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Abstract: We consider the problem of testing significance of predictors
in multivariate nonparametric quantile regression. A stochastic process is
proposed, which is based on a comparison of the responses with a nonpara-
metric quantile regression estimate under the null hypothesis. It is demon-
strated that under the null hypothesis this process converges weakly to a
centered Gaussian process and the asymptotic properties of the test under
fixed and local alternatives are also discussed. In particular we show, that
- in contrast to the nonparametric approach based on estimation of L2-
distances - the new test is able to detect local alternatives which converge
to the null hypothesis with any rate an → 0 such that an

√
n → ∞ (here n

denotes the sample size). We also present a small simulation study illustrat-
ing the finite sample properties of a bootstrap version of the corresponding
Kolmogorov-Smirnov test.
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1. Introduction

Nonparametric regression methods have become very popular in the last decades
because of the fact that employing a mis-specified parametric model will typ-
ically result in inconsistent estimates and as a consequence invalid statistical
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inference. In recent years many authors have developed nonparametric quantile
regression estimates, which provide an attractive supplement to least squares
methods by focussing on the estimation of the conditional quantiles instead of
the mean function [see Chaudhuri (1991), Yu and Jones (1997), Yu and Jones
(1998), Dette and Volgushev (2008), Chernozhukov et al. (2010) or Bondell et al.
(2010), among many others]. These references mainly discuss the case of a one
dimensional predictor, but from a theoretical point of view the methods can
easily be generalized to multivariate predictors. On the other hand it is well
known that in practical applications such nonparametric methods suffer from
the curse of dimensionality and therefore do not yield precise estimates of con-
ditional quantile surfaces for realistic sample sizes. In such cases a natural and
very important question is which predictor variables are significant.

The problem of testing significance has found considerable interest in multi-
variate mean regression models. Gozalo (1993) considered conditional moment
tests, while Yatchew (1992) constructed a test based on semi-parametric least-
squares residuals. Lavergne and Vuong (1996) suggested a directional testing
procedure for discriminating between two sets of regressors without specifying
the functional form of the mean regression, and Racine (1997) proposed a test
based on nonparametric estimates of the partial derivatives of the conditional
mean of the response. Lavergne and Vuong (2000) used the kernel method to de-
velop a test for the significance of a subset of explanatory variables and Delgado
and González-Manteiga (2001) proposed a test which is based on functionals of
a U -process.

Because of the well known robustness properties of the conditional quantile
and the fact that conditional quantiles characterize the entire distribution it is
of particular interest to develop methods for testing significance of predictors in
quantile regression models. Surprisingly, in quantile regression this problem has
found much less attention. Variable selection in the framework of linear quantile
regression models has been recently considered by Zou and Yuan (2008), Wu
and Liu (2009) and Belloni and Chernozhukov (2011), among others. Jeong
et al. (2012) proposed a test for significance in a multivariate quantile regression
model. The work of these authors was motivated by Granger quantile causality
[Granger (1969)] and they employed an idea of Zheng (1998), who proposed to
transform quantile restrictions to mean restrictions. The corresponding test is
based on a U -statistic, which estimates the distance measure

∆ = E[(P (Y ≤ qτ (X)|X,Z)− τ)2fZ(Z)], (1.1)

where Y denotes the response, (X,Z) is the predictor, fZ the density of Z
and qτ (X) the conditional τ -quantile of Y given X . Note that the quantity ∆
vanishes if and only if the conditional quantile of Y given X and Z does not
depend on Z. A major drawback of this approach lies in the fact that non-
parametric smoothing over both X and Z is needed for the construction of the
estimate. This implies that the test is of very limited use when the dimension
of (X,Z) is larger than 3. Moreover, this test can only detect local alternatives
converging to the null hypothesis H0 : ∆ = 0 at a rate n−1/2h−(d+q)/4, where d
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and q are the dimensions of the predictors X and Z, respectively, and h denotes
a bandwidth converging to 0 with increasing sample size n.

The present paper is devoted to the problem of constructing a test for the
hypothesis of the insignificance of the predictor Z, i. e. ∆ = 0, in the nonpara-
metric quantile regression model, which can detect local alternatives converging
to the null hypothesis at a parametric rate and at the same time does not depend
on the dimension of the predictor Z, such that smoothing with respect to the
covariate Z can be avoided. To be precise, the test proposed in this paper can
detect alternatives converging to H0 at any rate an → 0 such that an

√
n → ∞,

where n denotes the sample size. Our approach is based on an empirical process
Tn(x, z), which estimates the functional

T (x, z) = E[(P (Y ≤ qτ (X)|X,Z))− τ)I{X ≤ x}I{Z ≤ z}] (1.2)

= E[(I{Y ≤ qτ (X)} − τ)I{X ≤ x}I{Z ≤ z}]

for all (x, z) in the support of the distribution of the predictor (X,Z), where the
inequality X ≤ x between the vectors X and x is understood as the vector of
inequalities between the corresponding coordinates and I{A} denotes the char-
acteristic function of the event A. The model, necessary notation and definition
of this process are introduced in Section 2 and a stochastic expansion of the pro-
cess Tn(x, z) is established in Section 3. This result allows us to obtain the weak
convergence of an appropriately scaled and centered version of Tn(x, z) under the
null hypothesis, fixed and local alternatives. As a result we obtain a Kolmogorov-
Smirnov or a Cramer von Mises type statistic for the hypothesis of the signifi-
cance of the predictor Z in the nonparametric quantile regression model. More-
over, we are also able to extend the result to the case, where the dimension q of
the predictor Z is growing with the sample size, that is q = qn → ∞ as n → ∞.
The finite sample properties of a corresponding bootstrap test are investigated
in Section 4. As a by-product of our theoretical analysis we also obtain new re-
sults on the uniform convergence of the conditional quantile estimator proposed
by Dette and Volgushev (2008). Finally all proofs, which are complicated, are
deferred to an Appendix in Section A, whereas Section B contains some technical
results and Section C a sketch for validity of the bootstrap procedure.

2. Model, assumptions and test statistic

Let Y , X and Z denote one-, d and q dimensional random variables, respectively,
where Y corresponds to the response and X and Z are the covariates. We as-
sume that the random variables {(Yi, Xi, Zi)}i=1,...,n are independent identically
distributed with the same distribution as (Y,X,Z). Let τ ∈ (0, 1) be fixed. Our
aim is to test whether the predictor Z has influence on the conditional τ -quantile
of Y , given (X,Z), or whether the variable Z can be omitted. Note that this
problem fundamentally differs from the question whether Y is independent of Z
given X . In fact, the latter is equivalent to testing whether all quantile curves
do not depend on Z as opposed to looking at a particular quantile. Thus for
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fixed τ ∈ (0, 1) we formulate the null hypothesis as

H0 : E[I{Y ≤ qτ (X)} − τ | X,Z] = P (Y ≤ qτ (X) | X,Z)− τ = 0 a.s., (2.1)

where qτ (X) is defined as the conditional τ -quantile of Y , given X , that is

P (Y ≤ qτ (X) | X) = τ. (2.2)

It is easy to see that the null hypothesis (2.1) is equivalent to

T (x, z) ≡ 0

for all (x, z) in the support of the random variable (X,Z), where the functional
T is defined in (1.2). This functional can be be estimated by the stochastic
process

Tn(x, z) =
1

n

n
∑

i=1

(

I{Yi ≤ q̂τ (Xi)} − τ
)

I{Xi ≤ x}I{Zi ≤ z}, (2.3)

where (x, z) ∈ RX ×RZ , RX and RZ denote the support of the distributions of
the random variables X and Z, respectively, and q̂τ is an appropriate estimate
of the conditional quantile of Y given X , which will be specified below. A test
for the hypothesis of significance of the variable Z for the τth quantile curve of
Y can now easily be obtained by considering a Kolmogorov-Smirnov or Cramer
von Mises type statistic based on Tn and rejecting the null hypothesis for large
values of this statistic. Throughout this paper we assume that the sets RX and
RZ are compact.

In the literature, several non-parametric quantile regression estimators have
been proposed [see e. g. Yu and Jones (1997, 1998), Takeuchi et al. (2006), Cher-
nozhukov et al. (2010) or Bondell et al. (2010), among others]. In this paper we
will use an approach proposed by Dette and Volgushev (2008) who constructed
non-crossing estimates of quantile curves using a simultaneous inversion and
isotonization of a preliminary estimator of the conditional distribution function
FY |X of Y given X . For this estimator, say F̂Y |X(y|x; p), we will use a smoothed
local polynomial estimator of order p, see e. g. Fan and Gijbels (1996). Before
defining this estimator, it is necessary to introduce some notation.

• For d-dimensional vectors x = (x(1), . . . , x(d)) ∈ R
d and k = (k(1), . . .k(d))

∈ N
d
0 define

xk := (x(1)k(1), . . . , x(d)k(d)) , π(x) := x(1) · x(2) · . . . · x(d)
σ(k) := k(1) + · · ·+ k(d) , k! := k(1)! · . . . · k(d)!

• For d-dimensional vectors x ∈ R
d, k ∈ N

d
0 and a function K : R → R

define

K(x) :=

d
∏

j=1

K(x(j)) , Khn,k(x) := K(x/hn)π((x/hn)
k)

K(m)(x) :=

d
∏

j=1

K(m(j))(x(j)) , K
(m)
hn,k

(x) := K
(m)
1,k (x/hn)
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where m = (m(1) . . . ,m(d)) is a d-dimensional vector with entries from
N0 and K(ℓ) is the ℓth derivative of a function K.

• Define Nj := #{k ∈ N
d
0|σ(k) = j} as the number of distinct d-tuples with

size j, and denote the elements of this set by k1,m, . . . ,kNm,m.

With these notational conventions the local polynomial estimator F̂Y |X(y|x; p)
of order p can be represented as [see e. g. Fan and Gijbels (1996)]

F̂Y |X(y|x; p) := et1(X
tWX)−1XtWY, (2.4)

where e1 denotes a vector of suitable dimension with first entry one and remain-
ing entries zero, the matrices X, W and the vector Y are given by

X =







1 (x−X1)
k1,1 . . . (x−X1)

kN1,1 . . . (x −X1)
kNp,p

...
... . . .

...
...

...

1 (x−Xn)
k1,1 . . . (x−Xn)

kN1,1 . . . (x −Xn)
kNp,p






,

W =
1

nhd
n

Diag
(

Khn,0(x −X1), . . . ,Khn,0(x−Xn)
)

,

Y :=
(

Ω
(y − Y1

dn

)

, . . . ,Ω
(y − Yn

dn

))t

, (2.5)

and Ω denotes a smoothed version of the indicator function I{· ≤ 0}, that is

Ω(v) =

∫ v

−∞
ω(u)du (2.6)

for a given kernel ω with support [−1, 1]. Following Dette and Volgushev (2008)
we consider a strictly increasing distribution function G : R → (0, 1), a nonneg-
ative kernel κ with bandwidth bn, and define the functional

HG,κ,τ,bn(F ) :=
1

bn

∫ 1

0

∫ τ

−∞
κ
(F (G−1(u))− v

bn

)

dvdu. (2.7)

If F̂Y |X is the estimator of the conditional distribution function defined in

(2.4), it is intuitively clear that HG,κ,τ,bn(F̂Y |X(·|x)) is a consistent estimate
of HG,κ,τ,bn(FY |X(·|x)). If bn → 0, this quantity can be approximated as follows

HG,κ,τ,bn(FY |X(·|x)) ≈
∫

R

I{FY |X(y|x) ≤ τ}dG(y)

=

∫ 1

0

I{FY |X(G−1(v)|x) ≤ τ}dv = G ◦ F−1
Y |X(τ |x),

and as a consequence an estimate of the conditional quantile function qτ (x) =
F−1
Y |X(τ |x) can be defined by

q̂τ (x) := G−1(HG,κ,τ,bn(FY |X(·|x))). (2.8)

Throughout this paper, we will assume that the kernels, the function G and
the bandwidth parameters used to build the estimator satisfy the following
conditions.
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(K1) The kernel K has support [−1, 1] and is p+ 1 ≥ d+ 2 times continuously
differentiable with uniformly bounded derivatives. Additionally the first
p+ 1 derivatives of K vanish at the boundary points −1 and 1.

(K2) The function ω in (2.6) is a kernel of order s ≥ d+ 1, has support [−1, 1]
and is d times continuously differentiable. Additionally ω has uniformly
bounded derivatives that vanish at the boundary points −1 and 1.

(K3) The kernel κ is symmetric, positive with support [−1, 1] and has one
Lipschitz-continuous derivative.

(K4) G : R → [0, 1] is a strictly increasing distribution function such that
G,G−1 are two times continuously differentiable.

(K5) d2sn + hp+1
n = o(1/

√
n) and logn/(nh3d+2

n ) + logn/(nhd
nd

2d−1
n ) = o(1)

(K6) logn
nhd

nb
2
n
= o(1), b2n + logn

nhd
nbn

+ bn
√
log n√
nhd

n

= o(1/
√
n)

Remark 2.1. Dette and Volgushev (2008) demonstrate that the choice of the
distribution function G has a negligible impact on the quality of the resulting
estimate provided that an obvious centering and standardization is performed.
Similarly, the estimate q̂τ (x) is robust with respect to the choice of the band-
width bn if it is chosen sufficiently small [see Dette et al. (2006)].

Remark 2.2. Dette and Volgushev (2008) only established point-wise weak
convergence of their estimator. However, for most applications such as the con-
struction of tests on the basis of this estimator, uniform results are needed.
In the present paper, we provide general inequalities for the operator HG,κ,τ,bn

defined in (2.7), see Lemma B.4 in the Appendix. In particular, these findings
allow us to describe uniform properties of the quantile estimator q̂τ in terms
of the properties of the underlying distribution function estimator F̂Y |X . For
example, in Theorem A.1 in the appendix we exploit those bounds to derive a
uniform Bahadur-type representation for the estimate q̂τ defined in (2.8).

In the following discussion it turns out to be advantageous to consider a
generalization of the test statistic Tn defined in (2.3), where the indicator
functions I{Xi ≤ x} are replaced by indicators of more general sets Θ. To
be precise let Ξ denote a collection of subsets of Rd and define Dn := {x ∈
RX |[x − hn1, x + hn1] ⊂ RX} (here 1 denotes the d-dimensional vector with
all entries equal to 1), then all theoretical developments will be based on the
statistic

Tn(Θ, z) =
1

n

n
∑

i=1

(I{Yi ≤ q̂τ (Xi)} − τ)I{Xi ∈ Θ ∩ Dn}I{Zi ≤ z}, (2.9)

where Θ ∈ Ξ, z ∈ RZ . The intersection of the sets Θ ∈ Ξ with the set Dn is
needed in the theoretical developments to exclude “residuals” I{Yi ≤ q̂τ (Xi)}−τ
corresponding to predictors close to the boundary of RX . In what follows, we
will use the abbreviation Θn := Θ ∩ Dn. Note that if ∪Θ∈ΞΘ has a positive
distance to the boundary of RX , the collection of sets Ξn := ∪Θ∈ΞΘn will equal
Ξ whenever hn is sufficiently small. Note also that we use the same symbol Tn

for the processes in (2.3) and (2.9) but the meaning is always clear from the
context.
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Additionally to its advantages from a theoretical point of view, the consider-
ation of a collection of sets that are more general than sets defined by indicators
of rectangles will for example allow to investigate the problem of testing the
significance of the variable Z on a certain subset, say S ⊂ RX , that is

HS
0 : E[I{Y ≤ qτ (X)}I{X ∈ S} | X,Z] = P (Y ≤ qτ (X), X ∈ S | X,Z)

= τP (X ∈ S) (2.10)

Note that HS
0 means that the conditional τ−quantile of Y given (X,Z) can be

represented as a function qτ (X) for X ∈ S ⊂ RX . In this case a natural choice
for the collection Ξ is given by Ξ := {(−∞, t]∩S|t ∈ R

d}, but other choices are
of course possible as well.

3. Main asymptotic results

In this section we investigate the asymptotic properties of the stochastic process
defined in (2.9). For this purpose we need some additional notation and technical
assumptions which are collected here for convenience and for later reference.

Define the ‘error’ variables as ε = Y − qτ (X) and εi = Yi − qτ (Xi), i =
1, . . . , n. We assume that the conditional distribution function Fε|X(·|x) of ε
given X = x has a density, say fε|X(y|x). Note that by definition we have that
Fε|X(0|X) = P (ε ≤ 0|X) = τ . In particular, this identity continues to hold
even if the null hypothesis is violated. Throughout this paper we denote by
FZ|X,ε(·|x, e) the conditional distribution function of Z given (X, ε) = (x, e).

Define D := ∪Θ∈ΞΘ, then we assume that the data-generating process satis-
fies the following conditions.

(A1) The conditional distribution function FY |X(y|x) is p+1 times continuously
differentiable with respect to x, y and all partial derivatives are uniformly
bounded on R×RX. The joint density of (X,Y ) is uniformly bounded on
RX × R. Moreover, p ≥ max(s, d+ 1).

(A2) The density fX of the predictor X is d+1+nf times continuously differ-
entiable with uniformly bounded partial derivatives on RX and nf > d/2.
Moreover infx∈RX fX(x) > 0.

(A3) There exist constants a, C1 > 0 such that

inf
(x,y):x∈RX,|y−qτ(x)|≤a

fY |X(y|x) ≥ C1.

(A4) The function (z, x) 7→ FZ|X,ε(z|x, 0) is Hölder-continuous of order γ > 0
with respect to z and x uniformly in x ∈ D, i. e.

|FZ|X,ε(s|x, 0)− FZ|X,ε(t|ξ, 0)| ≤ C‖(s, x)− (t, ξ)‖γ∞

for some finite constant C.
(A5) supx∈D,y∈R,z∈RZ

|f ′
ε|X,Z(y | x, z)| < ∞.



112 S. Volgushev et al.

In conditions (A1)-(A4), RX can be replaced by a set X ⊂ RX provided
that D ⊂ X . Finally, the following assumptions on the collection of sets Ξ are
required.

(S1) The bracketing numbers of class of functions F1 = {u 7→ I{u ∈ Θ}|Θ ∈ Ξ}
satisfy N[ ](F1, ε, L

2(PX)) ≤ Cε−a for any sufficiently small ε > 0 and a
constant C, where N[ ] denotes the bracketing number [see van der Vaart
and Wellner (1996)].

(S2) supΘ∈Ξ P (Xi ∈ Θ, ∃j : [Xi(j)− hn, Xi(j) + hn] 6⊂ Θ) = o(1) for hn → 0.

Remark 3.1. Conditions (S1) and (S2) are not strong and for example satisfied
for the collection of rectangles Ξ = {{s ≤ X ≤ t}|s, t ∈ R

d} if X has a uniformly
bounded density with compact support. For more details on bracketing numbers
and their properties we refer to the monograph of van der Vaart and Wellner
(1996).

The following result gives a stochastic expansion of the process Tn(Θ, z) under
general conditions, which is crucial for deriving the asymptotic properties of the
process Tn. In particular, observe that this representation continues to hold
under the alternative.

Theorem 3.2. If the assumptions (K1)-(K6), (A1)-(A5) and (S1), (S2) are
satisfied, the process Tn can be represented as

Tn(Θ, z) =
1

n

n
∑

i=1

(I{εi ≤ 0} − τ)I{Xi ∈ Θ ∩ Dn}(I{Zi ≤ z} − FZ|X,ε(z|Xi, 0))

+oP (n
−1/2) (3.1)

uniformly with respect to z ∈ RZ ,Θ ∈ Ξ.

The proof of Theorem 3.2 is complicated and is given in the Appendix. As
an immediate consequence, we obtain that under the null hypothesis H0 the
rescaled process

√
nTn(Θ, z) converges weakly to a centered Gaussian process.

Corollary 3.3. If the assumptions of Theorem 3.2 and the null hypothesis H0

in (2.1) are satisfied, the process
√
nTn converges weakly in ℓ∞(Ξ × RZ) to a

centered Gaussian process T with covariance kernel

k(Θ1, y,Θ2, z) = Cov(T(Θ1, y),T(Θ2, z)) = τ(1 − τ)E
[

I{X ∈ Θ1 ∩Θ2} (3.2)

× E
[(

I{Z ≤ y} − FZ|X,ε(y|X, 0)
)(

I{Z ≤ z} − FZ|X,ε(z|X, 0)
)∣

∣

∣X, ε
]]

.

As a consequence of this result we obtain the weak convergence of functionals
such as the Kolmogorov-Smirnov statistic

Kn = sup
Θ∈Ξ

sup
z∈RZ

|Tn(Θ, z)|

by an application of the continuous mapping theorem. In general the asymptotic
distribution of Kn depends on certain features of the data generating process
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and in the following section we will discuss bootstrap approximations for this
distribution. However, in some special cases the situation simplifies substantially.

Remark 3.4. In the case where the pair (X, ε) and the covariate Z are inde-
pendent it follows from (3.2) that

Cov(T(Θ1, y),T(Θ2, z))= τ(1− τ)P (I{X ∈Θ1 ∩Θ2})(FZ(y ∧ z)−FZ(y)FZ(z)),

where FZ is the distribution function of the random variable Z and y∧z denotes
the vector of minima of the corresponding coordinates of y and z. If additionally
X,Z are real-valued and Ξ = {(−∞, t]|t ∈ R}, the asymptotic covariance in
Theorem 3.2 reduces to

Cov(T((−∞, t], y),T((−∞, s], z)) = τ(1− τ)FX(s∧ t)(FZ (y ∧ z)−FZ(y)FZ(z)).

Hence, for univariate independent covariates X and Z with continuous dis-
tribution functions FX and FZ , respectively, the Kolmogorov-Smirnov test is
asymptotically distribution-free because in this case the statistic

√
n sup

x∈RX ,z∈RZ

|Tn(x, z)| =
√
n sup

s,t∈[0,1]

|Tn(F
−1
X (s), F−1

Z (t))|

converges in distribution to
√

τ(1 − τ) sups,t∈[0,1] |B(s, t)|, whereB is the Kiefer-

Müller process on [0, 1]2, i. e. a centered Gaussian process with covariance kernel

Cov(B(s1, t1), B(s2, t2)) = (s1 ∧ s2)(t1 ∧ t2 − t1t2).

The result obtained in Theorem 3.2 can also be used to derive the asymp-
totic properties of the test statistic under fixed alternatives. More precisely, the
following result holds (note that under the null hypothesis, the centering term
is zero, and thus this result is a generalization of Corollary 3.3).

Corollary 3.5. Under the assumptions of Theorem 3.2 the process

√
n
(

Tn(Θ, z)−
∫

(RX∩Θn)×RZ

(

FY |X,Z(qτ (u)|u, v)− τ
)

I{v ≤ z}dFX,Z(u, v)
)

converges weakly to the limiting process T defined in Corollary 3.3.

Remark 3.6. A further consequence of Corollary 3.5 is that the statistic
Tn(Θ, z) converges for all Θ ∈ Ξ and z ∈ RZ in probability to the function

∫

(RX∩Θ)×RZ

(

FY |X,Z(qτ (u)|u, v)− τ
)(

I{v ≤ z} − FZ|X,ε(z|u, 0)
)

dFX,Z(u, v).

Consequently, if Ξ contains sufficiently many sets (for example, if Ξ = {(−∞, x]|
x ∈ R

d}), the test is consistent. In order to obtain the asymptotic distribution
of the test statistic under local alternatives of the form

F
(n)
Y |X,Z(q

(n)
τ (u)|u, v) = τ + anh(u, v) (3.3)
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a result on the asymptotic behavior of Tn(Θ, z) is required when the data are
generated from triangular arrays. A closer look at the proofs in the appendix
shows that such a result does indeed hold under suitable modifications of the
conditions in Theorem 3.2. More precisely, assume that the joint distribution
of (X,Y, Z) depends on n and that all the constants and bounds in conditions
(A1)-(A5) and (S1)-(S2) hold uniformly in n. A closer look at the proof of
Theorem 3.2 reveals that in this case

Tn(Θ, z) =
1

n

n
∑

i=1

(I{εi ≤ 0} − τ)I{Xi ∈ Θn}(I{Zi ≤ z} − F
(n)
Z|X,ε(z|Xi, 0))

+ oP (n
−1/2) (3.4)

Since all arguments are exactly the same as those used to establish Theorem
3.2, the details are omitted for the sake of brevity. As a consequence, we see
that under local alternatives

Tn(Θ, z) = T (1)
n (Θ, z) + T (2)

n (Θ, z) + oP (n
−1/2)

where

T (1)
n (Θ, z) :=

1

n

n
∑

i=1

(I{εi ≤ 0} − E[I{εi ≤ 0}|Xi, Zi])I{Xi ∈ Θn}

× (I{Zi ≤ z} − F
(n)
Z|X,ε(z|Xi, 0)),

T (2)
n (Θ, z) :=

1

n

n
∑

i=1

(E[I{εi ≤ 0}|Xi, Zi]− τ)I{Xi ∈ Θn}

× (I{Zi ≤ z} − F
(n)
Z|X,ε(z|Xi, 0)).

Here, the superscript (n) emphasizes that the corresponding quantities depend
on n since the data are assumed to come from a triangular array. Now standard
arguments show that

sup
Θ,z

√
n|T (1)

n (Θ, z)| = OP (1)

sup
Θ,z

√
n|T (2)

n (Θ, z)− ET (2)
n (Θ, z)| = OP (1).

Moreover,

ET (2)
n (Θ, z) =

∫

(RX∩Θn)×RZ

(

F
(n)
Y |X,Z(q

(n)
τ (u)|u, v)− τ

)

I{v ≤ z}dF (n)
X,Z(u, v).

In particular, this implies that the test will detect all local alternatives for which

the quantity Sn :=
√
n supz,Θ |ET

(2)
n (Θ, z)| diverges to infinity. This is due to

the fact that under both H0 and local alternatives the order of the bootstrap
statistic supz,Θ

√
n|T ∗

n(Θ, z)| with T ∗
n defined in section 4 is of order OP (1)

while in the setting described above the quantity supz,Θ
√
n|Tn(Θ, z)| diverges
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to infinity. For example Sn → ∞ in probability if Ξ = {(−∞, x] | x ∈ R
d} and

F
(n)
Y |X,Z(q

(n)
τ (u)|u, v) = τ + anh(u, v) for some function h that is not identically

zero on RX ×RZ and sequence an with an
√
n → ∞.

Remark 3.7. We now give a brief discussion of the properties of the proposed
test statistic when alternatives of increasing dimension are considered, i. e. when
the dimension of the predictor Z, say qn, varies with n. Consider the additional
assumption

(Z) The L2 covering numbers of the classes of functions

{x 7→ FZ|X,ε(z|x+ s, 0)|z ∈ RZ , ‖s‖∞ ≤ a}

and {ξ 7→ I{ξ ≤ z}|z ∈ RZ} are bounded by C1(C2/ε)
kn for some finite

constants C1, C2.

Note that assumption (Z) holds with kn = qn if for each n the predictor Z given
(X, ε) has a conditional density fZ|X,ε that satisfies

sup
z

|fZ|X,ε(z|x1, 0)− fZ|X,ε(z|x2, 0)| ≤ C‖x1 − x2‖

for a finite constant C independent of n. Under assumptions (K1)-(K6), (A1)-
(A3), (Z), (A5), (S1), (S2) it is possible to prove that

Tn(Θ, z) =
1

n

n
∑

i=1

(I{εi ≤ 0} − τ)I{Xi ∈ Θn}(I{Zi ≤ z} − FZ|X,ε(z|Xi, 0))

+ oP

( kn
n1/2

)

, (3.5)

uniformly with respect to z ∈ RZ ,Θ ∈ Ξ. In particular, this result implies that

√
n
(

Tn(Θ, z)−
∫

(RX∩Θn)×RZ

(

FY |X,Z(qτ (u)|u, v)− τ
)

I{v ≤ z}dFX,Z(u, v)
)

is of order OP (kn). Consequently, the test is able to detect local alternatives
converging to the null hypothesis with any rate an, such that an

kn

√
n → ∞ when

the sample size and dimension kn of Z is increasing.

Remark 3.8. Jeong et al. (2012) investigated an alternative test for the hy-
pothesis (2.1) based on ideas from Fan and Li (1996) in combination with a
modification which was originally proposed by Zheng (1998). Their test is based
on the statistic

Jn =
1

n(n− 1)gdn

∑

i,j
i6=j

L((Zi−Zj)/gn)(I{Yi ≤ q̂τ (Xi)}− τ)(I{Yj ≤ q̂τ (Xj)}− τ)

where L is a kernel and gn is a bandwidth converging to 0 with increasing
sampling size. These authors claimed that a normalized version of this test
statistic converges to a normal distribution. It should be pointed out here that
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the proof in this paper is not correct. The basic argument of Jeong et al. (2012)
consists in the statement that the fact

sup
x

| q̂τ (x) − qτ (x) |≤ Cn

results in the estimate
JnU ≤ Jn ≤ JnL, (3.6)

where the statistics JnU and JnL are defined by

JnU =
1

n(n− 1)gdn

∑

i6=j

L((Zi − Zj)/gn)εiUεjU ,

JnL =
1

n(n− 1)gdn

∑

i6=j

L((Zi − Zj)/gn)εiLεjL,

and εiU = I{Yi+Cn ≤ qτ (Xi)}−τ, εiL = I{Yi−Cn ≤ qτ (Xi)}−τ (see equation
(A.11-3) in this paper). A simple calculation shows that this conclusion is not
correct and in fact the inequality (3.6) does not hold. It turns out that the proof
of Theorem 1 in Jeong et al. (2012) can not be corrected easily.

Even if the gap in the proof would be closed, the test of Jeong et al. (2012)
still has two major drawbacks. First, it requires non-parametric smoothing with
respect to the covariate Z. Second, it can only detect local alternatives con-

verging to the null hypothesis at a rate n−1/2g
−(d+q)/4
n which is slower than the

rate ann
−1/2 for any an → ∞ detected by the test proposed in this paper and

additionally depends on the dimension of the covariates.

4. Bootstrap and simulation results

In general the limit distribution derived in Theorem 3.2 depends on certain
features of the data generating process which are difficult to estimate. For this
reason we discuss in this section bootstrap methods that are suitable to mimic
the distribution of test statistics based on Tn under the null hypothesis. Several
residual wild bootstrap approximations have been proposed in the literature
for quantile regression analysis [see Sun (2006) or Feng et al. (2011)]. However,
the residual wild bootstrap does not yield a valid approximation of the limiting
distribution in the present context because it does not lead to an expansion of
the bootstrap process analogous to the one given for Tn in Theorem 3.2.

As alternative we consider the idea of process-based wild bootstrap as consid-
ered by Delgado and González-Manteiga (2001) or He and Zhu (2003). To this
end let U1, . . . , Un denote independent and uniformly in [0, 1] distributed random
variables, independent of the original data Yn = {(Yi, Xi, Zi) | i = 1, . . . , n}. In-
troduce Bernoulli random variables Bi = I{Ui ≤ τ̂}, i = 1, . . . , n, with success
probability τ̂ =

∑n
j=1 I{ε̂j ≤ 0}/n, where ε̂i = Yi − q̂τ (Xi), i = 1, . . . , n. Define

the bootstrap process as

T ∗
n(Θ, z) =

1

n

n
∑

i=1

(Bi − τ̂)I{Xi ∈ Θ}
(

I{Zi ≤ z} − F̂Z|X,ε(z|Xi, 0)
)

, (4.1)
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where

F̂Z|X,ε(·|x, y) =
∑n

j=1 I{Zj ≤ ·}L(Xj−x
a )N(

ε̂j−y
e )

∑n
j=1 L(

Xj−x
a )N(

ε̂j−y
e )

(4.2)

denotes a kernel estimator for the conditional distribution FZ|X,ε(·|x, y). Here, L
andN denote d- and one-dimensional kernel functions and a and e corresponding
bandwidths converging to 0 with increasing sample size. Then, conditional on
Yn, the process

√
nT ∗

n converges weakly to the process T defined in Corollary
3.3 in probability (under suitable regularity conditions). A sketch of the proof
is given in Appendix C.

In our numerical investigations, it turned out that the asymptotic represen-
tation (3.1) for the process defined in (2.3) is not very accurate for small sample
sizes. For Ξ = {(−∞, x]|x ∈ R

d} we thus considered a slightly modified version
of the process Tn, that is

T̃n(x, z) =
1

n

n
∑

i=1

(

I{Yi ≤ q̂τ (Xi)} − τ̂
)

I{Xi ≤ x}(I{Zi ≤ z} − F̂Z(z))

where F̂Z(z) denotes the empirical distribution function of Z1, . . . , Zn. This pro-
cess provided much better results for moderate sample sizes. As motivation for
this approach, observe that under both the null hypothesis and the alternative,
we have

Dx :=
1

n

n
∑

i=1

(

I{Yi ≤ q̂τ (Xi)}− τ̂
)

I{Xi ≤ x} = oP (n
−1/2), τ̂ = τ + oP (n

−1/2)

uniformly with respect to x as can be seen by taking a closer look at the proofs
of the main results in the Appendix. Thus the additional correction term

δx,z := DxF̂Z(z) +
τ̂ − τ

n

n
∑

i=1

I{Xi ≤ x}I{Zi ≤ z}

vanishes asymptotically (uniformly with respect to x, z) under both the alter-
native and the null hypothesis. If, on the other hand, δx,z is relatively large
because the sample size is small, the correction term δx,z induces an additional

centering (the factor F̂Z(z) corresponds to the amount of non-zero indicators
I{Zi ≤ z}).

The simulation results described below confirm that this is a sensible ap-
proach.

For the calculation of the test statistic

K̃n = sup
x

sup
z

| T̃n(x, z) | (4.3)

based on the process T̃n, we use local polynomial estimators of order two [see
(2.4)]. The bandwidth hn of this estimator is chosen as hn := (σ̂2/2n)13/50 where
σ̂2 denotes the variance estimate of Rice (1984) from the sample {(Xi, Yi)| i =
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1, . . . , n} [see Yu and Jones (1997) for a related approach]. The bandwidths used
in (2.5) and (4.2) are chosen as dn = a = e = hn, while the choice of bn in (2.7)
is even less critical [see also Dette and Volgushev (2008)] and we use bn = h3

n.
In fact, in the simulations it turned out that the power and size properties of
the test are rather insensitive with respect to the bandwidth choice, see table 3
and related discussion in the next paragraph. The function ω in (2.6) is chosen
as ω(x) := (15/32)(3− 10x2 + 7x4)I{|x| ≤ 1}, which is a kernel of order 2 [see
Gasser et al. (1985)]. The function κ in (2.7) is defined as Epanechnikov kernel
while all other kernels are Gaussian kernels. For the choice of the distribution
function G in (2.7) we follow the procedure described in Dette and Volgushev
(2008) who suggested a normal distribution such that the 5% and 95% quantiles
coincide with the corresponding empirical quantities of the sample Y1, . . . , Yn.

4.1. Simulation results

We simulate data from the location scale model

Yi = qj(Xi, Zi) + sk(Xi, Zi)εi, (4.4)

j, k = 1, . . . , 4 with the following quantile and scale functions

q1(x, z) = exp(2x2) , q2(x, z) = (x− 0.5)2 (4.5)

q3(x, z) = exp(2x2)z2 , q4(x, z) = sin(2π(x+ z))

and

s1(x, z) = 0.5(x+ 0.2) , s2(x, z) = 0.5(sin(x) + 1.2) (4.6)

s3(x, z) = 0.5(z + 0.2) , s4(x, z) = 0.5
√

(x + 0.2)(z + 0.2).

The random variables X and Z are independent and uniformly distributed on
the interval [0, 1] while ε is standard normal. We consider the cases τ = 0.5
and τ = 0.25. All reported results are based on 1000 simulation runs with 300
bootstrap replications.

The bootstrap test (at level α) rejects the null hypothesis that the variable
Z is not significant, whenever

K̃n > K∗
n,1−α (4.7)

where K̃n is defined in (4.3) and K∗
n,1−α denotes the (1−α) bootstrap quantile

of the Kolmogorov-Smirnov test statistic.
The rejection probabilities of this test under the null hypothesis are shown in

Table 1 for the 50% and 25% quantile. Note that different pairs of location and
scale functions in (4.5) and (4.6) correspond to the null hypothesis for τ = 0.5
and τ = 0.25 (more precisely the models defined by the pairs (1, 3), (1, 4), (2, 3)
and (2, 4) correspond to the null hypothesis if τ = 0.5 but to the alternative if
τ = 0.25). We observe from Table 1 that the level is usually approximated very
well. For τ = 0.25 there exist some cases where the test is slightly conservative.
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Table 1

Simulated rejection probabilities of the bootstrap test (4.7) for significance of the variable Z

in the quantile regression model (4.4) for τ = 0.5 (upper part) and τ = 0.25 (lower part)
under various null hypotheses. The pair (j, k) corresponds to the location function qj and

scale function sk specified in (4.5) and (4.6), respectively

α = 0.025 α = 0.05 α = 0.1
τ (j, k) n = 50 n = 100 n = 50 n = 100 n = 50 n = 100

(1,1) 0.037 0.035 0.053 0.061 0.102 0.111
(1,2) 0.026 0.025 0.044 0.048 0.090 0.101
(1,3) 0.041 0.027 0.069 0.066 0.132 0.127

0.5 (1,4) 0.040 0.033 0.060 0.059 0.120 0.121
(2,1) 0.036 0.031 0.068 0.057 0.122 0.106
(2,2) 0.024 0.028 0.051 0.046 0.092 0.085
(2,3) 0.037 0.025 0.057 0.059 0.132 0.114
(2,4) 0.027 0.024 0.050 0.047 0.109 0.093

(1,1) 0.024 0.019 0.044 0.035 0.089 0.082
0.25 (1,2) 0.024 0.019 0.044 0.037 0.089 0.092

(2,1) 0.027 0.025 0.047 0.052 0.102 0.105
(2,2) 0.016 0.022 0.036 0.048 0.089 0.101

Table 2

Simulated rejection probabilities of the bootstrap test (4.7) for significance of the variable Z

in the quantile regression model (4.4) for τ = 0.5 (upper part) and τ = 0.25 (lower part)
under various alternatives. The pair (j, k) corresponds to the location function qj and scale

function sk specified in (4.5) and (4.6), respectively

α = 0.025 α = 0.05 α = 0.1
τ (j, k) n = 50 n = 100 n = 50 n = 100 n = 50 n = 100

(3,1) 0.999 1.000 1.000 1.000 1.000 1.000
(3,2) 0.756 0.983 0.815 0.989 0.886 0.997
(3,3) 0.997 1.000 0.999 1.000 0.999 1.000

0.5 (3,4) 1.000 1.000 1.000 1.000 1.000 1.000
(4,1) 0.082 0.197 0.142 0.311 0.252 0.519
(4,2) 0.034 0.070 0.067 0.119 0.138 0.237
(4,3) 0.089 0.176 0.134 0.279 0.226 0.488
(4,4) 0.070 0.203 0.123 0.321 0.218 0.508

(1,3) 0.099 0.240 0.163 0.325 0.245 0.459
(1,4) 0.044 0.078 0.086 0.133 0.155 0.225
(2,3) 0.139 0.295 0.204 0.405 0.332 0.540
(2,4) 0.06 0.089 0.106 0.152 0.176 0.232
(3,1) 0.935 1.000 0.971 1.000 0.988 1.000

0.25 (3,2) 0.464 0.857 0.591 0.913 0.725 0.954
(3,3) 0.792 0.990 0.873 0.996 0.934 0.999
(3,4) 0.900 1.000 0.948 1.000 0.975 1.000
(4,1) 0.027 0.054 0.055 0.103 0.111 0.229
(4,2) 0.019 0.031 0.034 0.061 0.078 0.132
(4,3) 0.022 0.051 0.043 0.091 0.104 0.176
(4,4) 0.021 0.054 0.053 0.093 0.104 0.195

The corresponding results for various alternatives are displayed in Table 2
and we observe a reasonable power for most cases. The power for τ = 0.25 is
always smaller than the power for τ = 0.5. This corresponds to intuition because
the 25%-quantile is more difficult to estimate than the median. The power of the
test is smaller for alternatives corresponding to the location function q4(x, z) =
sin(2π(x+z)) if the sample size is n = 100. However, if the sample size is larger,
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Table 3

Simulated rejection probabilities of the bootstrap test (4.7) for various bandwidths. The
sample size is n = 50 and the lower and upper part correspond to the 50% and 25%

quantile, respectively. The pair (j, k) corresponds to the location function qj and scale
function sk specified in (4.5) and (4.6), respectively

τ h 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.4 0.45 0.5
0.5 (1,2) 0.037 0.036 0.037 0.037 0.047 0.054 0.061 0.046 0.047 0.043

(3,2) 0.565 0.724 0.774 0.793 0.783 0.821 0.825 0.802 0.855 0.837

0.25 (1,2) 0.017 0.031 0.037 0.033 0.031 0.048 0.042 0.049 0.041 0.053
(3,2) 0.164 0.362 0.435 0.485 0.516 0.528 0.535 0.571 0.567 0.571

Table 4

Simulated rejection probabilities of the bootstrap test (4.7) for the significance of a two
dimensional predictor in median regression. The models are defined in (4.8), the sample size

is n = 50 and the upper (lower) row corresponds to the null hypothesis (alternative)

α 0.025 0.050 0.100
q1 0.026 0.042 0.096
q2 0.998 1.000 1.000

the test also detects the alternatives with reasonable probability. For example if
n = 200 and τ = 0.5 the simulated rejection probabilities of the bootstrap test
at level 5% for the alternatives (4, 2), (4, 3) and (4, 4) are given by 0.319, 0.795
and 0.821, respectively.

Next we study the impact of the choice of the bandwidth on size and power
of the bootstrap test. For this purpose we consider the sample size n = 50 and
bandwidths 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45 and 0.50. The results
for model (1, 2) and (3, 2) corresponding to the null hypothesis and alternative,
respectively, are summarized in Table 3. We observe that the level and power
are rather stable with respect to different choices of the bandwidth. Simulations
for other scenarios yield similar results and are not shown for the sake of brevity.

We also present a numerical study with a brief investigation of a two di-
mensional predictor, say Z = (Z1, Z2). Because the method proposed in this
paper does not require smoothing in the Z-direction, the results should not be
seriously affected, if the dimension of Z is larger. To be precise we consider two
different location functions

q1(x, z1, z2) = x , q2(x, z1, z2) = z2 · x+ z21 (4.8)

and a constant scale function s(x, z1, z2) = 0.5 in model (4.4). Note that q1 cor-
responds to the null hypothesis, while q2 represents an alternative. The results
of the bootstrap test for the median are listed in Table 4 for the sample size
n = 50 and we observe in these examples similar satisfactory properties as in
the one-dimensional setting.

Instead of using the bootstrap test statistic T ∗
n(Θ, z) defined in (4.1) one

could think about using a similar version with τ instead of τ̂ , that is

T̃ ∗
n(Θ, z) =

1

n

n
∑

i=1

(B̃i − τ)I{Xi ∈ Θ}
(

I{Zi ≤ z} − F̂Z|X,ε(z|Xi, 0)
)

(4.9)

with B̃i = I{Ui ≤ τ}, i = 1, . . . , n. It turned out in our simulation study,
that in many cases, especially for the median, the results are nearly the same.
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Table 5

Simulated rejection probabilities of the bootstrap test based on T̃ ∗

n(Θ, z) defined in (4.9) for sig-
nificance of the variable Z with n = 50 in the quantile regression model (4.4) for τ = 0.5 (up-
per part) and τ = 0.25 (lower part) under various null hypotheses. The pair (j, k) corresponds
to the location function qj and scale function sk specified in (4.5) and (4.6), respectively

τ (j, k) α = 0.025 α = 0.05 α = 0.1
(1,1) 0.020 0.037 0.071
(1,2) 0.019 0.036 0.079
(1,3) 0.020 0.036 0.089

0.5 (1,4) 0.010 0.023 0.043
(2,1) 0.043 0.069 0.125
(2,2) 0.032 0.067 0.124
(2,3) 0.042 0.079 0.134
(2,4) 0.042 0.076 0.125

(1,1) 0.015 0.028 0.057
0.25 (1,2) 0.023 0.035 0.081

(2,1) 0.014 0.032 0.069
(2,2) 0.025 0.041 0.082

Table 6

Simulated rejection probabilities of the bootstrap test based on T̃ ∗

n(Θ, z) defined in (4.9) for
significance of the variable Z with n = 50 in the quantile regression model (4.4) for τ = 0.5
(upper part) and τ = 0.25 (lower part) under various alternatives. The pair (j, k) corresponds
to the location function qj and scale function sk specified in (4.5) and (4.6), respectively

τ (j, k) α = 0.025 α = 0.05 α = 0.1
(3,1) 1 1 1
(3,2) 1 1 1
(3,3) 1 1 1

0.5 (3,4) 1 1 1
(4,1) 0.094 0.164 0.278
(4,2) 0.087 0.148 0.249
(4,3) 0.086 0.141 0.249
(4,4) 0.110 0.172 0.306

(1,3) 0.065 0.117 0.182
(1,4) 0.028 0.057 0.098
(2,3) 0.118 0.181 0.270
(2,4) 0.045 0.075 0.146
(3,1) 0.924 0.966 0.988

0.025 (3,2) 0.404 0.541 0.697
(3,3) 0.742 0.833 0.917
(3,4) 0.891 0.943 0.983
(4,1) 0.015 0.029 0.089
(4,2) 0.024 0.041 0.083
(4,3) 0.018 0.041 0.090
(4,4) 0.016 0.036 0.088

However, there are several situations where the use of τ̂ instead of τ yields
better results. In particular this is the case for the 0.25 quantile where the test
based on T̃ ∗

n(Θ, z) is more conservative than the one based on T ∗
n(Θ, z) (see

Tables 5 and 6, which show the rejection probabilities of the bootstrap test
based on the process (4.9) for the sample size n = 50 in the scenarios considered
in Table 1 and 2). Moreover, the choice of the bandwidth has a smaller impact
on the bootstrap test based on T ∗

n(Θ, z) than on the test based on T̃ ∗
n(Θ, z).
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Table 7

Simulated rejection probabilities of the bootstrap test based on T̃ ∗

n(Θ, z) defined in (4.9) for
various bandwidths. The sample size is n = 50 and the lower and upper part correspond to
the 50% and 25% quantile, respectively. The pair (j, k) corresponds to the location function

qj and scale function sk specified in (4.5) and (4.6), respectively

τ h 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.4 0.45 0.5
0.5 (1,2) 0.018 0.034 0.037 0.04 0.046 0.044 0.062 0.047 0.045 0.048

(3,2) 0.583 0.723 0.764 0.753 0.823 0.797 0.817 0.839 0.822 0.823

0.25 (1,2) 0.008 0.02 0.022 0.031 0.028 0.038 0.045 0.04 0.042 0.037
(3,2) 0.08 0.323 0.387 0.451 0.522 0.533 0.521 0.571 0.55 0.578

This is clearly visible from a comparison of Table 3 with Table 7, which shows
the impact of the choice of the bandwidth on the bootstrap test based on the
statistic T̃ ∗

n(Θ, z) defined in (4.9). In our experience, both using τ̂ instead of τ
and considering F̂Z in T̃n has a stabilizing effect on the test statistic when the
sample size is small.

5. Some concluding remarks

The results presented in this paper have several important extensions, which
open interesting directions for future research. First, as pointed out by the
referee and the Associate Editor, one might replace the indicators I{Xi ≤ x}
by a collection of more general functions g(Xi) where the functions g range over
some class, say G. If for a given class of functions G the assumption

0 = sup
g∈G

sup
z

∣

∣

∣E
[

(

I{Yi ≤ qτ (Xi)} − τ
)

g(Xi)I{Zi ≤ z}
]∣

∣

∣

is equivalent to
P (Y ≤ qτ (X) | X,Z) = τ a.s.

one would obtain a consistent test of the null hypothesis H0 in (2.1). Under
suitable technical assumptions, results on the asymptotic distribution of the test
statistic similar to the ones provided in Section 3 can be derived. Moreover, one
would expect that the choice of the class G would influence the power properties
of the test. However, quantifying such an influence in a general setting seems to
be very challenging, since it will require results on the behavior of quantiles of
suprema of general Gaussian processes indexed by classes of functions.

Secondly, in some cases it is also of interest to investigate if the predictor Z
is irrelevant for all quantiles that is

E[I{Y ≤ qτ (X)} − τ | X,Z] = P (Y ≤ qτ (X) | X,Z)− τ = 0 for all τ ∈ (0, 1).

This corresponds to the hypothesis of conditional independence and a test statis-
tic can easily be obtained from the stochastic process {Ln(τ, x, z) | τ ∈ (0, 1), x ∈
RX , z ∈ RZ}, where

Ln(τ, x, z) =
1

n

n
∑

i=1

(

I{Yi ≤ q̂τ (Xi)} − τ
)

I{Xi ≤ x}I{Zi ≤ z}, (4.10)
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In order to study properties of a corresponding test such as supτ supx |Ln(τ, x, z)|
one has to prove weak convergence of the process (4.10). We expect that this is
possible under suitable assumptions. However, a rigorous proof requires addi-
tional technical work which will be beyond the scope of the present paper and
therefore deferred to future research.
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Appendix A: Appendix: Proofs

Throughout this section, introduce the abbreviation Θn := Θ ∩ Dn with Dn :=
{x : [x− hn, x+ hn] ⊂ RX}.
Lemma A.1. If assumptions (K1)-(K6) and (A1)-(A3) are satisfied, then

q̂τ (x) = qτ (x) −
1

fε|X(0|x)

∫ 1

−1

κ(v)∆S(qτ+vbn(x)|x)dv + oP (n
−1/2)

= : q̂τ,L(x) + oP (n
−1/2)

uniformly in x ∈ Dn where ∆S(x|y) is defined in Lemma B.1 and has the
property

sup
v∈[−1,1],x∈Dn

|∆S(qτ+vbn(x)|x)| = OP

(

dsn +
( logn

nhd
n

)1/2)

.

Moreover, q̂τ,L(x) is, with probability tending to one, d + 1 times continuously
differentiable with derivatives bounded uniformly on Dn.

Proof. Apply part (a) of Lemma B.4 to FY |X(·|x) and part (c) of the same

Lemma with F1(·|x) = FY |X(·|x), F2(·|x) = F̂Y |X(·|x; p). Combined the results
with Lemma B.1 yields the assertion.

Lemma A.2. If assumptions (K1)-(K6), (A1)-(A4), (S1) and (S2) are satis-
fied, then

∫

fε|X(0 | s)(q̂τ (s)− qτ (s))I{s ∈ Θn}fX(s)FZ|X,ε(z|s, 0) ds

= − 1

n

n
∑

i=1

(

I{εi ≤ 0} − τ
)

I{Xi ∈ Θn}FZ|X,ε(z|Xi, 0) + oP (
1√
n
)

uniformly with respect to Θ ∈ Ξ, z ∈ RZ .
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Proof. From Lemma A.1 we obtain the representation

−
∫

fε|X(0|s)(q̂τ (s)− qτ (s))I{s ∈ Θn}fX(s)FZ|X,ε(z|s, 0)ds

=

∫ 1

−1

κ(v)

∫

∆S(qτ+vbn(s)|s)I{s ∈ Θn}fX(s)FZ|X,ε(z|s, 0)dsdv + oP (n
−1/2)

=

∫ 1

−1

κ(v)

∫

1

nhd
n

∑

i

M(s)
(

Ω
(qτ+vbn(s)− Yi

dn

)

− FY |X(qτ+vbn(s)|Xi)
)

×
(

Khn,0(s−Xi), . . . ,Khn,kNp,p(s−Xi)
)t

×I{s ∈ Θn}(I1(Xi; Θn, hn) + I2(Xi; Θn, hn))fX(s)FZ|X,ε(z|s, 0)dsdv
+oP (n

−1/2),

where

M(s) := et1

(

nf
∑

j=0

(−1)j
(M(K)−1

fX(x)

∑

1≤|m|<nf

h|m|
n f

(m)
X (x)Mm

)jM(K)−1

fX(x)

)

and

I1(X ; Θn, hn) := I{⊗d
j=1[X(j)− hn, X(j) + hn] ⊂ Θn},

I2(X ; Θn, hn) := I{∃j : [X(j)− hn, X(j) + hn] 6⊂ Θn,

⊗d
j=1 [X(j)− hn, X(j) + hn] ∩Θn 6= ∅}.

We will now proceed to show that the first part in the above decomposition [i. e.
the part containing I1] determines the asymptotic expansion and establish at the
end of the proof that the part corresponding to I2 is asymptotically negligible.
First, note that

∫

1

nhd
n

∑

i

M(s)
(

Ω
(qτ+vbn(s)− Yi

dn

)

− FY |X(qτ+vbn(s)|Xi)
)

×
(

Khn,0(s−Xi), . . . ,Khn,kNp,p(s−Xi)
)t

I{s ∈ Θn}
× I1(Xi; Θn, hn)fX(s)FZ|X,ε(z|s, 0)ds

=

∫

[−1,1]d

1

n

∑

i

M(Xi + hns)
(

Ω
(qτ+vbn(Xi + shn)− Yi

dn

)

− FY |X(qτ+vbn(Xi + shn)|Xi)
)

×
(

K1,0(s), . . . ,K1,kNp,p(s)
)t

I1(Xi; Θn, hn)fX(Xi + shn)

× FZ|X,ε(z|Xi + shn, 0)ds.

Observe that every entry of M is by assumption continuously differentiable with
respect to s and the derivative is uniformly bounded. The class of functions
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defined by

{

(x, y) 7→ Ω
(qζ(x+ a)− y

dn

)∣

∣

∣
|a(j)| ≤ 1, j = 1, . . . , d, |ζ − τ | ≤ α

}

where α is a small positive number has covering numbers that satisfy the as-
sumptions of part 1 of Lemma B.3 in Appendix B. This follows from Lemma
B.2 together with the fact that under the assumptions (A1), (A3) the mapping
(ζ, a) 7→ qζ(x+ a) satisfies

sup
x

|qζ1(x+ a1)− qζ2(x+ a2)| ≤ C(|ζ1 − ζ2|+ ‖a1 − a2‖∞)

for some finite constant C (this inequality is a consequence of the implicit func-
tion theorem). Moreover, it follows from the smoothness assumptions on FY |X
and the properties of Ω that

sup
|s|≤1,|v|≤1

∣

∣

∣E
[

Ω
(qτ+vbn(Xi + shn)− Yi

dn

)

−FY |X(qτ+vbn(Xi+shn)|Xi)
∣

∣

∣Xi

]∣

∣

∣ ≤ Rn

a.s., where Rn is a nonrandom quantity of order o(1/
√
n). Thus the smoothness

properties of FZ|X,ε, FY |X and (ζ, x) 7→ qζ(x) imply that by Lemma B.2 and
Lemma B.3 in Appendix B we have

1

n

∑

i

M(Xi + hns)
(

Ω
(qτ+vbn(Xi + shn)− Yi

dn

)

− FY |X(qτ+vbn(Xi + shn)|Xi)
)

×(K1,0(s), . . . ,K1,kNp,p(s))
tI1(Xi; Θn, hn)fX(Xi + shn)

× FZ|X,ε(z|Xi + shn, 0)

=
1

n

∑

i

M(Xi)
(

K1,0(s), . . . ,K1,kNp,p(s)
)t

I{Xi ∈ Θn}fX(Xi)FZ|X,ε(z|Xi, 0)

×
(

Ω
(qτ+vbn(Xi + shn)− Yi

dn

)

− FY |X(qτ+vbn(Xi + shn)|Xi)
)

+ oP (n
−1/2)

uniformly with respect to |v| ≤ 1, s ∈ [−1, 1]d,Θ ∈ Ξ and z ∈ RZ . Finally,
noting that

Ω
(qτ+vbn(Xi + shn)− Yi

dn

)

= Ω
(qτ+vbn(Xi + shn)− qτ (Xi)− εi

dn

)

yields

sup
v,s,i

∣

∣

∣
Ω
(qτ+vbn(Xi + shn)− Yi

dn

)

− I{εi ≤ 0}
∣

∣

∣
≤ ‖Ω‖∞I{|εi| ≤ Rn} a.s.,
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where Rn = O(hn + bn + dn) is a non-random quantity. This, together with an
application of Lemma B.3, shows that

1

n

∑

i

M(Xi)(K1,0(s), . . . ,K1,kNp,p(s))
tI{Xi ∈ Θn}fX(Xi)FZ|X,ε(z|Xi, 0)

×
(

Ω
(qτ+vbn(Xi + shn)− Yi

dn

)

− FY |X(qτ+vbn(Xi + shn)|Xi)
)

=
1

n

∑

i

M(Xi)(I{εi ≤ 0} − Fε|X(0|Xi))(K1,0(s), . . . ,K1,kNp,p(s))
t

×I{Xi ∈ Θn}fX(Xi)FZ|X,ε(z|Xi, 0) + oP (n
−1/2).

In particular, noting that Fε|X(0|Xi) = τ , the above result implies

∫

fε|X(0|s)(q̂τ (s)− qτ (s))I{s ∈ Θn}fX(s)FZ|X,ε(z|s, 0)ds

=
1

n

∑

i

M(Xi)(I{εi ≤ 0} − τ)(µ0(K), . . . , µkNp,p(K))tI{Xi ∈ Θn}

× fX(Xi)FZ|X,ε(z|Xi, 0) + oP (n
−1/2),

where µk(K) :=
∫

Rd K1,k(u)du. Now from the definition of M it is easy to see
that

M(x) = et1(M0(x)
−1 + hnRM (x)) = et1

(M(K)−1

fX(x)
+ hnRM (x)

)

where RM denotes a vector whose entries are uniformly bounded and Lipschitz-
continuous with respect to x. Thus applying Lemma B.3 we obtain

1

n

∑

i

M(Xi)(I{εi ≤ 0} − τ)(µ0(K), . . . , µkNp,p(K))tI{Xi ∈ Θn}

× fX(Xi)FZ|X,ε(z|Xi, 0)

=
1

n

n
∑

i=1

(I{εi ≤ 0} − τ)I{Xi ∈ Θn}FZ|X,ε(z|Xi, 0) + oP (n
−1/2),

which completes the first part of the proof.

It remains to show that

1

n

∑

i

I2(Xi; Θn, hn)

∫ 1

−1

κ(v)

∫

1

hd
n

M(s)
(

Ω
(qτ+vbn(s)− Yi

dn

)

− FY |X(qτ+vbn(s)|Xi)
)

×(Khn,0(s−Xi), . . . ,Khn,kNp,p(s−Xi))
tI{s ∈ Θn}

× fX(s)FZ|X,ε(z|s, 0)dsdv = oP (n
−1/2)
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uniformly with respect to Θ ∈ Ξ, z ∈ RZ . To this end, consider the (n-dependent)
class of functions Fn with elements

fz,Θn,hn,bn(x, y)=

∫ 1

−1

κ(v)

∫

1

hd
n

M(s)
(

Ω
(qτ+vbn(s)− y

dn

)

− FY |X(qτ+vbn(s)|x)
)

×(Khn,0(s− x), . . . ,Khn,kNp,p(s− x))tI{s ∈ Θn}
×fX(s)FZ|X,ε(z|s, 0)dsdv

indexed by z ∈ Z,Θ ∈ Ξ contains uniformly bounded elements (the bound is
also uniform with respect to n). Moreover, there exists a finite positive constant
C such that

N[ ](Fn, ε, L
2(PX)) ≤

(

N[ ](Fn,1, ε/C, L
2(PX))N[ ](Fn,2, ε/C, L

2(PX))
)2

,

(A.1)
where Fn,1 := {s 7→ I{s ∈ Θn}|Θ ∈ Ξ} and Fn,2 := {s 7→ FZ|X,ε(z|s, ε)|z ∈ Z}.
To see that this holds, observe the decomposition

fz,Θn,hn,bn(x, y) = f
(1)
z,Θn,hn,bn

(x, y) + f
(2)
z,Θn,hn,bn

(x, y)

:=
1

hd
n

2
∑

j=1

∫ ∫

κ(v)I{‖x− s‖∞ ≤ hn}fX(s)gj,n(x, y, s, v)I{s ∈ Θn}

× FZ|X,ε(z|s, 0)dsdv

where g1,n and g2,n denote non-positive and non-negative, uniformly bounded
functions, respectively. Moreover, gj,n do not depend on Θn or z. Obviously, it

suffices to bound the bracketing number of Fj,n := {(x, y) 7→ f
(j)
z,Θn,hn,bn

(x, y)}
for j = 1, 2 separately. If we denote by {[bL,j, bU,j ]} a collection of ε−brackets
(with respect to L2(PX)) for {s 7→ I{s ∈ Θn}FZ|X,ε(z|s, 0)}. Then a collection
of ε/C brackets for Fn,2 (with respect to L2(PX,Y )) is given by

BK,j(x, y) :=
1

hd
n

∫ ∫

κ(v)I{‖x− s‖∞ ≤ hn}fX(s)g2,n(x, y, s, v)bK,j(s)dsdv,

where K = U,L. To see this, observe that

E[(BL,j(X1, Y1)−BU,j(X1, Y1))
2]

≤
∫ ∫ ∫

g22,n(x, y, s, v)
1

hd
n

κ(v)I{‖x− s‖∞ ≤ hn}fX(s)κ(v)dsdv

×
∫ ∫

κ(v)
1

hd
n

I{‖x− s‖∞ ≤ hn}fX(s)(bU,j(s)− bL,j(s))
2dsdv

×fX,Y (x, y)dxdy

≤ C1

∫

fX(s)(bU,j(s)− bL,j(s))
2

∫

1

hd
n

I{‖x− s‖∞ ≤ hn}fX(x)dxds

for some finite constant C1. A bound for Fn,2 can be derived by similar argu-
ments. Thus (A.1) is established. Combining the bound in (A.1) with the as-
sumptions (S1) and (S2), the estimate supz,Θ |E[fz,Θn,hn,bn(X1, Y1)]| = o(n−1/2),
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and the results from Lemma B.2 and Lemma B.3 yields the assertion after noting
that by assumption supΘ∈Ξ EI2(Xi; Θn, hn) = o(1).

Lemma A.3. Under the assumptions of Theorem 3.2 it holds that

Tn(Θn, z) =
1

n

n
∑

i=1

(I{εi ≤ 0} − τ)I{Xi ∈ Θn}I{Zi ≤ z}+ oP (n
−1/2)

+

∫

(Fε|X,Z(q̂τ,L(s)− qτ (s)|s, t)− Fε|X,Z(0|s, t))×

×I{s ∈ Θn}I{t ≤ z}dFX,Z(s, t),

uniformly with respect to Θ ∈ Ξ, z ∈ RZ , where FX,Z denotes the joint distribu-
tion function of X,Z.

Proof. Note that Tn(Θ, z) = 1
n

∑n
i=1(I{ε̂i ≤ 0} − τ)I{Xi ∈ Θ}I{Zi ≤ z}, and

that the assertion is equivalent to

sup
Θ∈Ξ,z∈Z

∣

∣

∣

∣

∣

1

n

n
∑

i=1

(I{ε̂i ≤ 0} − I{εi ≤ 0})I{Xi ∈ Θn}I{Zi ≤ z}

−E
[

(I{ε̂L ≤ 0} − I{ε ≤ 0})I{X ∈ Θn}I{Z ≤ z}
∣

∣

∣ (Yi, Xi, Zi)i=1,...,n

]

∣

∣

∣

∣

∣

= oP (
1√
n
).

Here we define ε̂i = Yi − q̂τ (Xi), ε̂L = Y − q̂τ,L(X), where we assume that the
sample (Yi, Xi, Zi), i = 1, . . . , n, (used to build q̂τ,L) is independent from the
generic variable (Y,X,Z). The proof now proceeds in two steps. First, note that
by Lemma A.1 we have q̂τ − q̂τ,L = oP (n

−1/2) uniformly on Dn and thus there
exists a deterministic sequence γn = o(n−1/2) with

P ( sup
x∈Dn

|q̂τ (x)− q̂τ,L(x)| ≤ γn) → 1. (A.2)

Now on the set {|q̂τ (x)− q̂τ,L(x)| ≤ γn}, the probability of which tends to one,
we have

sup
Θ∈Ξ,z∈Z

∣

∣

∣

∣

∣

1

n

n
∑

i=1

(I{ε̂i ≤ 0} − I{ε̂i,L ≤ 0})I{Xi ∈ Θn}I{Zi ≤ z}
∣

∣

∣

∣

∣

≤ 1

n

n
∑

i=1

I{|ε̂i,L| ≤ γn}I{Xi ∈ Dn}.

Next, note that I{|ε̂i,L| ≤ γn} = I{|εi − g(Xi)| ≤ γn} for g = q̂τ,L − qτ . Now
the assertion follows since the (n-dependent) class of functions

{

(ǫ, ξ) 7→ I{|ǫ− g(ξ)| ≤ γn}I{ξ ∈ Dn}
∣

∣

∣ g ∈ Cd+1
1 (RX)

}

satisfies the assumptions of part 1 of Lemma B.3 whenever n is sufficiently large,
see the proof of Lemma A.3 in Neumeyer and Van Keilegom (2010) for a similar
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reasoning, and q̂τ,L − qτ ∈ Cd+1
1 (Dn) with probability converging to one by

Lemma A.1. Here Cd+1
1 (Dn) is the class of d + 1 times differentiable functions

g defined on Dn. Further, note that

sup
g∈Cd+1

1
(Dn)

E
[

I{|εi − g(Xi)| ≤ γn}I{Xi ∈ Dn}
]

= o(n−1/2).

This, together with (A.2), and an application of Lemma B.3, shows that

sup
Θ∈Ξ,z∈Z

∣

∣

∣

∣

∣

1

n

n
∑

i=1

(I{ε̂i ≤ 0} − I{ε̂i,L ≤ 0})I{Xi ∈ Θn}I{Zi ≤ z}
∣

∣

∣

∣

∣

= oP (n
−1/2).

Similar arguments applied to the (n-dependent) class functions
{

(ǫ, ξ, ζ) 7→ (I{ǫ ≤ g(ξ)} − I{ǫ ≤ 0})I{ξ ∈ Θn}I{ζ ≤ z}
∣

∣

∣

g ∈ Cd+1
1 (RX),Θ ∈ Ξ, z ∈ Z

}

yield

sup
Θ∈Ξ,z∈Z

∣

∣

∣

∣

∣

1

n

n
∑

i=1

(I{ε̂i,L ≤ 0} − I{εi ≤ 0})I{Xi ∈ Θn}I{Zi ≤ z}

−E
[

(I{ε̂L ≤ 0} − I{ε ≤ 0})I{X ∈ Θn}I{Z ≤ z}
∣

∣

∣ (Yi, Xi, Zi), i = 1, . . . , n
]

∣

∣

∣

∣

∣

= oP (n
−1/2).

and thus the proof is complete.

Proof of Theorem 3.2. Starting from the stochastic expansion given in Lemma
A.3 we obtain by Taylor’s expansion

Tn(Θn, z) =
1

n

n
∑

i=1

(I{εi ≤ 0} − τ)I{Xi ∈ Θn}I{Zi ≤ z}

+

∫

fε|X,Z(0|s, t)(q̂τ (s)− qτ (s))I{s ∈ Θn}I{t ≤ z}dFX,Z(s, t)

+

∫

f ′
ε|X,Z(ξx,s,n|s, t)(q̂τ (s)− qτ (s))

2I{s ∈ Θn}I{t ≤ z}dFX,Z(s, t)

+oP (
1√
n
)

for some ξx,s,n between 0 and q̂τ (s) − qτ (s) where the last line is of order
oP (n

−1/2) due to Lemma A.1 and the assumptions d2sn + logn/nhd
n = o(n−1/2),

supx∈D,y∈R,z∈RZ
|f ′

ε|X,Z(y|x, z)| < ∞. Note that

∫

fε|X,Z(0|s, t)(q̂τ (s)− qτ (s))I{s ∈ Θn}I{t ≤ z}dFX,Z(s, t)

=

∫

FZ|X,ε(z|s, 0)fε|X(0|s)fX(s)(q̂τ (s)− qτ (s))I{s ∈ Θn}ds.
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By Lemma A.2 we thus have

Tn(Θn, z) =
1

n

n
∑

i=1

(I{εi ≤ 0} − τ)I{Xi ∈ Θn}
(

I{Zi ≤ z} − FZ|X,ε(z|Xi, 0)
)

+oP (
1√
n
).

This completes the proof.

Proof of Corollary 3.3 and 3.5. Define the sequence of n-dependent classes of
functions

Fn :=
{

(e, ξ, ζ) 7→ eI{ξ ∈ Θ ∩Dn}(I{ζ ≤ z} − FZ|X,ε(z|ξ, 0))
∣

∣

∣ Θ ∈ Ξ, z ∈ RZ

}

and note that it is indexed by the totally bounded metric space (Ξ×RZ , ρ) with
metric

ρ((Θ1, y), (Θ2, z)) := (E[(WΘ1,y −WΘ2,z)
2])1/2

where WΘ,z := (I{ε1 ≤ 0} − τ)I{X1 ∈ Θ}(I{Z1 ≤ z} − FZ|X,ε(z|X1, 0)).
Moreover, it satisfies the assumptions of part 2 of Lemma B.3. A simple cal-
culation in combination with the assumption supΘ∈Ξ P (Xi ∈ Θ\Θn) = o(1)
shows that all the assumptions of Theorem 2.11.23 in van der Vaart and Wellner
(1996) are satisfied. In particular, the covariances Cov(WΘn,y,WΘ′

n,z) converge
to k(Θ, y,Θ′, z) given in Corollary 3.3. This implies that the process

√
n
(

Tn(Θn, z)− T̃n(Θn, z)
)

=
1

n

n
∑

i=1

(

(I{εi ≤ 0} − τ)I{Xi ∈ Θn}(I{Zi ≤ z} − FZ|X,ε(z|Xi, 0))− T̃n(Θn, z)
)

+oP (
1√
n
).

where T̃n(Θn, z) := E
[

(I{εi ≤ 0}−τ)I{Xi ∈ Θn}(I{Zi ≤ z}−FZ|X,ε(z|Xi, 0))
]

converges weakly to the centered Gaussian process T(Θ, z) described in Corol-
lary 3.3. Thus Corollary 3.3 and 3.5 follow after a straightforward calculation
of the expectation T̃n(Θn, z). Now the proof is complete.

Appendix B: Technical results

Before stating the main results of this section, we discuss some basic properties
of the local polynomial estimator F̂Y |X(y|x; p). To this end, we note that

XtWY = (Vn,0(x, y), Vn,k1,1(x, y), . . . , Vn,kNp,p(x, y))
t

with

Vn,k(x, y) :=
h
|k|
n

nhd
n

n
∑

i=1

Kh,k(x−Xi)Ω
(y − Yi

dn

)

.
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Lemma B.1. Under the assumptions (K1), (K2), (K5), (A1), (A2) it holds
that

F̂Y |X(y|x; p)− FY |X(y|x)

= et1

(

nf
∑

j=0

(

− M(K)−1

fX(x)

∑

1≤|m|<nf

h|m|
n f

(m)
X (x)Mm

)jM(K)−1

fX(x)

)

×(Tn,0,S(x, y), . . . , Tn,kNp,p,S(x, y))
t + oP (n

−1/2)

=: ∆S(y|x) + oP (n
−1/2) = OP (d

s
n +

( logn

nhd
n

)1/2

)

uniformly with respect to (x, y) ∈ Dn×Y, where Y is any bounded subset of R and
Mk denote some matrices with uniformly bounded entries that are independent
of x, n, y and

Tn,k,S(x, y) :=
1

nhd
n

∑

i

Khn,k(x−Xi)
(

Ω
(y − Yi

dn

)

− FY |X(y|Xi)
)

.

Moreover, the quantity ∆S(y|x) is, with probability tending to one, d+ 1 times
continuously differentiable with respect to x and y and all its partial derivatives
of corresponding orders are uniformly bounded on Dn × Y.
Proof. At the end of the proof, we will establish the following two representa-
tions

F̂Y |X(y|x; p) = FY |X(y|x) + et1(X
tWX)−1(h0

nTn,0,S(x, y), . . . ,

hp
nTn,kNp,p,S(x, y))

t +OP (h
p+1
n ), (B.1)

(XtWX)−1 = H−1
(

nf
∑

j=0

(

− M(K)−1

fX(x)

∑

1≤|l|<nf

h|l|
n Mlf

(l)
X (x)

)jM(K)−1

fX(x)

+ 1N×NOP (h
nf
n )
)

H−1, (B.2)

whereM0, . . . ,MkNnf
,nf

denote some matrices that do not depend on n, x,M0 =

M(K) is invertible, H is a diagonal matrix with entries 1, hn, . . . , hn, h
2
n, . . . ,

h2
n, . . . , h

p
n, . . . , h

p
n and the term h

|k|
n appears Nk times in this vector. By defi-

nition we have

∂r
y∂

m

x Tn,k,S(x, y)

=
1

nh
d+|m|
n

∑

i

K
(m)
hn,k

(x−Xi)
( 1

drn
ω(r−1)

(y − Yi

dn

)

− F
(r)
Y |X(y|Xi)

)

,

and tedious but straightforward calculations including integration-by parts and
substitutions yield the estimates

sup
(x,y)∈Dn×

E[∂r
y∂

m

x Tn,k,S(x, y)] = O(ds−r
n ),
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sup
(x,y)∈Dn

E[(∂r
y∂

m

x Tn,k,S(x, y))
2] = O

( 1

nh
d+2|m|
n d

0∨(2r−1)
n

)

.

A combination of parts 1,2 and 6 of Lemma B.2 shows that, for every n, the
class of functions

Fn =
{

(u, v) 7→ K
(m)
hn,k

(x−u)
( 1

drn
ω(r−1)

(y − v

dn

)

−F
(r)
Y |X(y|u)

)∣

∣

∣x ∈ RX , y ∈ R

}

satisfies the assumptions of part 2 of Lemma B.3 with constants not depending
on n, which, together with the above estimates gives

sup
(x,y)∈D

|∂r
y∂

m

x Tn,k,S(x, y)| = OP

( logn

nh
d+2|m|
n d

0∨(2r−1)
n

)1/2

+ O(ds−r
n ). (B.3)

Combining (B.1), (B.2) and (B.3) yields

et1(X
tWX)−1(h0

nTn,0,S(x, y), . . . , h
p
nTn,kNp,p,S(x, y))

t

= et1

(

nf
∑

j=0

(M(K)−1

fX(x)

∑

1≤|l|<nf

h|l|
n Mlf

(l)
X (x)

)jM(K)−1

fX(x)

)

×(Tn,0,S(x, y), . . . , Tn,kNp,p,S(x, y))
t + oP (n

−1/2),

and thus the proof of the first part of the Lemma is complete.

For a proof of the differentiability results, note that the d+ 1−fold differen-
tiability of the product of every entry of a scalar product between two vectors
follows from the d+1−fold differentiability of every entry of both vectors. This
establishes that ∆S(y|x) is d+ 1 times continuously differentiable with respect
to both components and that all partial derivatives are uniformly bounded. By
the results in (B.3) the proof is thus complete once we establish (B.1) and (B.2).

Proof of (B.1) A Taylor expansion of FY |X(y|x) gives
1

nhd
n

∑

i

Khn,k(x−Xi)FY |X(y|x)

=
1

nhd
n

∑

0≤|m|≤p

∂m

x FY |X(y|Xi)

m!
h|m|
n

∑

i

Khn,k+m(x−Xi) +OP (h
|m|+p+1
n ).

This fact, combined with

et1(X
tWX)−1

nhd
n









h
|m|
n
∑

iKhn,m(x−Xi)
...

h
p+|m|
n

∑

i Khn,kNp,p+m(x−Xi)









= I{m = 0},

yields the representation

FY |X(y|x) =
et1(X

tWX)−1

nhd
n







h0
n

∑

iKhn,0(x −Xi)FY |X(y|x)
...

hp
n

∑

iKhn,kNp,p(x−Xi)FY |X(y|x)






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=
et1(X

tWX)−1

nhd
n







h0
n

∑

i Khn,0(x−Xi)FY |X(y|Xi)
...

hp
n

∑

i Khn,kNp,p(x−Xi)FY |X(y|Xi)







+ OP (h
p+1
n )

once we note that 1
nhd

n

∑

i |Khn,kNp,p(x − Xi)| = OP (1) and et1(X
tWX)−1 =

(OP (1), . . . , OP (h
−p
n )) [see the last part of the proof]. Thus

F̂Y |X(y|x) = FY |X(y|x) + et1(X
tWX)−1(h0

nTn,0,S(x, y), . . . , h
p
nTn,kNp,p,S(x, y))

t

+OP (h
p+1
n ).

Proof of (B.2) The elements of the matrix XtWX are of the form

(XtWX)k,l =
1

nhd
n

∑

i

Khn,0(x−Xi)(x −Xi)
m =

h
|m|
n

nhd
n

∑

i

Khn,m(x−Xi)

where m = m1 +m2 and m1,m2 denote the k′th and l′th entry in the tuple of
vectors (0,k1,1, . . . ,kN1,1,k1,2, . . . ,kNp,p), respectively. In particular, d+1+nf -
fold continuous differentiability of fX implies that

1

nhd
n

∑

i

Khn,k(x −Xi) =
∑

|l|<nf

µ|k|+|l|(K)h|l|
n f

(l)
X (x) +OP (

( logn

nhd
n

)1/2

+ h
nf
n ).

Thus we obtain a representation of the form

XtWX = H
(

∑

|l|<nf

h|l|
n Mlf

(l)
X (x) + 1N×NOP (h

nf
n )
)

H

where M0, . . . ,MkNnf
,nf

denote some matrices that do not depend on n, x,

M0 = M(K) is invertible and H is a diagonal matrix with entries 1, hn, . . . , hn,

h2
n, . . . , h

2
n, . . . , h

p
n, . . . , h

p
n where the term h

|k|
n appears N|k| times in this vector

[see the definition at the beginning of the section]. Thus for hn sufficiently small
an application of the Neumann series yields (B.2) with probability tending to
one.

Lemma B.2. Bounds on bracketing numbers

1. Define F + G := {f + g|f ∈ F , g ∈ G},FG := {fg|f ∈ F , g ∈ G}. Then

N[ ](F + G, ε, ρ) ≤ N[ ](F , ε/2, ρ)N[ ](G, ε/2, ρ).

If additionally the classes F ,G are uniformly bounded by the constant C,
we have

N[ ](FG, ε, ‖.‖) ≤ N2
[ ](F , ε/4C, ‖.‖)N2

[ ](G, ε/4C, ‖.‖)

for any seminorm ‖.‖ with the additional property that |f2| ≤ |f2| implies
‖f1‖ ≤ ‖f2‖.
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2. Let Fn denote a class of functions fx indexed by the bounded interval
x ∈ [−A,A] which are bounded by a given constant and have support of the
form [x−h, x+h]. If supf∈F |f(a)−f(b)| ≤ C|a−b|h−k for some universal

constant C we have N[ ](Fn, ε, L
2(PX)) ≤ γε−(2k+1) provided that PX has

a uniformly bounded density. Here γ denotes a constant which does not
depend on n.

3. Consider the class of functions

Fn :=
{

(x, y) 7→ Ω
(g(x)− y

dn

)∣

∣

∣g ∈ G
}

,

where Ω is Lipschitz-continuous and there exist constants C1, C2 such that
Ω is constant on (−∞, C1] and [C2,∞). Assume additionally that the dis-
tribution of (X,Y ) has a uniformly bounded density, then

N[ ](Fn, ε, L
2(PXY )) ≤ C5N[ ](G, C6ε

2, ‖ · ‖∞)

for some constants C5, C6 independent of n.
4. For any measure PU,V on the unit interval with uniformly bounded density

f , the class of functions

F := {u 7→ I{u ≤ s}|s ∈ [0, 1]} ∪ {u 7→ I{u < s}|s ∈ [0, 1]}

can be covered by Cε−2 brackets of L2(P ) length ε.
5. For any measure P on R×R

k with uniformly bounded conditional density
fV |U the class of functions

G := {(u, v) 7→ I{v ≤ f(u)}|f ∈ F}

satisfies N[ ](G, ε, ‖.‖P,2) ≤ N[ ](F , Cε2, ‖.‖∞) for some constant C inde-
pendent of ε.

6. Assume that f(x; a) is a function indexed by the parameter a ∈ A such
that supx ‖f(s;x)− f(t;x)‖∞ ≤ C‖s− t‖θ for some θ > 0 and norm ‖ · ‖.
Then the ‖ · ‖∞-bracketing numbers of the class of functions F = {u 7→
f(u; a)|a ∈ A} satisfy N[ ](F , ε, ‖‖∞) ≤ C1N(A,C2ε

1/θ, ‖ · ‖) for some
finite constants C1, C2.

Proof. Part 1 The first assertion is obvious from the definition of bracketing
numbers. For the second assertion, note that FG = (F + C)(G + C) − CF −
CG+C2. Moreover, all elements of the classes F+C,G+C are by construction
non-negative and thus it also is possible to cover them with brackets consisting
of non-negative functions and amounts equal to the brackets of F ,G, respec-
tively. Finally, observe that if 0 ≤ fl ≤ f ≤ fu and 0 ≤ gl ≤ g ≤ gu, we also
have flgl ≤ fg ≤ fugu. Moreover ‖flgl−fugu‖ ≤ C‖fu−fl‖+C‖gu−gl‖. Thus
the class (F +C)(G+C) can be covered by at most ≤ N[](F , ε, ‖.‖)N[](G, ε, ‖.‖)
brackets of length 2Cε. Finding brackets for the classes CF , CG is trivial, and
applying the first assertion of the Lemma completes the proof.
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Part 2 Consider two cases.
A) ε > 4h1/2: Divide [0, 1] into N := 2/ε2 subintervals of length 2α := ε2 with
centers rα for r = 1, . . . , N and call the intervals I1, . . . , IN . Note that two
adjunct intervals overlap by α > 2h. This construction ensures that every set of
the form [x−h, x+h] with x ∈ [h, 1−h] is completely contained in at least one
of the intervals defined above. Then a collection of N brackets of L2-length Dε
for some D > 0 independent of h is given by (−CI{u ∈ Ij}, CI{u ∈ Ij}).
B) ε ≤ 4h1/2 : Observe that by assumption any element g of F satisfies |g(x)−
g(y)| ≤ C|x − y|h−k. Consider the points ti := i/(N + 1), i = 1, . . . , N with
N := 22k+1C/ε2k+1. By construction, to every x ∈ [h, 1 − h] there exists i(x)
with |ti(x) − x| ≤ ε2k+1/(22k+1C). This implies

|g(x) − g(ti(x))| ≤ Cε2k+1h−k/22k+1C ≤ ε/2

ThenN ‖.‖∞−brackets of length coveringF are given by (g(ti)−ε/2, g(ti)+ε/2),
i = 1, . . . , N . From those one can easily construct L2(PX)-brackets.
Part 3 Without loss of generality, assume that Ω equals one on [1,∞) and
zero on (−∞,−1]. Moreover, the assumptions on Ω imply the existence of finite
constant Cl, Cu such that Cl ≤ Ω ≤ Cu. Distinguish two cases
A) ε ≤ dn : Starting with ε2 supremum norm brackets for the class G and using
the Lipschitz condition yields the desired brackets.
B) ε > dn : Denote by [g1,l, g1,u], . . . , [gN(ε),l, gN(ε),u] brackets for the class G
of ‖ · ‖∞-size ε. For a function g ∈ G, denote the bracket that contains it by
[gj(g),l, gj(g),u]. Observe that

Ω
(g(x)− y

dn

)







= 0, if y > gj(g),u(x) + dn
= 1, if y < gj(g),l(x)− dn

∈ [Cl, Cu] else

Thus brackets of the form

bl,j(x) := I{y < gj,l(x)− dn}+ ClI{gj,l(x)− dn ≤ y ≤ gj,u(x) + dn}
bu,j(x) := I{y < gj,l(x)− dn}+ CuI{gj,l(x)− dn ≤ y ≤ gj,u(x) + dn}

contain every function in Fn. Moreover, the L2-length of each such bracket is
bounded by (Cu − Cl)(2dn + ε) sup fX,Y (x, y) ≤ Cε. This completes the proof.
Part 4 Follows by standard arguments.
Part 5 Follows from |I{v ≤ g1(u)} − I{v ≤ g2(u)}| ≤ I{|v − g1(u)| ≤ 2‖g1 −
g2‖∞}.
Part 6 Obvious

Lemma B.3 (Basic Lemma). Assume that the classes of functions Fn consist
of uniformly bounded functions (by a constant not depending on n).

1. If for some a < 2, N[ ](Fn, ε, L
2(P )) ≤ C exp(−cε−a) for every ε ≤ δn

with constants C, c not depending on n, then we have

√
n sup

f∈Fn,‖f‖P,2≤δn

(

∫

fdPn −
∫

fdP
)

= o∗P (1),
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for δn ց 0, where the ∗ denotes outer probability, see van der Vaart and
Wellner (1996) for a more detailed discussion.

2. If N[ ](Fn, ε, L
2(P )) ≤ Cε−a for every ε ≤ δn, some a > 0 and a constant

C not depending on n, then we have for any δn ∼ n−b with b < 1/2

√
n sup

f∈Fn,‖f‖P,2≤δn

(

∫

fdPn −
∫

fdP
)

= O∗
P

(

δn| log δn|
)

.

Proof. Start by observing that the uniform boundedness of elements of Fn by
D implies that F ≡ D is a measurable envelope function with L2-norm D. The
proof of the first part follows by arguments similar to those used for the proof
of the second part and is therefore omitted. For the proof of the second part,
note that for ηn sufficiently small

a(ηn) := ηnD/
√

1 + logN[](ηnD,Fn, L2(P )) ≥ Dηn/
√

1 + logC − a log(Dηn)

≥ DC̃ηn/
√

| log ηn|
for some finite constant C̃ depending only on a, C,D. Thus the bound in The-
orem 2.14.2 in van der Vaart, Wellner (1996) yields for δn sufficiently small

E
[

sup
f∈Fn

∫

fdαn

]∗

≤ DJ[](δn,Fn, L2(P )) +
√
n

∫

F (u)I{F (u) >
√
na(δn)}P (du)

≤ DC1

∫ δn

0

| log ε|dε+D
√
nI
{

D >
DC̃

√
nδn

| log δn|
}

≤ DC2δn| log δn|+D
√
nI
{

1 >
C̃
√
nδn

| log δn|
}

.

where αn :=
√
n(Pn − P ), Pn denotes the empirical measure, and C1, C2 are

some finite constants. Here, the second inequality follows by a straightforward
calculation and the first inequality is due to the fact that for δn sufficiently small
by definition

J[](δn,Fn, L2(P )) =

∫ δn

0

√

1 + logN[](εD,Fn, L2(P ))dε ≤ C1

∫ δn

0

| log ε|dε.

Now under the assumption on δn, the indicator in the last line will be zero for
n large enough and thus the proof is complete.

Lemma B.4. Assume that κ is a symmetric, uniformly bounded density with
support [−1, 1] and let bn = o(1). Introduce the notation QG,κ,τ,bn(F ) :=
G−1(HG,κ,τ,bn(F )).
(a) If the function F : [0, 1] → R is strictly increasing and F−1 is k times
continuously differentiable in a neighborhood of the point τ , we have

Hid,κ,τ,bn(F ) = F−1(τ) +

k
∑

i=1

bin
i!
(F−1)(i)(τ)µi+1(κ) +Rn(τ)
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with |Rn(τ)| ≤ Ck(κ)b
k
n sup|s−τ |≤bn |(F−1)(k)(τ) − (F−1)(k)(s)|, µi(κ) :=

∫

uiκ(u)du and a constant Ck depending only on k and κ. In particular, if
F : R → [0, 1] is strictly increasing and F−1 is two times continuously differ-
entiable in a neighborhood of τ and G : [0, 1] → R is two times continuously
differentiable in a neighborhood of F−1(τ) with G′(F−1(τ)) > 0, we have

|F−1(τ) −QG,κ,τ,bn(F )| ≤ Rn,2

:= Cb2n sup
|s−G◦F−1(τ)|≤Rn,1

|(G−1)′(s)| sup
|s−τ |≤bn

|(G ◦ F−1)′′(s)|

for some constant C that depends only on κ where Rn,1 := Cb2n sup|s−τ |≤bn |(G◦
F−1)′′(s)|.

(b) Assume that κ is additionally differentiable with Lipschitz-continuous deriva-
tive and that the functions G,G−1 have derivatives that are uniformly bounded
on any compact subset of R [the bound is allowed to depend on the interval].
Then for any increasing function F with uniformly bounded first derivative we
have |H(F1)−H(F2)| ≤ Rn,3 +Rn,4 and

|QG,κ,τ,bn(F1)−QG,κ,τ,bn(F2)| ≤ sup
u∈U(H(F1),H(F2))

|(G−1)′(u)|(Rn,3 +Rn,4),

where the constant C depends only on κ, U(a, b) := [a ∧ b, a ∨ b], and

Rn,3 :=
Ccn
bn

‖F1 − F2‖∞ sup
|v−τ |≤cn

|(G ◦ F−1)′(v)|,

Rn,4 := Rn,3
‖F1 − F‖∞ + ‖F1 − F2‖∞

bn

with cn := bn + 2‖F1 − F2‖∞ + ‖F1 − F‖∞.

(c) If additionally to the assumptions made in (b), the function F1 is two times
continuously differentiable in a neighborhood of F−1(τ) with F ′

1(F
−1
1 (τ)) > 0

and G is two times continuously differentiable in a neighborhood of F−1
1 (τ) with

G′(F−1(τ)) > 0, we have

QG,κ,τ,bn(F1)−QG,κ,τ,bn(F2) = − 1

F ′
1(F

−1
1 (τ))

∫ 1

−1

κ(v)
(

F2(F
−1
1 (τ + vbn))

− F1(F
−1
1 (τ + vbn))

)

dv +Rn,

where

|Rn| ≤ Rn,5 +Rn,6 +
Cbn sup|s−τ |≤bn(G ◦ F−1)′′(s)‖F1 − F2‖∞ + Rn,4

G′(F−1
1 (τ))

with a constant C depending only on κ and

Rn,5 :=
1

2
sup

u∈U(H(F1),H(F2))

|(G−1)′′(u)|(H(F1)−H(F2))
2
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Rn,6 := sup
u∈U(H(F1),G(F−1

1
)(τ))

|(G−1)′′(u)| · |H(F1)−G(F−1
1 )(τ)|

× |H(F1)−H(F2)|.

Proof. The proof of the first part of (a) is essentially a Taylor expansion. Details
can be found in the proof of Lemma A.4 in Volgushev (2006). For a proof of the
second part of (a), observe that by definition HG,κ,τ,bn(F ) = Hid,κ,τ,bn(F ◦G−1).
Together with the first part we obtain

|Hid,κ,τ,bn(F ◦G−1)−G ◦ F−1(τ)| ≤ Cb2n sup
|s−τ |≤bn

|(G ◦ F−1)′′(s)| =: Rn,1

which yields

|G−1(HG,κ,τ,bn(F ))− F−1(τ)|
≤ |(G−1)′(ξ)| · |Hid,κ,τ,bn(F ◦G−1)−G(F−1(τ))|
≤ Cb2n sup

|s−G◦F−1(τ)|≤Rn,1

|(G−1)′(s)| sup
|s−τ |≤bn

|(G ◦ F−1)′′(s)| =: Rn,2.

The proof of (a) is thus complete.

From now on, drop the index of H for the sake of a simpler notation. For a
proof of (b), observe the decomposition

H(F1)−H(F2) = − 1

bn

∫ 1

0

κ
(F1(G

−1(u))− τ

bn

)

(F1(G
−1(u))− F2(G

−1(u)))du

− 1

bn

∫ 1

0

[

κ
(ξ(u)− τ

bn

)

− κ
(F1(G

−1(u))− τ

bn

)]

× (F1(G
−1(u))− F2(G

−1(u)))du

for some |ξ(u) − F2(G
−1(u))| ≤ |F1(G

−1(u)) − F2(G
−1(u))|. This yields the

bound

|H(F1)−H(F2)| ≤ 1

bn

∫ 1

0

κ
(F1(G

−1(u))− τ

bn

)

+
∣

∣

∣κ
(ξ(u)− τ

bn

)

− κ
(F1(G

−1(u))− τ

bn

)∣

∣

∣du× ‖F1 − F2‖∞.

Next, observe that by assumption κ is Lipschitz continuous and thus we have
the inequality

∣

∣

∣κ
(ξ(u)− τ

bn

)

− κ
(F1(G

−1(u))− τ

bn

)∣

∣

∣

≤ L|ξ(u)− F1(G
−1(u))|

bn

(

I{|F1(G
−1(u))− τ | ≤ bn}+ I{|ξ(u)− τ | ≤ bn}

)

≤ 2L‖F1 − F2‖∞
bn

I{|F1(G
−1(u))− τ | ≤ bn + 2‖F1 − F2‖∞}

≤ 2L‖F1 − F2‖∞
bn

I{|F (G−1(u))− τ | ≤ bn + 2‖F1 − F2‖∞ + ‖F1 − F‖∞}.
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Similarly

∣

∣

∣κ
(F1(G

−1(u))− τ

bn

)

− κ
(F (G−1(u))− τ

bn

)∣

∣

∣

≤ 2L‖F1 − F‖∞
bn

I{|F (G−1(u))− τ | ≤ bn + ‖F1 − F‖∞},

and moreover

∣

∣

∣κ
(F (G−1(u))− τ

bn

)∣

∣

∣ ≤ CI{|F (G−1(u))− τ | ≤ bn}.

Define cn := bn + 2‖F1 − F2‖∞ + ‖F1 − F‖∞. Note that the monotonicity of
F,G implies

{u : |F (G−1(u))− τ | ≤ cn} ⊆ [G(F−1(τ − cn)), G(F−1(τ + cn))]

and

|G(F−1(τ + cn)) −G(F−1(τ − cn))| ≤ 2cn sup
|v−τ |≤cn

|(G ◦ F−1)′(v)|.

In particular, this implies the estimate

∫ 1

0

I{|F (G−1(u))− τ | ≤ cn}du ≤ 2cn sup
|v−τ |≤cn

|(G ◦ F−1)′(v)|.

Summarizing, we have obtained the bound |H(F1)−H(F2)| ≤ Rn,3+Rn,4 where
C denotes some constant depending only on the kernel κ. Assertion (b) follows
from this estimate and a Taylor expansion of G−1.

For a proof of assertion (c), note that after a substitution

1

bn

∫ 1

0

κ
(F1(G

−1(u))− τ

bn

)

(F1(G
−1(u))− F2(G

−1(u)))du

=

∫ 1

−1

(G ◦ F−1
1 )′(τ + vbn)κ(v)

(

F2(F
−1
1 (τ + vbn))− F1(F

−1
1 (τ + vbn))

)

dv

= (G ◦ F−1
1 )′(τ)

∫ 1

−1

κ(v)
(

F2(F
−1
1 (τ + vbn))− F1(F

−1
1 (τ + vbn))

)

dv + rn

where
|rn| ≤ Cbn sup

|s−τ |≤bn

|(G ◦ F−1
1 )′′(s)| · ‖F1 − F2‖∞

by a Taylor expansion of (G ◦ F−1
1 )′. A Taylor expansion of G−1 yields

∥

∥

∥G−1(H(F1))−G−1(H(F2))− (G−1)′(H(F1))(H(F1)−H(F2))
∥

∥

∥ ≤
1

2
sup

u∈U(H(F1),H(F2))

|(G−1)′′(u)|(H(F1)−H(F2))
2
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where U(a, b) := [a ∧ b, a ∨ b]. A Taylor expansion yields

∣

∣

∣(G−1)′(H(F1))− (G−1)′(G(F−1
1 )(τ))

∣

∣

∣ ≤
sup

u∈U(H(F1),G(F−1

1
)(τ))

|(G−1)′′(u)| · |H(F1)−G(F−1
1 )(τ)|

and combining this with the results obtained so far we arrive at

∣

∣

∣Q(F1)−Q(F2) +
1

F ′
1(F

−1
1 (τ))

∫ 1

−1

κ(v)
(

F2(F
−1
1 (τ + vbn))

− F1(F
−1
1 (τ + vbn))

)

dv
∣

∣

∣

≤
∥

∥

∥G−1(H(F1))−G−1(H(F2))− (G−1)′(H(F1))(H(F1)−H(F2))
∥

∥

∥

+|H(F1)−H(F2)| · |(G−1)′(H(F1))− (G−1)′(G ◦ F−1
1 (τ))|

+
∣

∣

∣

H(F1)−H(F2)

G′(F−1
1 (τ))

+
1

F ′
1(F

−1
1 (τ))

∫ 1

−1

κ(v)
(

F2(F
−1
1 (τ + vbn))

− F1(F
−1
1 (τ + vbn))

)

dv
∣

∣

∣

≤ Rn,5 +Rn,6 +
Cbn sup|s−τ |≤bn(G ◦ F−1)′′(s)‖F1 − F2‖∞ +Rn,4

G′(F−1
1 (τ))

.

This completes the proof.

Appendix C: Bootstrap validity

In this section we sketch a proof of conditional weak convergence of the bootstrap
process

√
nT ∗

n to the weak limit T of
√
nTn under H0, in probability. Let E∗ and

Cov∗ denote expectation and covariance with respect to the conditional proba-
bility P (· | Yn), given the original sample Yn = {(Yi, Xi, Zi) | i = 1, . . . , n}.

Introduce Vi = (I{Ui ≤ τ}−τ)/(τ(1−τ))1/2, then we have the decomposition

T ∗
n(Θ, z) =

√

τ(1 − τ)
(

T (1)∗
n (Θ, z) + T (2)∗

n (Θ, z) +R(1)∗
n (Θ, z)

)

+R(2)∗
n (Θ, z),

where

T (1)∗
n (Θ, z) =

1

n

n
∑

i=1

Vi

{

I{Xi ∈ Θ}
(

I{Zi ≤ z} − FZ|X,ε(z|Xi, 0)
)

− E
[

I{X ∈ Θ}
(

I{Z ≤ z} − FZ|X,ε(z|X, 0)
)]}

T (2)∗
n (Θ, z) =

1

n

n
∑

i=1

ViE
[

I{X ∈ Θ}
(

I{Z ≤ z} − FZ|X,ε(z|X, 0)
)]
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R(1)∗
n (Θ, z) =

1

n

n
∑

i=1

ViI{Xi ∈ Θ}
(

FZ|X,ε(z|Xi, 0)− F̂Z|X,ε(z|Xi, 0)
)

R(2)∗
n (Θ, z) =

1

n

n
∑

i=1

(I{Ui ≤ τ̂} − τ̂ − I{Ui ≤ τ} + τ) I{Xi ∈ Θ}

×
(

I{Zi ≤ z} − F̂Z|X,ε(z|Xi, 0)
)

.

Note that V1, . . . , Vn are bounded independent and identically distributed
random variables with expectation zero and unit variance and are indepen-

dent of the sample (Yi, Xi, Zi), i = 1, . . . , n. Thus we have E∗[T (1)∗
n (Θ, z)] =

E∗[T (2)∗
n (Θ, z)] = 0. With the conditional multiplier central limit theorem Th.

2.9.7 in van der Vaart and Wellner (1996) weak convergence of
√
nT

(1)∗
n to a

centered Gaussian process for almost all samples (Y1, X1, Z1), (Y2, X2, Z2), . . .

follows directly. Further,
√
nT

(2)∗
n is independent of the sample (Y1, X1, Z1), . . .

and converges weakly to

ζE
[

I{X ∈ Θ}
(

I{Z ≤ z} − FZ|X,ε(z|X, 0)
)]

,

where ζ is standard normally distributed. From this one can deduce conditional

weak convergence of
√
n(T

(1)∗
n + T

(2)∗
n ) to a Gaussian process for almost all

(Y1, X1, Z1), (Y2, X2, Z2), . . . . The conditional covariance is

nCov∗
(

T (1)∗
n (Θ1, y) + T (2)∗

n (Θ1, y), T
(1)∗
n (Θ2, z) + T (2)∗

n (Θ2, z)
)

=
1

n

n
∑

i=1

I{Xi ∈ Θ1 ∩Θ2}
(

I{Zi ≤ y} − FZ|X,ε(y|Xi, 0)
)

×
(

I{Zi ≤ z} − FZ|X,ε(z|Xi, 0)
)

and converges almost surely to k(Θ1, y,Θ2, z)/(τ(1− τ)) as defined in Corollary
3.3. Thus weak convergence of

√
nTn to T follows if we show

sup
z,Θ

|R(ℓ)∗
n (z,Θ)| = oP (

1√
n
) for ℓ = 1, 2. (B.4)

For ℓ = 1 this can be deduced similarly to (but easier than) the proof of Theorem
2 in Delgado and González-Manteiga (2001). The main arguments are as follows.
Note that

R(1)∗
n (Θ, z) =

1

n2ade

n
∑

i=1

n
∑

j=1

Vi
I{Xi ∈ Θ}
f̂X,ε(Xi, 0)

×
(

FZ|X,ε(z|Xi, 0)− I{Zj ≤ z}
)

L
(Xj −Xi

a

)

N
( ε̂j
e

)

,
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where

f̂X,ε(x, y) =
1

nade

n
∑

j=1

L
(Xj − x

a

)

N
( ε̂j − y

e

)

is a kernel estimator for the joint density of X, ε and is uniformly consistent
(under typical assumptions on the kernels L andN and the bandwidths a and e).

It can be replaced by fX,ε(x, y) in R
(1)∗
n (Θ, z) without changing the asymptotic

order. Further, by applying a Taylor expansion for the kernel N the residuals
ε̂j can be replaced by the true errors εj and the term obtained for i = j in the

representation of R
(1)∗
n can be bounded by a constant times

1

nad
1

ne

n
∑

i=1

|Vi|
1

fX,ε(Xi, 0)
N
(εi
e

)

which is of order OP ((na
d)−1) and hence oP (n

−1/2) by proper choice of the
bandwidth. Thus it remains to consider the U-process

Un(Θ, z)
1

n2ade

n
∑

i=1

n
∑

j=1

j 6=i

Vi
I{Xi ∈ Θ}
fX,ε(Xi, 0)

(

FZ|X,ε(z|Xi, 0)− I{Zj ≤ z}
)

× L
(Xj −Xi

a

)

N
(εj
e

)

.

For fixed (Θ, z) Hoeffding’s decomposition shows that the dominating term is

1

nade

n
∑

i=1

Vi
I{Xi ∈ Θ}
fX,ε(Xi, 0)

∫

(

FZ|X,ε(z|Xi, 0)− FZ|X,ε(z|x, 0)
)

× L
(x−Xi

a

)

N
(y

e

)

fX,ε(x, y) d(x, y)

with a variance bounded by

1

n

∫

(

1

ade

∫

(

FZ|X,ε(z|t, 0)− FZ|X,ε(z|x, 0)
)

L
(x− t

a

)

N
(y

e

)

fX,ε(x, y) d(x, y)

)2

× fX(t)

fX,ε(t, 0)
dt,

which is of order o(n−1) by continuity of t 7→ FZ|X,ε(z|t, 0). Thus, Un(z,Θ) =

oP (n
−1/2). Uniformity of the arguments in z and Θ and hence (B.4) for ℓ = 1

can be obtained with methods as in Delgado and González-Manteiga (2001)
(compare their term A1

2n in the proof of Th. 2).
For the second remainder term we use the simple bound

sup
Θ,z

|R(2)∗
n (Θ, z)| ≤ 1

n

n
∑

i=1

I{τ < Ui ≤ τ̂ or τ̂ < Ui ≤ τ} + |τ̂ − τ |.
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Note that from the proof of the main result it follows that τ̂ = τ + oP (n
−1/2)

(consider Tn(Θ, z) with Θ = R
d, z = ∞ componentwise). Thus for all η > 0 we

have

P

(

sup
Θ,z

|R(2)∗
n (Θ, z)| ≥ η√

n

)

≤ P

(∣

∣

∣

∣

∣

1

n

n
∑

i=1

I{τ < Ui ≤ τ̂} − τ̂ + τ

∣

∣

∣

∣

∣

≥ η

4
√
n
, 0 ≤ τ̂ − τ ≤ 1√

n

)

+ P

(∣

∣

∣

∣

∣

1

n

n
∑

i=1

I{τ̂ < Ui ≤ τ} − τ + τ̂

∣

∣

∣

∣

∣

≥ η

4
√
n
, 0 ≤ τ − τ̂ ≤ 1√

n

)

+ o(1)

≤ 2P

(

sup
|t−t′|≤n−1/2

|Gn(t)−Gn(t
′)| ≥ η

4
√
n

)

+ o(1) = o(1),

where the last equality and thus (B.4) for ℓ = 2 follows from asymptotic
stochastic equicontinuity of the standard uniform empirical process Gn(t) =
n−1/2

∑n
i=1(I{Ui ≤ t} − t), t ∈ [0, 1].
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Chernozhukov, V., Fernandéz-Val, I., and Galichon, A. (2010). Quan-
tile and probability curves without crossing. Econometrica, 78(3):1093–1125.
MR2667913
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