∈R+ is as-
sumed to be right-continuous, but it will not be assumed that each Ft , t ∈ R+, is
completed with P-null sets of F . Although this relaxation calls for some technical-
ities, it is essential in the development; indeed, the need for defining a probability
on (�,F) that is not absolutely continuous with respect to P (not even locally, on
each Ft , t ∈ R+) will arise. An extensive part of the general theory of stochastic
processes can be developed without the completeness assumption on filtrations,
as long as properties that hold “everywhere” are asked to hold in an “almost ev-
erywhere” sense. (Of course, there are exceptions to the previous rule, e.g., the
so-called debut theorem fails if the filtration is not completed; see the discussion
in [34], Chapter II, Section 75.) The interested reader can refer to [14], Chapters
I and II, for results in this slightly nonconventional framework that shall be used
throughout the paper. Versions of the section theorem from [12], IV Section 1,
where again the filtration is not assumed to be completed, will also be useful.

For a càdlàg process X, define the process X− = (Xt−)t∈R+ , where Xt− is
the left-limit of X at t ∈ (0,∞); by convention, X0− = 0. Also, �X := X − X−.
Every predictable process H is supposed to satisfy H0 = 0. For any [0,∞]-valued,
F -measurable random variable ρ and any process X, Xρ = Xρ∧· is defined as
usual to be the process X stopped at ρ. For any càdlàg process X, we set X↑ :=
supt∈[0,·] Xt , as well as X∗ = supt∈[0,·] |Xt | = (|X|)↑.

Whenever H and X are processes such that X is a semimartingale to be used as
an integrator and H can be used as integrand with respect to X, we use

∫
[0,·] Ht dXt

to denote the integral process. For a detailed account of stochastic integration,
see [14].

If not stated otherwise, a property of a stochastic process (such as nonnegativity,
path right-continuity, etc.) is assumed to hold everywhere; we make explicit note
if these properties hold almost surely with respect to some probability on (�,F).
When processes that are (local) martingales, super-martingales, etc., are consid-
ered, it is tacitly assumed that their paths are almost surely càdlàg with respect to
the probability under consideration; for example, local martingales on (�,F,P)

have P-a.s. càdlàg paths.
In this paper, we always work under the following.

STANDING ASSUMPTION 0.1. All random times ρ are assumed to satisfy
P[ρ < ∞] = 1.

The reason for the above assumption is purely conventional; under its force,
t = ∞ does not appear explicitly in the time-indices involved, something that
would be unusual and create unnecessary confusion. We stress, however, that As-
sumption 0.1 in practice does not entail any loss of generality whatsoever. Indeed,
a simple deterministic time-change of [0,∞] to [0,1] on the time-indices of fil-
trations, processes, etc., makes any [0,∞]-valued random time actually bounded;
then all the results of the paper apply.
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1. A canonical pair associated with a random time. We keep all notation
and remarks that appeared in the Introduction. In particular, Assumption 0.1 will
always be tacitly in force.

1.1. Construction of the canonical pair. The following result is the point of
our departure.

THEOREM 1.1. Let ρ be a random time on (�,F,F,P). Then there exists a
pair of processes (K,L) with the following properties:

(1) K is F-adapted, right-continuous, nondecreasing, with 0 ≤ K ≤ 1.
(2) L is a nonnegative process with L0 = 1 that is a local martingale on

(�,F,P).
(3) For any nonnegative optional processes V on (�,F), it holds that

EP[Vρ] = EP

[∫
R+

VtLt dKt

]
.

(4)
∫
R+ I{Kt−=1} dLt = 0 and

∫
R+ I{Lt=0} dKt = 0 hold P-a.s.

Furthermore, a pair (L,K) that satisfies the above requirements is essentially
unique, in the following sense: if (K ′,L′) is another pair that satisfies the above
requirements, then K is P-indistinguishable from K ′, while P[Lt = L′

t ,∀t ∈
R+|K∞ > 0] = 1.

DEFINITION 1.2. For a random time ρ on (�,F,F,P), the pair (K,L) that
satisfies requirements (1), (2), (3) and (4) of Theorem 1.1 will be called the canon-
ical pair associated with ρ.

REMARK 1.3. Let ρ be a random time on (�,F,F,P) with associated pair
(K,L). Then ρ is a stopping time on (�,F) if and only if K = I[[ρ,∞[[ (and,
in this case, L ≡ 1 will hold). Indeed, if ρ is a stopping time, K ′ := I[[ρ,∞[[ is
F-adapted, nonnegative and nondecreasing, and 0 ≤ K ′ ≤ 1 holds. Furthermore,
EP[Vρ] = EP[∫R+ Vt dK ′

t ] holds for all nonnegative and optional V on (�,F). By
the essential uniqueness under P of the canonical pair associated with ρ, we obtain
K = I[[ρ,∞[[ (and L = 1). Conversely, assume that K = I[[ρ,∞[[; as K is F-adapted,
ρ is a stopping time.

Given a random time ρ on (�,F,F,P), it will now be explained how the as-
sociated canonical pair (K,L) is constructed. We follow the proof of [23], Theo-
rem 2.1, which contains Theorem 1.1 as a special case. Only details which will be
essential in the present development are provided. We also introduce some further
notation to be used throughout.

Let Z be the nonnegative càdlàg super-martingale on (�,F,P) that satisfies
Zt = P[ρ > t |Ft ] for all t ∈R+. (The fact that such a P-a.s. càdlàg version Z exists



434 C. KARDARAS

follows from the right-continuity of the filtration F and the right-continuity of the
function R+ � t 	→ P[ρ > t] ∈ [0,1] by an application of [12], Theorem II.2.44.)
In view of Assumption 0.1, Z∞ := limt→∞ Zt is P-a.s. equal to zero. Note that Z

is the conditional survival process associated to a random time by Azéma; see [16]
and the references therein. Also, let A be the dual optional projection of I[[ρ,∞[[ on
(�,F,P); in other words, A is the unique (up to P-evanescence) F-adapted, càdlàg,
nonnegative and nondecreasing process such that EP[Vρ] = EP[∫R+ Vt dAt ] holds
for all nonnegative optional process V on (�,F). Then N := Z + A is a nonnega-
tive martingale on (�,F,P) with Nt = EP[A∞|Ft ], for all t ∈ R+.

REMARK 1.4. Since we do not assume that the F0 contains all P-null sets
of F , the properties of A being càdlàg, nondecreasing and nonnegative only
are valid for P-a.s. every path. However, one can alter A to have them holding
identically. Indeed, with D denoting a countable and dense subset of R+, define
A′ := limD�t↓·(sups∈[0,t]∩D(max{As,0})). It is easily seen that this new process
A′ is F-adapted (the right-continuity of F is essential here), càdlàg, nondecreasing
and nonnegative, and that A = A′ up to P-evanescence. It is possible that A can
explode to ∞ in finite time, but this happens on a set of zero (outer) P-measure and
will not affect the results that follow in any way. Therefore, we might, and shall,
assume in the sequel that A is càdlàg, nondecreasing and nonnegative everywhere.

REMARK 1.5. The expected total mass of A over R+ under P is EP[A∞] = 1.
If P[A∞ > 1] = 0, in which case P[A∞ = 1] = 1, defining K := A (more pre-
cisely, K := min{A,1}) and L := 1 would suffice for the purposes of Theorem 1.1.
However, in all other cases of random times we have P[A∞ > 1] > 0, and the pair
(K,L) is constructed from (A,Z) as will be shown below.

We continue with providing the definition of the pair (K,L). Consider the stop-
ping time ζ0 := inf{t ∈ R+|Zt− = 0 or Zt = 0}; in fact, ζ0 actually is the terminal
time of movement for both Z and A. The process K is defined via

K = 1 − P[ρ > 0] exp
(
−

∫
(0,ζ0∧·]

dAt

Zt + �At

)
(1.1)

× ∏
t∈(0,ζ0∧·]

((
1 − �At

Zt + �At

)
exp

(
�At

Zt + �At

))
,

where by convention the product of an empty set of numbers is equal to one. It
is clear that K is F-adapted, càdlàg, nondecreasing and [0,1]-valued on [[0, ζ0[[.
A little care has to be exercised in the value of K at ζ0. On {�Aζ0 = 0}, it simply
holds that Kζ0 = Kζ0−. On {�Aζ0 > 0} it holds that Kζ0 = 1 because the product
term on the right-hand side of equation (1.1) is zero. The process K remains con-
stant after ζ0. In order to get some intuition on the definition of K , note that the
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differential equation that the process K defined in (1.1) satisfies is

dKt

1 − Kt−
= dAt

Zt + �At

for t ∈ [0, ζ0).(1.2)

For fixed t ∈ [0, ζ0), Zt + �At = P[ρ ≥ t |Ft ] represents the expected total re-
maining “life” of ρ on [t,∞], conditioned on Ft ; then, formally, dAt/(Zt +�At)

is the “fraction of remaining life of ρ spent at t .” The equivalent “fraction of re-
maining life spent at t” for K would be dKt/(1 − Kt−). (The previous quantity is
based on the understanding that P[K∞ = 1] = 1, although this is not always the
case as will be shown later in Remark 3.5.) To get a feeling of how L should be de-
fined, observe that (Z+�A)�K = (1−K−)�A implies that (Z+�A)(1−K) =
(1 − K−)Z. Therefore, from (1.2) we obtain that dKt/(1 − Kt) = dAt/Zt holds
for t ∈ [0, ζ0), which implies that Zt dKt = (1 − Kt)dAt holds for t ∈ R+. Since
dAt = Lt dKt has to hold for t ∈ R+ in view of property (3) in Theorem 1.1, we
obtain L(1−K) = Z. Using the previous equality and Itô’s formula, we obtain the
dynamics

dLt

Lt−
= dNt

Zt−
, t ∈ [0, ζ0],(1.3)

where recall that N = Z + A. Equation (1.3) can actually be used as the definition
of L, which becomes equal to the stochastic exponential of the local martingale∫ ζ0∧·

0 (1/Zt−)dNt . (One has to be quite careful here: the latter process might not
be defined at time ζ0 and onward due to explosion, which will imply that, P-a.s.,
Lt = 0 for all t ≥ ζ0. The treatment in [23], Section 2.3, makes sure that all such
issues are dealt with.) Then the relationship Z = L(1 − K) can be shown to hold
true. One can check [23], Section 2.3, for all the remaining technical details of the
proof.

REMARK 1.6. When �K is P-evanescent (which happens exactly when �A

is P-evanescent), the formula Z = L(1 − K) implies that L coincides with the
local martingale on (�,F,P) that appears in the multiplicative Doob–Meyer de-
composition of the nonnegative (�,F,P)-super-martingale Z. This fact provides
the most efficient way to calculate the canonical pair associated with a random time
that avoids all stopping times. (For the definition and characterisation of random
times avoiding all stopping times, see Section 1.4.)

1.2. A consistent family of probabilities associated with a random time. Let ρ

be a random time on (�,F,F,P) with associated canonical pair (K,L). Define

ηu := inf{t ∈ R+|Kt ≥ u} for u ∈ [0,1),(1.4)

with the convention ηu = ∞ if the last set is empty. The nondecreasing family
(ηu)u∈[0,1) of stopping times on (�,F) will play a major role in the development.
We start with a “localisation” result.
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LEMMA 1.7. Let ρ be a random time on (�,F,F,P) with canonical pair
(K,L). For u ∈ [0,1), P[L∗

ηu
≤ 2/(1 − u)] = 1 holds. If P[ηu < ∞,�Lηu > 0] =

0, then P[L∗
ηu

≤ 1/(1 − u)] = 1.

PROOF. Fix u ∈ [0,1). Since Kt− ≤ u holds for t ∈ [0, ηu] and Z− ≤ 1 holds
up to P-evanescence, it follows that

L− = Z−
1 − K−

≤ 1

1 − u
holds P-a.s. on [[0, ηu]],

which implies that P[L∗
ηu− ≤ 1/(1 − u)] = 1. It remains to check what happens

at ηu. In case P[ηu < ∞,�Lηu > 0] = 0, P[L∗
ηu

≤ 1/(1 − u)] = 1 is immediate.
Now, remove the assumption P[ηu < ∞,�Lηu > 0] = 0. We shall use that �A ≤
1 up to P-evanescence. (Indeed, the equality �Aτ = P[ρ = τ |Fτ ] holds P-a.s.
on {τ < ∞} for any stopping time τ , since A is the dual optional projection of
I[[ρ,∞[[ on (�,F,P). It follows that P[�Aτ ≤ 1] = 1 for any stopping time τ and,
therefore, that �A ≤ 1 up to P-evanescence by [12], Theorem 4.10.) Using (1.3),
we obtain, P-a.s.,

Lηu = Lηu− + �Nηu

1 − Kηu−
= Zηu− + �Nηu

1 − Kηu−
= Zηu + �Aηu

1 − Kηu−
≤ 2

1 − u
,

which completes the proof. �

In view of Lemma 1.7, for any u ∈ [0,1) one can construct a probability
measure Qu on (�,F) via the recipe dQu = Lηu dP. The collection (Qu)u∈[0,1)

has the following consistency property: Qu = Qv on (�,Fηu) holds whenever
0 ≤ u ≤ v < 1. It would be very convenient (but not a priori clear and certainly not
true in general, as is demonstrated in Example 3.8) if one could find a probability
Q≡ Q1 on (�,F) such that Q|Fηu

=Qu|Fηu
holds for all u ∈ [0,1). This is indeed

the case in a number of examples, as will be discussed later. The consequences of
the existence of such probability are analysed in Section 2. For the time being, we
mention an auxiliary result.

LEMMA 1.8. For all u ∈ [0,1), it holds that Qu[Lηu > 0] = 1 and Qu[ηu <

∞] = 1.

PROOF. Fix u ∈ [0,1). Then Qu[Lηu > 0] = EP[LηuI{Lηu>0}] = EP[Lηu] = 1.
In order to show the equality Qu[ηu < ∞] = 1, first observe that since 0 = Z∞ =
L∞(1 − K∞) holds P-a.s., we have P[K∞ < 1,L∞ > 0] = 0. Coupled with the
fact that {ηu = ∞} ⊆ {K∞ < 1}, we obtain P[LηuI{ηu<∞} = Lηu] = 1. Therefore,
Qu[ηu < ∞] = EP[LηuI{ηu<∞}] = EP[Lηu] = 1. �
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1.3. Time changes. For a nonnegative (�,F)-optional process V , the change-
of-variables formula gives

∫
R+ Vt dKt = ∫

[0,1) VηuI{ηu<∞} dKηu . For a ∈ [0,1), on
the event {Kηa− < Kηa } it holds that

Vηa�Kηa = Vηa (Kηa − Kηa−) =
∫ Kηa

Kηa−
Vηa du =

∫ Kηa

Kηa−
Vηu du.

Therefore,
∫
R+ Vt dKt = ∫

[0,1) VηuI{ηu<∞} du follows. The last fact helps to estab-
lish the following result.

PROPOSITION 1.9. Let ρ be a random time on (�,F,F,P). Then, for any
nonnegative (�,F)-optional process V , it holds that

EP[Vρ] =
∫
[0,1)

EQu
[Vηu]du = lim

a↑1
EQa

[∫
[0,a]

Vηu du

]
.(1.5)

PROOF. As discussed above, for any V that is nonnegative and (�,F)-
optional, we have ∫

R+
VtLt dKt =

∫
[0,1)

VηuLηuI{ηu<∞} du.

Therefore, the first equality in (1.5) is immediate from Theorem 1.1, Fubini’s the-
orem, the definition of the probabilities (Qu)u∈[0,1) and Lemma 1.8. The second
equality in (1.5) follows from the monotone convergence theorem and the consis-
tency of the family (Qu)u∈[0,1). �

Proposition 1.9 has a simple corollary, which states that the law of Kρ− under P
is stochastically dominated (in first order) by the standard uniform law, and that the
latter standard uniform law is stochastically dominated by the law of Kρ under P.

PROPOSITION 1.10. Let ρ be any random time on (�,F,F,P) with associ-
ated pair (K,L). Then, for all nondecreasing functions f : [0,1) 	→ R, it holds
that

EP

[
f (Kρ−)

] ≤
∫
[0,1)

f (u)du ≤ EP

[
f (Kρ)

]
.(1.6)

PROOF. Pick any nondecreasing function f : [0,1) 	→ R. For establishing the
inequalities (1.6), it is clearly sufficient to deal with the case where f (u) ∈ R+ for
u ∈ [0,1). Since Kηu− ≤ u and f is nondecreasing, (1.5) gives

EP

[
f (Kρ−)

] =
∫
[0,1)

EQu

[
f (Kηu−)

]
du ≤

∫
[0,1)

EQu

[
f (u)

]
du =

∫
[0,1)

f (u)du.

The other inequality in (1.6) is proved similarly, using the fact that Qu[Kηu ≥ u] =
1 for u ∈ [0,1), as follows from Lemma 1.8. �
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1.4. Random times that avoid all stopping times. A random time ρ on
(�,F,F,P) is said to avoid all stopping times on (�,F,P) if P[ρ = τ ] = 0 holds
whenever τ is a stopping time on (�,F). The next result states equivalent condi-
tions to ρ avoiding all stopping times.

PROPOSITION 1.11. Let ρ be any random time on (�,F,F,P) with associ-
ated canonical pair (K,L). Then the following statements are equivalent:

(1) ρ avoids all stopping times on (�,F,P).
(2) �K is P-evanescent.
(3) P[�Kρ = 0] = 1.
(4) Kρ has the standard uniform distribution under P.

PROOF. In the course of the proof, we shall be using A, Z and N for the
processes that were introduced in Section 1.1, associated to the random time ρ on
(�,F,F,P).

For implication (1) ⇒ (2), the fact that EP[�Aτ ] = P[ρ = τ ] = 0 implies
that P[�Aτ = 0] = 1 holds for all stopping times τ on (�,F). Then, in view
of (1.2), P[�Kτ = 0] = 1 holds for all stopping times τ on (�,F) as well.
An application of [12], Theorem 4.10, shows that �K is P-evanescent. Impli-
cation (2) ⇒ (3) is trivial. Now, assume (3); from the inequalities (1.6) we get
E[f (Kρ)] = ∫

[0,1) f (u)du for any nondecreasing Borel function f : [0,1) 	→ R+,
which implies that Kρ has a standard uniform distribution under P. In the next
three paragraphs, we shall show (4) ⇒ (3) ⇒ (2) ⇒ (1).

We show (4) ⇒ (3). By (1.5), we have

EP[Kρ + Kρ−] = lim
a↑1

EQa

[∫
[0,a]

(Kηu + Kηu−)du

]
.

For a ∈ [0,1), on the event {Kηa ≥ a} it holds that

a2 =
∫
[0,a]

2udu ≤
∫
[0,a]

(Kηu + Kηu−)du ≤ 1.

With the help of Lemma 1.8, we obtain EP[Kρ + Kρ−] = 1. Since EP[Kρ] = 1/2
holds in view of the fact that Kρ has the standard uniform distribution under P,
we obtain E[Kρ−] = 1/2. As K is nondecreasing and EP[�Kρ] = 0, we obtain
P[�Kρ = 0] = 1, that is, statement (3).

For (3) ⇒ (2), start with the following observation: for any stopping time τ , on
{τ < ∞} it holds that

Lτ = Lτ− + �Lτ = Lτ− + �Nτ

1 − Kτ−

= Lτ−(1 − Kτ−) + Zτ − Zτ− + �Aτ

1 − Kτ−
= Zτ + �Aτ

1 − Kτ−
.
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Since {�Kτ > 0} ⊆ {�Aτ > 0} holds on {τ < ∞}, it follows that {�Kτ > 0} ⊆
{Lτ > 0} modulo P holds on {τ < ∞} for all stopping times τ . Continuing, note
that

0 = EP[�Kρ] = EP

[∫
R+

(Kt − Kt−)Lt dKt

]

= EP

[ ∑
t∈R+

Lt(�Kt)
2
]
.

Consider a sequence (τn)n∈N of stopping times with disjoint graphs that ex-
hausts the jumps of K ; then, EP[∑n∈N Lτn(�Kτn)

2] = 0. This means that∑
n∈N Lτn(�Kτn)

2 = 0, P-a.s.; since {�Kτn > 0} ⊆ {Lτn > 0} modulo P holds
on {τn < ∞} for all n ∈ N, we obtain P[�Kτn = 0] = 1 for all n ∈ N. The last im-
plies that P[�Kτ = 0] = 1 for all stopping times τ . In view of [12], Theorem 4.10,
this is exactly statement (2).

Finally, we establish (2) ⇒ (1). Since

{�Aτ > 0} = {Lτ�Kτ > 0} = {Lτ > 0} ∩ {�Kτ > 0}
= {�Kτ > 0}

modulo P holds for all stopping times τ , we have P[ρ = τ ] = EP[�Aτ ] = 0, the
latter being valid because P[�Aτ > 0] = P[�Kτ > 0] = 0. Therefore, ρ avoids all
stopping times under P. �

1.5. An optimality property of L amongst all nonnegative local P-martingales.
Let S be the set of all nonnegative super-martingales S on (�,F,P) with P[S0 =
1] = 1. The set S contains in particular all nonnegative local martingales M on
(�,F,P) with P[M0 = 1] = 1. For a random time ρ with associated canonical pair
(K,L), it is reasonable to expect that the local martingale L has some optimality
property within the class S when sampled at ρ. Indeed, the next result shows that,
in the jargon of [23], Lρ is the numéraire under P in the convex set {Sρ |S ∈ S}.

PROPOSITION 1.12. Let ρ be a random time on (�,F,F,P) with associated
canonical pair (K,L). Then P[Lρ > 0] = 1 and EP[Sρ/Lρ] ≤ 1 holds for all
S ∈ S . If, furthermore, ρ avoids all stopping times on (�,F,P), then the stronger
inequality EP[Sρ/Lρ |Kρ] ≤ 1 holds for all S ∈ S .

PROOF. By Lemma 1.8, Qu[Lηu > 0] = 1 holds for all u ∈ [0,1). Then, by
Proposition 1.9,

P[Lρ > 0] =
∫
[0,1)

Qu[Lηu > 0]du = 1.
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Fix S ∈ S . Observe that EQu
[Sηu/Lηu] = EP[SηuI{Lηu>0}] ≤ 1 holds for all u ∈

[0,1). Then

EP[Sρ/Lρ] =
∫
[0,1)

EQu
[Sηu/Lηu]du ≤ 1.

Assume now that ρ avoids all stopping times on (�,F,P). By a straightforward
extension of Lemma 1.8, Qu[Kηu = u] = 1 holds for all u ∈ [0,1). Therefore, for
all functions f : [0,1) 	→R+,

EP

[
(Sρ/Lρ)f (Kρ)

] =
∫
[0,1)

EQu

[
(Sηu/Lηu)f (Kηu)

]
du

=
∫
[0,1)

EQu

[
(Sηu/Lηu)f (u)

]
du

≤
∫
[0,1)

f (u)du = EP

[
f (Kρ)

]
,

the last equality following from Proposition 1.11. Since the function f : [0,1) 	→
R+ is arbitrary, we obtain EP[Sρ/Lρ |Kρ] ≤ 1. �

2. Random times and randomised stopping times.

2.1. The one probability Q. Recall the consistent family of probabilities
(Qu)u∈[0,1) from Section 1.2. For the purposes of Section 2, we shall be work-
ing under the following assumption.

ASSUMPTION 2.1. There exists a probability measure Q ≡ Q1 on (�,F), as
well as a random variable U :� 	→ [0,1), such that:

(1) Q|Fηu
= Qu|Fηu

holds for all u ∈ [0,1).
(2) Under Q, U is independent of F∞ and has the standard uniform law.

REMARK 2.2. Given that there exists a probability measure Q ≡ Q1 on
(�,F) such that Q|Fηu

= Qu|Fηu
holds for all u ∈ [0,1), asking that there also

exists a random variable U :� 	→ [0,1) such that U is independent of F∞ and
has the standard uniform law under Q entails no loss of generality whatso-
ever. Indeed, if such random variable does not exist, the underlying probability
space can always be enlarged in order to support one. More precisely, define
� := �×[0,1), a filtration F = (F t )t∈R+ via F t = Ft ⊗{∅, [0,1)} for t ∈ R+, as
well as F =F ⊗B([0,1)), where B([0,1)) is the Borel sigma-algebra on [0,1). It
is immediate that (Ft )t∈R+ and (F t )t∈R+ are in one-to-one correspondence. (How-
ever, F and F are not isomorphic.) On (�,F), define P := P⊗Leb, Q := Q⊗Leb,
as well as Qu := Qu ⊗ Leb for u ∈ [0,1), where “Leb” denotes Lebesgue mea-
sure on B([0,1)). Any process X on the original stochastic basis is identified on
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the new stochastic basis with the process X defined via X(ω,u) = X(ω) for all
(ω,u) ∈ �—this way, properties like adaptedness and optionality of processes are
in one-to-one correspondence. The random variable U :� 	→ [0,1) defined via
U(ω,u) = u for all (ω,u) ∈ � has the standard uniform distribution, and is in-
dependent of F∞, the previous holding under both P and Q. Note that the pair
associated with ρ on (�,F,F,P) is (K,L) in the previously-introduced nota-
tion, which is identified with (K,L). Furthermore, Q|Fηu

= Qu|Fηu
holds for all

u ∈ [0,1).

REMARK 2.3. Even though item (2) of Assumption 2.1 is not really an as-
sumption in view of Remark 2.2 above, item (1) is, as Example 3.8 will reveal.
In fact, Example 3.8 will make an additional point: even if Q exists, it is in gen-
eral possible that neither of the conditions Q �Ft P nor P �Ft Q holds, for any
choice of t ∈ (0,∞). This clarifies the absolute need to refrain from completing
F = (Ft )t∈R+ with P-null sets, even if the null sets come from

⋃
t∈R+ Ft and not

from the larger, in general, sigma-field F∞ = ∨
t∈R+ Ft .

2.2. The stochastic behaviour of optional processes up to random times. We
now turn to the topic discussed in the Introduction: as long as distributional prop-
erties of optional processes on (�,F) up to a random time are concerned, one can
pass from the original random time ρ and probability P to a randomised stopping
time ψ on (�,F,Q), where Q is the probability of Assumption 2.1.

THEOREM 2.4. Let ρ be a random time on (�,F,F,P) with associated
canonical pair (K,L). Under the validity of Assumption 2.1, let Q the probability
that appears there. Define

ψ := inf{t ∈ R+|Kt ≥ U} = ηU .

Then ψ is a randomised stopping time on (�,F,F,Q) with associated canon-
ical pair (K,1). Furthermore, for any optional process Y on (�,F), the finite-
dimensional distributions of Yρ = (Yρ∧t )t∈R+ under P coincide with the finite-
dimensional distributions of Yψ = (Yψ∧t )t∈R+ under Q.

PROOF. Observe that {ψ > t} = {U > Kt } holds for t ∈ R+. Therefore,

Q[ψ > t |Ft ] = Q[U > Kt |Ft ] = 1 − Kt for t ∈ R+.

It follows that the pair associated with ψ on (�,F,Q) is (K,1).
Pick any nonnegative optional process V on (�,F). Then

EP[Vρ] =
∫
[0,1)

EQu
[Vηu]du =

∫
[0,1)

EQ[Vηu]du

(2.1)

= EQ

[∫
[0,1)

Vηu du

]
= EQ[VηU

] = EQ[Vψ ].
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Continuing, fix an optional process Y on (�,F) and times {t1, . . . , tn} ⊆ R+.
For any nonnegative Borel-measurable function f :Rn 	→ R+, the process V =
f (Y t1, . . . , Y tn) is optional on (�,F). Since Vρ = f (Y

ρ
t1
, . . . , Y

ρ
tn ) and Vψ =

f (Y
ψ
t1

, . . . , Y
ψ
tn ), (2.1) gives

EP

[
f

(
Y

ρ
t1
, . . . , Y

ρ
tn

)] = EQ

[
f

(
Y

ψ
t1

, . . . , Y
ψ
tn

)]
.

As the collection {t1, . . . , tn} ⊆R+ and the nonnegative Borel-measurable function
f are arbitrary, the finite-dimensional distributions of Yρ under P coincide with
the finite-dimensional distributions of Yψ under Q. �

REMARK 2.5. In the setting of Theorem 2.4, assume that τ is a stopping time
on (�,F) and that E is an Fτ -measurable set. Then, since the process IEI]]τ,∞[[ is
optional, we obtain

P[E,ρ > τ ] = Q[E,ηU > τ ] = Q[E,Kτ < U ]
=

∫
[0,1)

Q[E,Kτ < u]du = EQ

[
(1 − Kτ)IE

]
.

3. First examples.

3.1. Finite-horizon discrete-time models. Models where the time-set is dis-
crete can be naturally embedded in a continuous-time framework. Only for the
purposes of Section 3.1, we consider a filtered probability space (�,F,F,P) with
F = (Ft )t∈T, where T = {0, . . . , T } for T ∈ N. We assume that F = FT ∨ σ(U),
where U is a random variable with uniform distribution under P, independent of
FT . A random time ρ in this setting is a T-valued random variable.

It is straightforward to check that A = ∑
t≤·P[ρ = t |Ft ] is the dual optional

projection on (�,F,P) of I[[ρ,T ]]. Recall from Section 1.1 the stopping time ζ0 :=
min{t ∈ T|Zt = 0}. The discrete-time versions of (1.2) and (1.3) on {t ≤ ζ0} read

Kt = Kt−1 + (1 − Kt−1)

(
At − At−1

Zt + At − At−1

)
= Kt−1 + (1 − Kt−1)

P[ρ = t |Ft ]
P[ρ ≥ t |Ft ]

and

Lt = Lt−1

(
1 + Nt − Nt−1

Zt−1

)
= Lt−1

Zt + At − At−1

Zt−1
= Lt−1

P[ρ ≥ t |Ft ]
P[ρ ≥ t |Ft−1] .

On {t > ζ0}, Kt = Kζ0 and Lt = Lζ0 holds.
In finite-horizon discrete-time settings like the one considered here, nonnegative

local martingales are actually martingales; see [13]. Therefore, one may define a
probability Q on (�,F) that has density LT with respect to P; then, Q|Fηu

=
Qu|Fηu

holds for all u ∈ [0,1). The probability Q is absolutely continuous with
respect to P. (Observe also that Assumption 2.1 is always valid in this setting.
Indeed, LT is FT -measurable and, therefore, independent of U under P, which
implies that U is independent of FT under Q.) The next result shows that the
stochastic behaviour of ρ under P and Q might be radically different.
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PROPOSITION 3.1. Let ρ be a random time on (�,F,P). If P[ρ = ζ0|Fζ0] is
P-a.s. {0,1}-valued, then Q[ρ = ζ0] = 1.

PROOF. On {ζ0 > 0} it holds that Lζ0 = Lζ0−1P[ρ = ζ0|Fζ0]/P[ρ = ζ0|
Fζ0−1], which implies that {Lζ0 > 0} = {P[ρ = ζ0|Fζ0] > 0}. Since P[ρ = ζ0|Fζ0]
is P-a.s. {0,1}-valued, it follows that {Lζ0 > 0} = {P[ρ = ζ0|Fζ0] = 1} holds mod-
ulo P on {ζ0 > 0}. On {ζ0 = 0} both Lζ0 = 1 and P[ρ = ζ0|Fζ0] = 1 hold modulo P.
Therefore,

Q[ρ = ζ0] = EP[Lζ0I{ρ=ζ0}] = EP

[
Lζ0P[ρ = ζ0|Fζ0]

] = EP[Lζ0] = 1,

which completes the proof. �

Random times that satisfy the condition in the statement of Proposition 3.1 are
Q-a.s. equal to a stopping time. The next example shows that familiar random
times that are far from being stopping times under P become Q-a.s. equal to a
constant.

EXAMPLE 3.2. Let X be an adapted process on (�,F,F,P) such that P[Xt ≥
Xt−1|Ft−1] > 0 holds P-a.s. for all t ∈ T \ {0}. Define ρ := max{t ∈ T|Xt = X

↑
T }

to be the last time of maximum of X. On the event {ζ0 < T }, and in view of
P[Xζ0+1 ≥ Xζ0 |Fζ0] > 0 holding P-a.s., we have P[ρ = ζ0|Fζ0] = 0 holding P-a.s.
On the other hand, on the event {ζ0 = T } we have P[ρ = ζ0|Fζ0] = I{ρ=T }, which
is P-a.s. {0,1}-valued. From Proposition 3.1, it follows that Q[ρ = ζ0] = 1. Since
P[ρ = ζ0 < T ] = 0 and Q is absolutely continuous with respect to P, we obtain
Q[ρ = T ] = 1.

A continuous-time version of Example 3.2 involving Brownian motion with
drift over finite time-intervals will be given in Section 5.2, where it will be demon-
strated in particular that the corresponding probabilities P and Q in that setting are
singular.

3.2. Time of maximum of nonnegative local martingales with zero terminal
value, continuous running supremum and no jumps while at their running supre-
mum. For special cases of random times, the calculation of the canonical pair
becomes relatively easy. More information and extensive discussion on the mate-
rial of Section 3.2 can be found in [24], where exact connections with so-called
honest times are presented.

Let us introduce some notation: L0 denotes the class of all nonnegative local
martingales M such that P[M0 = 1,M∞ = 0] = 1 (where M∞ := limt→∞ Mt ,
noting that the limit in the definition of L∞ exists in the P-a.s. sense, in view of
the nonnegative super-martingale convergence theorem), the running supremum
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process M∗ = M↑ is continuous and {M− = M∗−} ⊆ {�M = 0} holds up to a P-
evanescent set. For M ∈ L0, define

ρM := sup
{
t ∈ R+|Mt− = M∗

t−
}
.(3.1)

(The convention M0− = 0 = M∗
0− implies that the random set {t ∈ R+|Mt− =

M∗
t−} is nonempty.) Since P[M∞ = 0] = 1 holds for M ∈ L0, it follows that

P[ρM < ∞] = 1. Whenever M ∈ L0, it P-a.s. holds that MρM− = MρM
= M∗

ρM
; in

fact, as [24], Theorem 1.2, implies, the previous random variables are also equal
to M∗∞, which makes ρM a time of overall maximum of M ∈ L0.

PROPOSITION 3.3. Let M ∈ L0, and let ρ be any time of maximum of M , in
the sense that P[Mρ = M∗∞] = 1. Then the following are true:

• The canonical pair associated with ρ is (K,L) = (1 − 1/M∗,M).
• ρ avoids all stopping times on (�,F,P).
• P[ρ = ρM ] = 1.

PROOF. Only a sketch of the proof is provided; as already mentioned, more
information can be found in [24]. Note that P[ρ ≤ ρM ] = 1 holds by definition
on ρM ; in particular, P[ρ < ∞] = 1. The fact that ρ avoids all stopping times
on (�,F,P) follows from Doob’s maximal identity, as presented in [30]; more
precisely, P[ρ = τ |Fτ ] = 0 holds on {τ < ∞,Mτ < M∗

τ }, while on {τ < ∞,Mτ =
M∗

τ } it follows that

P[ρ = τ |Fτ ] = P
[

sup
t∈[τ,∞)

Mt > Mτ

∣∣Fτ

]
= 1 − Mτ

M∗
τ

= 0.

Doob’s maximal identity applied again implies that Z = M/M∗ (see [30]); then,
since ρ avoids all stopping times on (�,F,P), one can use Remark 1.6 to conclude
that the canonical pair associated with ρ is (1 − 1/M∗,M).

Since ρM is a special instance of a random time that achieves the maximum
of M , it follows that the pair associated with ρM is also (1 − 1/M∗,M). Since the
canonical pair associated to a random time completely determines its distribution,
the laws of ρ and ρM are the same under P. Combined with P[ρ ≤ ρM ] = 1, we
obtain P[ρ = ρM ] = 1. �

REMARK 3.4. Proposition 3.3 implies in particular that there exists an almost
surely unique time of maximum of processes in L0.

REMARK 3.5. It was already hinted out in the discussion at Section 1.1 that
the canonical pair (K,L) associated with a random time may be such that P[K∞ <

1] > 0 holds; additionally, L may fail to be a true martingale. Indeed, in the context
of Proposition 3.3, M = L can be freely chosen to be a strict local martingale in
the terminology of [8]; furthermore, P[K∞ < 1] = P[L∗∞ < ∞] = 1.
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REMARK 3.6. Recall the set S from Section 1.5. Specialising to the setting of
Proposition 3.3, let ρ be the time of maximum of M ∈ L0. In this case, and since
Kρ = 1 − 1/Mρ , we obtain from Proposition 1.12 that EP[Sρ |Mρ] ≤ Mρ for all
S ∈ S . This result is quite interesting—it states that no matter what the level of M

at its maximum, no other nonnegative super-martingale with unit initial value is
expected to lie above that.

Since S is convex, the condition EP[Sρ |Mρ] ≤ Mρ for all S ∈ S is actually
equivalent to the fact that Mρ stochastically dominates all random variables in
{Sρ |S ∈ S} in second order, meaning that EP[U(Sρ)] ≤ EP[U(Mρ)] holds for all
nondecreasing concave functions U :R+ 	→R. In fact, a stronger statement is true.
Since S is a nonnegative super-martingale on (�,F,P) with P[S0 = 1] = 1 for all
S ∈ S , Doob’s maximal inequality implies that P[Sρ > x] ≤ 1 ∧ (1/x) holds for
all x ∈ (0,∞). On the other hand, since M ∈ L0, it follows from Doob’s maximal
identity [30] that P[Mρ > x] = 1 ∧ (1/x) holds for all x ∈ (0,∞). Therefore,
supS∈S P[Sρ > x] = P[Mρ > x] holds for all x ∈ (0,∞), which implies that Mρ

stochastically dominates all random variables in {Sρ |S ∈ S}, even in first order.

EXAMPLE 3.7. Let � be the canonical space of continuous functions from
R+ to R. Take X to be the coordinate process and F be the right-continuous
augmentation of the natural filtration of X. For the time being, F is taken to
be equal to F∞. Let P be the unique probability on (�,F) under which X is
a Brownian motion with (strictly negative) drift μ < 0 and unit diffusion coeffi-
cient. Since P[limt→∞ Xt = −∞] = 1, consider a random time ρ that is a time
of overall maximum of X. Note that ρ is also a time of maximum of the process
M := exp(−2μX), which satisfies all the conditions of Proposition 3.3. We ob-
tain that the canonical representation pair (K,L) of ρ on (�,F,F,P) is such that
K = 1 − exp(2μX↑) and L = exp(−2μX). An application of Proposition 1.11
gives that supt∈R+ Xt = (1/2μ) log(1 − Kρ) has the exponential distribution with
rate −2μ under P—of course, this fact is well known.

Note that the process L = exp(−2μX) is a martingale on (�,F,P). Since we
are working on the canonical space, a joint application of the extension theorem
of Daniell–Kolmogorov [21], Section 2.2A, and Girsanov’s theorem [21], Sec-
tion 3.5, imply there exists a probability Q on (�,F,F) such that dQ = Lt dP
holds on each Ft for t ∈ R+, and under which X is a Brownian motion with drift
−μ > 0 and unit diffusion coefficient. In order to be in par with Assumption 2.1,
we carry out the enlargement of the probability space as discussed in Remark 2.2.
Then it comes as a consequence of Theorem 2.4 that a path of Xρ under P can be
stochastically realised as follows:

(1) With U being a standard uniform random variable, set X
↑∞ = Xρ =

(1/2μ) log(U).
(2) Given x = Xρ , generate Xτx under Q, where τx := inf{t ∈ R+|Xt = x}.
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The next example will settle a couple of claims that were previously made in
Remark 2.3.

EXAMPLE 3.8. Consider the interval (0,∞), with an extra “cemetery” state �
appended in a way so that � is a topologically isolated point of (0,∞) ∪ {�}. For
a right-continuous path ω :R+ 	→ (0,∞)∪{�}, define ζ(ω) := inf{t ∈ R+|ω(t) =
�}. With the previous understanding, define � to be the space of all right-
continuous paths ω :R+ 	→ (0,∞)∪{�} such that ω(0) ∈ (0,∞), that are actually
continuous on the interval [0, ζ(ω)) and ω(t) = � holds for all t ∈ [ζ(ω),∞). Let
X denote the coordinate process on � and F be the right-continuous augmentation
of the natural filtration of X; then ζ becomes a stopping time on (�,F). Defining
� as above is essential for ensuring that Assumption 2.1 is valid; see the discussion
on standard systems and, more particularly, [29], Example 6.3.

Set β(x) = 1 ∨ x2 for x ∈ (0,∞). From the treatment of [21], Section 5.5,
there exists a probability P on F such that the coordinate process X satisfies
P[X0 = 1] = 1 and has dynamics dXt = β(Xt)dWP

t , for t ∈ [0, ζ ), where WP is a
standard Brownian motion under P. (In general, WP is defined only up to time ζ .)
In fact, X is a strict local martingale on (�,F,P) in the terminology of [8], as
follows from results in [5]. Using Feller’s test for explosions and the local martin-
gale property, it is straightforward to check that P[ζ ≤ t,Xζ− = 0] = P[ζ ≤ t] > 0
holds for all t ∈ (0,∞). Let ρ denote a time of overall maximum of X. By Propo-
sition 3.3, it follows that L = XI[[0,ζ [[. In order to characterise the probability Q

that L induces as in Assumption 2.1, note that, if L was actually the density pro-
cess of Q with respect to P, Girsanov’s theorem would imply that the dynamics
of X under Q are dXt = (β2(Xt)/Xt)dt + β(Xt)dW

Q
t for t ∈ [0, ζ ), with WQ

being a standard Brownian motion on (�,F,Q). Even though L is not a mar-
tingale on (�,F,P), the treatment of [21], Section 5.5, implies that there exists
a probability Q on (�,F) such that the coordinate process X indeed satisfies
Q[X0 = 1] = 1 and dXt = (β2(Xt)/Xt)dt +β(Xt)dW

Q
t for t ∈ [0, ζ ), where WQ

is a standard Brownian motion under Q, in general defined until time ζ . It is also
clear that Q is exactly the probability that appears in Assumption 2.1. Writing the
formal dynamics under Q of 1/X on the stochastic interval [[0, ζ [[, it is straight-
forward to conclude that the law of (1/Xt)t∈[0,ζ ) under Q is the same as the law of
(Xt)t∈[0,ζ ) under P. It follows that P[ζ ≤ t,Xζ− = ∞] = P[ζ ≤ t] > 0 holds for
all t ∈ (0,∞). Coupled with the fact that P[ζ ≤ t,Xζ− = 0] = P[ζ ≤ t] > 0 holds
for all t ∈ (0,∞) that was established above, we conclude that neither Q �Ft P

nor P �Ft Q holds, for any t ∈ (0,∞).
The above example also illustrates that the filtration F should not be completed

in any way by P, if Q is to be defined. In fact, let FP = (FP
t )t∈R+ be any right-

continuous filtration such that:

• F ⊆ FP, and
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• if B ⊆ ⋃
n∈N Bn, where Bn ∈ ⋃

t∈R+ Ft and P[Bn] = 0 holds for all n ∈ N, then
B ∈ FP

0 .

(Note that we are not asking that each FP
t , t ∈ R+, contains all P-null sets of

F∞, but a weaker condition that is tailored to avoid problems with singularities of
probabilities at infinity; see [2] for the concept of such natural, as opposed to usual,
augmentations.) For any n ∈ N, Bn := {ζ ≤ n,Xζ− = ∞} ∈ Fn and P[Bn] = 0. In
view of the assumptions on FP, {ζ < ∞,Xζ− = ∞} ∈ FP

0 . If Q could be defined,
Q|FP

ηu
� P|FP

ηu
would hold for u ∈ [0,1); in particular, QP|FP

0
� P|FP

0
. This is

impossible: indeed, we should have Q[ζ < ∞,Xζ− = ∞] = 1, while it is true that
P[ζ < ∞,Xζ− = ∞] = 0. Of course, since the filtration is not enlarged in order to
include P-null sets, one can define Q without problems.

3.3. Last-passage times of nonnegative continuous-path local martingales van-
ishing at infinity. Let M be a nonnegative local martingale on (�,F,P) with
M0 = 1, M having continuous paths and limt→∞ Mt = 0, all holding P-a.s. In
particular, and in the notation of Section 3.2, M ∈ L0. We fix y ∈ R+ and define
ρ := sup{t ∈ R+|Mt = y}, setting ρ = 0 when the last set is empty. In words, ρ is
the last passage time of M at level y. In this case, it is straightforward that

Zt = P[ρ > t |Ft ] = Mt

y
∧ 1 for all t ∈ R+.

(The set-inclusion {M > y} ⊆ {Z = 1} certainly holds modulo P; the fact that
Z = M/y holds on {M ≤ y} follows from Doob’s maximal identity [30] because
M has P-a.s. continuous paths.)

Recall from Section 1.1 that Z = N − A holds for an appropriate local mar-
tingale N on (�,F,P). In order to compute N and A in the decomposition of Z,
information on the jumps of A is required. Since A is the dual optional projec-
tion of I[[ρ,∞[[ on (�,F,P), �Aτ = P[ρ = τ |Fτ ] holds for any finite stopping
time τ . Note that A0 = P[ρ = 0] = 1 − Z0 = 0 ∨ (1 − 1/y). Furthermore, on
{τ > 0,Mτ �= y}, it is clear that P[ρ = τ |Fτ ] = 0 holds for any finite stopping
time τ . Furthermore, P[ρ ≥ τ |Fτ ] = 1 holds on {Mτ = y} ⊆ {Zτ = 1}, which im-
plies that on {τ > 0,Mτ = y} it holds that P[ρ = τ |Fτ ] = 1 − P[ρ > τ |Fτ ] =
1 − Zτ = 0. We conclude that �Aτ = 0 on {τ > 0}, which implies that A is a
continuous-path process. It follows that Z = N − A coincides with the Doob–
Mayer decomposition of Z, where N is (necessarily) a continuous-path martingale
with N0 = 1. By the Meyer–Itô–Tanaka formula [33], Theorem IV.70, it holds
that dNt = (1/y)I{Mt≤y} dMt and dAt = (1/2y)d�M

t (y) for t ∈ (0,∞), where
(�M

t (y))t∈R+ denotes the semimartingale local time of M at level y—see [33],
page 216. A bit of algebra on (1.1) gives

K = 1 −
(

1 ∧ 1

y

)
exp

(
− 1

2y
�M(y)

)
.(3.2)
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Furthermore, since {M ≤ y} ⊆ {yZ = M}, the dynamics dNt = (1/y)I{Mt≤y} dMt

for t ∈ R+ and (1.3) give

dLt

Lt

= I{Mt≤y}
dMt

Mt

for t ∈ [0, ζ0).(3.3)

REMARK 3.9. If Assumption 2.1 is valid, the dynamics in (3.3) suggest that
the stochastic behaviour of processes under Q is like the one under P when M > y;
furthermore, when M ≤ y, the stochastic behaviour of processes under Q is like
the one under the corresponding probability Q when the random time is the time of
maximum of M , studied in Section 3.2. The reader should also check Example 4.8
in Section 4.2 for dynamics under Q in a one-dimensional diffusion setting.

REMARK 3.10. Suppose that y ∈ (0,1]. In this case, K = 1−exp(−(1/2y)×
�M(y)), so that �K = 0 up to a P-evanescent set. By Proposition 1.11, Kρ = K∞
has the standard uniform distribution under P. It follows that �M∞(y) = �M

ρ (y) has
the exponential distribution with rate parameter 2y under P. Also, note that in this
case that the last exit time ρ is actually the time of maximum of L, which becomes
apparent once one writes

L = Z

1 − K
=

(
M

y
∧ 1

)
exp

(
1

2y
�M(y)

)

and use the facts that P[Mρ = y] = 1 and P[�M
ρ (y) = �M∞(y)] = 1.

EXAMPLE 3.11. Recall the Brownian setting of Example 3.7. Suppose that
x ∈ R. Define ρ := sup{t ∈ R+|Xt = x}, where we set ρ = 0 when the last set is
empty. Recalling that M = exp(−2μX), it holds that ρ := sup{t ∈ R+|Mt = y},
where y = exp(−2μx). Furthermore, straightforward computations using a com-
bination of the two occupation-times formulas for �X and �M imply that we
can choose the local times in a way so that (1/y)�M(y) = −2μ�X(x). There-
fore, equation (3.2) in this case reads K = 1 − (1 ∧ exp(2μx)) exp(μ�X(x)). By
Proposition 1.11, it follows that �X∞(x) = �X

ρ (x) is such that P[�X∞(x) = 0] =
1 − exp(2μx) when x ∈ (0,∞) and P[�X∞(x) = 0] = 0 when x ∈ (−∞,0]; fur-
thermore, given �X∞(x) > 0, �X∞(x) has the exponential distribution with rate pa-
rameter −μ under P.

Using Novikov’s condition ([21], Section 3.5.D), it is straightforward to check
that the local martingale L in (3.3) is an actual martingale. The extension theorem
of Daniell–Kolmogorov ([21], Section 2.2A), implies that Assumption 2.1 is valid
in this case (modulo the enlargement of the probability space in order to accom-
modate a uniform random variable). It is straightforward to check that, under Q,
the process X has dynamics dXt = μ sign(Xt − x)dt + dW

Q
t for t ∈ R+, where

sign = I(0,∞) − I(−∞,0] and WQ is a standard Brownian motion under Q. Dynam-
ics like the ones of X under Q have been the object of study in previous literature;
see, for example, [35] and [9], Section 5.2, page 96.
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4. Applications to financial mathematics.

4.1. Market behaviour up to the time of overall minimum of the numéraire
portfolio. For the purposes of Section 4.1, we shall not be needing Assump-
tion 2.1; (�,F,P) is taken to be a filtered probability space, where F actually
satisfies the usual conditions of right-continuity and augmentation by P-null sets
of F . On (�,F,P), let S = (Si)i=1,...,d be a sigma-bounded d-dimensional semi-
martingale. (The condition of sigma-boundedness is weaker than local bounded-
ness of S—in fact, it is equivalent to the existence of strictly positive and non-
increasing predictable processes ϑi such that

∫ ·
0 ϑi

t dSi
t is a uniformly bounded

process for each i ∈ {1, . . . , d}. For the concepts of sigma-localisation and sigma-
martingales, the reader can refer to [19]. The concept of sigma-boundedness has
also appeared in [26].) For each i ∈ {1, . . . , d}, Si represents the discounted, with
respect to some baseline security, price of a liquid asset in the market. This base-
line security should be thought as a locally riskless asset. Starting with normalised
unit capital, and investing according to some d-dimensional, F-predictable and
S-integrable strategy ϑ (modelling the number of liquid assets held in the port-
folio), an economic agent’s discounted wealth is given by Xϑ = 1 + ∫ ·

0 ϑt · dSt .
(Stochastic integrals with respect to S are to be understood in the sense of vector
stochastic integration; see [14].) Define X as the set of all processes Xϑ in the
previous notation that remain nonnegative at all times.

ASSUMPTION 4.1. In the above set-up, assume the following:

(1) There exists X̂ ∈X with the following properties:
(a) X/X̂ is a super-martingale for all X ∈X .
(b) �X̂ ≥ 0 up to P-evanescence. Furthermore, with Î := inft∈[0,·] X̂, the set-

inclusion {X̂− = Î−} ⊆ {�X̂ = 0} holds up to P-evanescence.
(2) There exists X ∈X such that P[limt→∞ Xt = ∞] = 1.

REMARK 4.2. Condition (1) in Assumption 4.1 is connected to market via-
bility, and in particular to absence of arbitrage of the first kind, that is, condition
NA1. (The market allows for arbitrage of the first kind if there exists T ∈ R+
and an FT -measurable random variable ξ with the properties P[ξ ≥ 0] = 1 and
P[ξ > 0] > 0, and such that for all x > 0 there exists X ∈ xX , which may depend
on x, satisfying P[XT ≥ ξ ] = 1.) Condition NA1 is actually equivalent to the re-
quirement that limm→∞ supX∈X P[XT > m] = 0 holds for all T ∈ R+—see [22],
Proposition 1. It then comes as a consequence of results in [20] that absence of
arbitrage of the first kind is equivalent to existence of X̂ ∈ X such that X/X̂ is a
super-martingale for all X ∈ X , which is exactly condition (1)(a). Condition (1)(b)
in Assumption 4.1 additionally forces certain requirements which will enable use
of results from Section 3.2 and are crucial for the development below.



450 C. KARDARAS

Condition (1) of Assumption 4.1 implies in particular that 1/X̂ is a super-
martingale on (�,F,P). The next result refines this observation.

LEMMA 4.3. Under condition (1) of Assumption 4.1, 1/X̂ is a local martin-
gale on (�,F,P).

PROOF. Since both X̂− > 0 and X̂ > 0 hold, we have X̂ = 1+∫ ·
0 X̂t−(ϕt ·dSt )

for some d-dimensional predictable and S-integrable process ϕ. A straightforward
application of [20], Lemma 3.4, shows that L := 1/X̂ = 1−∫ ·

0 Lt−(ϕt ·dSt ), where

S := S −
[

cS,

∫ ·
0

(
ϕt · dcSt

)] − ∑
t≤·

�X̂t

X̂t

�St ,

with cS denoting the uniquely defined continuous local martingale part of S (see,
e.g., [14]) and [·, ·] denotes the operator returning the quadratic covariation of
semi-martingales. Since L− > 0 and L > 0, L is a local martingale if and only
if

∫ ·
0(ϕt · dSt ) is a local martingale. The super-martingale property of L already

gives that
∫ ·

0(ϕt · dSt ) is a local sub-martingale. We shall show that
∫ ·

0(ϕt ,dSt ) is
also a local super-martingale. Since 2ϕ ·�S = 2(�X̂/X̂−) ≥ 0, the process X′ de-
fined implicitly via X′ = 1 + ∫ ·

0 X′
t−(2ϕt · dSt ) is an element of X with X′ > 0

and X′− > 0. Therefore, X′/X̂ is a nonnegative super-martingale. Again, [20],
Lemma 3.4, shows that X′/X̂ = 1 + ∫ ·

0(X
′
t−/X̂t−)(ϕt · dSt ). The super-martingale

property of X′/X̂ implies that
∫ ·

0(ϕt · dSt ) is a local super-martingale, which com-
pletes the argument. �

REMARK 4.4. Lemma 4.3 above follows part of the proof of [23], Theo-
rem 2.15. While the latter result really requires the full force of condition (1) in
Assumption 4.1 in order to be valid, the set-inclusion {X̂− = Î−} ⊆ {�X̂ = 0} was
erroneously neglected in [23], Theorem 2.15.

Given condition (1)(a) in Assumption 4.1, the nonnegative super-martingale
convergence theorem implies that condition (2) in Assumption 4.1 is actually
equivalent to P[limt→∞ X̂t = ∞] = 1. Let L := 1/X̂. Since L0 = 1 and Assump-
tion 4.1 implies that L∗ is continuous and P[L∞ = 0] = 1, Lemma 4.3 and con-
dition (1) of Assumption 4.1 imply that L ∈ L0, in the notation of Section 3.2.
By Proposition 3.3, it follows that there exists a P-a.s. unique time ρ of mini-
mum of X̂, and that (1 − 1/L∗,L) is the canonical representation pair associated
with ρ. Let G = (Gt )t∈R+ be the smallest right-continuous filtration that contains
F and makes the random variable Î∞ = inft∈R+ X̂t be G0-measurable. In this case,
ρ is P-a.s. equal to the first time that X̂ equals Î∞, which is a stopping time on
(�,G); since F satisfies the usual conditions, we conclude that ρ is a stopping
time on (�,G).

When S consists of continuous-path semi-martingales, a version of the next
result appears in [25], Theorem 1.4. The strengthened result that is presented here
has a short proof due to the previously-built theory.
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THEOREM 4.5. Under Assumption 4.1 and the above notation, the d-
dimensional process Sρ = (Sρ∧t )t∈R+ is a sigma-martingale on (�,G,P).

PROOF. Let X ∈ X . In the notation of Section 1.5, since (X/X̂) ∈ S and
ρ is a time of maximum of L := 1/X̂, which in particular avoids all stop-
ping times in view of Proposition 3.3, it follows that EP[Xρ/X̂ρ |Kρ] ≤ 1/X̂ρ .
Since Kρ = 1 − 1/X̂ρ , the last equality translates to EP[Xρ |Kρ] ≤ 1; in other
words, EP[Xρf (Kρ)] ≤ EP[f (Kρ)] is valid for all X ∈ X and Borel-measurable
f : [0,1) 	→ R+. Now, fix t1 ∈ R+, t2 ∈ (t1,∞), A ∈ Ft1 and X ∈ X with X ≥
1/2. Let ϑ be so that X = 1 + ∫ ·

0 ϑt · dSt , and define ϑ ′ := (1/Xt1)IAI]]t1,t2]]ϑ
and X′ := 1 + ∫ ·

0 ϑ ′
t · dSt . It is straightforward to check that X′ ∈ X and that

X′
ρ = I�\A + (X

ρ
t2
/X

ρ
t1
)IA. Therefore, the inequality EP[X′

ρf (Kρ)] ≤ EP[f (Kρ)]
gives EP[(Xρ

t2
/X

ρ
t1
)f (Kρ)IA] ≤ EP[f (Kρ)IA]. Defining G0

t = Ft ∨ σ(Kρ) for
all t ∈ R+ and ranging A ∈ Ft1 , we obtain that EP[Xρ

t2
|G0

t1
] ≤ X

ρ
t1

holds for all
t1 ∈ R+, t2 ∈ (t1,∞) and X ∈ X with X ≥ 1/2. By definition of the filtration G,
Gt1 = ⋂

t>t1
G0

t holds; then, the conditional version of Fatou’s lemma gives that
EP[Xρ

t2
|Gt1] ≤ X

ρ
t1

holds for all t1 ∈ R+, t2 ∈ (t1,∞) and X ∈ X with X ≥ 1/2.
Ranging t1 ∈ R+ and t2 ∈ (t1,∞), we obtain that Xρ is a super-martingale on
(�,G,P) for all X ∈ X with X ≥ 1/2.

For each i ∈ {1, . . . , d} pick a strictly positive and nonincreasing predictable
process ϑi such that | ∫ ·

0 ϑi
t dSi

t | ≤ 1/2 identically holds. In this case, both pro-
cesses 1 + ∫ ·

0 ϑi
t dSi

t and 1 − ∫ ·
0 ϑi

t dSi
t are elements of X and bounded below by

1/2. It follows that
∫ ρ∧·

0 ϑi
t dSi

t is both a super-martingale and a sub-martingale on
(�,G,P), which means that it is a martingale on (�,G,P). Since ϑi is strictly
positive, this implies that (Si

ρ∧t )t∈R+ is a sigma-martingale on (�,G,P) for all
i ∈ {1, . . . , d}. �

The importance of Theorem 4.5 lies in the following observation: with the “in-
sider information” flow G, investing in the risky assets before time ρ gives the
same instantaneous return as the (locally) riskless asset, but entails (locally) higher
risk; therefore, before ρ an insider would not be willing to take any position on the
risky assets. In a sense, Theorem 4.5 endows X̂ the quality of an index of market
status. Extensive discussion on this and further remarks can be found in [25].

4.2. Valuation of exchange options and last-passage times. In recent litera-
ture, there has been considerable interest in representations of the value of plain
vanilla options in terms of last passage times—in fact, the monograph [32] con-
tains much of this development. Last-passage times for continuous local martin-
gales that vanish at infinity were considered in Section 3.3; that discussion will be
used here to provide a further representation for the value of exchange options.

On (�,F,P), let S0 and S1 be two nonnegative continuous-path semi-
martingales. The process S0 satisfies S0

0 = 1 and P[inft∈[0,T ] S0
t > 0] = 1 for all
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T ∈ R+, and should be considered as a baseline security. Set R := S1/S0 to de-
note the “exchange rate,” that is, the price process S1 denominated in units of the
baseline asset with price process S0.

In the above market, consider an option to exchange at time T ∈ R+ a unit
of a security with price process S1 for κ units of the baseline security S0. The
option will be valid at time T only if the event {σ ≤ T } has occurred, where σ is a
stopping time on (�,F). For example, one could take σ = inf{t ∈ R+|Rt > λ} for
some λ > κ , in which case the security is really an “up-and-in” exchange option.
For a plain vanilla exchange option, one may set σ = 0.

Given that P is the valuation measure and that discounting is done using the
baseline security, as is typically the case, the value of a European exchange option
of the aforementioned type, to be exercised at time T ∈ R+, is EET = EP[(κ −
RT )+I{σ≤T }]. Note that P is an equivalent local martingale measure for R, which
means that R is a nonnegative local martingale on (�,F,P).

REMARK 4.6. In fact, the valuation formula for the European option is valid
also for the value of the corresponding American option. In order to see this, let
T[0,T ] be the class of all stopping times τ on (�,F) satisfying 0 ≤ τ ≤ T . Using P

as valuation measure, an American option of the previous type has value AET :=
supτ∈T[0,T ] EP[(κ − Rτ )+I{σ≤τ }]. Given that R is a nonnegative local martingale
on (�,F,P), thus a super-martingale on (�,F,P), it is straightforward that the
process ((κ −Rt)+)t∈R+ is a sub-martingale on (�,F,P). Then, for any τ ∈ T[0,T ]
it holds that

EP

[
(κ − RT )+I{σ≤T }|Fτ

] ≥ EP

[
(κ − RT )+I{σ≤τ }|Fτ

] ≥ (κ − Rτ )+I{σ≤τ },

which readily gives

AET = sup
τ∈T[0,T ]

EP

[
(κ − Rτ )+I{σ≤τ }

] = EP

[
(κ − RT )+I{σ≤T }

] = EET .

For κ ∈ R+, define the random time ρ := sup{t ∈ R+|Rt = κ}, where we set
ρ = 0 if the last set is empty. Under the force of Assumption 2.1, denote by Q the
probability corresponding to ρ.

PROPOSITION 4.7. In the above set-up, suppose that P[limt→∞ Rt = 0] = 1
and that the validity of Assumption 2.1 is in force for the random time ρ. Then it
holds that

EET = κP[ρ ∧ σ ≤ T ]
(4.1)

= κP[σ ≤ T ] − κ(1 ∧ κ)EQ

[
exp

(
−κ

2
�R

T (κ)

)
I{σ≤T }

]
.
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PROOF. Under the validity of P[limt→∞ Rt = 0] = 1, the equality (κ −
RT )+ = κP[ρ ≤ T |FT ] holds in view of [32], Theorem 2.5; then the first equality
in (4.1) follows from the fact that {σ ≤ T } ∈ FT . For the second equality in (4.1),
note that, in view of (3.2), the process K in the canonical representation pair of
ρ on (�,F,P) is such that 1 − K = (1 ∧ κ) exp(−(κ/2)�R(κ)). By Remark 2.5,
and since {σ ≤ T } ∈ FT ,

P[ρ∧σ ≤ T ] = P[σ ≤ T ]−P[σ ≤ T ,ρ > T ] = P[σ ≤ T ]−EQ

[
(1−KT )I{σ≤T }

]
,

which completes the proof. �

EXAMPLE 4.8. We present here an example where the “exchange rate” pro-
cess R behaves as a one-dimensional diffusion under P. Exact modelling of S0 and
S1 is not necessary.

The filtered measurable space will be the exact one considered in Example 3.8,
where the reader is referred to for all the details. Recall that X denotes the coor-
dinate process and F be the right-continuous augmentation of the natural filtration
of X. The sigma-algebra F is taken to be equal to F∞. Note that this set-up is
essential for ensuring that Assumption 2.1 is valid (modulo the enlargement dis-
cussed in Remark 2.2 in order to accommodate for an independent uniform random
variable).

Fix a function β : (0,∞) 	→ (0,∞) such that 1/β2 is locally integrable on
(0,∞). From the treatment of [21], Section 5.5, for any x0 ∈ R+ there exists a
probability P on F (which coincides with the Borel sigma-algebra on �) such that
P[X0 = x0] = 1, and X has dynamics

dXt

Xt

= β(Xt)dWP
t for t ∈ [0, ζ ),

where recall that ζ := inf{t ∈ R+|Xt = �}, and WP is a standard Brownian mo-
tion (defined only up to time ζ ) under P. Due to the nonnegative local martingale
convergence theorem and the fact that β : (0,∞) 	→ (0,∞) is such that 1/β2 is lo-
cally integrable on (0,∞), it follows in straightforward way that P[Xζ− = 0] = 1.
Letting R := XI[[0,ζ [[, note that the assumptions of Proposition 4.7 are satisfied.

Regarding the probability Q, (3.3) implies that the local martingale L on
(�,F,P) in the canonical representation pair of ρ is such that dLt/Lt =
I{Xt≤κ}(dXt/Xt) = I{Xt≤κ}β(Xt)dWP

t , for t ∈ [0, ζ ). Using Girsanov’s theorem,
it is straightforward to then check that

dXt

Xt

= β2(Xt)I{Xt≤κ} dt + β(Xt)dW
Q
t for t ∈ [0, ζ ),(4.2)

where WQ is a standard Brownian motion under Q. (Even though L may fail to
be a true martingale on (�,F,P), one infers the existence of the probability Q

on (�,F) such that the dynamics of X are given by (4.2) using knowledge of
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weak solutions of stochastic differential equations with possible explosions from
the treatment of [21], Section 5.5.) By employing Feller’s test for explosions, it
can be easily seen that X under Q does not explode, that is, does not exit (0,∞) in
finite time; that is, R = X under Q. In fact, by calculating the scale function of X,
one may conclude that R = X becomes a recurrent Markov process under Q.

5. Time of maximum and last-passage times of Brownian motion with drift
over finite time-intervals.

5.1. Set-up. For the purposes of Section 5, T ∈ R+ will be fixed. Define �

as the canonical path-space of continuous functions from [0, T ) to R. Call X the
coordinate process, let F = (Ft )t∈[0,T ) be the right-continuous augmentation of the
natural filtration of X, and set F = ∨

t∈[0,T )Ft .

REMARK 5.1. It is important to note that the canonical space of processes
with time-index [0, T ), as opposed to [0, T ], is considered here. As will become
clear, it is in this setting that we can ensure later the validity of Assumption 2.1
(modulo the enlargement of the space in order to accommodate a random variable
with the uniform law and independent of F∞, as discussed in Remark 2.2).

Fix μ ∈ R. On (�,F), let P be the probability under which X is a Brownian
motion with drift μ and unit diffusion coefficient. In the rest of Section 5, and using
the previously-developed theory, we discuss the behaviour of X up to the time of
maximum and last-passage times of X. We shall calculate the canonical associated
pair (K,L) in each case, and via L we shall describe the dynamics of X under Q
(generated by L). In view of Section 2, this gives a complete characterisation of
the stochastic behaviour of optional processes up to the random times that are
considered.

5.2. Time of maximum. Define ρ := sup{t ∈ [0, T )|Xt = sups∈[0,T ) Xs},
where by convention one sets ρ = T if the previous set is empty.

In the sequel, we shall make use of the following functions, related to the stan-
dard normal law:

�(x) =
∫ ∞
x

φ(y)dy where φ(x) = 1√
2π

exp
(
−x2

2

)
, for x ∈ R.

Define the function Fμ : (0,∞) ×R+ 	→ [0,1] via

Fμ(τ, z) := exp(2μz)�

(
z + μτ√

τ

)
+ �

(
z − μτ√

τ

)
(5.1)

=
∫ τ

0

(
z√

2πs3
exp

(
−(z − μs)2

2s

))
ds,
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for (τ, z) ∈ (0,∞) ×R+. The second equality follows upon differentiation of the
defining quantity giving Fμ with respect to the temporal variable. The fact that
Fμ is [0,1]-valued follows from the second representation, since the quantity in-
side the integral is the density of the first hitting time of the level z for Brownian
motion with drift μ; see [21], page 197, equation (5.12). By this last fact and the
Markovian property of Brownian motion, it is straightforward that

Zt = P[ρ > t |Ft ] = Fμ

(
T − t,X

↑
t − Xt

)
for t ∈ [0, T ),

where recall that X↑ = supt∈[0,·] X. In preparation for the formulas below, note
that

∂Fμ

∂z
(τ, z) = 2μ exp(2μz)�

(
z + μτ√

τ

)
− 2√

τ
φ

(
z − μτ√

τ

)
(5.2)

for (τ, z) ∈ (0,∞) ×R+,

where the fact that exp(2μz)φ(z/
√

τ + μ
√

τ) = φ(z/
√

τ − μ
√

τ) for (τ, z) ∈
(0,∞) × R+ holds was used in the above calculation. Define also the function
fμ : (0,∞) 	→R via

fμ(τ) := −∂Fμ

∂z
(τ,0) = 1√

2πτ
exp

(
−μ2τ

2

)
− 2μ�(μ

√
τ) for τ ∈ (0,∞).

Upon simple differentiation, it is easy to check that the function fμ is decreasing
in τ ∈ (0,∞). As limτ→∞ fμ(τ) = max{0,−2μ} ∈ R+, fμ is nonnegative.

Since Z has continuous paths and all martingales on (�,F,P) have continuous
paths as well, it follows that A is the continuous nondecreasing process appearing
in the additive Doob–Meyer decomposition of −Z. In view of Proposition 1.11, ρ

avoids all stopping times on (�,F,P). A simple use of Itô’s formula gives, after
some term cancellations, that

dZt = −∂Fμ

∂z

(
T − t,X

↑
t − Xt

)
d(Xt − μt) − fμ(T − t)dX

↑
t

(5.3)
for t ∈ [0, T ).

In particular, it holds that A = ∫ ·
0 fμ(T − t)dX

↑
t . From (1.1), it then follows that

Kt = 1 − exp
(
−

∫ t

0
fμ(T − s)dX↑

s

)
for t ∈ [0, T ).(5.4)

Using the equality L = Z/(1 − K), it follows that

Lt = Fμ

(
T − t,X

↑
t − Xt

)
exp

(∫ t

0
fμ(T − s)dX↑

s

)
for t ∈ [0, T ).(5.5)

The next result ensures that Assumption 2.1 will be valid in this setting.

LEMMA 5.2. For all t ∈ [0, T ), it holds that EP[Lt ] = 1.
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PROOF. Since (Lt )t∈[0,T ) is a nonnegative local martingale on (�,F,P) with
L0 = 1, EP[Lt ] = 1 for all t ∈ [0, T ) will follow if EP[L∗

t ] < ∞ for all t ∈ [0, T )

is established. Given that the function Fμ is a [0,1]-valued and that the func-

tion fμ is decreasing, (5.5) implies that L∗
t ≤ exp(fμ(T − t)X

↑
t ) holds for all

t ∈ [0, T ). Therefore, EP[L∗
t ] < ∞ for all t ∈ [0, T ) will follow if it is established

that EP[exp(aX
↑
t )] < ∞ holds for all a ∈ R and t ∈ R+. To see this, note first

that in view of Girsanov’s theorem and Hölder’s inequality, one may assume that
μ = 0. Then the claim follows because, for μ = 0, the law of X

↑
t under P is the

same as the law of |Xt | under P, and all exponential moments of the latter law are
finite. �

By Lemma 5.2 and the extension theorem of Daniell–Kolmogorov [21], Sec-
tion 2.2A, there exists a probability Q on (�,F) such that Lt is the density of
Q with respect to P on Ft for all t ∈ [0, T ). (It is exactly here that the point of
Remark 5.1 becomes relevant.) It follows either from (5.3) of from (5.5) that the
dynamics of L are

dLt

Lt

= −(∂Fμ/∂z)(T − t,X
↑
t − Xt)

Fμ(T − t,X
↑
t − Xt)

d(Xt − μt) for t ∈ [0, T ).

A straightforward application of Girsanov’s theorem imply that, under Q, the dy-
namics of X are

dXt = Gμ

(
T − t,X

↑
t − Xt

)
dt + dW

Q
t for t ∈ [0, T ),(5.6)

where WQ is a standard Brownian motion on (�,F,Q) and Gμ : (0,∞) ×R+ 	→
R is a function satisfying Gμ(τ, z) = μ − (∂Fμ/∂z)(τ, z)/Fμ(τ, z) for (τ, z) ∈
(0,∞) ×R+. A use of (5.2) gives

Gμ(τ, z)

= μ + (2/
√

τ)φ(z/
√

τ − μ
√

τ) − 2μ exp(2μz)�(z/
√

τ + μ
√

τ)

�(z/
√

τ − μ
√

τ) + exp(2μz)�(z/
√

τ + μ
√

τ)
(5.7)

for (τ, z) ∈ (0,∞) ×R+.

REMARK 5.3. When μ ∈ (−∞,0), it is straightforward to calculate
limτ→∞ Fμ(τ, z) = exp(2μz) and limτ→∞ Gμ(τ, z) = −μ for all z ∈ R+, as well
as limτ→∞ fμ(τ, z) = −2μ. Formally plugging these long-run limits in (5.4), (5.5)
and (5.6), the set-up and results of Example 3.7 are recovered.

REMARK 5.4. When μ = 0, previous formulas simplify significantly. In this
case, F0(τ, z) = 2�(z/

√
τ) for (τ, z) ∈ (0,∞) × R+, f0(τ ) = 1/

√
2πτ for τ ∈

(0,∞), and the function G0 appearing in the dynamics (5.6) is given by G0(τ, z) =
(1/

√
τ)(φ(z/

√
τ)/�(z/

√
τ)), for (τ, z) ∈ (0,∞)×R+. Upon differentiation, it is
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straightforward to check that (0,∞) ×R+ � (τ, z) 	→ G0(τ, z) is decreasing in τ

and increasing in z. This is a very plausible behaviour: recalling the dynamics (5.6)
under Q, one would expect the drift to increase both when X is moving away from
its maximum and when the “time to maturity” τ = T − t is getting shorter.

It is conjectured that the function (0,∞) × (0,∞) � (τ, z) 	→ Gμ(τ, z) is de-
creasing in τ and increasing in z for all μ ∈ R—this was discussed for the case
μ = 0 in Remark 5.4. However, the calculations toward proving such a statement
for all μ ∈ R seem quite tedious. Proposition 5.5 that follows gives important in-
formation on Gμ for arbitrary μ ∈ R.

PROPOSITION 5.5. The function Gμ is R+-valued and such that
lim infτ↓0(infz∈[w,∞)(τGμ(τ, z))) ≥ w holds for all w ∈ (0,∞). In particular, it

follows that X is a local sub-martingale on (�,F,Q) and that Q[lim inft→T (X
↑
t −

Xt) = 0] = 1.

PROOF. Let c ∈ R and d ∈ R. A simple change of variables implies that

exp(2cd)�(c + d) =
∫ ∞
c+d

exp
(

2cd − x2

2

)
dx√
2π

=
∫ ∞
d−c

exp
(

2cd − (x + 2c)2

2

)
dx√
2π

=
∫ ∞
d−c

exp
(
2c(d − c − x)

)
exp

(
−x2

2

)
dx√
2π

.

When x ≥ d − c, it holds that c exp(2c(d − c − x)) ≤ c, for any c ∈ R. There-
fore, from the equalities above we obtain c exp(2cd)�(c + d) ≤ c�(d − c).
Applying the previous inequality above with c = μ

√
τ and d = z/

√
τ , it fol-

lows that μ�(z/
√

τ − μ
√

τ) − μ exp(2μz)�(z/
√

τ + μ
√

τ) ≥ 0 for all (τ, z) ∈
(0,∞) ×R+. By (5.7), we obtain

Gμ(τ, z) ≥ (2/
√

τ)φ(z/
√

τ − μ
√

τ)

�(z/
√

τ − μ
√

τ) + exp(2μz)�(z/
√

τ + μ
√

τ)
(5.8)

for all (τ, z) ∈ (0,∞) ×R+,

from which it immediately follows that Gμ is a nonnegative function. The fact that
X is a local sub-martingale in (�,F,Q) then follows from the dynamics (5.6).

Continuing, fix w ∈ (0,∞). Using the uniform estimates 1 − 1/x2 ≤ x�(x)/

φ(x) ≤ 1, valid for x ∈ (0,∞) (see, e.g., [6], Theorem 1.2.3, page 11), and the
fact that the equality exp(2μz)φ(z/

√
τ + μ

√
τ) = φ(z/

√
τ − μ

√
τ) holds for all

(τ, z) ∈ (0,∞) ×R+, we obtain that

lim
τ↓0

(
inf
z≥w

(
2
√

τφ(z/
√

τ − μ
√

τ)

�(z/
√

τ − μ
√

τ) + exp(2μz)�(z/
√

τ + μ
√

τ)

))
= w.
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Therefore, (5.8) gives lim infτ↓0(infz≥w(τG(τ, z))) ≥ w for all w ∈ (0,∞). Ac-

cording to this fact and the dynamics given in (5.6), on the event {lim inft→T (X
↑
t −

Xt) > 0} one would obtain limt→T Xt = ∞ under Q—indeed, the drift term in
the dynamics (5.6) would dominate (up to a strictly positive random variable) the
quantity 1/(T − t) when t approaches T , implying that the behaviour of X itself
near T would be explosive. However, in that case limt→T (X

↑
t − Xt) = 0 would

hold on {lim inft→T (X
↑
t −Xt) > 0} under Q, since Xt < ∞ holds for all t ∈ [0, T ).

We conclude that Q[lim inft→T (X
↑
t − Xt) = 0] = 1. �

REMARK 5.6. The fact that Q[lim inft→T (X
↑
t − Xt) = 0] = 1 is the equiv-

alent of Q[ρ = T ] = 1 that was obtained in the finite-horizon discrete-time ana-
logue discussed in Example 3.2. However, in contrast to Example 3.2, the fact that
P[limt→T (X

↑
t − Xt) > 0] = 1 implies that in the present setting P and Q are sin-

gular probabilities on F . (Note also that P[lim inft→T (X
↑
t − Xt) > 0] = 1 implies

P[limt→T Lt = 0] = 1, which directly shows the singularity of P and Q on F .)

5.3. Last-passage times. Fix x ∈ R and define ρ := sup{t ∈ [0, T )|Xt = x},
where one sets ρ = 0 if the previous set is empty. Recalling the definition of the
function Fμ from (5.1), it is straightforward to compute

Zt = P[ρ > t |Ft ]
= Fμ(T − t, x − Xt)I{Xt≤x} + F−μ(T − t,Xt − x)I{Xt>x}(5.9)

for t ∈ [0, T ).

In particular, Z0 = P[ρ > 0] = 1 − Fsign(x)μ(T , |x|). Define also the function
hμ : (0,∞) 	→R+ via

hμ(τ) := −1

2

(
∂Fμ

∂z
+ ∂F−μ

∂z

)
(τ,0)

= 1√
2πτ

exp
(
−μ2τ

2

)
− μ

(
1 − 2�(μ

√
τ)

)
for τ ∈ (0,∞).

Upon differentiation, one checks that the nonnegative function hμ is decreasing in
τ ∈ (0,∞).

By a straightforward generalisation of the Itô–Tanaka formula, one can write
Z = N − A, where N is a local martingale (with necessarily continuous paths)
and A = ∫ ·

0 hμ(T − t)d�X
t (x). Recalling that P[ρ > 0] = 1 − Fsign(x)μ(T , |x|), it

follows from (1.1) that

Kt = 1 − (
1 − Fsign(x)μ

(
T , |x|)) exp

(
−

∫ t

0
hμ(T − s)d�X

s (x)

)
(5.10)

for t ∈ [0, T ).

Since L = Z/(1 − K), (5.9) and (5.10) give a closed-form expression for L.



OPTIONAL PROCESSES UP TO RANDOM TIMES 459

LEMMA 5.7. For all t ∈ [0, T ), it holds that EP[Lt ] = 1.

PROOF. As in the proof of Lemma 5.2, it will be shown that EP[L∗
t ] < ∞

holds for all t ∈ [0, T ). Since L ≤ 1/(1 − K) and hμ is a decreasing function, for
all t ∈ [0, T ) we obtain the inequality L∗

t ≤ (1 − Fsign(x)μ(T , |x|))−1 exp(hμ(T −
t)�X

t (x)). Therefore, it suffices to show that EP[exp(a�X
t (x))] < ∞ holds for all

a ∈ R and t ∈ R+. For this, and in view of Girsanov’s theorem and Hölder’s in-
equality, one may assume that μ = 0. Then the properties of standard Brownian
motion imply that, for μ = 0, the law of �X

t (x) under P is stochastically domi-
nated in the first order by the law of �X

t (0) under P. Furthermore, Lévy’s equiv-
alence theorem on Brownian local time and maximum of Brownian motion [21],
Theorem 3.6.17, implies that the law of �X

t (0) under P is the same as the law of
X

↑
t under P; the latter is also the same as the law of |Xt | under P, for which all

exponential moments are finite. �

By Lemma 5.7 and the Daniell–Kolmogorov extension theorem, there exists
a probability Q on (�,F) such that Lt = (dQ/dP)|Ft holds for all t ∈ [0, T ).
(Remark 5.1 becomes again relevant at this point.) Since L = Z/(1 − K), using
(5.9) and (5.10) we obtain the dynamics of L as

dLt

Lt

=
(
−(∂Fμ/∂z)(T − t, x − Xt)

Fμ(T − t, x − Xt)
I{Xt≤x}

+ (∂F−μ/∂z)(T − t,Xt − x)

F−μ(T − t,Xt − x)
I{Xt>x}

)
d(Xt − μt),

for t ∈ [0, T ). Then a straightforward application of Girsanov’s theorem and (5.2)
imply that, under Q, the dynamics of X are given by

dXt = (
Gμ(T − t, x − Xt)I{Xt≤x} − G−μ(T − t,Xt − x)I{Xt>x}

)
dt + dW

Q
t

for t ∈ [0, T ),

where WQ is a standard Brownian motion on (�,F,Q) and the function Gμ is
defined in (5.7).

REMARK 5.8. As was the case in Section 5.2, when the Brownian motion has
zero drift the formulas simplify. In particular, when μ = 0,

Kt = 1 −
(

1 − 2�

( |x|√
T

))
exp

(
− 1√

2π

∫ t

0

1√
T − s

d�X
s (x)

)
for t ∈ [0, T )

and, under Q, the dynamics of X are given by

dXt = − sign(Xt − x)

(
1√

T − t

φ(|Xt − x|/√T − t)

�(|Xt − x|/√T − t)

)
dt + dW

Q
t

for t ∈ [0, T ).
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6. The decomposition result of Jeulin and Yor. Let ρ be a F∞-measurable
random time on (�,F,F). Let G = (Gt )t∈R+ be defined via

Gt = {
B ∈ F∞|B ∩ {ρ > t} = Bt ∩ {ρ > t} for some Bt ∈ Ft

}
, t ∈ R+.

It is straightforward to check that G is a right-continuous filtration that contains F,
as well as that ρ is a stopping time on (�,G).

Whenever X is a local martingale on (�,F,P), the Jeulin–Yor decomposition
theorem identifies the Doob–Meyer decomposition of Xρ on (�,G,P). Here, we
provide the statement (Theorem 6.2) and a novel proof of the result of Jeulin and
Yor that uses the tools developed in this paper and does not rely on elements of
the theory of progressive filtration enlargements. The following result, which is
basically a consequence of Proposition 1.9, provides a main ingredient of our ap-
proach. It is useful to recall the collection (ηu)u∈[0,1) from (1.4).

LEMMA 6.1. Let ρ be a F∞-measurable random time, and Y be a process
such that EP[Y ∗

ρ ] < ∞ and Yηu is local martingale on (�,F,Qu) for all u ∈ [0,1).
Then Yρ is a martingale on (�,G,P).

PROOF. Using (1.5), observe that
∫
[0,1)EQu

[Y ∗
ηu

]du = EP[Y ∗
ρ ] < ∞. Further-

more, the mapping [0,1) � u 	→ EQu
[Y ∗

ηu
] is nondecreasing, as follows from con-

sistency of the family (Qu)u∈[0,1). Therefore, EQu
[Y ∗

ηu
] < ∞ for all u ∈ [0,1). This

implies that, actually, Yηu is a uniformly integrable martingale on (�,F,Qu) for
all u ∈ [0,1).

Fix s ∈ R+ and t ∈ (s,∞). Pick B ∈ Gs and Bs ∈ Fs such that B ∩ {ρ >

s} = Bs ∩ {ρ > s}. Note that the process Y tIBs∩]]s,∞[[ is optional on (�,F) and
Y t

ρIBs∩{s<ρ} = Y
ρ
t IBs I{ρ>s}. In view of Proposition 1.9 (with the usual trick of

splitting into positive and negative parts) and the martingale property of Yηu on
(�,F,Qu) for all u ∈ [0,1), we obtain

EP

[
Y

ρ
t IBs I{ρ>s}

] =
∫
[0,1)

EQu

[
Y

ηu
t IBs I{ηu>s}

]
du

=
∫
[0,1)

EQu

[
Yηu

s IBs I{ηu>s}
]
du = EP

[
Yρ

s IBs I{ρ>s}
]
.

The last equation and the fact that Y
ρ
t IB = Y

ρ
s IBI{ρ≤s} + Y

ρ
t IBs I{ρ>s} imply that

EP[Yρ
t IB] = EP[Yρ

s IB]. Since B ∈ Gs is arbitrary, we obtain EP[Yρ
t |Gs] = Y

ρ
s ,

which establishes the claim. �

What follows is the decomposition theorem of Jeulin and Yor (see [17], as well
as [11] for further development), which in particular implies that for any semi-
martingale X on (�,F,P), Xρ is a semi-martingale on (�,G,P).
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THEOREM 6.2. Let ρ be a F∞-measurable random time on (�,F,F,P) with
associated canonical pair (K,L). Recall the processes Z and N from Section 1.1.
Furthermore, let X be a process such that Xηu is a local martingale on (�,F,P)

for all u ∈ [0,1). Then:

(1) The set-inclusion [[0, ρ]] ⊆ � := ⋃
u∈[0,1)[[0, ηu]] holds modulo P-

evanescence.
(2) The processes 〈L,X〉 and 〈N,X〉, each being the predictable compensator

under P of [L,X] and [N,X] respectively, are well defined on �.
(3) P[inft∈R+ L

ρ
t− > 0] = 1 and P[inft∈R+ Z

ρ
t− > 0] = 1; therefore, P-a.s.,∫ ρ

0

1

Lt−
d Var

(〈L,X〉)t =
∫ ρ

0

1

Zt−
d Var

(〈N,X〉)t < ∞,

where “Var” is the operator returning the first variation of a process.
(4) The process

Yρ := Xρ −
∫ ρ∧·

0

1

Lt−
d〈L,X〉t = Xρ −

∫ ρ∧·
0

1

Zt−
d〈N,X〉t(6.1)

is a local martingale on (�,G,P).

REMARK 6.3. Technicalities aside, intuition on the important statement (4) of
Theorem 6.2 follows from Lemma 6.1 coupled with an application of Girsanov’s
theorem. Indeed, if Xηu is a martingale on (�,F,P), Yηu (in obvious notation) has
(some kind of) the martingale property on (�,F,Qu) in view of Girsanov’s theo-
rem and the fact that Lηu = (dQu/dP)|Fηu

for all u ∈ [0,1). Then Yρ should have
(some kind of) the martingale property on (�,G,P), as follows from Lemma 6.1.

The idea of proving the Jeulin–Yor decomposition theorem via Girsanov’s the-
orem has also been used by Jeulin and Yor [18], Chapter III, page 172. However,
Girsanov’s theorem there is applied on the product space � × R+ equipped with
the predictable sigma-algebra. The approach here is more transparent, as we are
dealing with probabilities on (�,F,F).

PROOF OF THEOREM 6.2. Since P[ρ ≤ ηa] = ∫
[0,1)Qu[ηu ≤ ηa]du ≥ a holds

for all a ∈ [0,1) by Proposition 1.9, it follows that lima↑1 P[ρ ≤ ηa] = 1. There-
fore, statement (1) is established.

Fix u ∈ [0,1). As Lηu is locally bounded (see Lemma 1.7) and Xηu is locally
integrable (being a local martingale) on (�,F,P), it follows that Var([L,X])ηu

is locally integrable on (�,F,P). By (1.3) and Z = L(1 − K), Var([N,X])ηu =
(1−K−) ·Var([L,X])ηu ≤ Var([L,X])ηu implies that Var([N,X])ηu is also locally
integrable on (�,F,P). Since this holds for all u ∈ [0,1), 〈L,X〉 and 〈N,X〉 are
well defined on �, which establishes statement (2).

By Proposition 1.12 P[Lρ > 0] = 1; since L is a nonnegative local martingale
on (�,F,P), we obtain P[inft∈R+ L

ρ
t− > 0] = 1. Then P[inft∈R+ Z

ρ
t− > 0] = 1 fol-

lows from P[inft∈R+ L
ρ
t− > 0] = 1, coupled with P[supt∈R+ K

ρ
t− < 1] = P[Kρ− <
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1] = 1 (see Proposition 1.10) and the relationship Z = L(1 − K), holding up to
P-evanescence. This shows the validity of statement (3).

We proceed to the proof of statement (4). Since [[0, ρ]] ⊆ � holds modulo P-
evanescence, standard localisation arguments imply the existence of a nondecreas-
ing sequence (τn)n∈N of stopping times on (�,F) and a (0,∞)-valued nonde-
creasing sequence (Cn)n∈N such that all the following conditions are met: τn ≤
η1−1/n for all n ∈ N; limn→∞ P[ρ ≤ τn] = 1; limn→∞ Cn = ∞; P[inft∈R+ L

τn
t− ≥

C
−1/2
n ] = 1 for all n ∈ N; P[[L,L]τn ≤ Cn] = 1 for all n ∈ N; EP[X∗

τn
] < ∞ for

all n ∈ N. [In particular, the last condition implies that Xτn is a martingale on
(�,F,P) for all n ∈ N.]

Suppose we can show that Yρ∧τn is a local martingale on (�,G,P) for all
n ∈ N. Then, setting τ ′

n := τnI{ρ>τn} + ∞I{ρ≤τn}, we have that (τ ′
n)n∈N is a nonde-

creasing sequence of stopping times on (�,G) such that P[limn→∞ τ ′
n = ∞] = 1

and Yρ∧τ ′
n = Yρ∧τn is a local martingale on (�,G,P) for all n ∈ N; it will then

follow that Yρ is a local martingale on (�,G,P). Therefore, it suffices to show
that Yρ∧τn is a local martingale on (�,G,P) for all n ∈ N.

We estimate Var([L,X])τn ≤ [L,L]1/2
τn [X,X]1/2

τn ≤ C
−1/2
n [X,X]1/2

τn . Using

(6.1) and the fact that inft∈R+ L
τn
t− ≥ C

1/2
n , we obtain Y ∗

ρ∧τn
≤ X∗

τn
+ Cn[X,X]1/2

τn .

In view of the Davis inequality, EP[X∗
τn

] < ∞ implies EP[[X,X]1/2
τn ] < ∞; there-

fore, EP[Y ∗
ρ∧τn

] < ∞. Furthermore, Y τn∧ηu is a local martingale on (�,F,Qu)

for all u ∈ [0,1). Indeed, given that, P-a.s.,
∫ τn∧ηu

0 (1/Lt−)d Var(〈L,X〉)t < ∞,
this follows in a straightforward way from Girsanov’s theorem. Then Yρ∧τn is a
martingale on (�,G,P), as follows from Lemma 6.1. �
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