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POWER IDENTITIES FOR LÉVY RISK MODELS UNDER

TAXATION AND CAPITAL INJECTIONS∗

By Hansjörg Albrecher and Jevgenijs Ivanovs

University of Lausanne

In this paper we study a spectrally negative Lévy process which is
refracted at its running maximum and at the same time reflected from
below at a certain level. Such a process can for instance be used to
model an insurance surplus process subject to tax payments accord-
ing to a loss-carry-forward scheme together with the flow of minimal
capital injections required to keep the surplus process non-negative.
We characterize the first passage time over an arbitrary level and the
cumulative amount of injected capital up to this time by their joint
Laplace transform, and show that it satisfies a simple power relation
to the case without refraction, generalizing results by Albrecher and
Hipp (2007) and Albrecher, Renaud and Zhou (2008). It turns out
that this identity can also be extended to a certain type of refraction
from below. The net present value of tax collected before the cumu-
lative injected capital exceeds a certain amount is determined, and a
numerical illustration is provided.

1. Introduction. The aim of this paper is to study certain power re-
lations of level crossing quantities for spectrally negative Lévy processes,
which are motivated by insurance applications. Concretely, assume that the
surplus process of an insurance portfolio is modeled by a spectrally negative
Lévy process, and tax payments on profits according to a loss-carry-forward
scheme are implemented by paying a certain proportion γ of the premium
income, whenever the surplus process is at its running maximum. For a con-
stant value of γ, it was shown by Albrecher and Hipp (2007) and Albrecher,
Renaud and Zhou (2008) that the probability of the resulting process to
stay positive is intimately connected to the one without tax payments by a
simple power relation (see also Albrecher et al. (2009); Kyprianou and Ott
(2012); Kyprianou and Zhou (2009) for extensions). The implemented tax
rule can alternatively be seen as a general profit participation scheme for
shareholders, which for the special case of γ = 1 reduces to a horizontal
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dividend barrier strategy. Whereas in classical models business is stopped
as soon as the surplus is negative, it is natural to consider the amount of
capital needed to bring the surplus back to zero whenever it turns negative
and henceforth continue the business operations. Under horizontal dividend
payments and a compound Poisson model for insurance claims, this question
was considered by Dickson and Waters (2004), and Kulenko and Schmidli
(2008) showed that it can be optimal for shareholders to “save” the insur-
ance business in this way (for another injection scheme see Nie, Dickson and
Li (2011)).

In this paper we consider capital injections below zero for the general
case γ ≤ 1. This amounts to study level crossing events for a spectrally
negative Lévy process refracted at its running maximum and at the same
time reflected at zero. We characterize the first passage time over an arbi-
trary level and the cumulative amount of injected capital up to this time by
their joint Laplace transform, and establish a simple power relation to the
case without refraction. From the proof it becomes clear that such a power
identity can not hold, if reflection from below is generalized to refraction at
the running minimum. However, if refraction always starts at the same fixed
level, a power identity still holds.

In Section 2, we discuss simultaneous refraction and reflection. Section 3
then states the main results, which are proved in Section 4. In Section 5 we
consider an application of the obtained formula to determine the net present
value of tax collected before the cumulative injected capital exceeds an ex-
ponential amount, and give a concrete numerical example for a compound
Poisson risk model. Finally, in Section 6 we illustrate with yet another exam-
ple that power identities hold in wide generality. Concretely, we use our proof
technique to extend the power tax identity for first passage times (without
capital injections) to a relaxed concept of ruin which was considered recently
in the literature.

2. Refraction and reflection. For a càdlàg sample path Xt of any
stochastic process, consider reflection of Xt at a level b (from above) defined
by Yt = Xt−Ut ≤ b, where Ut is a non-decreasing càdlàg function with U0 =
0∨(X0−b), whose points of increase are contained in the set {t ≥ 0 : Yt = b}.
This identifies Ut in a unique way, and implies that Ut = 0∨ (X t− b), where
X t = sup{Xs : 0 ≤ s ≤ t}, see e.g. Kella (2006). Essentially, Ut evolves as
the supremum process.

For an arbitrary γ ∈ R we call the process Xt − γUt a refraction from
above, which has some interpretations in insurance risk theory. For γ = 1
we retrieve the reflected process, which can model an insurance surplus pro-
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Fig 1. A sample path refracted from above and reflected from below.

cess with dividends paid out according to a barrier strategy with barrier b,
whereas γ ∈ (0, 1) refers to an insurance surplus process taxed according to a
loss-carried forward scheme (see e.g. Albrecher and Hipp (2007); Albrecher,
Renaud and Zhou (2008)). A value γ < 0 could refer to a model with stim-
ulation proportional to the increase of the maximum. Finally, the case of
γ > 1 can be interpreted as inhibition, which will not be considered further
in the sequel. In general, γ could be allowed to depend on the current value
of Ut (or on the running maximum of the refraction itself), which leads to

a more general process of the form Xt −
∫ Ut

0 γ(x)dx. For simplicity, we will
however assume throughout this work that γ is a constant, and only give
some comments in Remark 4.1.

This paper focuses on processes refracted from above with rate γ ≤ 1
and reflected from below. Such a process can be defined by using one-sided
refraction from above and one-sided reflection from below locally, and then
gluing segments of paths together, see also (Asmussen, 2003, Sec. XIV.3)
where a similar procedure is used to define a two-sided reflection. More
precisely, we do the following for a given interval [a, b], where a is the level
for reflection from below, and b is the initial level for refraction from above.
First, we consider a free process Xt until it exits [a, b], at which moment we
start either reflection from below (it exits through a) or refraction from above
(it exits through b). Assuming (w.l.o.g.) the latter, we consider the time at
which the corresponding refraction goes below a, and then start reflection
from below. When this reflection goes above the running maximum, the
refraction from above starts, and so on, see Figure 1 for an illustration of
such a process.

The above procedure is described rigorously in the form of an algorithm in
the Appendix, where we also allow for two-sided refraction. For the present
model it results in a representation

(1) Yt = Xt + Lt − γUt,
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where it is assumed thatX0 ∈ [a, b], and γ ≤ 1 to avoid the case of inhibition.
Moreover, Lt and Ut are non-decreasing càdlàg functions, and the points
of increase of Lt and Ut are contained in the sets {t ≥ 0 : Yt = a} and
{t ≥ 0 : Yt = Yt∨b} respectively. Finally, note that Lt and Ut are interrelated
and both depend on the parameter γ.

3. A power identity. Throughout this work we assume that Xt is
a spectrally negative Lévy process with Laplace exponent ψ(α) so that
EeαXt = eψ(α)t for α ≥ 0. Define the first passage times

τ±y = inf{t ≥ 0 : ±Xt > y}

and recall that for all q ≥ 0 there exists a unique continuous function W q :
[0,∞) → R+, such that W q(y) > 0 for y > 0,

(2) Ex[e
−qτ+y ; τ+y < τ−0 ] =W q(x)/W q(y) for y ≥ x ≥ 0, y > 0,

and
∫∞
0 e−αyW q(y)dy = 1/(ψ(α) − q) for α larger than the rightmost zero

of ψ(α) − q. This W q is called a scale function.
For a Lévy risk model with tax, it was shown by Albrecher, Renaud and

Zhou (2008) that certain probabilities and transforms can be related to their
analogues under no taxation by power identities. We will now generalize such
power identities to the setting of a refraction from above and reflection from
below. Consider a process Yt given by (1), where X0 = x > 0, the reflection
barrier is placed at the level a = 0, and the refraction from above at rate
γ ≤ 1 is applied immediately, i.e. b = x (it is straightforward to extend our
result to b > x using identities for reflected Lévy processes). Let also

Ty = inf{t ≥ 0 : Yt > y}

be the first passage time of the refraction above the level y.

Theorem 3.1. For γ < 1 and q, θ ≥ 0 it holds that

(3) E
γ
xe

−qTy−θLTy =
(

E
0
xe

−qTy−θLTy

)
1

1−γ
,

where y ≥ x > 0 and E
γ
x denotes the expectation operator for the model

defined by (1) with a = 0 and b = x.

It should be noted that the right hand side of (3) can be identified using
results on reflected Lévy processes. In particular, Ivanovs (2011) shows that

(4) E
0
xe

−qTy−θLTy = Zq,θ(x)/Zq,θ(y),
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where Zq,θ(x) is a so-called second scale function given by

Zq,θ(x) = eθx[1− (ψ(θ)− q)

∫ x

0
e−θyW q(y)dy],

see also Pistorius (2004) for the case when θ = 0. Observe that

lim
θ→∞

E
0
xe

−qTy−θLTy = E
0
x[e

−qTy ;LTy = 0] = Ex[e
−qτ+y ; τ+y < τ−0 ] =

W q(x)

W q(y)
.

Similarly, for θ → ∞ the left-hand side of (3) becomes the transform of the
first passage time Ty on the event that it precedes ruin, hence we recover the
tax identity (3.1) of Albrecher, Renaud and Zhou (2008) as a special case.

In the case γ = 1 (corresponding to payments of dividends according to
a barrier strategy at the level x) we have Ty = ∞ for all y ≥ x. Instead we
look at

(5) ρy = inf{t ≥ 0 : Ut > y},

which is the first time that the amount of accumulated dividends (or taxes)
exceeds a level y.

Theorem 3.2. For q, θ ≥ 0 and x > 0, y ≥ 0 it holds that

(6) E
1
xe

−qρy−θLρy = e−λ
q,θ(x)y,

where

λq,θ(x) = Zq,θ
′
(x)/Zq,θ(x) = θ −

(ψ(θ)− q)W q(x)

Zq,θ(x)
.

In a somewhat different form this formula appears also in Ivanovs (2011).
We note that for θ = ∞ one has to take λq(x) = W q ′

+(x)/W
q(x), which

is intimately related to the excursion measure, see e.g. (Kyprianou, 2006,
Lem. 8.2).

Remark 3.1. The power identity (3) fails to hold for a two-sided re-
fraction (defined in Appendix) with γL < 1. The case of reflection γL = 1 is
special because in this case we know the distance to the (lower) reflection
barrier at the first passage time Ty (in other words, a(n) in the algorithm
defining the two-sided refraction is constant, see Appendix).

Nevertheless, from the proof in Section 4 it becomes clear that if one mod-
ifies the model and considers either refraction from below always starting
at a fixed level a or always starting at a fixed distance from the running
maximum (rather than starting at the current running minimum), then the
power identity (3) is preserved also in the case γL < 1.
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4. Proofs. In this section we prove Theorem 3.1 and Theorem 3.2. We
construct an auxiliary process by a certain modification of paths of the si-
multaneously refracted and reflected process. This modification preserves
excursions from the maximum, but leads to the same ‘behavior at the max-
imum’ as the one of the free process. Furthermore, the auxiliary process
corresponding to γ = 1 exhibits a lack of memory property at its first pas-
sage times, because the lower reflection barrier is always placed at a constant
distance from the maximum. This gives rise to a certain exponent λ(x), and
allows to relate this process to the processes corresponding to different γ,
see Lemma 4.1. Subsequently the strong Markov property is applied to es-
tablish a differential equation for the quantity of interest, which then yields
the results.

It is convenient to shift our process, so that X0 = 0 and reflection from
below is applied at the level −x < 0. Recall also that refraction from above is
applied immediately. Note that Eγe−qTy can be written as Pγ(Ty <∞) for an
exponentially killed process, i.e. when Xt is sent to an additional absorbing
state at an independent exponentially distributed time eq with rate q ≥ 0.
The double transform E

γe−qTy−θLTy is obtained by additional killing at the
time when Lt surpasses an independent exponentially distributed eθ. Hence
it suffices to analyze P

γ(Ty <∞) for a doubly killed process.
Let us fix some terminology and notation concerning the paths of Yt.

Segments of a path of the process Yt−Y t in the intervals when this difference
is strictly negative are called excursions of Yt (from the maximum). The
starting level of an excursion is the corresponding value of Y t. Next, consider
a triplet (Yt, Lt, Ut) of paths (where each component depends on the choice
of γ) and define

Ỹt = Xt + Lt = Yt + γUt.

From the construction of Yt one can see that Yt = (1− γ)Ut, which immedi-

ately yields Ỹt = Ut. Letting

T̃y = inf{t ≥ 0 : Ỹt > y}

we see that T̃y = ρy and for γ < 1 also

(7) T̃y = T(1−γ)y .

It is noted that we could have avoided constructing the auxiliary process,
since it is possible to use the stopping time ρy instead of T̃y. But then the
following arguments would become less visually appealing.

When γ = 1 the reflecting barrier is always placed at a constant distance
x from the maximum, which together with the strong Markov property of
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Xt implies that

(8) P
1(T̃y+z <∞|T̃y <∞) = P

1(T̃z <∞)

for all y, z > 0 (note that the memoryless property of the killing times eq
and eθ is essential here). From (8) it follows that there exists a λ(x) ≥ 0
such that

(9) P
1(T̃y <∞) = e−λ(x)y,

where x denotes the distance between the reflecting barriers. This provides
the proof of Theorem 3.2 up to the identification of λ(x).

Lemma 4.1. It holds for all γ ≤ 1 that

P
γ(T̃h <∞) = P

1(T̃h <∞) + o(h) as h ↓ 0.

Proof. In the following we will need to compare the sample paths of Ỹt
processes for different γ, hence throughout this proof we write Ỹ γ

t and T̃ γy
to make their dependence on γ explicit. For the ease of exposition, consider
first the case γ = 0, where Ỹ 0

t is a process Xt reflected at the level −x. Let
δ ≥ 0 be the starting level of the first excursion of Xt from the maximum
exceeding height x; this is also the starting level of the first excursion of Ỹ 1

t

leading to reflection (i.e. an increase of L1
t ). Note that on the event {δ > h}

the times T̃ 0
h and T̃ 1

h coincide. In the following we exclusively work on the
complementary event {δ ≤ h}.

The lack of memory of Ỹ 1
t at its first passage times implies that the

number of excursions of Ỹ 1
t starting in [0, h] and leading to reflection defines

a (killed) Lévy process indexed by h. Hence on the event {T̃ 1
h < ∞} this

number is Poisson distributed. Using the lack of memory of Ỹ 1
t at T̃ 1

h we see
that

P(δ ≤ h, T̃ 1
h <∞, T̃ 1

2h = ∞) = P(δ ≤ h, T̃ 1
h <∞)P(T̃ 1

h = ∞)

= O(h)(λ(x)h + o(h)) = o(h).

Hence considering {δ ≤ h, T̃ 1
h < ∞} we can assume that T̃ 1

2h < ∞ and also
there is only one excursion of Ỹ 1

t starting in [0, 2h] and leading to reflection.
Comparison of the sample paths of Ỹ 1

t and Ỹ 0
t , see Figure 2, reveals that

T̃ 0
h < ∞, because the difference between them is bounded by h. For an

arbitrary γ ≤ 1 it is bounded by (1− γ)h, hence one can take h+ (1− γ)h
instead of 2h to finish this part of the proof.

Let us now consider {T̃ 0
h < ∞}. Note that T̃ 1

h = ∞ can only happen as
a consequence of killing according to eθ. Hence it is only required to show
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Fig 2. A schematic sample path of Ỹ 1
t and Ỹ 0

t (with a dashed line).

that this happens with probability o(h). In fact, it is enough to show that
for a non-killed process Ỹ 1

t it holds that

P
1(δ ≤ h, eθ ∈ (LT̃δ − h,LT̃δ )) = o(h),

which follows from the independence of eθ. Again, for general γ, h in the
above display is replaced by (1− γ)h.

Combining Lemma 4.1, (9), and (7) we get for γ < 1

(10) P
γ(Th <∞) = P

1(T̃h/(1−γ) <∞) + o(h) = 1−
λ(x)

1− γ
h+ o(h) as h ↓ 0.

Let us now return to the original set-up, where X0 = x and the reflecting
barrier is placed at the level 0; we use Px to denote the corresponding law.

Proof of Theorem 3.1. Assume that γ < 1 and write using the strong
Markov property

P
γ
x(Ty <∞) = P

γ
x(Tx+h <∞)Pγx+h(Ty <∞).

According to (10) we have Pγx(Tx+h <∞) = 1− λ(x)
1−γ h+ o(h) as h ↓ 0. Hence

P
γ
x+h(Ty <∞) → P

γ
x(Ty <∞), and moreover

(11)
∂

∂x
P
γ
x(Ty <∞) =

λ(x)

1− γ
P
γ
x(Ty <∞).

Formally, this computation gives only the right derivative.
Let us identify λ(x) using the existing theory. In particular (4) states that

P
0
x(Ty < ∞) = Z(x)/Z(y). Hence we obtain Z ′(x)/Z(y) = λ(x)Z(x)/Z(y)

yielding

(12) λ(x) = Z ′(x)/Z(x) for x > 0,

which also shows that λ(x) is continuous on (0,∞).
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It is not hard to see that for any γ < 1 and fixed y > 0 the function
P
γ
x(Ty < ∞), x ∈ (0, y] is continuous and non-zero. Hence for all x ∈ (0, y)

we have the following right derivative:

∂

∂x
lnPγx(Ty <∞) =

λ(x)

1− γ
,

which together with P
γ
y(Ty <∞) = 1 yields

lnPγx(Ty <∞) = −
1

1− γ

∫ y

x
λ(u)du.

Uniqueness of the solution is based on the fact that a continuous function
with right derivative 0 at every point of an interval is constant on this
interval. So we have

(13) P
γ
x(Ty <∞) = e

− 1
1−γ

∫ y

x
λ(u)du

,

which immediately yields the power relation of Theorem 3.1.

Finally, Theorem 3.2 is a direct consequence of (9) and (12).

Remark 4.1. When the refraction rate γ(x) depends on the level, as-
suming some regularity conditions (e.g. γ(x) is continuous and bounded
away from 1), one can still apply Lemma 4.1 to derive the differential equa-
tion (11). In this case the solution takes the form

P
γ
x(Ty <∞) = e−

∫ y

x
λ(u)/(1−γ(u))du .

5. An application: Profit participation and capital injection. As
an application of Theorem 3.1, interpret Yt in (1) as an insurance surplus
process at time t, where γUt is a profit participation scheme for an investor
(a proportion γ of the profits is paid out to the investor) and, in turn, if
needed the investor injects a minimal flow of capital into the company to
prevent its bankruptcy, i.e. to keep the surplus non-negative, with Lt be-
ing the total amount injected up to time t. Alternatively, one can think
of γUt as tax payments for profits up to time t according to a loss-carry
forward scheme with constant tax rate 0 < γ < 1 (cf. Albrecher and Hipp
(2007)) and Lt would then be the necessary amount of capital up to time t
to bail out the insurance company to prevent bankruptcy. Consider an up-
per limit eθ for the cumulative amount that the investor is willing to inject,
which is assumed to be an independent exponential random variable with
rate parameter θ ≥ 0 (it can be interpreted as impatience of the investor).
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Whenever this limit is exceeded the company is not bailed out anymore
and has to go out of business. Put differently, for each infinitesimal required
injection h, the investor will stop payments with probability θh (indepen-
dently of everything else). This concept extends the notion of classical ruin
(which is retrieved for θ = ∞), and leads to an interesting trade-off between
collected profits (or tax) and injected capital.

The expected discounted profit (tax) payments for this model can be
written as

V (γ) =
γ

1− γ
E
γ
x

∫ ∞

0
e−qt1{Lt<eθ}dY t, γ < 1,

where q > 0 is the discount rate. Note that each dY t = dy corresponds
to γ/(1 − γ)dy tax payment. Recalling that Y t is continuous, and using a
standard change of variable argument with Y t = y and t = Ty we obtain

V (γ) =
γ

1− γ
E
γ
x

∫ ∞

x
e−qTy1{LTy<eθ}

dy =
γ

1− γ

∫ ∞

x
E
γ
x[e

−qTy−θLTy ]dy

(14)

=
γ

1− γ

∫ ∞

x

(

Zq,θ(x)

Zq,θ(y)

)

1
1−γ

dy,

where in the second step we use Fubini’s theorem and the independence of
eθ, and in the last step we invoke Theorem 3.1. This formula is an extension
of Equation (3.2) of Albrecher, Renaud and Zhou (2008), which is retained
for θ → ∞ (the case without capital injections).

If we choose γ = 1 (in which case the profit participation reduces to a
horizontal dividend barrier strategy), then we get in a similar way by using
Theorem 3.2 that the expected discounted dividends V (1) are given by

V (1) = E
1
x

∫ ∞

0
e−qt1{Lt<eθ}dUt =

∫ ∞

0
E
1
x[e

−qρy−θLρy ]dy

(15)

=
1

λq,θ(x)
= Zq,θ(x)/Zq,θ

′
(x).

As above, for θ → ∞ we get back to the classical formula without capital
injections, where Z is replaced by W (see e.g. Equation (3) in Renaud and
Zhou (2007)).

The quantity V (γ) can consequently be computed explicitly whenever the
function Z has an explicit representation. This is for instance the case for
a Poisson stream of phase-type claims (for a detailed discussion of explicit
cases cf. Hubalek and Kyprianou (2011)).
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Fig 3. V (γ) for drift = (0.5, 0.4, 0.3, 0.2, 0.1, 0,−0.1); from top to bottom.
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(b) V 1(γ)− V ∞(γ)

Fig 4. V (γ) for θ = 1 and θ = ∞.

5.1. A numerical example. Let us consider a concrete simple example, for
which the scale function W (x) has an explicit form, and hence the expected
discounted profit (tax) payments V (γ) as identified in (14) can be easily
evaluated. We assume that the driving process is a Cramèr-Lundberg risk

process Xt = x + ct −
∑N(t)

n=1 Mi, where N(t) is a homogeneous Poisson
process with rate 1, the insurance claimsMi are independent and identically
distributed exponential random variables with mean m and the constant
premium intensity is chosen as c = 1, so that the drift of X is then given by
EX(1) = 1−m. Choose further the initial capital x = 1, the discount factor
q = 0.01, and the investor impatience parameter θ = 1.

Figure 3 depicts V as a function of γ for different values of the drift.
Essentially, the shape of these functions is the same as in the case of classical
ruin (θ = ∞), but higher in absolute value due to the longer life-time of the
process. This shape reflects that overly large values of γ may lead to an early
ruin resulting in a smaller profit.

In Figure 4(a), this is visualized by comparing V (γ) for θ = 1 and θ = ∞
for a fixed drift of EX(1) = 0.3, and Figure 4(b) depicts the increase of V (γ)
as compared to the case of classical ruin. This expected increase of profit
comes at the cost of the capital injections, whose expected value does not
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exceed Eeθ = 1. The latter is in fact a crude upper bound, because of two
reasons: no discounting, and the fact that cumulative injections may never
reach the threshold eθ. These results show that on average it can be quite
advantageous for an investor to perform these capital injections, in particular
for those γ for which the difference V 1(γ) − V∞(γ) is larger than 1. If one
would compare this difference to the actual expected discounted investments,
the effect would be even more pronounced. The analysis of the net present
value of injections is, however, considerably more involved, and could be an
interesting direction for future work.

6. Power identities under a relaxed ruin concept. It turns out
that power relations similar to (3) hold in quite wide generality. Essentially,
it is only required that killing and modification (such as reflection) of excur-
sions of the (non-taxed) process is done in a memoryless way (in other words,
what happens after the first passage time T 0

y is independent from the past
and has the same law as the original process started in y). Of course, one
still has to handle model-specific technical details similar to those contained
in Lemma 4.1.

For illustration, let us consider an example from Albrecher, Gerber and
Shiu (2011) and Albrecher and Lautscham (2013), where bankruptcy is de-
clared at some rate θ > 0 when the risk process is below zero (there is no
reflection from below). In other words, the killing occurs when the cumu-
lative time Xt spent below zero surpasses an independent exponential ran-
dom variable eθ (one can also introduce dependence of θ on the level, but
for clarity we refrain from doing so, and only note that generalizations of
power identities to arbitrary measurable, locally bounded functions θ(x) do
not cause additional problems). As before we assume that Xt is a spectrally
negative Lévy process (no reflection from below). The concept of occupation
times plays an important role in this setting. Let

M(A, t) =

∫ t

0
1{Xs∈A}ds

be the time X spends in a Borel set A up to time t.

Theorem 6.1. Consider the model (1) without reflection from below
(a = −∞, b = x ≥ 0), and let νθ be the time of bankruptcy:

νθ = inf{t ≥ 0 :M((−∞, 0), t) > eθ}.

Then for all γ < 1 and q ≥ 0 it holds that

E
γ
x[e

−qTy ;Ty < νθ] =
(

E
0
x[e

−qTy ;Ty < νθ]
)

1
1−γ .
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Proof. Without real loss of generality one can assume that q = 0. One
can repeat the arguments from the previous section. In fact, many things
simplify since there is no process Lt. In particular, paths of the processes
Ỹ γ
t (and Xt) are the same, but the intervals of times when the processes

are in danger of bankruptcy are different for different γ, and so the killing
points are different. In order to (re-)establish Lemma 4.1, we have to show
that the differences between ‘in danger’ sets up to the time τ+h are small in
certain sense. It is enough to show that

(16) P(M([−x+ γh,−x+ h), τ+h ) > eθ) = o(h)

as h ↓ 0. Moreover, to establish the differential equation (11) we have to
show (for the reason of continuity) that

(17) M({x}, t) = 0 a.s. for any t, x.

The latter fact is well-known, see (Bertoin, 1996, Prop. I.15). So it is only
left to show that (16) holds.

The probability in (16) can be bounded from above by

P(τ−x−h < τ+h )P(M([−(1− γ)h, (1 − γ)h], τ+x+(1−γ)h) > eθ).

In short, the process must go below the upper boundary of the interval, then
we start it at the lower boundary and make the strip twice as large, so that it
starts in the middle. The first probability is given by 1−W (x−h)/W (x) =
W ′

−(x)/W (x)h + o(h), and the second decreases to 0 as h ↓ 0, because
M([−h, h], τ+y ) → 0 for any y > 0 a.s. (use (17) and the fact that either

X t → ∞ a.s. or Xt → −∞ a.s.). This concludes the proof.

Corollary 6.1. For the model of Theorem 6.1 and q ≥ 0 it holds that

E
γ
x[e

−qTy ;Ty < νθ] =

(

Zq,Φ(x)

Zq,Φ(y)

)

1
1−γ

, γ < 1,

E
γ
x[e

−qρy ; ρy < νθ] = exp

(

−
Zq,Φ

′
(x)

Zq,Φ(x)
y

)

, γ = 1,

where Φ is the unique positive solution of φ(Φ) = q + θ.

Proof. It holds that

Ex[e
−qτ+y ; τ+y < νθ] = Zq,Φ(x)/Zq,Φ(y),

which can be easily deduced from the results by Loeffen, Renaud and Zhou
(2014) or Albrecher and Ivanovs (2013). The rest follows from Theorem 6.1
and its proof which employs the ideas of Section 4.
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APPENDIX

In the following we present an algorithm defining a two-sided refraction
of a càdlàg sample path Xt corresponding to the interval [a, b]. It is assumed
that X0 ∈ [a, b], and γL, γU ≤ 1 to avoid the case of inhibition. The triplet of
processes (Yt, Lt, Ut) is defined iteratively as follows (cf. Figure 1 depicting
refraction from above at b and reflection from below at a).

Algorithm:

Initialization (n = 0): Y
(0)
t = Xt, U

(0)
t = 0, L

(0)
t = 0, t0 = 0 and

a(1) = a, b(1) = b,

t1 = inf{t ≥ 0 : Xt /∈ [a, b]}.

Step (n = n+ 1): X
(n)
t = Y

(n−1)
tn +Xtn+t −Xtn for t ≥ 0.

If X
(n)
0 ≥ b(n): L

(n)
t = 0 and Y

(n)
t = X

(n)
t − γUU

(n)
t is the refrac-

tion of X
(n)
t , t ≥ 0 from above at the level b(n). Put

∆n = inf{t ≥ 0 : Y
(n)
t < a(n)}

and tn+1 = tn +∆n, a
(n+1) = a(n), b(n+1) = Y

(n)
∆n

.

If X
(n)
0 ≤ a(n): U

(n)
t = 0 and Y

(n)
t = X

(n)
t + γLL

(n)
t is the refrac-

tion of X
(n)
t , t ≥ 0 from below at the level a(n). Put

∆n = inf{t ≥ 0 : Y
(n)
t > b(n)}

and tn+1 = tn +∆n, a
(n+1) = Y

(n)
∆n

, b(n+1) = b(n).

Finally, we set

Yt = Y
(n)
t−tn , Lt =

n−1
∑

i=0

L
(i)
∆i

+ L
(n)
t−tn , Ut =

n−1
∑

i=0

U
(i)
∆i

+ U
(n)
t−tn for t ∈ [tn, tn+1).

Observe that the above procedure defines the process Yt for all t ≥ 0, i.e.
tn → ∞ as n → ∞, because a càdlàg function can not cross the interval
[a, b] infinitely many times in finite time; here we use the fact that the inter-
vals [a(n), b(n)] are increasing. Careful examination of the above algorithm
(together with known properties of a one-sided refraction) shows that

Yt = Xt + γLLt − γUUt,
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where Lt and Ut are non-decreasing càdlàg functions. Moreover, the points
of increase of Lt and Ut are contained in the sets {t ≥ 0 : Yt = Yt ∧ a} and
{t ≥ 0 : Yt = Yt ∨ b} respectively. It may be interesting to find an explicit
representation of the two-sided refraction similar to those given by Andersen
and Mandjes (2009) and Kruk et al. (2007) for the two-sided reflection.
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MR2857022

Ivanovs, J. (2011). A new approach to fluctuations of reflected Lévy processes. Technical
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