
Stochastic Systems
2015, Vol. 5, No. 2, 268–323
DOI: 10.1214/12-SSY081

ON BID-PRICE CONTROLS FOR NETWORK REVENUE
MANAGEMENT

By Barış Ata
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We consider a network revenue management problem and ad-
vance its dual formulation. The dual formulation reveals that the
(optimal) shadow price of capacity forms a nonnegative martingale.
This result is proved under minimal assumptions on network topol-
ogy and stochastic nature of demand, allowing an arbitrary statistical
dependence structure across time and products. Next, we consider a
quadratic perturbation of the network revenue management problem
and show that a simple (perturbed) bid-price control is optimal for
the perturbed problem; and it is ε-optimal for the original network
revenue management problem. Finally, we consider a predictable ver-
sion of this control, where the bid prices used in the current period are
last updated in the previous period, and provide an upper bound on
its optimality gap in terms of the (quadratic) variation of demand.
Using this upper bound we show that there exists a near-optimal
such control in the usual case when periods are small compared to
the planning horizon provided that either demand or the incremental
information arriving during each period is small. We establish the
martingale property of the (near) optimal bid prices in both settings.
The martingale property can have important implications in practice
as it may offer a tool for monitoring the revenue management systems.

1. Introduction and summary. The defining feature of network rev-
enue management is that the products being sold consume the capacities
of multiple resources. In this complex setting, bid-price controls represent a
popular and intuitively appealing approach to quantity-based revenue man-
agement. Such a control mechanism associates a threshold price (called a
bid price) with each resource dynamically over time, and a booking request
is accepted if the following two conditions are met: the remaining capacities
of the various resources are adequate to meet the request; and the revenue
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generated by accepting the request exceeds the sum of the bid prices as-
sociated with the resources consumed. Bid prices are often interpreted as
opportunity costs, i.e. shadow prices, of capacity.

In this paper, we first study the shadow prices of remaining capacity as
a stochastic process. To that end, we advance a dual formulation of the
network revenue management problem whose state variables correspond
to shadow prices for the remaining capacity vector in the network rev-
enue management problem. We show that the optimal shadow prices form
a martingale. This result is proved without making any assumptions on
the network topology or the stochastic structure of demand; we allow non-
stationary demands with an arbitrary dependence structure, including both
inter-temporal and cross-product dependencies.

These shadow prices are often used as bid prices; and their martingale
characterization has proved useful in practice, cf. Schrag (2009). Over the
past twenty years revenue management techniques have evolved tremen-
dously. However, even the state-of-the-art revenue management systems do
not guarantee maximizing revenue for various reasons, among which are
model misspecification, forecasting errors, and a shifting economic land-
scape. Therefore, business units surrounding the revenue management sys-
tems invest in user tools that observe, critique, and ultimately modify these
systems. In practice, the degree of modification by the business units is often
substantial and raises a host of questions: Are the revenue management sys-
tems far off? Are the business units seeing aspects of revenue management
that the revenue management systems are missing? Or, are the business
units inadvertently moving the revenue management systems off a revenue
maximizing trajectory?

These questions emphasize the practical need for good scientific feedback
between revenue management systems and the business processes that moni-
tor them. We make no assumptions on the network topology or the stochastic
nature of demand. Because the martingale property of optimal shadow prices
is proved in such a general setting, it may help the oversight of the revenue
management systems in practice. set of optimal controls, non-martingale
behavior can then be interpreted as a sign of misspecification of the oppor-
tunity cost of capacity. The existence of consistent trends in shadow prices
(over the booking horizon) may point to an issue to investigate and possibly
correct. For example, a downward trend in shadow prices is a sign that the
revenue management system is possibly underutilizing the capacity early in
the booking horizon. While we mention such potential practical benefits in
passing, their analysis is beyond the scope of this paper.

There are impediments to using optimal shadow prices as the bid prices.
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We illustrate them in the next two examples and discuss how to address
them in general. To succintly describe the examples below, we will use some
of the notation introduced in Section 3, which introduces the network rev-
enue management problem mathematically. The reader may wish to review
Section 3 before proceeding to Examples 1 and 2 below.

Example 1. There are two products and one resource. The initial capac-
ity is C = 2 and the capacity consumption matrix is A = [1, 1]. There are two
periods (N = 2). There is no uncertainty. The fares are f(tn) = (100, 200)′

for n = 1, 2. The demand vector in period 1 is (2, 0)′ and it is (0, 1)′ in period
2. The optimal solution is to book half of product 1 demand in period 1,
and to book all of product 2 in period 2, i.e. u1(t1) = 1 and u2(t2) = 1.
This results in the revenue of 300. We observe that no classical bid-price
control can achieve this solution, because any such control would book ei-
ther all or none of the demands in each period. Namely, such a control can
yield at most a revenue of 200. This happens either by booking all of the
demand for product 1 (with π(t1) ≤ 100) that exhausts capacity in period 1
or by only booking the entire demand for product 2 (with π(t1) > 100 and
π(t2) ≤ 200).

Intuitively, the basic idea behind bid-price controls is that they capture
the displacement cost or the opportunity cost of capacity associated with
booking decisions. Taking a dynamic programming point of view, a system
manager wishes to assess how the value-to-go function changes as she makes
booking decisions at each point. If the value-to-go function was affine, then
the bid-pricing approach in the classical sense would work, cf. Williamson
(1992). As can be seen from our formulation (P), cf. Section 3, the network
revenue management problem is a linear program and hence, its objective is
piecewise linear and concave in the vector of remaining capacities. Therefore,
the value-to-go function is a piecewise linear and concave function, because
the network revenue management problem for the rest of the planning hori-
zon is also a linear program. Consequently, if the current capacity and the
remaining capacity after each booking decision are both on the same facet of
the value-to-go function, then the bid-pricing approach in the classical sense
would work, but problems arise if they are on different facets. Moreover, if
the two capacity vectors lie on an edge, then the gradient of the value-to-go
function is not well defined.

Figure 1 shows the value-to-go function (for the example) at time zero
as a function of the remaining capacity. As one tries to implement the bid-
pricing approach in the first period (traversing the horizontal axis from the
right to the left in Figure 1), she starts with a bid price of 100 as given
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Fig 1. The initial value-to-go function for the example.

by the slope, but this slope jumps to 200 when the capacity drops below
1.Moreover, it is not defined when the remaining capacity is 1. As discussed
above, this causes the classical bid pricing approach to fail.

Next, we consider a simple quadratic perturbation of the problem, which
leads to a smooth and strictly concave formulation. First, note that u1(t2) =
u2(t1) = 0 due to demand constraints, and consider the problem of choosing
u1(t1) and u2(t2) so as to

Maximize 100u1(t1) + 200u2(t2)−
ε

4
u21(t1)−

ε

2
u22(t2)

subject to

0 ≤ u1(t1) ≤ 2,

0 ≤ u2(t2) ≤ 1,

u1(t1) + u2(t2) ≤ 2.

It is straightforward to show that for1 ε ≤ 200, the optimal solution is
u1(t1) = u2(t2) = 1. Moreover, the shadow price of the capacity constraint is
100−ε/2. To implement this solution, we propose the “perturbed” bid-price
control which books

uj(tn) =

⎧⎪⎨⎪⎩
0, if fj(tn)− y(tn)

′Aj ≤ 0,
Dj(tn)−Dj(tn−1), if fj(tn)− y(tn)

′Aj ≥ ε,
(fj(tn)−y(tn)′Aj)

ε (Dj(tn)−Dj(tn−1)), otherwise.

(1)

1For ε > 200, the optimal solution is u1(t1) = u2(t2) = 200/ε and the shadow price of
capacity is zero. However, we are interested in small values of ε. Hence, we focus on the
case ε ≤ 200.
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Substituting y = 100 − ε/2 as the bid price (as it is the shadow price of
capacity) and the other problem primitives gives f1(t1) − (100 − ε/2) =
100− (100− ε/2) = ε/2 which falls in the last case of (1), and hence yields
u1(t1) = 1. Similarly, f2(t2) − (100 − ε/2) = 100 + ε/2 which falls in the
second case of (1). Thus, by (1), u2(t2) = 1. Clearly, these are the optimal
bookings for Example 1.

In what follows, we show that the quadratic perturbation approach works
in general and leads to a near optimal solution. The quadratic perturba-
tion of the network revenue management problem yields a strictly concave
formulation in general. Moreover, the coextremality conditions between the
perturbed problem and its (Fenchel) dual gives rise to the booking control
in (1), which can be viewed as a perturbation of the bid-price control in the
classical sense, cf. Williamson (1992), and uses the optimal shadow prices
as bid prices.

In particular, the two mechanisms result in the same bookings except
when the fare of a product is only slightly larger than the sum of the bid
prices of the resources that product uses. In that case, the bid-price control
we propose books only a fraction of demand while the classical implementa-
tion books all demand. The bid prices used (i.e. the optimal shadow prices of
capacity) form a martingale, and the resulting booking control is ε-optimal
for the network revenue management problem, cf. Propositions 2 and 3.
Thus, our result provides the insight that to assure good performance, one
must take additional care when the fare of a product only slightly exceeds
the sum of bid prices of the resources it uses, in which case one should not
book all demand contrary to the classical implementation of the bid price
controls.

The second example highlights the role of information. It is a slight mod-
ification of the example provided by Talluri and van Ryzin (1998).

Example 2. There are two resources and three products with initial
capacity vector C = (1, 1)′ and the capacity-consumption matrix

A =

[
1 0 1

0 1 1

]
.

There are two periods (N = 2), and the only uncertainty is in the demand
process. In each period, there is at most one unit of demand (and only for
one product). The evolution of uncertainty is represented by an information
tree in Figure 2. In period 1, the probability of having demand for product
3 is 0.4; for product 1, it is 0.3 and for product 2, it is 0.3. On the other
hand, in period 2, we have demand for product 3 with probability 0.8 or no
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Fig 2. Evolution of Uncertainty.

demand with probability 0.2. The terminal nodes of the tree correspond to
specific sample paths. The intermediate set of nodes represent the resolved
uncertainty at the end of period one. The fares are f(tn) = (300, 300, 500)′

for n = 1, 2.
It is easy to see that the optimal solution is to book only product 3, while

denying all other requests. This results in expected revenue of 440.
The bid prices for time t2 that we propose are given in Figure 2. That is,

π(ω, t2) =

⎧⎨⎩
(300 + Δ, 0)′, ω ∈ {ω1, ω2},
(0, 300 + Δ)′, ω ∈ {ω3, ω4},
(250−Δ, 250−Δ)′, ω ∈ {ω5, ω6}.

(2)

Let π(ω, t1) = E[π(ω, t2)|Ft1 ]. In particular, π(ω, t1) = π(ω, t2) for all ω.
Note that the classical bid-price control with these bid prices (provided

Δ ∈ (0, 200)) books only product 3, and hence, yields the optimal expected
revenue of 440. Also, the bid prices form a martingale by construction.

Our definition of bid prices is more generous than that considered in
Talluri and van Ryzin (1998). In particular, the bid prices we propose are
adapted, i.e. they use all available information at the time of booking, in-
cluding the demand information in the current period. In contrast, Talluri
and van Ryzin use predictable bid prices, whereby the bid prices used in
a period can only use the information available at the end of the previous
period. Consequently, their definition implies choosing two (deterministic)
numbers π1 and π2 as bid prices to be used in period 1. Then, achieving the
optimal bookings in period 1 requires

π1 > 300, π2 > 300 and π1 + π2 ≤ 500,

which is not possible.
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Although the adapted bid prices achieve optimality (in this example),
anyone using the bid-price controls in practice will update the bid prices less
often than that required for optimality. Therefore, we consider predictable
bid-price controls where bid prices used in each period are last updated in
the previous period reflecting the way bid prices are used in practice. We
show that there exists a predictable bid-price control2 which is near optimal
in the usual case when periods are small compared to the planning horizon
provided that either the demand or the incremental information arriving
during each period is small. Moreover, the bid prices form a martingale in
this case as well.

In establishing the near optimality of the predictable bid-price control, we
consider an asymptotic regime where the number of periods grow to infinity
and period lengths tend to zero, whereas the planning horizon [0, T ] and the
underlying probabilistic primitives (cumulative demand and fare processes)
remain unchanged. We believe preserving the uncertainty in the limit is nec-
essary to maintain the key trade-offs of the network revenue management
problem; and the novel feature of this asymptotic regime is that it does
preserve the stochastic nature of demand unlike most asymptotic regimes
considered previously in the literature. Our analysis also provides a bound
on the optimality gap associated with the predictable bid-price control we
propose, which vanishes in this asymptotic regime, cf. Corollaries 1 and 2.
This upper bound is in terms of the volatility of demand and it quanti-
fies the relationship between the updating frequency of bid-prices and their
performance.

The martingale property provides us with the understanding that if the
system manager makes the optimal accept/reject decisions, a decrease in
the option value of capacity due to time advancing should be balanced by
the increase in the opportunity cost of capacity due to the decrease in the
remaining capacity.

The rest of the paper is structured as follows: The relevant literature
is reviewed in Section 2. Section 3 presents the model. Section 4 studies
the dual of the network revenue management problem. Section 5 introduces
the perturbed network revenue management problem and establishes the
main results of the paper. To prove the results in Section 4, we discretize
the network revenue management problem, and consider the resulting finite
linear program. The dual variables associated with remaining capacities give
the shadow prices. Indeed, the dual linear programming problem can itself be
viewed as a dynamic stochastic optimization problem whose state variables

2The predictable bid price control is of the form given in (1), i.e. “perturbed”, to
circumvent the difficulty highlighted by Example 1.
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and the equations governing their evolution immediately imply that the
shadow prices form a martingale. The proof of the martingale property in
Section 5 follow the same steps but instead of linear programming duality,
it uses the more general Fenchel duality for convex optimization problems,
cf. Rockafellar and Wets (1997). Section 6 concludes.

2. Literature review. The literature on network revenue management
is summarized in Chapter 3 of Talluri and van Ryzin (2004) through roughly
2003, including a through discussion of bid-price controls, which began with
Simpson (1989) and Williamson (1992). Bid-price controls are now widely
used in practice and they continue to attract the attention of university
and industry researchers. Bertsimas and Popescu (2003) proposed a new
method based on approximate dynamic programming. Their method com-
putes adaptive and nonadditive bid prices based on a linear programming
approximation to the value function of a dynamic programming formulation.
The authors also compare their method with the bid-price control based on
deterministic linear programming approach and show that their algorithm
results in higher revenues and a more robust performance.

Adelman (2007) proposes a novel bid-price control based on approximate
dynamic programming ideas. Adelman considers the dynamic programming
formulation of the network revenue management problem. Then assuming
an affine functional form for the value function and using the linear program-
ming representation of the dynamic programming formulation, the author
computes time-dependent (deterministic) bid prices. Adelman also shows
that his approach yields an upper bound tighter than the one obtained from
the deterministic linear program.

Adelman and Mersereau (2008) consider a large class of dynamic pro-
gramming formulations and develop general techniques to relax and (ap-
proximately) solve them via a decomposition provided that the problem
comprises of weakly coupled subproblems. More specifically, the authors
draw on a Lagrangian relaxation technique as well as a linear programming
approach to approximate dynamic programming. The authors compare the
two approaches for a variety of practical problems, reporting encouraging
numerical results. In a similar vein, Topaloglu (2009) proposes a method
to compute bid prices by decomposing the network revenue management
problem into a sequence of single leg problems. The bid prices generated
by Topaloglu (2009) takes into account the temporal dynamics of customer
arrivals and depend on the remaining leg capacities. His method is based on
relaxing certain capacity constraints that link decisions for different flight
legs by associating Lagrange multipliers with them. Then the problem is
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decomposed by flight legs and one can concentrate on one flight leg at a
time. Topaloglu also shows through a numerical study that his method out-
performs the standard heuristics significantly. Kunnumkal and Topaloglu
(2010) follows a similar approach but uses a different relaxation of the ca-
pacity constraints which yields time-dependent prices. Topaloglu (2008) de-
velops a convergent stochastic approximation method to compute bid prices
in network revenue management problems by viewing the total expected
revenue as a function of bid prices and using sample path derivatives to find
a good set of bid prices.

Reiman and Wang (2008) develops a novel diffusion approximation to
the network revenue management problem and advances a policy which is
asymptotically optimal under diffusion scaling. Recent work by Jasin and
Kumar (2012) shows that a probabilistic policy based on frequent resolving
of the so-called deterministic linear program leads to excellent performance
as the problem size increases, i.e. it results in an optimality gap of O(1).
Interestingly, Jasin and Kumar (2013) shows that neither the booking limit
nor the bid price interpretation of the deterministic linear program can do
as well even with frequent resolving.

Another important paper related to ours is Kleywegt (2001), where the
author considers a stylized (deterministic) fluid model of a general dynamic
pricing problem for selling a network of resources. In Kleywegt’s model prices
are chosen dynamically to sell products (or itineraries) to multiple customer
classes over time. Kleywegt’s model is very general in terms of problem
primitives and allows order cancellations. Moreover, Kleywegt observes that
his model readily extends to incorporate probabilistic customer choice be-
havior. The author also develops a solution method and tests it with some
numerical examples.

Akan and Ata (2009) studies a more restrictive setting using a stylized
continuous-time fluid model and establishes the existence of ε-optimal bid
price controls. In this paper, we consider a discrete-time model which repre-
sents the way bid prices are used in practice. Furthermore, unlike the contin-
uous time setup, the distinction between predictable and adapted controls
is significant in the discrete time setting we consider. Hence, we analyze the
performance of predictable bid-price controls and show the existence of a
near optimal one. Lastly, the demand processes allowed in this paper are
more general than those considered in Akan and Ata (2009).

3. Model. We consider a network revenue management model consist-
ing of K resources and J products. In an airline setting, a resource corre-
sponds to a flight leg and a product corresponds to a particular itinerary.
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A primitive of our model is a K × J non-negative capacity consumption
matrix A, where the entry Akj denotes the amount of resource k capacity
consumed by one unit of product j. The initial capacity vector is denoted by
C. We assume that Ck > 0 for all k and that for all j, there exists a k such
that Akj > 0. There are N periods to the terminal time. The periods need
not have equal length. To be more specific, the end of period n is denoted
by tn for n = 1, . . . , N ; and we let t0 = 0 and tN = T . At the end of each
period, upon observing demand the system manager decides the number of
bookings for each product so that the capacity constraints are not violated.
Then revenue resulting from the bookings is realized and the capacity vector
is updated. The booking vectors are continuous3 and the fares are set exoge-
nously. The capacity not utilized until the terminal time has no value. The
objective is to determine the optimal bookings in each period to maximize
total expected revenue subject to capacity constraints.

The evolution of information (or uncertainty) is described by the filtered
complete probability space (Ω, F , {Ft : 0 ≤ t ≤ T}, P), where Ft denotes the
information available at time t. The system manager observes the evolution
of information continuously starting at time t0 = 0, although she exerts
control only at the end of periods, that is, at times {tn : n = 1, . . . , N}.
These decision times are exogenous but the time difference between the
decision times may be arbitrary as well as the number of decision times. To
facilitate the analysis to follow let Γ = {t1, . . . , tN} denote the set of decision
times.

The cumulative demand is modeled as a non-decreasing, J-dimensional
stochastic process {D(t) : 0 ≤ t ≤ T} with a finite second moment, adapted
to the underlying information structure (or, filtration) {Ft : 0 ≤ t ≤ T},
where Dj(t) denotes the cumulative demand for product j up to time t.
No assumption of the independence of demand across products or across
time is made; indeed, the random demands can be statistically dependent,
but do not depend on the system manager’s controls. In our formulation, the
system state at decision time tn is described by aK-dimensional vector x(tn)
of remaining capacities; xk(tn) denotes the remaining capacity of resource k
at time tn. The demand observed by the system manager at time tn is the
J-dimensional vector D(tn) − D(tn−1), which is the demand accumulated
since the last decision time tn−1, that is, during period n. Upon observing
demand D(tn)−D(tn−1) during period n, the system manager chooses a J-
dimensional vector u(tn) of booking levels, where uj(tn) denotes the booking
level for product j at decision time tn. Given the initial capacity vector

3That is, we may choose to fulfill any fraction of demand by allowing the booking
vectors to take values in R

J
+.
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x(t0) = C, and the booking levels u(tn) for n = 1, . . . , N , the evolution
of the system state (the remaining capacity process) is governed by the
following system dynamics equation:

(3) x(tn) = x(tn−1)−Au(tn) for n = 1, . . . , N .

A booking vector u(tn) at decision time tn results in a revenue of
f(tn)

′u(tn), where f(tn) is the exogenously set vector of fares at decision
time tn. The process of fares {f(t) : 0 ≤ t ≤ T} is a bounded, non-negative,
continuous-time stochastic process adapted to {Ft : 0 ≤ t ≤ T}, which need
not be constant nor stationary, allowing us to model randomness in product
fares and incorporate the time value of money into the analysis4. The fare
and demand processes can be arbitrarily correlated as well. We are con-
cerned with the fares only at decision times tn for n = 1, . . . , T . Clearly, D,
x, u, f are all stochastic processes, but their dependence on the sample path
will be suppressed for notational brevity whenever that causes no confusion.

The objective is to choose adapted booking controls u(tn) for n = 1, . . . , N
to maximize total expected revenue subject to feasibility constraints. That
is, choose the booking vector u(tn), which can depend on all the information
Ftn available at time tn, for n = 1, . . . , N so as to

Maximize

N∑
n=1

E[f(tn)
′u(tn)]

subject to

x(t0) = C,(P)

x(tn) = x(tn−1)−Au(tn), n = 1, . . . , N,

0 ≤ u(tn) ≤ D(tn)−D(tn−1), n = 1, . . . , N,

Au(tN ) ≤ x(tN−1),

where the first two constraints describe how remaining capacity evolves over
time and the last two constraints impose the demand and capacity restric-
tions on bookings. Note that the capacity constraints are imposed only for
the last period. This is equivalent to imposing them in every period, be-
cause the remaining capacity of each resource is nonincreasing over time.
The formulation (P) will be referred to as the network revenue manage-
ment problem, and an optimal control refers to the set of controls {u(tn) :
n = 1, . . . , N} that maximizes the expected revenues while satisfying the
constraints of (P). We denote the optimal objective function value by P∗.

4We allow constant and/or deterministic fares as special cases.
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4. A dual formulation of the network revenue management prob-
lem. This section advances a problem formulation that is dual to the net-
work revenue management problem (P). We show that the dual variables
corresponding to the primal state variables, i.e. shadow prices of capacity,
form a nonnegative martingale. To this end, we first introduce a discrete ap-
proximation to the network revenue management problem (P) and its dual.
Passing to the limit as the discrete approximation gets finer gives rise to the
dual formulation of the network revenue management problem.

To be specific, we introduce a sequence of problems indexed by m =
1, 2, . . . such that in each problem distributions of the demand during each
period and the vector of fares have finite support so that these problems
reduce to finite linear programs, allowing us to use the machinery of linear
programming. This sequence of problems will be helpful in proving state-
ments about the network revenue management problem (P), and its dual,
cf. Proposition 1.

Since for each product the cumulative demand has finite mean and the
fare process is bounded, there exist constants F and Km for m = 1, 2, . . .
such that

P
(
Dj(tn)−Dj(tn−1)≥Km

)
E [Dj(tn)−Dj(tn−1)|Dj(tn)−Dj(tn−1)≥Km]

≤ 1

3m
for all j, n,(4)

sup
ω∈Ω, t∈Γ

fj(ω, t)≤F for all j, n.(5)

Without loss of generality assume Km and F to be multiples of 1/2m. Fixing
m, for each product j we truncate the demand during a period by Km. Then
we discretize demand during each period by taking a J-dimensional dyadic
partition of the cube [0,Km]J comprised of equal size grids, each of which
is a J-dimensional cube with a side length of 1/2m. Similarly, we discretize
the vector of fares in each period by taking a J-dimensional dyadic partition
of the cube [0, F ]J comprised also of equal size grids, each of which is a J-
dimensional cube with a side length of 1/2m. Combining these two partitions,
we construct a dyadic partition of the 2J-dimensional set [0,Km]J × [0, F ]J

comprised of 2J-dimensional cubes with side lengths of 1/2m. Hereafter, we
will refer to these 2J-dimensional cubes as grids.

In formulating the discrete approximation, we pretend that the system
manager cannot distinguish the demand and fare realizations in a grid and
regards them as a single realization of demand and fare. When the system
manager cannot distinguish the demand and fare realizations in a grid, she
acts as if the demand and fare realizations were at their lowest possible level
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in that grid. Then, using this discretization we can represent the evolution
of information as a finite information tree. That is, we get a finite num-
ber of “information nodes” for each decision time and the problem can be
formulated as a linear program. To be more specific, an information node
corresponds to a subset of Ω and two sample paths ω and ω′ belong to
the same information node for the mth partition at decision time tn only
if the demand and fare realizations D(ω, tr) −D(ω, tr−1) and f(ω, tr), and
D(ω′, tr)−D(ω′, tr−1) and f(ω′, tr) are in the same grid for each r = 1, . . . , n.
Let Im denote the set of information nodes resulting from the discretiza-
tion of demand and fare processes. Associated with each information node
is the probability of visiting that information node which is the probability
measure of the sample paths corresponding to that information node. Let
pi denote the probability of visiting information node i for i ∈ Im. In what
follows, we will write pi = P(ω ∈ i) when convenient, viewing the informa-
tion node i as a measurable set. In particular, we will use pi and P(ω ∈ i)
interchangeably. Every information node i ∈ Im has a unique predecessor
in the information tree denoted by i− (associated with the previous pe-
riod). Similarly, let i+ denote a generic element of the set of nodes that are
the (immediate) successors to information node i. The set of information
nodes at decision time tn are denoted by Im

n , where Im
0 contains a single

information node for all m. Let Im = ∪N
l=0Im

l .
To repeat, the system manager behaves as if the sample paths in each

grid results in a single demand realization and a single fare realization.
Since the number of possible such realizations are finite, we get a finite
linear program. Consider the finite linear program resulting from the mth

discretization. Upon entering information node i ∈ Im, the system manager
behaves as if the demand realization is equal to the lowest possible demand
realization and the fare realization is equal to the lowest possible fare in
information node i. That is, if information node i corresponds to the case
that for product j, we have at decision time tn

s/2m ≤ Dj(ω, tn)−Dj(ω, tn−1) < (s+ 1)/2m,

r/2m ≤ fj(ω, tn) < (r + 1)/2m,

then the system manager acts as if the actual demand and fare realizations
are s/2m and r/2m, respectively.

In essence, we approximate (P) from “below” by a sequence of finite
linear programs. At each decision time the system manager decides on the
bookings for each product so that the capacity and demand restrictions are
not violated. The objective is again to maximize expected revenue subject
to the feasibility constraints.
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The following notation is needed to proceed with the analysis. Let di,m

and f i,mdenote the discretized demand and fare at information node i ∈ Im,
respectively. Let ui,m denote the booking vector at information node i ∈ Im.
Similarly, denote vector of remaining capacities upon entering information
node i ∈ Im by xi,m. Then, the finite linear program resulting from the mth

discretization (denoted by (Pm)) is given by

Maximize
∑
i∈Im

pi(f i,m)′ui,m

subject to

xi,m = C , i ∈ Im
1 ,

xi,m = xi−,m −Aui−,m, i ∈ Im
n , n = 2, . . . , N,(Pm)

0 ≤ ui,m ≤ di,m, i ∈ Im
n , n = 1, . . . , N,

Aui,m ≤ xi,m, i ∈ Im
N .

Remark. Note that xi,m denotes the vector of remaining capacities
upon entering the information node i, i.e. at the beginning of the correspond-
ing period. In contrast, the earlier notation x(ω, tn) denotes the remaining
capacity vector at time tn, i.e. at the end of period n.

For a realization ω ∈ Ω, we visit a sequence of information nodes (one
for each decision time). Given an optimal control {ui,m}i∈Im to (Pm), we
can rewrite controls ui,m, i ∈ Im, as a function of the sample paths ω by
tracking which information nodes we visit at each decision time. Formally,
for ω ∈ Ω, let

um(ω, tn) = ui,m if ω ∈ i and i ∈ Im
n .

Note that as the approximation of (P) through the discretized problems
gets finer, that is, as m ↗ ∞, we get a sequence of booking controls. The
following lemma shows that the optimal controls for the discretized problems
converge to an optimal control for the network revenue management problem
(P); its proof is given in Appendix A.

Lemma 1. Consider the sequence of controls um for m ≥ 1. For every
ω ∈ Ω and n = 1, . . . , N , there exists a subsequence mn,r(ω) such that

i) mn,r is adapted to the information at time tn, i.e. mn,r(ω) ∈ Ftn;
ii) mn,r is a further subsequence of mn−1,r for n ≥ 2;
iii) there exists a limit ũ(ω, tn) such that

ũ(ω, tn) = lim
r→∞

umn,r(ω, tn) for all ω, n.

Moreover, ũ is an optimal control for the revenue management problem.
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It follows from linear programming duality (see Appendix B for a deriva-
tion) that the dual program to the mth discretized problem (Pm) is given as
follows: Choose yi,m ≥ 0 for i ∈ Im

N so as to

Minimize
∑
i∈Im

pi[
(
(f i,m −A

′
yi,m)+

)′
di,m] + C ′y0,m

subject to(Dm)

yi,m = E[yi+,m | i], i ∈ Im\Im
N ,

yi,m ≥ 0, i ∈ Im
N .

Let {ũi,m}i∈Im denote an optimal control for the mth discretized problem
(Pm), and {x̃i,m}i∈Im denote the corresponding state trajectory. Recall that
x̃i,m denotes the vector of remaining capacities upon entering information
node i ∈ Im. Also let {ỹi,m}i∈Im denote an optimal solution for (Dm).

The following complementary slackness conditions are immediate from
linear programming duality:

(ỹi,m)′(x̃i,m −Aũi,m) = 0 for i ∈ Im
N ,

which is equivalent to

(6) (ỹi,m)′x̃i+,m = 0 for i ∈ Im
N ,

where x̃i+,m = x̃i,m−Aũi,m for i ∈ Im
N denotes the remaining capacity vector

at the end of the planning horizon.
The following lemma will facilitate the analysis to follow; see Appendix A

for its proof.

Lemma 2. For m ≥ 1, there exists an optimal solution to (Dm) such
that

yi,mk ≤ F

a
, i ∈ Im, k = 1, . . . ,K,

where a = min{Akj : Akj > 0}.

Passing to the limit in (Dm) formally as m → ∞ gives rise to the following
dual formulation: Choose dual controls y(tN ) ≥ 0 adapted to FtN so as to

Minimize

N∑
n=1

E

[(
(f(tn)−A′y(tn))

+
)′ (

D(tn)−D(tn−1)
)]

+ C ′y(t0)

subject to

y(tn) = E [y(tn+1)|Ftn ] , n = 0, 1, . . . , N − 1,(D)

y(tN ) ≥ 0.
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The following proposition formalizes a duality result between the primal
and dual revenue management problems.

Proposition 1. Both formulations (P) and (D) have an optimal solu-
tion and the respective optimal objectives are equal.

Proof. Consider themth discretized formulation (Pm) and its dual (Dm).
Let {ũi,m}i∈Im denote an optimal control for (Pm); and let {x̃i,m}i∈Im de-
note the corresponding state trajectory. Recall that x̃i,m denotes the vector
of remaining capacities upon entering information node i ∈ Im. The pri-
mal optimal state trajectory {x̃i,m}i∈Im is nonnegative and (for m ≥ 1)
uniformly bounded by the initial capacity vector C. Similarly, the primal
optimal controls {ũi,m}i∈Im are also uniformly bounded.

Next, fix an optimal dual solution ỹm for each m ≥ 1 as characterized in
Lemma 2 so that ỹm are uniformly bounded. For n = 1, . . . , N , define

um(ω, tn) = ũi,m, ym(ω, tn) = ỹi,m, xm(ω, tn−1) = x̃i,m, if ω ∈ i, i ∈ Im
n .

Recall from Lemma 1 that, for each ω ∈ Ω, the subsequences mn,r(ω), n =
1, . . . , N are such that mn,r(ω) is a further subsequence of mn−1,r(ω) for
n ≥ 2 and {umn,r(ω)(ω, tn)} has a limit as r → ∞. Here we use the same
subsequences. Then, {xmn,r(ω)(ω, tn)} also has a limit as r → ∞ since

xmn,r(ω)(ω, tn) = C −A

n∑
k=1

umn,r(ω)(ω, tk) for n = 1, . . . , N.

For each ω ∈ Ω, the procedure described in the proof of Lemma 1 can
be repeated if necessary to construct further subsequences of mn,r(ω) for
n = 1, . . . , N such that {ymn,r(ω)(ω, tn)} converge as well. Thus, without loss
of generality, assume for every ω ∈ Ω and n = 1, . . . , N that {ymn,r(ω)(ω, tn)}
converges as r → ∞. Denote for ω ∈ Ω and n = 1, . . . , N

ũ(ω, tn) = lim
r→∞

umn,r(ω)(ω, tn),

x̃(ω, tn) = lim
r→∞

xmn,r(ω)(ω, tn),(7)

ỹ(ω, tn) = lim
r→∞

ymn,r(ω)(ω, tn).

By construction of the subsequences mn,r(ω) we have that ũ(ω, tn), ỹ(ω, tn)
and x̃(ω, tn) are Ftn-measurable for n = 1, . . . , N . Lemma 1 proves that ũ
is an optimal solution to (P).

We imitate the proof of Lemma 1 to show that ỹ is an optimal solution
to (D). To that end, assume that y∗ is an optimal solution to (D). (We are
implicitly assuming that an optimal solution exists, which will be addressed
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below.) Then we construct a feasible solution for (Dm) as follows:

ȳm,i = E[y∗(ω, tN )|Im
n ](i), i ∈ Im

n , n = 1, . . . , N.

Then {ȳm,i}i∈Im is feasible for (Dm), and, in particular,

(8) Obj(ȳm) ≥ Obj(ỹm) = Obj(Dm),

where Obj(ȳm) and Obj(ỹm) denote the objective values corresponding to
ȳm and ỹm in formulation (Dm), respectively. Similarly, Obj(Dm) denotes
the optimal objective of (Dm). The inequality in (8) follows since ȳm is
feasible control for (Dm) whereas the equality in (8) follows because ỹm is
optimal for (Dm). Also note that ỹ is feasible for (D). Thus,

(9) Obj(ỹ) ≥ Obj(D),

where Obj(ỹ) denotes the objective value under ỹ in formulation (D) and
Obj(D) denotes the optimal objective function value of (D).

Next, we argue that

(10) Obj(ȳm) → Obj(y∗) = Obj(D).

For notational convenience, define the following random variables:

Fm
n (ω) = f i,m and Dm

n (ω) = di,m for ω ∈ i and i ∈ Im
n , n = 1, . . . , N,

and note that as m → ∞

(11) Fm
n (ω) → f(ω, tn) and Dm

n (ω) → D(ω, tn)−D(ω, tn−1) for all n, ω.

Note by definition of ȳ that

ȳm,i = E[y∗(ω, tN )|Im
n ](i) for i ∈ Im

n .

Also note that ȳm,0 = E[y∗(ω, tN )|Im
0 ] = y∗(ω, t0). We conclude from Hunt’s

Lemma (cf. Williams (1991)) that as m → ∞,

(12) E[y∗(ω, tN )|Im
n ] → E[y∗(ω, tN )|Ftn ] = y∗(tn).

Then note that

Obj(Dm) = E
[∑
i∈Im

((f i,m −A′ ȳi,m)+)′ di,m] + C ′ȳ0,m

= E
[ N∑
n=1

((Fm
n (ω)−A′

E[y∗(ω, tN ) | Im
n ])+)′ Dm

n (ω)] + C ′y∗(ω, 0)(13)

→ E
[ N∑
n=1

((f(tn)−A′ y∗(tn))
+)′ (D(tn)−D(tn−1))

]
+ C ′ y∗(t0)
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as m → ∞, which follows because (11)–(12) holds and that

N∑
n=1

((Fm
n (ω)−A′

E[y∗(ω, tN ) | Im
n ])+)′ Dm

n (ω)

≤
N∑

n=1

(f(tn))
′ (D(tn)−D(tn−1)),

where the latter has finite mean. Thus, (13) follows from the dominated
convergence theorem.

Next, we argue that

(14) Obj(Dm) → Obj(ỹ) as m → ∞.

To show this, note that because ỹm → ỹ a.s. as m → ∞, Obj(ỹm) →
Obj(ỹ) as m → ∞ by the dominated convergence theorem. Then since ỹm

is optimal for (Dm), (14) follows.
Then combining (8), (10) and (14) gives the following

Obj(D) = lim
m→∞

Obj(ȳm) ≥ lim
m→∞

Obj(ỹm) = lim
m→∞

Obj(Dm) = Obj(ỹ).

That is,
Obj(D) ≥ Obj(ỹ).

Combining this with (9) gives

Obj(ỹ) = Obj(D).

Thus, ỹ is indeed optimal for (D). This argument assumed the existence
of an optimal solution y∗ for (D). But the proof can be done without that
assumption. Namely, for every ε > 0, we can start with y∗ε that is ε-optimal
for (D) and repeat the steps above. Then we reach the conclusion that

Obj(D) ≤ Obj(ỹ) ≤ Obj(D) + ε,

and letting ε ↓ 0 gives Obj(ỹ) = Obj(D). Hence, ỹ is optimal for (D). Finally,
note that as m → ∞,

(15) Obj(Dm) = Obj(ỹm) → Obj(ỹ) = Obj(D).

Also recall from the proof of Lemma 1 that Obj(Pm) → Obj(P) as m → ∞.
By strong duality between (Pm) and (Dm), we conclude that Obj(Dm) =
Obj(Pm). Thus, it follows from (15) that Obj(P) = Obj(D).
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The shadow price yk(tn) can be interpreted as the value assigned to re-
source k at time tn. With this interpretation, the objective of (D) corre-
sponds to the value a system manager attributes to her network of resources
by her choice of the shadow prices. Consequently, the dual problem (D)
can be interpreted as follows: The system manager chooses a non-negative
martingale as the shadow prices so as to minimize the expected value she
attributes to her network of resources.

Although bid-price controls need not be optimal in general, the shadow
prices do capture the value of resources and hence, are useful for designing
good policies. The next section illustrates this by advancing a (perturbed)
bid price control which is ε-optimal by studying a quadratic perturbation of
the network revenue management problem.

5. An approximate solution to the network revenue manage-
ment problem. In this section, we derive a near optimal solution to the
network revenue management problem. To facilitate that analysis, we first
introduce a perturbation of the network revenue management problem, de-
noted by (Pε). The optimal solution of (Pε) constitutes an ε-optimal solution
for the network revenue management problem (P). Moreover, this solution
can be implemented using (adapted) bid prices. The specific bid price control
proposed can be viewed as a perturbation of the classical bid-price control,
cf. Williamson (1992); and the bid prices used form a martingale.

Next, in Section 5.1, we consider a predictable bid-price control where
the bid prices used in each period are last updated in the previous period
reflecting the way bid prices are used in practice. We show that there exists
a near-optimal predictable bid-price control in the usual case where periods
are small compared to the planning horizon provided that either the demand
or the incremental information arriving in each period is small.

For each ε > 0, the perturbed problem (Pε) can be stated as follows:
Choose u(tn) depending on the information Ftn available at time tn for
n = 1, . . . , N so as to

maximize
N∑

n=1

E

⎡⎣f(tn)′u(tn)− 1

2

J∑
j=1

εj(tn)u
2
j (tn)

⎤⎦
subject to

x(t0) = C,(Pε)

x(tn) = x(tn−1)−Au(tn), n = 1, . . . , N,

0 ≤ u(tn) ≤ D(tn)−D(tn−1), n = 1, . . . , N,

Au(tN ) ≤ x(tN−1),
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where εj(tn) is defined as follows: For j = 1, . . . , J and n = 1, . . . , N , let

(16) εj(tn) =

{
ε

Dj(tn)−Dj(tn−1)
if Dj(tn)−Dj(tn−1) > 0,

ε otherwise.

The difference between (Pε) and (P) is that (Pε) has the strictly concave
term −1

2

∑J
j=1 εj(tn)u

2
j (tn) in its objective function in addition to the rev-

enue term f(tn)
′u(tn), which makes (Pε) a strictly concave problem5.

The following proposition provides a characterization of an optimal solu-
tion to the perturbed network revenue management problem (Pε). Its proof
proceeds by introducing a finite, discrete approximation to the perturbed
problem (Pε) and deriving the dual convex problem associated with the dis-
cretized problem and the resulting coextremality conditions. The result then
follows by passing to the limit as the approximations get finer.

Proposition 2. For every ε > 0, there exist shadow prices {y(tn) : n =
1, . . . , N}, which form a non-negative martingale adapted to ({Ftn : n =
1, . . . , N},P), such that

(17) 0 ≤ yk(tn) ≤
F

a
a.s. for k = 1, . . . ,K, n = 1, . . . , N,

and that a booking control u (with corresponding state trajectory x) constitute
an optimal solution to the perturbed network revenue management problem
(Pε) if and only if u, x and y jointly satisfy the following:

(18) x (tN )′ y (tN ) = 0,

and for n = 1, . . . , N ,

(19) uj(tn) =

⎧⎪⎨⎪⎩
0, if fj(tn)− y(tn)

′Aj ≤ 0,
Dj(tn)−Dj(tn−1), if fj(tn)− y(tn)

′Aj ≥ ε,
(fj(tn)−y(tn)′Aj)(Dj(tn)−Dj(tn−1))

ε , otherwise.

Proof. We first introduce a discrete approximation to the perturbed
problem (Pε) using the discretization introduced in Section 4. This results
in a sequence of problems indexed by m = 1, 2, . . . such that in each problem
the distributions of the demand in each period and the vector of fares have

5Note that we can recover the network revenue management problem (P) from the
perturbed problem (Pε) by setting ε = 0. The existence of a unique optimal solution to
(Pε) can be shown using an argument similar to that in Lemma 4. (See Appendix A).
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finite support. In particular, for each m, the discretized problem is a finite
convex optimization problem.

Let di,m and f i,mdenote the discretized demand and fare at information
node i ∈ Im, respectively. Then, for i ∈ Im and j = 1, . . . , J , define

εi,mj =

{
ε

di,mj

, if di,mj > 0,

ε, otherwise.

Also let ui,m denote the booking vector at information node i ∈ Im. Sim-
ilarly, denote the vector of remaining capacities upon entering information
node i ∈ Im by xi,m. The finite convex program resulting from the mth

discretization, denoted by (Pm
ε ), is given as follows: Choose {ui,m}i∈Im so

as to

Maximize
∑
i∈Im

⎡⎣pi(f i,m)′ui,m − 1

2

J∑
j=1

piεi,mj

(
ui,mj

)2⎤⎦
subject to

xi,m = C , i ∈ Im
1 ,(Pm

ε )

xi,m = xi−,m −Aui−,m, i ∈ Im
n , n = 2, . . . , N,

Aui,m ≤ xi,m, i ∈ Im
N ,

0 ≤ ui,m ≤ di,m, i ∈ Im
n , n = 1, . . . , N,

where the capacity constraints Aui,m ≤ xi,m are imposed only for infor-
mation nodes i ∈ Im

N in the last period. Recall that this is equivalent to
imposing them for every node i ∈ Im, because the remaining capacity of
each resource is nonincreasing over time.

The problem (Pm
ε ) is a quadratic programming problem. It can be posed

towards minimization and can be written in matrix format as follows: Choose
u ∈ R

|Im|J so as to

minimize b′u+
1

2
u′Bu

subject to(P̃
m

ε )

u ∈ Z,

w −Wu ∈ Y ∗,

where Y = R
|Im

N |K
− and Y ∗ = R

|Im
N |K

+ is its conjugate cone, and b ∈ R
|Im|J ,

Z ⊂ R
|Im|J , B ∈ R

|Im|J × R
|Im|J , w ∈ R

|Im
N |K , W ∈ R

|Im
N |K × R

|Im|J are
defined as follows: The ijth entry in the vector u, denoted by uij (as opposed
to our foregoing notation uij), for i ∈ Im and j = 1, . . . , J represents the



ON BID-PRICE CONTROLS FOR NETWORK REVENUE MANAGEMENT 289

bookings for product j on the information node i ∈ Im. Then, ijth entry of
b is given by

bij = −pif i,m
j for i ∈ Im, j = 1, . . . , J.

The matrix B is diagonal with

Bij,ij = piεi,mj for i ∈ Im, j = 1, . . . , J.

Demand constraints are imposed through the set Z where

Z =
{
u ∈ R

J |Im| : 0 ≤ uij ≤ di,mj for all i ∈ Im and j = 1, . . . , J
}
.

The vector w and the matrix W are used to impose the capacity constraints,
where wik = Ck for terminal node i ∈ Im

N and resource k = 1, . . . ,K.
Similarly, the matrix W is defined as follows: For k = 1, . . . ,K, i ∈ Im

N and
l ∈ Im,

Wik,lj = Akj

if l is a (not necessarily immediate) predecessor of the terminal node i or
l = i. Otherwise Wik,lj = 0. Then the constraint w −Wu ∈ Y ∗ imposes the
capacity constraints. To see this, first note that w −Wu ∈ Y ∗ is equivalent
to the following

(20) w −Wu ≥ 0.

Then consider the ikth component of this inequality, i.e. wik− (Wik, .)u ≥ 0,
which can be written as follows:

wik − (Wik, .)u = Ck −
∑

l∈P(i)

J∑
j=1

Akjulj ≥ 0,

where P(i) is the set of information nodes that precede node i and the node
i itself. Therefore, the summation∑

l∈P(i)

J∑
j=1

Akjulj

denotes the cumulative capacity consumption for resource k until node i
reached (including the bookings made in node i). Thus, (20) imposes the
capacity constraints.

The Fenchel duality result in Example6 11.43 on page 506 of Rockafellar
and Wets (1997) (also see Theorems 11.39 and 11.42, Corollary 11.40 and
Example 11.41 of Rockafellar and Wets (1997)) gives rise to the following

6Example 11.43 of Rockafellar and Wets (1997) use different notation. In their nota-
tion, setting B = 0 in that example yields our primal-dual pair of problems.
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dual convex program: Choose z ∈ R
|Im

N |K so as to

maximize w′z − θZ,B
(
W ′z − b

)
subject to(D̃

m

ε )

z ∈ Y,

where θZ,B (s) = supv∈Z
{
v′s− 1

2v
′Bv

}
. Since the primal problem has a

finite optimal objective value, the strong duality between (P̃
m

ε ) and (D̃
m

ε )
holds, cf. Theorem 11.39 and 11.42 of Rockafellar and Wets (1997).

It is important to point out that in the dual problem (D̃
m

ε ), we choose
the controls z only for the terminal information nodes. That is, there is no
decision variable corresponding to other information nodes. However, there
appear expressions in the objective function for the other information nodes
as well, which are computed through conditional expectations of the controls
for the terminal nodes. We will interpret them as bid prices eventually.

To express the dual problem in a more explicit form, we let

yi,mk = −zik
pi

for i ∈ Im
N and k = 1, . . . ,K.

Then we let7

yi,m = E[yi+|i] for i ∈ Im\Im
N .

Then, to simplify the second term in the objective, we observe that

θZ,B (s) =
∑
i∈Im

J∑
j=1

sup
0≤vij≤di,mj

{sijvij −
1

2
Bij,ijv

2
ij}.

Recall that Bij,ij = piεi,mj . Then it is straightforward to show that the unique
maximizer of the optimization problem in the summand is given by

(21) v∗ij =

⎧⎪⎨⎪⎩
di,mj , if

sij
pi

> ε,
sij/p

i

ε di,mj , if 0 ≤ sij
pi

≤ ε,

0, otherwise.

Similarly, it follows that

θZ,B (s) =
∑
i∈Im

J∑
j=1

pigε

(
sij
pi

, di,mj

)
,

7Note that yi,m = E[yi+,m|i] =
∑

l∈S(i)∩Im
N

pl

pi
yl,m, where S(l) is the set of successors

of node i.



ON BID-PRICE CONTROLS FOR NETWORK REVENUE MANAGEMENT 291

where

gε(rj , dj) =

⎧⎪⎨⎪⎩
(rj − ε/2)dj , if rj > ε,

r2j
2εdj , if 0 ≤ rj ≤ ε,
0, otherwise.

Also note that the ijth component of zW − b is given by

[z′W − b]ij = pif i,m
j −

∑
l∈Im

N ∩S(i)

K∑
k=1

plylkAkj ,

where S(i) is the set of successor nodes of i and includes i itself. Rearranging
terms gives

[z′W − b]ij = pi
[
f i,m
j −

K∑
k=1

[ ∑
l∈Im

N ∩S(i)

pl

pi
ylk

]
Akj

]
,

= pi
[
f i,m
j − (yi)′Aj

]
(22)

Therefore,

θZ,B
(
z′W − b

)
=
∑
i∈Im

pi
J∑

j=1

gε(f
i,m
j − (yi,m)′Aj , di,mj ).

In addition, we observe that

w′z =
K∑
k=1

∑
i∈Im

N

Ckzik = −
K∑
k=1

Ck

∑
i∈Im

N

piyik = −C ′y0.

Therefore, the dual formulation can be rewritten as follows: Choose
{yi,m}i∈Im

N
so as to

minimize
∑
i∈Im

pi
J∑

j=1

gε(f
i,m
j − (yi,m)′Aj , di,m) + C ′y0

subject to

yi,m = E[yi+,m | i], i ∈ Im\Im
N ,(Dm

ε )

yi,m ≥ 0, i ∈ Im
N .

We conclude from Fenchel duality for extended linear-quadratic programs
(see Rockafellar and Wets (1997)) that the optimal primal-dual variables
satisfy a set of coextremality conditions which are necessary and sufficient
for optimality, cf. Theorems 11.39 and 11.42 and Examples 11.41 and 11.43
of Rockafellar and Wets (1997). To facilitate our analysis, first define for
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ε > 0 the booking function φε as follows:

(23) φε(zj , fj , dj) =

⎧⎨⎩
0 if fj < zj ,
dj if fj > zj + ε,
fj−zj

ε dj if zj ≤ fj ≤ zj + ε.

It is easy to see that φε is continuous in all of its arguments. Then, the afore-
mentioned convex duality results of Rockafellar and Wets (1997) imply that
the primal-dual variables {ũi,m}i∈Im and {ỹi,m}i∈Im are optimal for (Pm

ε )
and (Dm

ε ), respectively, if and only if they satisfy the following coextremality
conditions:

ũi,mj = φε
(
(yi,m)′Aj , f i,m

j , di,mj
)
for i ∈ Im, j = 1, . . . , J,(24)

(ỹi,m)′(x̃i,m −Aũi,m) = 0 for i ∈ Im
N .(25)

The latter condition is equivalent to

(26) (ỹi,m)′x̃i+,m = 0 for i ∈ Im
N .

These conditions follow by specializing Example 11.41 of Rockafellar and
Wets (1997) to our setting and using the last set of necessary and sufficient
subgradient conditions given there8. That is, for optimality a feasible pair
of primal-dual solutions u and z must satisfy

(27) u ∈ ∂θZ,B(W
′z − b) and w −Wu ∈ ∂δY (z),

where δY (·) is the “indicator” function of the set Y , i.e.

δY (z) =

{
0 if z ∈ Y,
∞ otherwise.

Recall that θZ,B(W
′z − b) has a unique maximizer characterized through

(21) by substituting (W ′z − b)ij for sij in (21). It follows from Proposition
11.3 of Rockafellar and Wets (1997) that ∂θZ,B(W

′z − b) is precisely that
maximizer. Thus, substituting (W ′z − b) in (21) gives (24); see (22) for
(W ′z − b).

Also, by Theorem 8.9 and Exercise 8.14 of Rockafellar and Wets (1997),
w−Wu ∈ ∂δY (z) if and only if w−Wu ∈ NY (z) where NY (z) is the normal
cone of y at z (see Section 6.B of Rockafellar and Wets (1997)). Moreover,
we conclude from Example 6.10 of Rockafellar and Wets (1997) (or from

8See page 505 of Rockafellar and Wets (1997). In their notation, the conditions we use
are x̄ ∈ ∂k∗(A∗ȳ − c) and b−Ax̄ ∈ ∂h∗(ȳ).
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Example 11.4(b)) that w − Wu ∈ ∂δY (z) if and only if (w − Wu)z = 0,
which is equivalent to (w −Wu)ikzik = 0 for all i ∈ Im

N and k = 1, . . . ,K.
Note that the ikth component of w − Wu (i ∈ Im

N , k = 1, . . . ,K) is
the remaining capacity of resource k at the end of the planning horizon, i.e.
(xi,m−Aui,m)k = xi+,m

k . Also recall that zik = −piyik. Thus, (w−Wu)′z = 0
is equivalent to

(ỹi,mk )′x̃i+,m
k = 0 for i ∈ Im

N , k = 1, . . . ,K,

from which (26) follows.
As a preliminary to passing to the limit as m → ∞, we argue that we can

choose ỹ so that for all m,

(28) 0 ≤ ỹi,mk ≤ F

a
∀k, i ∈ Im.

The proof of this is virtually identical to the proof of Lemma 2. Fixing
an optimal primal solution ũ, we observe that

if ũi,mj > 0, then ỹi,mk ≤ F

a
∀k, such that Akj > 0,

which follows from (23)–(24). As in the proof of Lemma 2, we use this fact
to conclude that

ỹi,mk ≤ F

a
∀k, i

whenever x̃i,mk > 0.
Then, again as in the proof of Lemma 2, we consider the nodes i such that

x̃ik = 0 for some k. This step is identical to that in Lemma 2, which uses
an auxiliary linear program to modify the shadow prices. We use the same
linear program to modify ỹi,mk for nodes i such that x̃ik = 0. The resulting
modified solution continues to be optimal and satisfies (24)–(25) as argued
in the proof of Lemma 2. Therefore, we assume hereafter that dual solutions
ỹm satisfy (24)–(25) for m ≥ 1 and that they are uniformly bounded. Also
recall that the primal optimal solutions ũm are uniformly bounded too.

Next, we pass to the limit as m → ∞ and show that the resulting limiting
primal and dual controls are optimal for (Pε) and satisfy (18) and (19), which
establish the sufficiency part of the proof. The necessary part follows from
the uniqueness of the optimal solution to (Pε). To this end, we first rewrite
controls ũi,m and ỹi,m, i ∈ Im, as a function of the sample paths ω by
tracking which information nodes we visit at each decision time9. Formally,

9For clarity, we emphasize dependence of various quantities on the sample path.
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for ω ∈ Ω, let

ũm(ω, tn) = ui,m and ỹm(ω, tn) = ỹi,m if ω ∈ i and i ∈ Im
n .

We then show the existence of a limiting process u such that for every
ω ∈ Ω and n = 1, . . . , N there exists a subsequence mn,r(ω) so that for
n ≥ 2, mn,r(ω) is a further subsequence of mn−1,r(ω) and

(29) u(ω, tn) = lim
r→∞

ũmn,r(ω)(ω, tn) and y(ω, tn) = lim
r→∞

ỹmn,r(ω)(ω, tn)

for n = 1, . . . , N . The subsequences mn,r(ω) ∈ Ftn can be constructed as
in the proof of Lemma 1. Moreover, we have u(ω, tn), y(ω, tn) ∈ Ftn by
construction. It also follows from Hunt’s Lemma, cf. Williams (1991), that

lim
r→∞

E

[
ỹmn,r(ω) (ω, tn+1) |Im

n

]
= E [ȳ (ω, tn+1) |Ftn ]

for ω ∈ im, im ∈ Im
n and n = 1, . . . , N −1. An immediate implication of this

is that

(30) ȳ (ω, tn) = E [ȳ (ω, tn+1) |Ftn ] for n = 1, . . . , N − 1,

which follows from (29) and the dual system dynamics in (Dm
ε ). This proves

the martingale property of the shadow prices ȳ; their nonnegativity follows
from that of ỹm for m ≥ 1. Note that it follows immediately from (28) that

0 ≤ ȳk(w, tn) ≤
F

a
a.s. ∀k, n.

The feasibility of u for (P) can be established just as in the proof of
Lemma 1. Hence, u is also feasible for the perturbed problem (Pε). Since
the booking function φε is continuous, it follows from (24) that

(31) u(ω, tn) = φε(y(ω, tn)
′Aj , fj (ω, tn), Dj(ω, tn)−Dj(ω, tn−1))

for ω ∈ Ω and n = 1, . . . , N .
It is immediate from (30) and (31) that u and y satisfy (19). Similarly

(18) follows from (26). To conclude the proof, we argue that u is optimal for
(Pε). As a preliminary, we show the convergence of optimal objective values
of the discretized problems. In particular, they converge to the objective
value of the control u for the perturbed problem (Pε).

Consider the objective function for the a sample path ω along the con-
vergent subsequence chosen in (29):

(32)

N∑
n=1

⎡⎣fm(ω, tn)
′ ũm(ω, tn)−

1

2

J∑
j=1

εmj (ω, tn)
(
ũmj (ω, tn)

)2⎤⎦ .
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Since each term of the finite sum in (32) is convergent, the summation itself
converges to

N∑
n=1

⎡⎣f(ω, tn)′ ū(ω, tn)− 1

2

J∑
j=1

εj(ω, tn) ūj(ω, tn)

⎤⎦ .

Since the revenue in (32) is bounded, the convergence of the expected revenue
follows from the Dominated Convergence Theorem.

To prove that u is optimal for (Pε), we start with an optimal solution,
say u∗, of (Pε) and construct a feasible solution to (Pm

ε ), say ûm, for each
m ≥ 1. Given such ûm, we clearly have

(33) Obj (Pm
ε ) ≥ Obj (ûm) for m ≥ 1.

We will show below that

(34) lim inf
m→∞

Obj (ûm) ≥ Obj (u∗) = Obj (P ε) .

Since we have shown in the preceding paragraph that

(35) lim
m→∞

Obj (Pm
ε ) = Obj (ū) ,

we conclude from (33)–(35) that Obj (ū) ≥ Obj (Pε), i.e. ū is optimal for
(Pε). Thus, to conclude the proof it suffices to construct ûm for m ≥ 1 such
that (34) holds.

We construct the feasible control ûm for (Pm
ε ) as follows. For decision time

tn and information node i ∈ Im
n , the booking for product j is given by

ûmj (ω, tn) =

{
max{0,E[u∗j (ω, tn)| i]− 1/2m} if ω ∈ i, di,mj < Km,

E[ min{u∗j (ω, tn),Km}| i] if ω ∈ i, di,mj = Km,

where Km is the level at which we truncate the demand. The control ûm

satisfies the demand constraints and is clearly adapted. As argued in the
proof of Lemma 1, it is straightforward to show that the expected revenue
under ûm is greater than or equal to

N∑
n=1

∑
i∈Im

n

piE
[
f(ω, tn)

′u∗(ω, tn)|i
]
− JNF

2m
− NF 2J2m

3m
− JNM

2m
,

−
N∑

n=1

∑
i∈Im

n

pi
J∑

j=1

εi,mj
2

E
[
u∗j (ω, tn)

2|i
]
,(36)
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where F is the bound on the fare process and M < ∞ is such that

sup
ω∈Ω, t∈Γ

u∗j (ω, t) ≤ M, j = 1, . . . , J.

(Note that such M exists since the initial capacity Ck is finite for all k.)
The first term in (36) is equal to

∑N
n=1 E [f(ω, tn)

′u∗(ω, tn)]. All other
terms but the last one vanish as m → ∞. Therefore, it suffices to show that
as m → ∞, the last term converges to

N∑
n=1

J∑
j=1

E

[
εj(ω, tn)

2
u∗j (ω, tn)

2

]
To this end, define the auxiliary random variables εmj (ω, tn) as follows:

εmj (ω, tn) = εi,mj for w ∈ i and i ∈ Im
n , n = 1, . . . , N,

and note that10

(37) εmj (ω, tn) → εj(ω, tn) as m → ∞

Also note that

N∑
n=1

∑
i∈Im

n

pi
J∑

j=1

εi,mj
2

E
[
u∗j (ω, tn)

2|i
]

= E

⎡⎣ N∑
n=1

J∑
j=1

E
[
εmj (ω, tn)u

∗
j (ω, tn)

2|Im
n

]⎤⎦
We conclude from (37) and Hunt’s Lemma, cf. Williams (1991), that as
m → ∞

N∑
n=1

J∑
j=1

E
[
εmj (ω, tn)u

∗
j (ω, tn)

2|Im
n

]
→

N∑
n=1

J∑
j=1

E

[
εj(ω, tn)

2
u∗j (ω, tn)

2|Ftn

]

=

N∑
n=1

J∑
j=1

εj(ω, tn)

2
u∗j (ω, tn)

2

10If the demand for a product in a period is zero (in formulation (P)), then so is its
discretized version (in formulation (Pm)) for all m, in which case both sides of (37) is just
ε and the convergence holds trivially. If demand in a period is strictly positive, then it
is strictly positive for the discretized version for sufficiently large m, hence (37) follows,
because the discretized demand converges to the demand; and its inverse converges to the
inverse of demand in this case.
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Next, we use the dominated convergence theorem to establish the conver-
gence of the expectations. As a preliminary, we show that

χ(ω) = 5JNε+ εN

J∑
j=1

D2
j (T ) + 2Nε

J∑
j=1

Dj(T )

is a dominating random variable. To see this, define the sequence of random
variables χm

j (ω, tn) such that11

χm
j (ω, tn)(Dj(ω, tn)−Dj(ω, tn−1))

2

= ε(Dj(ω, tn)−Dj(ω, tn−1))
21{Dj(ω,tn)−Dj(ω,tn−1)<

1
2m

}

+
ε

1/2m
(Dj(ω, tn)−Dj(ω, tn−1))

21{ 1
2m

≤Dj(ω,tn)−Dj(ω,tn−1)<
2

2m
}

+ ε
(Dj(ω, tn)−Dj(ω, tn−1))

2

Dj(ω, tn)−Dj(ω, tn−1)− 1/2m
1{ 2

2m
≤Dj(ω,tn)−Dj(ω,tn−1)<κm}

+ ε(Dj(ω, tn)−Dj(ω, tn−1))
21{Dj(ω,tn)−Dj(ω,tn−1)≥κm}

≤ ε

(
1

2m

)2

+ ε 2m
(

2

2m

)2

+ ε

(
Dj(ω, tn)−Dj(ω, tn−1)− 1/2m + 1/2m

Dj(ω, tn)−Dj(ω, tn−1)− 1/2m

)
× (Dj(ω, tn)−Dj(ω, tn−1))1{ 2

2m
≤Dj(ω,tn)−Dj(ω,tn−1)<κm}

+ ε(Dj(ω, tn)−Dj(ω, tn−1))
2.

So,

χm
j (ω, tn)

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ε if Dj(ω, tn)−Dj(ω, tn−1) <

1
2m ,

ε
1/2m if 1

2m ≤ Dj(ω, tn)−Dj(ω, tn−1) <
2
2m ,

ε
Dj(ω,tn)−Dj(ω,tn−1)−1/2m if 2

2m ≤ Dj(ω, tn)−Dj(ω, tn−1) < κm,

ε if Dj(ω, tn)−Dj(ω, tn−1) ≥ κm.

Observe that εmj (ω, tn) ≤ χm
j (ω, tn) and that

εmj (ω, tn)u
∗
j (ω, tn)

2 ≤ χm
j (ω, tn)(Dj(ω, tn)−Dj(ω, tn−1))

2.

Next, we bound χm
j (ω, tn)(Dj(ω, tn)−Dj(ω, tn−1))

2:

≤ 5ε+

(
1 +

1/2m

Dj(ω, tn)−Dj(ω, tn−1)− 1/2m

)
11We assume, without loss of generality, that κm > 1 + 1/2m.
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× (Dj(ω, tn)−Dj(ω, tn−1))1{ 2
2m

≤Dj(ω,tn)−Dj(ω,tn−1)<κm}(38)

+ ε(Dj(ω, tn)−Dj(ω, tn−1))
2

≤ 5ε+ 2ε(Dj(ω, tn)−Dj(ω, tn−1)) + ε(Dj(ω, tn)−Dj(ω, tn−1))
2.

Summing both sides over n gives

N∑
n=1

χm
j (ω, tn)(Dj(ω, tn)−Dj(ω, tn−1))

2

≤ 5Nε+ 2εDj(T ) + ε

N∑
n=1

(Dj(tn)−Dj(tn−1))

≤ 5Nε+ 2εDj(ω, T ) + ε(Dj(ω, T ))
2.

Then summing this over j gives

J∑
j=1

N∑
n=1

χm
j (ω, tn)(Dj(ω, tn)−Dj(ω, tn−1))

2

≤ 5JNε+ 2ε

J∑
j=1

Dj(ω, T ) + ε

J∑
j=1

Dj(ω, T )
2

= χ(ω).

Because Eχ(ω) < ∞ and that

(39)

N∑
n=1

J∑
j=1

E[εmj (ω, tn)u
∗
j (ω, tn)

2|Im
n ] ≤ χ(ω),

the convergence of expected values follow from the dominated convergence
theorem. Thus, (34) follows, and the booking control defined in the state-
ment of Proposition 2 via (19) is indeed optimal.

Next, we introduce a class of simple bid-price controls. The bid-price
control we propose involves a parameter ε > 0 and a bid-price process π
and is executed as follows: At each decision time tn, the system manager
observes demand D (tn)−D (tn−1) for period n. Then, letting Aj denote the
jth column of the capacity consumption matrix A, she makes the booking
decisions for various products sequentially with respect to the product index
j = 1, . . . , J as follows:
(40)

uj(tn) =

⎧⎪⎨⎪⎩
0 if fj(tn)− π(tn)

′Aj < 0,
Dj(tn)−Dj(tn−1) if fj(tn)− π(tn)

′Aj > ε,
(fj(tn)−π(tn)′Aj)(Dj(tn)−Dj(tn−1))

ε otherwise,
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Fig 3. The bookings as a function of the difference fj(tn)− π(tn)A
j .

provided there is enough capacity, i.e. uj(tn)A
j ≤ x (tn−1)−

∑j−1
l=1 ul (tn)A

l.
Otherwise, uj (tn) is scaled down as dictated by the remaining capacity12.

The bid-price control we propose can be viewed as a perturbation of
the classical bid-price control, cf. Williamson (1992). In particular, for each
product j = 1, . . . , J , the bookings in (40) are the same as those resulting
from a classical bid-price control as long as fj(tn)−π(tn)

′Aj does not fall in
the interval (0, ε), in which case a classical bid-price control would dictate
booking all the demand, i.e. Dj (tn)−Dj (tn−1). In contrast, when fj(tn)−
π(tn)

′Aj ∈ (0, ε), the bid-price control we propose books

uj(tn) =
fj(tn)− π(tn)

′Aj

ε
[Dj (tn)−Dj (tn−1)] < Dj (tn)−Dj (tn−1) .

In words, the two controls differ only when the fare of a product slightly
exceeds the sum of the bid prices of the resources it uses, in which case
one should not book all demand in contrast to the classical implementa-
tion of bid-price controls. In most cases, however, the two controls yield
the same bookings. Figure 3 displays uj(tn) as a function of the difference
fj(tn) − π(tn)

′Aj . Indeed, the graph looks more and more like a step func-
tion as ε tends to zero, which would result from a classical bid-price con-
trol.

The following proposition shows that the bid-price control introduced
immediately above is optimal for the perturbed problem (Pε); and it is ε-
optimal for the network revenue management problem (P).

12The reader may feel that the order in which the booking decisions for various products
are made is arbitrary, which is indeed the case. As shall be seen in the proof of Theorem
1, our results are independent of this ordering.
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Proposition 3. For every ε > 0, there exists a bid-price process
{π(tn) : n = 1, . . . , N}, which forms a non-negative, bounded martingale a-
dapted to ({Ftn : n = 1, . . . , N},P), such that the booking control u defined
as in (40) using π is optimal for the perturbed network revenue management
problem (Pε). In particular,

(41) πk (tn) ≤
F

a
a.s. for all k, n,

where a = min{Akj : Akj > 0}. Moreover, the resulting control u is ε-optimal
for the network revenue management problem (P). That is13,

(42) P ∗ − κ1ε ≤ Obj(π) = Obj(P ε) ≤ P ∗,

where κ1 =
∑J

j=1 E[Dj(T )].

Proof. Let {y(tn) : n = 1, . . . , N} be the shadow prices as characterized
in Proposition 2, and define

(43) πk(tn) = yk(tn) for all k, n.

The bookings resulting from (40) (using π as the bid price) are optimal by
Proposition 2. Moreover, (41) is also immediate from Proposition 2.

To conclude the proof, let uε be an optimal control for (Pε) and u be an
optimal control for the network revenue management problem (P). To prove
(42), note that u is also feasible for the perturbed problem (Pε) and that

P ∗ − κ1ε =

N∑
n=1

E[f(tn)
′u(tn)]− ε

J∑
j=1

E[Dj(T )]

≤
N∑

n=1

E

[
f(tn)

′u(tn)−
1

2

J∑
j=1

εj(tn) (uj(tn))
2

]

≤
N∑

n=1

E

[
f(tn)

′uε(tn)−
1

2

J∑
j=1

εj(tn) (u
ε
j(tn))

2

]
= Obj(P ε)(44)

≤
N∑

n=1

E[f(tn)
′uε(tn)]

≤
N∑

n=1

E[f(tn)
′u(tn)]

= P ∗

13Obj(π) denotes the objective under bid-price control π, which in turn equals the
optimal objective value of the perturbed problem (Pε).
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The first inequality follows from the definition of εj(tn), and the fact that
u(tn) ≤ Dj(tn)−Dj(tn−1) for n = 1, . . . , N . The second inequality is given
by feasibility of u for (Pε) and optimality of uε for (Pε). The last inequality
proves (42) since uε is also feasible for (P).

5.1. A predictable bid-price control. In this section, we consider a pre-
dictable control where bid prices used at each decision point are last updated
in the previous period reflecting the way bid prices are used in practice. We
show that there exists a predictable such bid-price control which is near
optimal in the usual case when periods are small compared to the planning
horizon provided that either demand or the incremental information arriving
during each period is small.

In what follows, we will view the set of decision points Γ = {t1, . . . , tN}
as a decision too. One can view these decisions as being made hierarchically.
The system manager first chooses the parameter ε > 0 and a partition Γ at
time zero, which determines the frequency of updating. Then, she chooses
the bid prices to be used, which are updated dynamically over time. To be
specific, we are interested in an asymptotic regime where the system man-
ager makes decisions more and more frequently, i.e. the number of periods
N tends to infinity while the period lengths tend to zero. Nonetheless, the
stochastic primitives of the problem and the planing horizon remain un-
changed. We will denote the revenues resulting from the bookings in (40)
by Obj(π, ε,Γ) to emphasize its dependence on Γ, ε and π. The following
definition is needed to state the main result of this section.

Definition 1. Given a J-dimensional stochastic process {Z(t) : 0≤ t≤T},
where J ≥ 1, and a partition Γ = {t0, t1, . . . , tN} of [0, T ], the pth variation
of Z over the partition Γ, denoted by Vp (Z,Γ), is defined as follows:

Vp (Z,Γ) =
N∑

n=1

|Z (tn)− Z (tn−1)|p , p ≥ 1.

where | · | is the max norm in R
J .

The variation of a stochastic process as defined immediately above cap-
tures its volatility over time. Intuitively, one expects that the less volatile the
demand is, the easier it is to achieve optimality. Our results in this section
support this intuition showing that the optimality gap (due to infrequent
updating of bid prices) associated with the proposed bid-price control is
bounded by the expected variation of demand. Next, we state the key result
of this section, from which Corollaries 1 and 2 follow.
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Theorem 1. For ε > 0 and any partition Γ = {t0, t1, . . . , tN} of [0, T ],
there exists a bid-price process πε such that {πε (tn) : n = 1, . . . , N} is a
martingale adapted to ({Ftn−1 : n = 1, . . . , N},P) with

(45) 0 ≤ πε
k (tn) ≤

F

a
a.s. for all k, n,

and the following bound on the optimality gap holds:

(46) |Obj (πε, ε,Γ)− P ∗| ≤ κ1ε+
κ2
ε

[EVp (π
ε,Γ)]1/p [EVq (D,Γ)]1/q

for p > 1 and q = p/ (p− 1), where κ1 and κ2 are constants depending
only on the capacity consumption matrix A, the upper bound F on the fare
process and the expected cumulative demand over the planning horizon.

Proof. Fix an ε > 0 and a partition Γ = {t0, t1, . . . , tN} of [0, T ]. Let
{π (tn) : n = 1, . . . , N} be a bid-price process as in Proposition 3. Then,
define the predictable bid-price process {πε (tn) : n = 1, . . . , N} as follows:

πε (tn) = E
[
π (tN ) |Ftn−1

]
for n = 1, . . . , N.

By construction the predictable bid-price process {πε (tn) : n = 1, . . . , N} is
a martingale adapted to ({Ftn−1 : n = 1, . . . , N},P). Then (45) follows from
Proposition 3.

Let u denote the booking control defined as in (40) using the adapted bid-
price process π. It follows from Proposition 3 that u is an optimal solution
to the perturbed network revenue management problem (Pε). It also follows
from Proposition 3 that

(47)

∣∣∣∣∣
N∑

n=1

E[f(tn)
′uε(tn)]− P∗

∣∣∣∣∣ ≤ κ1ε,

where κ1 =
∑J

j=1 E [Dj (T )] and P∗ is the optimal objective of the formula-
tion (P).

To conclude the proof of Theorem 1, we prove that∣∣∣∣∣Obj (πε, ε,Γ)−
N∑

n=1

E
[
(f(tn))

′u(tn)
]∣∣∣∣∣ ≤ κ2

ε
[EVp (π

ε,Γ)]1/p [EVq (D,Γ)]1/q ,

where Obj(πε, ε,Γ) is the revenue (in (P)) resulting from the bookings under
the predictable bid-price process πε. Recall that the bookings of product j
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in period n under πε is given by φε(πε(tn)
′Aj , fj(tn), Dj(tn)−Dj(tn−1)), cf.

(23), ignoring the capacity constraints. Also, note that∣∣∣∣∣Obj (πε, ε,Γ)−
N∑

n=1

E
[
f(tn)

′u(tn)
]∣∣∣∣∣

≤
∣∣∣∣∣
N∑

n=1

J∑
j=1

E
[
fj(tn)φ

ε(πε(tn)
′Aj , fj (tn), Dj(tn)−Dj(tn−1))

]
−

N∑
n=1

E
[
f(tn)

′u(tn)
]∣∣∣∣∣

+

∣∣∣∣∣Obj (πε, ε,Γ)

−
N∑

n=1

J∑
j=1

E
[
fj(tn)φ

ε(πε(tn)
′Aj , fj (tn), Dj(tn)−Dj(tn−1))

]∣∣∣∣∣∣ .
We first consider the second term on the right hand side of the preceding
inequality. Observe that this term would be zero if capacity constraints do
not bind under πε, which may not be true in general. Therefore, this term
quantifies the loss in revenue from ignoring the capacity constraints. To
bound this term, consider the following

Obj (πε, ε,Γ)−
N∑

n=1

J∑
j=1

E
[
fj(tn)φ

ε(πε(tn)
′Aj , fj (tn), Dj(tn)−Dj(tn−1))

]
≥ −F

a
E

[ K∑
k=1

N∑
n=1

J∑
j=1

Akjφ
ε(πε(tn)

′Aj , fj (tn), Dj(tn)−Dj(tn−1))− Ck

]+
,

≥ −F

a
E

[∑
k,n,j

[
Akjφ

ε(πε(tn)
′Aj , fj (tn), Dj(tn)−Dj(tn−1))

(48) −Akjφ
ε(π(tn)

′Aj , fj (tn), Dj(tn)−Dj(tn−1))
]]+

,

≥ −FaK

a
E

[∑
n,j

∣∣φε(πε(tn)
′Aj , fj (tn), Dj(tn)−Dj(tn−1))

− φε(π(tn)
′Aj , fj (tn), Dj(tn)−Dj(tn−1))

∣∣]

≥ −Fa2K2J

aε

∣∣∣∣∣
N∑

n=1

E
[∣∣πε(tn)

′ (tn)− π(tn)
′ (tn)

∣∣ |D(tn)−D(tn−1)|
]∣∣∣∣∣ ,
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where F is the upper bound on the fare process, a = maxk,j {Akj} and a =
mink,j {Akj : Akj > 0}. Here, the first step follows because we are penalizing
each unit of the excessive capacity usage with the maximum amount F/a,
the second inequality follows from the fact that the bookings under π(tn)
respect the capacity constraints. The third inequality follows because the
effect of summing over k and multiplying each summand by Akj is bounded
by the additional factor āK outside. The last inequality follows from the fact
that the booking function φε is Lipschitz continuous in its first argument
with Lipschitz constant less than or equal to (Dj(tn)−Dj(tn−1)) /ε and
that each Akj is replaced by ā.

Recall that u is optimal for (Pε). Thus, u(tn) = φε(π(tn)
′Aj , fj(tn),

Dj(tn)−Dj(tn−1)). Therefore, proceeding as done immediately above∣∣∣∣∣
N∑

n=1

J∑
j=1

E
[
fj(tn)φ

ε(πε(tn)
′Aj , fj (tn), Dj(tn)−Dj(tn−1))

]
−

N∑
n=1

E
[
f(tn)

′u(tn)
]∣∣∣∣∣

≤ F E

[ N∑
n=1

J∑
j=1

∣∣∣∣φε(πε(tn)
′Aj , fj(tn), Dj(tn)−Dj(tn−1))(49)

− φε(π(tn)
′Aj , fj(tn), Dj(tn)−Dj(tn−1))

∣∣∣∣]
≤ KJFa

ε

∣∣∣∣∣
N∑

n=1

E
[∣∣πε(tn)

′ (tn)− π(tn)
′ (tn)

∣∣ |D(tn)−D(tn−1)|
]∣∣∣∣∣ ,

where the second inequality follows from the fact that the booking function
φε is Lipschitz continuous in its first argument with Lipschitz constant less
than |Dj(tn)−Dj(tn−1)| /ε. Then, treating

∑N
n=1

∑J
j=1 E (·) as a product

measure and applying Holder’s inequality to (48) and (49), we get∣∣∣∣∣Obj (πε, ε,Γ)−
N∑

n=1

E
[
f(tn)

′u(tn)
]∣∣∣∣∣

≤FKJa

ε

(
K

a

a
+ 1

)
[EVp (π

ε,Γ)]1/p [EVq (D,Γ)]1/q ,(50)

where q = p/ (p− 1). Finally, combining (50) and (47) completes the proof
of Theorem 1, where κ2 = FKJa (Ka/a+ 1).

The bound (46) provided in Theorem 1 reflects two sources of error: The
first term κ1ε is a perturbation error, cf. proof of Proposition 3, while the sec-
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ond term is due to the information gap between predictable versus adapted
bid-price controls. Theorem 1 makes no distributional assumptions on the
primitives of the problem. That is, the various stochastic processes and the
underlying information structure is general. Next, we consider two impor-
tant special cases. The first one assumes that demand over small periods is
also small, which corresponds to the formal statement that sample paths of
the demand process are continuous, and gives rise to the near optimality of
the simple bid-price control we propose. Our result in this case also provides
an upper bound on the optimality gap in terms of the quadratic variation of
demand. The second case assumes that the underlying information structure
{Ft : 0 ≤ t ≤ T} is continuous.

The following lemma is used in proving Corollaries 1 and 2.

Lemma 3. For a J-dimensional process Z, the following holds:

Vp (Z,Γ) ≤
J∑

j=1

Vp (Zj ,Γ) .

Proof.

Vp (Z,Γ) =
N∑

n=1

|Z(tn)− Z(tn−1)|P

=

N∑
n=1

max
j

|Zj(tn)− Zj(tn−1)|P

≤
N∑

n=1

J∑
j=1

|Zj(tn)− Zj(tn−1)|

=

J∑
j=1

N∑
n=1

|Zj(tn)− Zj(tn−1)|

=

J∑
j=1

Vp (Zj ,Γ) .

Corollary 1. If the demand process has continuous sample paths, then

(51) |Obj (πε, ε,Γ)− P∗| ≤ κ1ε+
2κ2
ε

F

a

√
EV2 (D,Γ).

Moreover, for every ε > 0, one can choose a partition Γε fine enough such
that

|Obj (πε, ε,Γε)− P∗| → 0 as ε → 0.
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Proof. Suppose the demand process {D (t) : 0 ≤ t ≤ T} has continuous
sample paths. For each ε > 0 and partition Γ, setting p = 2 we have from
Theorem 1 that

|Obj (πε, ε,Γ)− P∗| ≤ κ1ε+
κ2
ε

[EV2 (π
ε,Γ)]1/2 [EV2 (D,Γ)]1/2

≤ κ1ε+
2κ2
ε

F

a

√
E [V2 (D,Γ)],

since (E [V2 (π
ε,Γ)])1/2 ≤ 2F

a , which follows because

E [V2 (π
ε,Γ)] = E

[
N∑

n=1

(πε (tn)− πε (tn−1))
2

]

= E

[
(πε (tN )− πε (t0))

2
]
≤ 4

(
F

a

)2

,

where the second equality follows from the fact that πε is a martingale and
the last inequality is true since |πε| ≤ F/a by Proposition 3. To complete
the proof, note from Lemma 3 that

(52) V2 (D,Γ) ≤
J∑

j=1

V2 (Dj ,Γ) .

Next, we show that EV2 (Dj ,Γ) → 0 as Γ gets finer. To this end, note that

V2 (Dj ,Γ) =
N∑

n=1

|Dj(tn)−Dj(tn−1)|2

≤
(
max
n

|Dj(tn)−Dj(tn−1)|
) N∑

n=1

|Dj(tn)−Dj(tn−1)|

=
(
max
n

|Dj(tn)−Dj(tn−1)|
)
Dj(T ).(53)

Recall that Dj(·) has continuous sample paths. In particular, Dj(·) is uni-
formly continuous on [0, T ] so that maxn |Dj(tn) − Dj(tn−1)| → 0 as the
mesh of Γ tends to zero. Thus, V2 (Dj ,Γ) → 0 as well. Similarly, note from
(53) that

V2 (Dj ,Γ) ≤ Dj(T )
2,

and because ED2
j (T ) < ∞, we conclude from the dominated convergence

theorem that EV2 (Dj ,Γ) → 0 too. Then, it follows from (52) that as the
mesh of Γ tends to zero,

V2 (D,Γ) → 0 and EV2 (D,Γ) → 0.
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Then, for each ε, we can choose a partition Γε fine enough such that√
E [V2 (D,Γ)] ≤ ε2. Thus, we have |Obj (πε, ε,Γε)− P∗| → 0 as ε → 0.

Specializing the bound (46) of Theorem 1 to this case yields the upper
bound (51) in terms of the quadratic variation V2 (D,Γ) of demand, which
tends to zero as the partition Γ gets finer. To be more specific, given an
absolute error tolerance, one picks an ε which determines the perturbation
error κ1ε. The smaller the perturbation error is, the finer the corresponding
partition Γε must be to respect the given error tolerance.

A similar trade-off can also be made in the context of Corollary 2, which
concerns the case of continuous information. Roughly speaking, an infor-
mation structure is continuous if the incremental information arriving over
small periods is also small. The formal definition is provided next.

Definition 2. An information structure {Ft, t ∈ R+} is said to be con-
tinuous if for every event E, the posterior probability assessment P(E | Ft)
is continuous.

Huang (1985) proves that an information structure is continuous if and
only if all stopping times are predictable, which in turn is a equivalent to
the statement that every continuous-time martingale has continuous sample
paths. Let the bid-price process {π(tn) : n = 1, . . . , N} be as in Proposi-
tion 3. To facilitate the proof of the following corollary, define its continuous-
time extension14 as follows:

π(t) = E[π(T )|Ft] for t ∈ [0, T ].

It follows from Huang (1985) that π(·) has continuous sample paths when
the underlying information structure is continuous.

Corollary 2. If the information structure {Ft : 0 ≤ t ≤ T} is contin-
uous, then for every ε > 0, one can choose a partition Γε fine enough such
that |Obj (πε, ε,Γε)− P∗| → 0 as ε → 0.

Proof. For each ε > 0 and partition Γ, setting p = 4 we have from
Theorem 1 that

|Obj (πε, ε,Γ)− P∗| ≤ κ1ε+
κ2
ε

[EV4 (π
ε,Γ)]1/4

[
EV4/3 (D,Γ)

]3/4
.

14Note that this definition is consistent with the earlier definition at times tn, n =
1, . . . , N .
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Moreover, since a monotone increasing function has bounded variation, the

terms
[
EV4/3 (D,Γ)

]3/4
is bounded. Therefore, it suffices to show EV4 (π

ε,Γ)
→ 0 as Γ gets finer. Then, for each ε, we can choose a partition Γε fine enough
such that [EV4 (π

ε,Γε)]1/4 ≤ ε2 and we get

(54) |Obj (πε, ε,Γε)− P∗| → 0.

To conclude the proof note that πε(tn) = E[π(T )|Ftn−1 ] = π(tn−1) for n =
1, . . . , N . Assume for notational convenience that π(t0) = Eπ(T ). Also note
that

Vp (π
ε,Γ) =

N∑
n=1

|πε(tn)− πε(tn−1)|p,

=
N∑

n=2

|πε(tn)− πε(tn−1)|p + πε(t1)− πε(t0),

=

N∑
n=2

|π(tn−1)− π(tn−2)|p,

where the last step follows because πε(t1) = πε(t0) = Eπ(T ). Then

(55) Vp (π
ε,Γ) =

N−1∑
n=1

|πε(tn)− πε(tn−1)|p ≤ Vp (π,Γ) .

Therefore, it suffices to show that E[V4 (π,Γ)] → 0 as Γ gets finer. Recall that
the sample paths of π(·) are continuous, because the information structure
{Ft : 0 ≤ t ≤ T} is continuous. Then it follows from Lemma 3 and Lemma
5.10 of Chapter 1 of Karatzas and Shreve (1991) that E[V4 (π,Γ)] → 0
as Γ gets finer since |π| ≤ F/a. Combining this with (55) implies that
EVp (π

ε,Γ) → 0 as Γ gets finer.

Combining the results of this section we conclude that in the usual case
where periods are small compared to the planning horizon, there exists a
simple predictable bid-price control which is near optimal if either the de-
mand or the incremental information arriving over small periods is small.
Moreover, the upper bounds on the optimality gap in terms of the volatil-
ity of demand quantify the relationship between the updating frequency of
bid-prices and their performance.

6. Concluding remarks. We consider a network revenue management
problem with minimal assumptions on the network topology and stochastic
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nature of demand, allowing an arbitrary statistical dependence structure
across time and products.

First, we establish that the optimal shadow price of remaining capacity
forms a martingale. Second, we consider a quadratic perturbation of the
network revenue management problem whose dual formulation gives rise to
an ε-optimal (adapted) bid-price control, which can be viewed as a pertur-
bation of the bid-price controls in the classical sense. Finally, we consider a
predictable version of this control, where the bid prices used in the current
period are last updated in the previous period. We prove that this bid-price
control is near optimal in an asymptotic regime where periods get small,
while the planning horizon and the underlying probabilistic primitives re-
main the same provided either the sample paths of cumulative demand or
the underlying information structure is continuous.

Our results suggest that additional attention should be paid when the
fare of a product exceeds but is close the sum of the bid prices of all the
resources that product uses, in which case one should book only a fraction
of the demand. Moreover, we derive bounds on the optimality gap in terms
of the (quadratic) variation of the demand.

Much work remains to be done to rigorously explore implications of the
martingale property, including an empirical analysis of how to detect and in-
terpret non-martingale behavior of shadow prices and the associated revenue
implications.

APPENDIX A: PROOFS OF AUXILIARY LEMMAS

Lemma 4. There exists an optimal control for the network revenue man-
agement problem.

Proof. The proof is based on induction where the induction will be
on the number of periods until the terminal time. First, we establish the
induction basis by proving that there exists an optimal solution to (P) if
N = 1. That is, consider the last decision time tN . For a given capacity
process x(ω, tN−1) ≥ 0, ω ∈ Ω, we solve the following problem to determine
the bookings

max E[f(ω, tN )′u(ω, tN )]

subject to

Au(ω, tN ) ≤ x(ω, tN−1), ω ∈ Ω,

0 ≤ u(ω, tN ) ≤ D(ω, tN )−D(ω, tN−1), ω ∈ Ω.

Notice that, we can maximize this problem along each sample path ω. That
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is, for each ω ∈ Ω, we solve

max
u

f(ω, tN ) · u

subject to

Au(ω, tN ) ≤ x(ω, tN−1),

0 ≤ u(ω, tN ) ≤ D(ω, tN )−D(ω, tN−1).

Let u∗(ω, tN ) denote an optimal solution to this problem which exists since
the objective function is continuous in u and the feasible region is com-
pact. Then, the resulting control {u∗(ω, tN ) : ω ∈ Ω} would maximize the
expected revenue. Moreover, the objective function value of the linear pro-
gram we solve for each ω ∈ Ω is continuous in x(ω, tN−1) since we have a
linear program.

To facilitate our analysis, let Vn+1(ω, x) denote the optimal revenue that
can be generated in decision times n + 1 through N if we have capacity
x at the end of period n and ω is realized. As the induction hypothesis,
assume that an optimal solution exists for decision times n + 1 through N
and Vn+1(ω, x(ω, tn)) is a continuous function of x(ω, tn), where x(ω, tn) is
the process of remaining capacities at decision time tn. At decision time tn
we solve the following program for the given capacity process x(ω, tn−1):

max E[f(ω, tn)
′u(ω, tn)] + E[Vn+1(ω, x(ω, tn−1)−Au(ω, tn))]

subject to

Au(ω, tn) ≤ x(ω, tn−1), ω ∈ Ω,

0 ≤ u(ω, tn) ≤ D(ω, tn)−D(ω, tn−1), ω ∈ Ω.

We can optimize again for each sample path ω ∈ Ω. Then, for ω ∈ Ω, we
solve

max
u

f(ω, tn)
′u+ Vn+1(ω, x(ω, tn−1)−Au)

subject to

Au(ω, tn) ≤ x(ω, tn−1),

0 ≤ u(ω, tn) ≤ D(ω, tn)−D(ω, tn−1).

Note that the objective function is continuous in u while the feasible region
is compact and hence, an optimal solution u∗(ω, tn) exists for ω ∈ Ω and
n = 1, . . . , N . Thus, an optimal solution exists for decision times n through
N . Moreover, Vn(ω, x(ω, tn−1)), the objective function value of the linear
program solved at decision time tn along ω, is continuous in x(ω, tn−1).
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Proof of Lemma 1. First, note that for each ω ∈ Ω, {um(ω, tn) : m ≥
1, n = 1, . . . , N} are bounded. Hence, the existence of a convergent subse-
quence is immediate. However, this requires additional care to ensure that
the subsequence chosen for each n is adapted to Ftn . Of course, this can
be ensured by choosing the subsequences sequentially. Namely, first con-
sider {um(ω, t1) : m ≥ 1} and choose the subsequence m1,r ∈ Ft1 at time
t1. Then, consider {um1,r(ω, t2) : r ≥ 1} and choose a further subsequence
m2,r ∈ Ft2 at time t2 etc. Denoting the limit by ũ, this will ensure i)− iii)
of the lemma.

Next, we argue that ũ is feasible for (P). Note that the demand restric-
tions of (P) are satisfied by ũ since for every ω ∈ Ω, along the convergent
subsequence mn,r(ω), we have

0 ≤ umn,r(ω)(ω, tn) ≤ D(ω, tn)−D(ω, tn−1), n = 1, . . . , N,

and passing to the limit as r → ∞ we get

0 ≤ ũ(ω, tn) ≤ D(ω, tn)−D(ω, tn−1), n = 1, . . . , N.

Since for every ω ∈ Ω and for all m along the convergent subsequence
mN,r(ω), we have

N∑
n=1

AumN,r(ω)(ω, tn) ≤ C,

and in the limit we obtain
∑N

n=1Aũ(ω, tn) ≤ C. Thus, ũ satisfies the capacity
constraints.

As a preliminary to establishing the optimality of ũ, we show the conver-
gence of the objective function values of the discretized problems. Letting
fm(ω, tn) = f i,m for ω ∈ i and i ∈ Im

n , note that fm(ω, tn) → f(ω, tn) as
m → ∞. Therefore, we conclude that

N∑
n=1

fm,r(ω, tn)
′um,r(ω, tn) →

N∑
n=1

f(ω, tn)
′ũ(ω, tn) as r → ∞.

Also note that

N∑
n=1

fm,r(ω, tn)
′um,r(ω, tn) ≤ F

( K∑
k=1

Ck

)/
a.

Thus, we conclude by the Dominated convergence theorem that

(56) E[
N∑

n=1

fm,r(ω, tn)
′um,r(ω, tn)] → E[

N∑
n=1

f(ω, tn)
′ũ(ω, tn)] as r → ∞.
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To prove that ũ is optimal for the network revenue management problem
(P), we start with an optimal solution to (P), which is shown to exist in
Lemma 4. We then construct a feasible solution to each discretized problem
using that solution. We show that the objective function values of these
feasible solutions converge to the objective function value of (P), which
proves the optimality of ũ for (P) due to (56).

To this end, let u∗ be an optimal solution to (P) and construct a feasible
solution ūm to the mth discretized problem as follows:

For decision time tn and information node i ∈ Im
n , the bookings for prod-

uct j is given by

(57) umj (ω, tn) =

{
max

{
0,E[u∗j (ω, tn)|i]− 1/2m

}
if ω ∈ i, di,mj < Km,

E[ min{u∗j (ω, tn),Km}|i] if ω ∈ i, di,mj = Km,

where di,mj is the discretized demand for product j at information node i
and Km is the level at which we truncate the demand. This control satisfies
the demand restrictions in the case of di,mj < Km because of the feasibility

of u∗ for (P). The case of di,mj = Km clearly satisfy the demand restrictions.

Note that
∑N

j=1Au∗j (ω, tn) ≤ C for all ω, and consider the capacity con-

sumption vector
∑N

j=1Aūmj (ω, tn) under the control ūm, keeping in mind
the definition (57) of ūm. Because the conditional expectation is a projec-
tion operator, the conditional expectation in (57) leads to fewer bookings
under ūm than that under u∗. Therefore, we conclude that

(58)
N∑

n=1

Aūm(ω, tn) ≤ C for all ω,m.

That is, ūm satisfies the capacity constraints. Moreover, ūm is clearly a-
dapted. Thus, we conclude ūm is feasible for (Pm).

The expected revenue under ūm (in (Pm)) is greater than or equal to

N∑
n=1

∑
i∈Im

n

piE[f(ω, tn)
′u∗(ω, tn) | i ]−

JNF

2m
−NF 2J

2m

3m
− JNM

2m

=

N∑
n=1

E[f(ω, tn)
′u∗(ω, tn)]−

JNF

2m
−NF 2J

2m

3m
− JNM

2m
,(59)

where F is the bound on the fare process and M < ∞ is such that

sup
ω∈Ω, t∈Γ

u∗j (ω, t) ≤ M, j = 1, . . . , J.



ON BID-PRICE CONTROLS FOR NETWORK REVENUE MANAGEMENT 313

(Note that such a constant exists because the capacity vector C is finite.)
The second and third terms in (59) give upper bounds on the loss in revenue
due to approximation of the demand and the last term gives an upper bound
for the loss in fare due to the approximation of fare from below. Next, we
derive (59). Note that at an information node i ∈ Im

n such that di,mj ≥ Km,
we have from (57) that

(60) umj (ω, tn) = E[ min{u∗j (ω, tn),Km}|i].

Multiplying both sides with pi = P(ω ∈ i), the probability of being in
information node i ∈ Im

n , gives

P(ω ∈ i)umj (ω, tn)

= P(ω ∈ i)E[min{u∗j (ω, tn),Km}|i]
= P(ω ∈ i)E[u∗j (ω, tn)|i]− P(ω ∈ i)E[max{u∗j (ω, tn)−Km, 0}|i]
≥ P(ω ∈ i)E[u∗j (ω, tn)|i](61)

− P(ω ∈ i)E[max{Dj(ω, tn)−Dj(ω, tn−1)−Km, 0}|i]
≥ P(ω ∈ i)E[u∗j (ω, tn)|i]− 1/3m,

where the second line is obtained by rearranging terms. The first inequal-
ity is a result of replacing max{u∗j (ω, tn) − Km, 0} by max{Dj(ω, tn) −
Dj(ω, tn−1)−Km, 0} and the fact that u∗j (ω, tn) ≤ Dj(ω, tn)−Dj(ω, tn−1) by
feasibility of u∗. Finally, to get (61) we use the fact that cumulative demand
process has finite mean and the inequality (4) holds. Define the auxiliary
notation ūm,i as follows:

ūm,i = ūm(ω, tn) if ω ∈ i and i ∈ Im
n .

Then the expected revenue under um for the mth discretized problem is

N∑
n=1

∑
i∈Im

n

pi(f i,m)′ūm,i ≥
N∑

n=1

∑
i∈Im

n

pi(f i,m)′E[u∗(ω, tn) |i]

−
N∑

n=1

∑
i∈Im

n

piFJ

2m
−

N∑
n=1

J∑
j=1

F 22m

3m

(62)
≥

N∑
n=1

∑
i∈Im

n

piE[f(ω, tn)
′u∗(ω, tn) |i ]

− JNF

2m
− NF 2J2m

3m
− JNM

2m
,
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where the first inequality is obtained by replacing um with u∗ and accounting
for the fact that at each information node i ∈ Im

n such that di,mj < Km, the

difference between um,i
j and E[u∗j (ω, tn) | i ] is bounded by 1/2m, whereas

at an information node i ∈ Im
n such that di,mj ≥ Km (which exists at most

F 2m times for each product at each period) we have

P(ω ∈i)umj (ω, tn) ≥ P(ω ∈i)E[u∗j (ω, tn)|i]− 1/3m

by (61). Finally, the second inequality is obtained by replacing the term
(f i,m)′E[u∗(ω, tn) | i ] with E[f(ω, tn)

′u∗(ω, tn) | i ]. Then, the last term in
(62) is an upper bound in the loss in expected revenue due to approximating
the fare of each product at each information node.

Therefore, the expected revenue under the optimal solution to the mth

discretized problem is greater than or equal to the expression given in (59).
Since the expression in (59) converges to P∗ as m → ∞, it follows from (56)
that ũ is optimal for (P).

Proof of Lemma 2. We suppress m for notational brevity. The proof
has two major steps. First, fixing an optimal primal solution u and the cor-
responding state trajectory x for (Pm), we first argue that for each resource
k

yik ≤ F

a
whenever xik > 0,

i.e. until the capacity of the resource is exhausted. In the second step, we
focus on the nodes i with xik = 0 for some k, and modify the shadow prices
(for such k) so that they are all bounded by F/a and that the modified
shadow prices continue to be optimal.

To execute the first step of the proof recall that for n = 1, . . . , N , if w ∈ i
and i ∈ In,

y(w, tn) = yi, x(w, tn) = xi, and u(w, tn) = ui.

Define the stopping time τk as the first period at the end of which capacity
of resource k is exhausted, i.e.

τk(w) = inf{n ≥ 1 : xk(tn) = 0}, k = 1, . . . ,K,

where inf φ = ∞. The first step of the proof corresponds to proving

(63) yk(tn∧τk) ≤
F

a
for all k, n.

(We let t∞ = ∞ for notational convenience).
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Observe that whenever uj(tn) > 0, we have fj(tn) − y(tn)A
j ≥ 0 (which

follows from the complementary slackness conditions between (Pm
A ) and

(Dm
A ), see Appendix B). In particular,

(64) if uj(tn) > 0, then yk(tn) ≤
F

a
∀k such that Akj > 0.

In words, yk(tn, w) ≤ F/a if the capacity of resource k decreases in pe-
riod n.

To facilitate our analysis, define

σl
k(w) = inf{n ≥ l : xk(tn+1) < xk(tn)}

with inf φ = ∞. That is, σl
k is the first period after (or at) l during which

the capacity of the resource k decreases.
We prove (63) by induction. As the induction hypothesis consider n = 0,

i.e. time t0:

yk(t0) = E[yk(T ∧ tτk ∧ tσ0
k
)] = E[yk(T ∧ tσ0

k
],

where the first equality follows because yk is a martingale, and the second
equality follows because σ0

k ≤ τk. We proceed as follows:

yk(t0) = E[yk(T ∧ tσ0
k
)]

= E[

N∑
n=1

yk(T ∧ tσ0
k
)1{σ0

k=n} + yk(T ∧ tσ0
k
)1{σ0

k=∞}]

= E[
N∑

n=1

yk(tn)1{σ0
k=n} + yk(T )1{σ0

k=∞}]

Note that yk(tn)1{σ0
k=n} ≤ F/a by (64). Also note that if σ0

k = ∞, then

xk(T ) = xk(t0) = Ck > 0. Then by (6), yk(T ) = 0. Thus, we conclude that

yk(t0) = y(t0 ∧ τk) ≤
F

a
∀k.

As the induction hypothesis, assume that for k = 1, . . . ,K,

yk(tl∧τk) ≤
F

a
for l = 0, 1, . . . , n− 1.

For the induction step, we prove that

(65) yk(tn∧τk) ≤
F

a
∀k.
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To this end, note that

yk(tn∧τk) = E[yk(T ∧ tτk ∧ tσn
k
)|Ftn ]

= E[
N∑

r=n

yk(T ∧ tτk ∧ tσn
k
)1{σn

k=r} + yk(T ∧ tτk ∧ tσn
k
)1{σn

k=∞}|Ftn ]

= E[
N∑

r=n

yk(tr)1{σn
k=r} + yk(T ∧ tτk)1{σn

k=∞}|Ftn ].

As argued above

(66) yk(tr)1{σn
k=r} ≤

F

a
.

Also note that if σn
k = ∞, then xk(T ) = xk(tn−1); and consider the following

two cases:

Case 1. xk(tn−1) > 0, which implies that τk = ∞ and xk(T ) > 0. Thus
yk(T ) = 0 by (6).

Case 2. xk(tn−1) = 0, which implies that τk ≤ n− 1 so that

y(tn∧τk) = y(τk).

Also note that

y(tn∧τk)1{τk≤n−1} = y(τk)1{τk≤n−1}

= y(t(n−1)∧τk)1{τk≤n−1}

≤ F

a
,

where the first two lines follow because τk ≤ n − 1, whereas the last line
follows from the induction hypothesis. Then combining Cases 1 and 2 with
(66) gives (65), which proves (63).

In the second step of the proof, we focus on nodes i with xik = 0 for some
k, i.e. the capacity of a resource is exhausted (upon entering the node). More
specifically, for each k, let Rk denote the set of nodes such that r ∈ Rk, x

r
k >

0 and xr+k = 0. That is, Rk is the set of nodes in which resource k capacity
is depleted to zero. Then for each of the subtrees of I with roots r ∈ Rk,
denoted by Is(r), we have that xik = 0 for i ∈ Is(r)\{r}. In particular,
letting Gk = ∪r∈Rk

Is(r)\{r}, we have xik = 0 for i ∈ Gk.
To facilitate the analysis to follow, Let G = ∪kGk and Ei, J(k), and Ji

be the set of resources whose remaining capacity is zero in node i, the set
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of products using resource k, and the set of products which cannot be sold
in node i due to resource unavailability, respectively. That is,

Ei = {k = 1, . . . ,K : xik = 0}, i ∈ I,
J(k) = {j = 1, . . . , J : Akj > 0}, k = 1, . . . ,K,

Ji = ∪k∈Ei
J(k), i ∈ I.

Also define J̃i = Ji ∩ {j = 1, . . . , J : dij > 0} as the set of products in Ji for
which demand is positive in node i. Given an optimal dual solution y, we
modify yik for i ∈ Gk, k = 1, . . . ,K so that the modified solution ŷ is optimal
for the dual problem as well and that ŷik ≤ F/a for all i, k. To this end, note
from complementary slackness between (Pm

A ) and (Dm
A ) (see Appendix B)

that

(67) f i
j − (yi)′Aj ≤ 0 ∀i ∈ G, j ∈ J̃i.

To ensure that the modified solution ŷ is optimal we require that it be feasi-
ble and satisfy (67). To be more specific, we require that ŷ is a nonnegative
martingale such that

ŷik = yik for k = 1, . . . ,K, i ∈ I\Gk,

and that for i ∈ G = ∪kGk, all products j ∈ J̃i are priced out:

f i
j −

∑
l /∈Ei

yijAlj −
∑
k∈Ei

ŷikAkj ≤ 0, ∀i ∈ G, j ∈ J̃i.

In search for such a modification ŷ, we seek to minimize the maximum of the
modified shadow prices. Namely, we consider the following linear program:

Minimize ξ

subject to

ξ − ŷik ≥ 0, i ∈ Gk, k = 1, . . . ,K,∑
k∈Ei

ŷikAkj ≥ f̃ i
j , i ∈ G, j ∈ J̃i,(PM )

− ŷik +
∑

l∈IN∩S(i)

pl

pi
ŷlk = 0, k = 1, . . . ,K, i ∈ Gk\IN ,

∑
l∈IN∩S(r)

pl

pr
ŷlk = yrk, k = 1, . . . ,K, r ∈ Rk,

ŷik ≥ 0, k = 1, . . . ,K, i ∈ IN ∩Gk,

where f̃ i
j = f i

j −
∑

l /∈Ei
yilAlj and S(i) denotes all successors of node i.
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Note that y is a feasible solution to (PM ) with ξ = max yik. Next, consider
the dual of (PM ), denoted15 by (DM ):

Maximize
∑
i∈G

∑
j∈Ji

f̃ i
jv

i
j +

∑
k

∑
r∈Rk

yrkw
r
k

subject to∑
k

∑
i∈Gk

ζik = 1,(68)

− ζik +
∑

j∈J(k)∩J̃i

vijAkj − wi
k = 0, ∀k, i ∈ Gk\IN , (DM )(69)

− ζik +
∑

j∈J(k)∩J̃i

vijAkj +
∑

l∈(P(i)∩G(k))\{i}

pi

pl
wl
k

+
pi

prk(i)
w

rk(i)
k ≤ 0, ∀k, i ∈ Gk ∩ IN ,(70)

ζik ≥ 0, k = 1, . . . ,K, i ∈ Gk,(71)

vij ≥ 0, i ∈ G, j ∈ J̃i,(72)

where P(i) is the set of predecessors of i, and rk(i) ∈ Rk is the root of the
tree that contains i for i ∈ Gk ∩ IN . In particular, i ∈ Is(rk(i)).

Summing (69) over k, i ∈ Gk\IN and summing (70) over k and i ∈ Gk∩IN
gives the following:∑

k

∑
i∈Gk\IN

∑
j∈J(k)∩J̃i

Akjv
i
j −

∑
k

∑
i∈Gk\IN

wi
k =

∑
k

∑
i∈Gk\IN

ζik(73)

∑
k

∑
i∈Gk∩IN

∑
j∈J(k)∩J̃i

Akjv
i
j +

∑
k

∑
i∈Gk∩IN

∑
l∈(P(i)∩Gk)\{i}

pi

pl
wl
k(74)

+
∑
k

∑
i∈Gk∩IN

pi

prk(i)
w

rk(i)
k ≤

∑
k

∑
i∈Gk∩IN

ζik.

Note that∑
k

∑
i∈Gk∩IN

∑
l∈(P(i)∩Gk)\{i}

pi

pl
wl
k =

∑
k

∑
l∈Gk\IN

∑
i∈S(l)∩IN

pi

pl
wl
k

=
∑
k

∑
l∈Gk\IN

wl
k,(75)

15Note that yr
k for k = 1, . . . ,K, r ∈ Rk are problem data, not decision variables.
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because
∑

i∈S(l)∩IN pi/pl = 1. Similarly,

∑
k

∑
i∈Gk∩IN

pi

prk(i)
w

rk(i)
k =

∑
k

∑
l∈Rk

∑
i∈S(l)∩IN

pi

pl
wl
k(76)

=
∑
k

∑
l∈Rk

wl
k.

Substituting (75)–(76) into (74) gives∑
k

∑
i∈Gk∩IN

∑
j∈J(k)∩J̃i

Akjv
i
j +

∑
k

∑
l∈Gk\IN

wl
k +

∑
k

∑
l∈Rk

wl
k

≤
∑
k

∑
i∈Gk∩IN

ζik.(77)

Adding up (73) and (77) gives

(78)
∑
k

∑
i∈Gk

∑
j∈J(k)∩J̃i

Akjv
i
j +

∑
k

∑
l∈Rk

wl
k ≤

∑
k

∑
i∈Gk

ζik = 1,

where the last equality follows from (68). Then it follows from (78) that∑
k

∑
i∈Gk

∑
j∈J(k)∩J̃i

Akjv
i
j ≤ 1−

∑
k

∑
l∈Rk

wl
k,

from which it follows that

a
∑
k

∑
i∈Gk

∑
j∈J(k)∩J̃i

vij ≤
∑
k

∑
i∈Gk

∑
j∈J(k)

Akjv
i
j ≤ 1−

∑
k

∑
l∈Rk

wl
k.

Note that ∑
k

∑
i∈Gk

∑
j∈J(k)∩J̃i

vij =
∑
i∈G

∑
j∈J̃i

vij ,

leading to ∑
i∈G

∑
j∈J̃i

vij ≤
1−

∑
k

∑
l∈Rk

wl
k

a
.

Consider the objective of the dual formulation (DM ) and recall that

f̃ i
j ≤ F ∀i, j and yrk ≤ F/a ∀k, r ∈ Rk,
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where the second inequality follows precisely from (63). Then

Obj(DM ) =
∑
i∈G

∑
j∈J̃i

f̃ i
jv

i
j +

∑
k

∑
r∈Rk

yrkw
r
k

≤ F
∑
i∈G

∑
j∈J̃i

vij +
F

a

∑
k

∑
r∈Rk

wr
k

≤ F

a

⎛⎝1−
∑
k

∑
l∈Rk

wl
k

⎞⎠+
F

a

∑
k

∑
l∈Rk

wl
k

≤ F

a
.

By the strong duality between (PM ) and (DM ) we conclude that Obj(PM )
≤ F

a and ŷik ≤ F
a for any optimal ŷ of (PM ).

APPENDIX B: DERIVATION OF THE DUAL LINEAR PROGRAM
FOR THE DISCRETE APPROXIMATION TO THE
NETWORK REVENUE MANAGEMENT PROBLEM

For notational brevity, we will suppress the superscript m in this ap-
pendix. Recall the primal problem (Pm): Choose {ui}i∈I so as to

Maximize
∑
i∈I

pi (f i)′ ui

subject to

xi = C, i ∈ I1,
xi = xi− −A ui− , i ∈ In, n = 2, . . . , N,

0 ≤ ui ≤ di , i ∈ In, n = 1, 2, . . . , N,

A ui ≤ xi , i ∈ IN .

Equivalently, we express it as follows:

Maximize
∑
i∈I

pi
J∑

j=1

f i
j uij

subject to

xik = Ck, i ∈ I1, ∀k,

− xi−k + xik +

J∑
j=1

akj ui−j = 0, i ∈ In, n = 2, . . . , N, ∀k,
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uij ≤ dij , i ∈ In, n = 1, 2, . . . , N, ∀j,(Pm
A )

− xik +

J∑
j=1

akj uij ≤ 0, i ∈ IN , ∀k,

uij ≥ 0, i ∈ I, ∀j,
xik free, i ∈ I, ∀k.

Associating the dual variables ŷik, q̂
i
j , v̂

i
j with system state dynamics, demand

and capacity constraints, respectively, the dual formulation is given as fol-
lows, cf. Bertsimas and Tsitsiklis (1997):

Minimize
∑
i∈I1

K∑
k=1

Ck ŷik +
∑
i∈I

J∑
j=1

q̂ij dij

subject to

ŷik −
∑

i+∈I+(i)

ŷi+k = 0, i ∈ In, n = 1, 2, . . . , N − 1, ∀k,

ŷik − v̂ik = 0, i ∈ IN , ∀k,
K∑
k=1

akj ŷ
i
k + q̂ij ≥ pi f i

j , i ∈ In, n = 1, 2, . . . , N − 1, ∀j,

K∑
k=1

akj ṽ
i
k + q̂ij ≥ pi f i

j , i ∈ IN , ∀j,

v̂ik ≥ 0, i ∈ IN , ∀k,
q̂ij ≥ 0, i ∈ I, ∀j,

where I+(i) is the set of immediate successors of i and i+ denotes a generic
element in that set. Noting that ŷik = v̂ik for i ∈ IN and ∀k, and introducing
the change of variables

yik =
ŷik
pi

∀i, k and qij =
q̂ij
pi

∀i, j,

we arrive at the following formulation

Minimize
∑
i∈I1

K∑
k=1

pi yik Ck +
∑
i∈I

J∑
j=1

piqij dij

subject to
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yik =
∑

i+∈I+(i)

pi+

pi
yi+, i ∈ In, n = 1, . . . , N − 1, ∀k,(Dm

A )

qij ≥ f i
j −

K∑
k=1

akjy
i
k, i ∈ In, n = 1, . . . , N, ∀j,

qij ≥ 0, i ∈ I, ∀j,
yik ≥ 0, i ∈ IN , ∀k.

Since this is a minimization problem, we conclude that

qij = (f i
j −

K∑
k=1

akjy
i
k)

+ for i ∈ I, j = 1, . . . , J.

Also, defining y0k =
∑

i∈I1 p
iyik, the formulation reduces to

Minimize
K∑
k=1

Cky
0
k +

∑
i∈I

J∑
j=1

pi (f i
j −

K∑
k=1

akjy
i
k)

+ dij

subject to

yik =
∑

i+∈I+(i)

pi+

pi
yi+, i ∈ I\IN ,

yik ≥ 0, i ∈ IN .

Using vector notation, we arrive at the formulation (Dm): Choose yi ≥ 0 for
i ∈ IN so as to

Minimize C ′y0 +
∑
i∈I

pi [
(
(f i −A′yi)+

)′
di]

subject to

yi = E[yi+|i], i ∈ I\IN ,

yi ≥ 0, i ∈ IN ,

where E[yi+|i] =
∑

i+∈I(i)
pi+

pi
yi+ is the conditional expectation of yi+ given

the information available in node i.

REFERENCES

Adelman, D. (2007). Dynamic bid prices in revenue management. Operations Re-
search 56, 647–661. MR2349028

http://www.ams.org/mathscinet-getitem?mr=2349028


ON BID-PRICE CONTROLS FOR NETWORK REVENUE MANAGEMENT 323

Adelman, D. and Mersereau, A. (2008). Relaxations of weakly coupled stochastic dy-
namic programs. Operations Research 56(3), 712–727. MR2436863

Akan, M. and Ata, B. (2009). Bid-price controls for continuous time network revenue
management: Martingale characterization of optimal bid prices. Mathematics of Oper-
ations Research 34(4), 912–936. MR2573502

Bertsimas, D. and Popescu, I. (2003). Revenue management in a dynamic network
environment. Tran. Sci. 37, 257–277.

Bertsimas, D. and Tsitsiklis, J. (1997). Introduction to Linear Optimization. Belmont,
MA: Athena Scientific.

Huang, C. (1985). Information structure and equilibrium asset prices. Journal of Eco-
nomic Theory 34, 33–71. MR0786987

Jasin, S. and Kumar, S. (2012). A re-solving heuristic with bounded revenue loss for
network revenue management with customer choice. Mathematics of Operations Re-
search 37(2), 313–345. MR2931283

Jasin, S. and Kumar S. (2013). Analysis of deterministic lp-based booking limit and
bid price controls for revenue management. Operations Research 61(6), 1312–1320.
MR3158248

Karatzas, I. and Shreve, S. (1991). Brownian Motion and Stochastic Calculus (2nd

ed.). Springer, New York. MR1121940
Kleywegt, A. (2001). An optimal control problem of dynamic pricing. Unpublished

Manuscript available at http://www2.isye.gatech.edu/~anton/OptControl.pdf.
Kunnumkal, S. and Topaloglu, H. (2010). Computing time-dependent bid-prices in

network revenue management problems. Transportation Science 44(1), 38–62.
Reiman, M. and Wang, Q. (2008). An asymptotically optimal policy for a quantity-based

network revenue management problem. Mathematics of Operations Research 33(2),
257–282. MR2415991

Rockafellar, R. and Wets, R.-B. (1997). Variational Analysis, Grundlehren der Math-
ematischen Wissenschaften 317. Springer.

Schrag, M. (2009). Evaluating revenue management. The Practice of Revenue Manage-
ment Keynote Seminar at the 9th Annual INFORMS Revenue Management and Pricing
Section Conference, Evanston, IL.

Simpson, R. (1989). Using network flow techniques to find shadow prices for market and
seat inventory control. MIT Flight Transportation Laboratory Memorandum.

Talluri, K. and van Ryzin, G. (2004). The Theory and Practice of Revenue Manage-
ment. Kluwer Academic Publishers, Norwell, MA. MR2089816

Talluri, T. and van Ryzin, G. (1998). An analysis of bid-price controls for network
revenue management. Management Science 44, 1577–1593.

Topaloglu, H. (2008). A stochastic approximation method to compute bid prices in
network revenue management problems. INFORMS Journal on Computing 20(4), 596–
610. MR2456594

Topaloglu, H. (2009). Using lagrangian relaxation to compute capacity-dependent
bid prices in network revenue management. Operations Research 57(3), 637–649.
MR2554258

Williams, D. (1991). Probability with Martingales. Cambridge University Press.
MR1155402

Williamson, E. (1992). Airline Network Seat Control. Ph. D. thesis, MIT.

Barış Ata
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