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We would like to comment on this article by William
DuMouchel, as it gives an interesting application of
logistic regression to clinical safety data. Not to un-
derscore the scope of the multivariate Bayesian lo-
gistic regression (MBLR) model, but the use of nu-
merical integration is arguably its most important fea-
ture. Avoiding Markov chain Monte Carlo (MCMC)
sampling techniques for other data-mining tools, such
as the Multiple-item Gamma Poisson Shrinker (Du-
Mouchel, 1999), has proven successful for Dr. Du-
Mouchel in their acceptance among nonstatisticians.
With MBLR this should not be an exception.

As most statisticians lack the clinical insight re-
quired to specify the appropriate MBLR model in-
puts, it makes MBLR an ideal tool for use by the
clinicians. However, targeted users may not appreciate
some subtleties of MBLR, which we present below. We
also present findings from our empirical evaluation of
the MBLR algorithm. This commentary provides some
perspective that we have gained through multiple inter-
actions with Dr. DuMouchel and from our reviews of
different versions of MBLR formulation at FDA since
2009.
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1. MBLR AND META-ANALYSIS

In order to fully appreciate the MBLR methodol-
ogy, one has to contrast it with a more traditional
meta-analytical formulation when data from multiple
trials are investigated. Dr. DuMouchel is correct in
pointing out that the MBLR methodology is in the
spirit of a full-data meta-analysis and does not con-
sider it a meta-analytic model. The current MBLR
model formulation does not render the flexibility of
separating out patient- and trial-level variations in the
model. Consequently, MBLR is very different from a
multi-level/meta-analysis model that would consist of
a patient-level model and a trial-level model, each with
independent sources of variation. This makes MBLR
effectively a patient-level model; the inclusion of trial-
level variables (e.g., study identifiers) into equation (2)
results in the variance components in equations (3)–(6)
being influenced by both patient and trial heterogene-
ity.

This distinction between the MBLR and its meta-
analytic formulation is critically important. The main
advantage of a meta-analytic formulation is that it pre-
serves the trial-specific randomized comparison be-
tween the treatment and control groups, thereby avoid-
ing confounded estimates. With the MBLR formula-
tion this is not necessarily the case, as Dr. DuMouchel
aptly notes for the Pollakiuria example that the trial-
specific estimates do not preserve the between-trial
differences. Additionally, shrinkage estimates used to
identify vulnerable patient subgroups depend on fac-
tors which are typically considered unrelated of patient
characteristics.

The practical concern of applying a methodology
that does not ensure the randomized comparison is pre-
served is that it may lead to a possible signal being
missed or hidden. A recent high-profile example of
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this concern was the meta-analysis of the diabetes drug
rosiglitazone (Rucker and Schumacher, 2008). When
safety data collected from the randomized controlled
trials were pooled by trial arm, it resulted in Simpson’s
paradox.

It is, therefore, important to understand the subtle
distinction of how MBLR differs from the more tra-
ditional meta-analytic models, and the potential con-
sequences that may arise from the use of MBLR. Un-
fortunately, the MBLR tool/program in its current ca-
pacity does not have the capability to evaluate the
potential implications discussed in the aforementioned
paragraphs. This necessitates the use of other statis-
tical methodologies to fully evaluate the results from
MBLR software, which, paradoxically, is the situation
that Dr. DuMouchel initially set out to avoid. That said,
it would be a nice extension if the MBLR methodology
was expanded, incorporating the suggestions outlined
above, thereby increasing the general utility of the tool.
Next, we present an attempt toward this extension.

2. META-ANALYTIC MBLR FORMULATION

We present a modified MBLR model motivated from
a meta-analytic perspective, which we shall, hence-
forth, refer to as meta-analytic MBLR (MA-MBLR).
Using the notation from the paper, let the J covariates
correspond only to patient-level characteristics and as-
sume that there are a total of L trials. Then, the MA-
MBLR patient-level model for trial l, l = 1, . . . ,L, and
issue k is given by

logit(pikl) = α0kl + ∑
g

Xiglαgk

+ Til

(
β0kl + ∑

g

Xiglβgk

)
.

Unlike the MBLR formulation, the MA-MBLR would
assume the trial-specific intercept α0kl and treatment
effect β0kl have distinct variance components, thereby
separating patient and trial variability. This can be for-
mally achieved by assigning the trial-specific inter-
cept and treatment effect of the following hierarchical
prior: α0kl ∼ N(α0k, σ

2
A.k) and β0kl ∼ N(β0k, σ

2
0.k), for

k = 1, . . . ,K and l = 1, . . . ,L. The MA-MBLR model
is fully specified by equations (3)–(6), as well as by the
hyperpriors for the model’s hyperparameters, and has
the (2K+4) standard deviations, (σA.1, . . . , σA.K, σ0.1,

. . . , σ0.K, σA,σ0, σB, τ ), that have independent uni-
form distribution on the interval 0 to d , as specified
in the paper.

We investigated for the data-example in the pa-
per whether the MBLR and MA-MBLR formulations
make a substantive impact on the risk assessment for
the five most frequent issues. Both the MBLR and MA-
MBLR models were fit using OpenBUGS (Lunn et al.,
2009), and thus are fully Bayesian MBLR and MA-
MBLR. The fully Bayesian models differed from the
MBLR model described in the paper in three ways,
namely, (i) it assumes diffused normal priors for the lo-
cation parameters rather than uniform noninformative
priors, (ii) it constrains the hyperpriors Ag such that the
gj th level of covariate j is equal to the negative sum of
the remaining gj − 1 levels, and (iii) the support of the
prior for the standard deviation d was increased to 3.

Figure 1 shows the relationship for some of the es-
timated parameters. The issue specific treatment effect
β0k did not differ too much between models. However,
the interaction term between treatment and the patient-
level covariates tended to be closer to the null value for
MA-MBLR, while the MA-MBLR trial-specific treat-
ment effect tended to be further away from the null
value than MBLR. Although there were no surprising
differences noted between the MBLR and MA-MBLR
coefficients for this example, the two different formu-
lations can possibly result in different substantive con-
clusions.

3. BORROWING INFORMATION ACROSS ISSUES

It is important to note that MBLR borrows informa-
tion across issues by positing a hierarchical distribution
to parameters from parallel logistic regression models,
and does not model the joint distribution of the end-
points. An example of the latter approach is given by
Bayesian multivariate logistic regression (O’Brien and
Dunson, 2004). More importantly, there needs to be
recognition among its users that an analysis that bor-
rows information across issues is not inherently better
than the one that does not.

To illustrate a possible peril of borrowing informa-
tion across issues, suppose the issues selected are med-
ically related, but they vary in their severity; in partic-
ular, assume there is one severe issue that occurs in-
frequently and the remaining issues are less severe but
occur more frequently. Because the amount of informa-
tion borrowed across issues from MBLR is related to
the precision of the estimate (which is a function of the
issue frequency), the effect for the less frequent issues
would be sensitive to the effects for the more frequent
issues. It is important that users of the tool are mindful
of such considerations.
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FIG. 1. Relationship between MA-MBLR and MBLR for selected model parameters.

4. MBLR ESTIMATION ALGORITHM

As stated previously, we believe the advantage of
the MBLR methodology is in obtaining posterior in-
ferences that do not rely on computationally time-
consuming estimation methods (such as MCMC meth-
ods). However, the timeliness of the analysis has to be
balanced by the well-known limitations of the Laplace
approximation of the integral of the posterior den-
sity (Carlin and Louis, 2009), which are applicable to
MBLR.

As part of the software review at FDA, we evalu-
ated the adequacy of MBLR’s estimation algorithm by
contrasting results obtained from the fully Bayesian

MBLR using OpenBUGS; the comparison was based
on the data described in the paper. The fully Bayesian
MBLR differed from the MBLR by points (i) and (ii)
listed above. The two estimation approaches yielded
similar estimates for the variance components ϕ =
(σA,σ0, σB, τ ) and the parameter estimates had almost
perfect correlation (ρ = 0.9998). However, the rela-
tionship based on z-scores (=estimate/standard error),
presented in Figure 2, suggests that MBLR has smaller
standard errors than the full Bayesian analysis. This
observation is also supported by the simulation results,
where MBLR tended to have a type-I error rate that
slightly exceeded the nominal 10% level.

FIG. 2. Relationship of z-scores from fully Bayesian model fit using OpenBUGS compared to MBLR.
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5. CONCLUSION

The MBLR model will have a profound impact as it
is rolled-out being used for clinical safety data anal-
ysis. However, in order to realize MBLR’s potential
strengths and pitfalls, it will require collaboration be-
tween its different user-constituents, those being statis-
ticians and subject-matter experts.
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