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1. Introduction

In this paper we are concerned with the problem of flexible regression density
estimation. The term regression density estimation refers to the problem of
flexibly estimating the conditional density function of a response variable y at all
points x in the covariate space, while making relatively few assumptions about
its functional form [28]. This is an important problem in applications where
the response distribution is highly multimodal and would not be appropriately
modeled by a simple parametric density such as a normal.

A well-established methodology for regression density estimation uses mix-
tures of heteroscedastic experts models [10, 28, 19]. This approach extends mix-
ture of experts models [12, 14] by allowing components to be heteroscedastic
and allowing mixing probabilities to depend on the covariates. In this paper we
consider mixtures of heteroscedastic normals. More specifically, the conditional
density of a response y given a covariate vector x is modeled as

p(y|x) =

k
∑

j=1

πj(x)N(y|µj(x), σ
2
j (x)), (1.1)

where πj(x), µj(x) and σ2
j (x) are (functions of) linear combinations of x,

πj(x) ≥ 0, π1(x) + · · · + πk(x) = 1 and k is the number of components. We
will refer to this model as the RDE-MHN(k) (regression density estimation with
mixtures of k heteroscedastic normals) model. Hereafter, the terms mean model,

variance model and gating model refer to the models for the means µj , variances
σ2
j and mixing probabilities πj , respectively.
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[30] and [31] carry out Bayesian analysis on mixtures of experts models with
flexible terms for the covariates, although they do not consider heteroscedastic-
ity. [10] consider model (1.1) for regression density estimation in which only the
means µj are allowed to depend on x. [28] and [19] extend to the heteroscedastic
case in which the mixing probabilities πj , component means µj and variances
σ2
j all varying with covariates. The heteroscedastic extension to mixture of ex-

perts models is important in applications where the conditional distribution of
y is very complex and there is a need to model p(y|x) flexibly without making
too rigid assumptions on its functional form. As discussed in [19] and [28], the
performance of mixtures of homoscedastic models (i.e. model (1.1) with con-
stant σ2

j ), when used to model heteroscedastic data, deteriorates as the number
of covariates increases, and cannot be improved by simply increasing the num-
ber of components. Ignoring heteroscedasticity may lead to serious problems in
inference, such as misleading assessments of significance, poor predictive perfor-
mance and inefficient estimation of the mean parameters. The reader is referred
to [5] and [25] for a more detailed discussion on heteroscedastic modeling.

[28] use Bayesian inference and Markov chain Monte Carlo (MCMC) methods
to estimate the RDE-MHN model. Using MCMC, however, may be computa-
tionally demanding in high-dimensional situations with a large number of covari-
ates, and in time series data modeling where sequential updating is required. [19]
develop a fast alternative computationally attractive estimation method using
variational approximation. Their variational approximation method is compu-
tationally attractive in situations where it is necessary to re-fit complex models
many times such as for sequential updating in time series data analysis. Using
variational approximation for fitting mixtures of homoscedastic experts models
is considered by a number of authors [29, 23, 2]. See also [7, 17] and [32] for
applications of variational approximation to fitting Gaussian mixture models.
Section 3 briefly reviews the variational approximation method.

The first issue in RDE-MHN modeling is selecting the number of components
k. [28] and [19] consider this problem by fitting separate RDE-MHN models
within a proposed range of potential k and selecting the one with largest cross-
validation log predictive density score (see the definition in Section 6). This
approach has several drawbacks. First, cross-validation is not natural for ordered
data such as time series or longitudinal data (see the stock return example in
Section 6.3). Second, computing the cross-validation log predictive density score
may be very time consuming if the sample is divided into many parts. Third, the
log predictive density score method requires prior information on the maximum
number of components which may be hard to obtain.

The second important issue in RDE-MHN modeling is variable selection.
Variable selection is a fundamental problem in general regression analysis in
which a large number of potential covariates is often introduced at the initial
stage of modeling and it is necessary to select from them a smaller subset to
fit the data in order to avoid overfitting, reduce the cost of data collection and
increase model interpretability. See, for example, [9, 8, 20] and references therein.
Variable selection is not discussed in [19]. Incorporating variable selection is
essential in complex models like ours, especially in high dimension where the
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full model fitting of [19] is almost impossible. Variable selection helps not only
to improve performance by producing parsimonious models, but also reduces
the dimension of the parameter space and makes the computation faster.

Another important issue in mixture model fitting in general is the local max-
ima problem in which the fitting procedure converges to one of the local maxima
[27, 18, 22]. In our experience, this problem occurs very often and gives a subop-
timal solution which may cause serious consequences in subsequent inferences.

Our article proposes a novel algorithm that is able to deal with the afore-
mentioned problems. We employ a Bayesian approach and use the variational
approximation method for fitting. We first modify the variational approxima-
tion fitting approach in [19] to deal with the local maxima problem by using the
split-and-merge idea [see, for example, 22, 32] which repeatedly splits and/or
merges poorly fitted components on the basis of maximizing the variational
lower bound considered as a good approximation of the log marginal likelihood.
This approach also automatically determines the number of components. We
then propose a strategy for ranking covariates for inclusion into the mean, vari-
ance and gating models in a computationally thrifty way. This is a non-trivial
extension of the ranking algorithm introduced in [20] who consider variable se-
lection in the heteroscedastic linear regression model, i.e. RDE-MHN(1). These
together result in a novel fast method for simultaneous variable selection, com-
ponent selection and parameter estimation in the RDE-MHN modeling. Our
method can be used in high-dimensional situations where the number of covari-
ates can be much larger than the sample size.

The MCMC method of [28] and their novel variable selection prior pro-
vide an excellent approach for RDE-MHN modeling in low-dimensional settings
where computation time is not a primary concern. A major advantage of our
method over their MCMC method is that we provide a fast alternative; see
Sections 5 and 6. It is obvious that the MCMC method is not applicable in
high-dimensional problems with thousands of covariates. Another advantage is
that our method does variable selection and component selection simultane-
ously and automatically rather than fitting separate RDE-MHN models within
a range of potential k and then selecting an appropriate one based on some
model selection criterion which in turn requires a considerable amount of extra
computation time.

Many of the popular models in the literature are special cases of the RDE-
MHN model. Model (1.1) with k = 1 is the heteroscedastic linear regression
model considered in [25], Chapter 14 and [20]

yi = x′
iβ + σiǫi, σ2

i = exp(x′
iα), ǫi ∼ N(0, 1),

where (yi,xi), i = 1, . . . , n are observations. With k = 1 and σ2 constant, (1.1)
reduces further to the classical linear regression model

yi = x′
iβ + σǫi, ǫi ∼ N(0, 1),

which is extensively studied in the literature. A nice feature of our methodology
is that it is able to reach a simple model if such a model is warranted. With
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k = 1 and constant variance, our ranking algorithm for variable selection is
similar to widely used matching pursuit and greedy algorithms for model search
[16, 33, 8].

The RDE-MHN modeling approach provides flexibility in exploring data in
which the conditional density of interest has a complex structure. Section 6 ap-
plies our approach to analyzing the diabetes data [8]. This data set consists of
observations on 442 patients about their 10 baseline variables (predictors x) and
a quantitative measure of disease progression (response y). Previous analysis in
the literature assumed a RDE-MHN(1) model [8, 20]. Our goal is to see if relax-
ing the assumption of k = 1 components can give us more flexibility in exploring
the structure of p(y|x), and lead to a model with better predictive performance.
We find that the RDE-MHN(3) model is selected by our algorithm which has
better predictive performance than previously selected models. Figure 1 shows
the clear three-component structure in the conditional distribution explored by
our approach (see Section 6 for the details).

The rest of the paper is organized as follows. Section 2 describes the RDE-
MHN model in detail. Section 3 combines the variational approximation method
and the split-and-merge algorithm for fitting this model. Section 4 presents our
fast greedy algorithm for variable selection. Sections 5 and 6 present simulation
studies and real data examples illustrating our method. Section 7 concludes.
Technical derivations are placed in the Appendices.

2. Mixture of heteroscedastic normals model

Let (yi,xi), i = 1, . . . , n, be n observations with yi univariate responses and
xi = (xi1, . . . , xis)

′ corresponding covariate vectors. We will write y and x =
(x1, . . . , xs)

′ for a generic response and covariate vector. We are concerned with
the problem of estimating the conditional distribution of y given x using mixture
of experts models and with the problem of selecting important covariates as well
as selecting the number of experts. The distribution of yi given xi is modeled
by a mixture of heteroscedastic normals model as follows

yi|δi = j,xi,β,α ∼ N(v′
iβj, exp(w

′
iαj)), i = 1, . . . , n,

where δi is a latent variable indicating the component yi comes from, δi ∈
{1, 2, . . . , k}, vi = (vi1, . . . , vip)

′ and wi = (wi1, . . . , wiq)
′ are vectors of covari-

ates in the mean and variance models (which are sub-vectors of xi), βj =
(βj1, . . . , βjp)

′ and αj = (αj1, . . . , αjq)
′ are vectors of unknown parameters

in the mean and variance models of the jth component, respectively. Write
β = (β′

1, . . . ,β
′
k)

′, α = (α′
1, . . . ,α

′
k)

′. The distribution of the latent variables
δi is modeled by a multinomial logit regression model

P (δi = j|γ,xi) =
exp(z′

iγj)
∑k

l=1 exp(z
′
iγl)

, j = 1, . . . , k; i = 1, . . . , n,

where γj = (γj1, . . . , γjr)
′ is a vector of unknown parameters in the gating

model of the jth component, j = 2, . . . , k. Write γ = (γ′
2, . . . ,γ

′
k)

′ and δ =
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(δ1, . . . , δn)
′. Note that we set γ1 ≡ 0 for identifiability. Again, zi = (zi1, . . . , zir)

′

is a sub-vector of xi, and contains the covariates used to model the mixing
probabilities. We assume here and in Section 3 that we know in advance which
covariates from x are included in the mean, variance and gating models. The
variable selection issue will be discussed in Section 4. The above model will be
referred to as the regression density estimation with mixtures of k heteroscedas-
tic normals model, denoted by RDE-MHN(k).

This article employs a Bayesian approach and uses normal distributions for
priors on the parameters β, α and γ

p(β) =
k
∏

j=1

N(µ0
βj
,Σ0

βj
), p(α) =

k
∏

j=1

N(µ0
αj
,Σ0

αj
), p(γ) = N(µ0

γ ,Σ
0
γ),

where µ0
βj
,Σ0

βj
,µ0

αj
,Σ0

αj
,µ0

γ and Σ0
γ are hyperparameters. We assume that β, α

and γ are independent a priori, i.e.

p(β,α,γ) = p(β)p(α)p(γ).

The main issues relating to the implementation of the RDE-MHN model-
ing are: (i) estimating the parameters β, α and γ in a fast and reliable way,
(ii) selecting the important covariates and, (iii) selecting the number of com-
ponents k. Another important issue when fitting mixture models is the local
maxima problem. This problem happens when the fitting algorithm (by the
maximum likelihood method, for example) converges to a local rather than the
global maximum [27, 18, 22]. In later sections we present a method for dealing
with these problems.

3. Fitting the RDE-MHN model

3.1. The variational approximation fitting approach

Our method for fitting and doing model selection in the RDE-MHN model is
based on the variational approximation fitting approach of [19]. It is reproduced
here and in the Appendices to make the paper self-contained. The reader who is
not familiar with variational approximation is referred to, for example, [1] or [21].

The RDE-MHN(k) model can be written as

yi|δi = j,β,α ∼ N(v′
iβj , exp(w

′
iαj)), i = 1, . . . , n

βj ∼ N(µ0
βj
,Σ0

βj
), j = 1, . . . , k

αj ∼ N(µ0
αj
,Σ0

αj
), j = 1, . . . , k

P (δi = j|γ) = pij(γ) =
exp(z′

iγj)
∑k

l=1 exp(z
′
iγl)

, j = 1, . . . , k; i = 1, . . . , n

γ ∼ N(µ0
γ ,Σ

0
γ).
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Write θ = (β,α,γ, δ). Our Bayesian inferences are based on the posterior distri-
bution p(θ|y) ∝ p(θ)p(y|θ) which is difficult to handle. We proceed by approxi-
mating this posterior by a more tractable distribution q(θ). The variational ap-
proximation posterior q(θ) is selected by minimizing the Kullback-Leibler (KL)
divergence

∫

log
q(θ)

p(θ|y)
q(θ)dθ

among some restricted class of functions. From the identity

log p(y) =

∫

log
p(θ)p(y|θ)

q(θ)
q(θ)dθ +

∫

log
q(θ)

p(θ|y)
q(θ)dθ, (3.1)

we see that minimizing the KL divergence is equivalent to maximizing

L(q) =

∫

log
p(θ)p(y|θ)

q(θ)
q(θ)dθ. (3.2)

Because of the non-negativity of the KL divergence term in (3.1), (3.2) is a
lower bound on the log marginal likelihood log p(y). The lower bound (3.2),
when maximized with respect to q, is often used as an approximation to the log
marginal likelihood log p(y). This approximation is useful, since log p(y) is a key
quantity in Bayesian model selection. The accuracy of variational approximation
is experimentally studied in [19, 20]. Some results on the asymptotic normality
of variational approximation estimators are recently obtained in [11].

[19] develop a variational approximation approach for fitting the RDE-MHN
model with the variational approximation posterior q(θ) assuming the following
product form

q(θ) = q(β)q(α)q(δ)q(γ),

where

q(β) =

k
∏

j=1

q(βj), q(α) =

k
∏

j=1

q(αj), q(δ) =

n
∏

i=1

q(δi),

and q(βj) is normal N(µq
βj
,Σq

βj
), q(αj) is normal N(µq

αj
,Σq

αj
), q(δi = j) = qij

where
∑

j qij = 1, i = 1, . . . , n. The posterior q(γ) is assumed to be the Dirac
delta distribution δµq

γ
(·) concentrated at a point µq

γ , i.e. δµq
γ
(A) = 1 if and only

if µq
γ ∈ A for every Borel set A in IR(k−1)r. Using the Dirac delta distribution for

the variational approximation posterior of γ means that we are interested in its
posterior mode, and this facilitates the computation. Note that, for simplicity,
with a little abuse of notation we have not distinguished between distributions
and densities in the above. The advantage of the variational approximation
posterior above is that the lower bound (3.2) has a closed form (see Appendix A),
which allows fast and easy optimization. Algorithm 1 in Appendix A summarizes
a procedure for maximizing this lower bound.
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3.2. The split-and-merge algorithm

Two difficult issues associated with the above mixture model concern the exis-
tence of local maxima and the selection of the number of components [27, 18].
We now address these problems by adapting the split-and-merge algorithm dis-
cussed in [22]. See also [24] and [32]. The idea of the split-and-merge algorithm
is to repeatedly merge two components and/or split a component until some
criterion is satisfied. This algorithm has been proven useful in overcoming the
local maxima problem and automatically determining the number of compo-
nents [22, 32]. We now adapt this idea to our RDE-MHN model.

We first initialize the number of components k using the method of [4] for
selecting the number of clusters. With an initial k, after Algorithm 1 has con-
verged, we consider merging two components or splitting a component until the
lower bound is not improved any further. Let θ∗ and L∗ denote the parameter
estimate and the maximized lower bound after Algorithm 1 converges.

Merge criterion Two components are considered most plausible for merging
if they are close to each other in some sense. Here we use the Kullback-Leibler
(KL) divergence to measure similarity. The KL distance between two distribu-
tions P and Q is defined as

KL(P,Q) :=
1

2
(KL(P‖Q) + KL(Q‖P )),

where KL(P‖Q) =
∫

log P (x)
Q(x)dP (x) is the KL divergence of Q to P . If P ∼

N(µ1, σ1), Q ∼ N(µ2, σ2), then

KL(P,Q) =
1

4

(

(µ1 − µ2)
2 + σ2

1

σ2
2

+
(µ1 − µ2)

2 + σ2
2

σ2
1

− 2

)

.

In our context, the KL distance (averaged over n observed points) between two
components j1 and j2 is given by

KL(j1, j2) =
1

4n

n
∑

i=1

( (v′
iµ

q
βj1

− v′
iµ

q
βj2

)2 + exp(w′
iµ

q
αj1

)

exp(w′
iµ

q
αj2

)

+
(v′

iµ
q
βj1

− v′
iµ

q
βj2

)2 + exp(w′
iµ

q
αj2

)

exp(w′
iµ

q
αj1

)
− 2

)

.

The smaller the KL distance of two components, the more plausible they are as
candidates for merging. Let C = {(j1, j2), j1 = 1, . . . , k; j2 = 1, . . . , k; j1 6= j2}
be the set of index pairs, ξ1 = argmin{KL(j1, j2), (j1, j2) ∈ C} be the index
pair of two components with the smallest KL distance, ξi = argmin{KL(j1, j2),
(j1, j2) ∈ C \ {ξ1, . . . , ξi−1}}, i = 2, . . . Write Cmerge = {ξ1, ξ2, . . .}. Note that
Cmerge = Cmerge(θ

∗) depends on θ∗. The idea is to try merging the most plausible
pairs of components until the lower bound is improved or the number of merging
operations exceeds a pre-specified number Cmax

merge.
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Merge operation To estimate the parameters of the new merging model, it is
important to make use of the previous estimate to initialize the iterative scheme.
Recall that the parameters for optimization consist of µq

βj
, Σq

βj
, µq

αj
, Σq

αj
, µq

γ

and qij for i = 1, . . . , n, j = 1, . . . , k. Suppose that two components j1 and j2 are
to be merged into a new component j′. The initial values for the new merging
model are assigned as follows. For the initial values of the new component j′,
we set

µ
q
βj′

=
q̄.j1µ

q
βj1

+ q̄.j2µ
q
βj2

q̄.j1 + q̄.j2
, Σq

βj′
=

q̄.j1Σ
q
βj1

+ q̄.j2Σ
q
βj2

q̄.j1 + q̄.j2
,

µq
αj′

=
q̄.j1µ

q
αj1

+ q̄.j2µ
q
αj2

q̄.j1 + q̄.j2
, Σq

αj′
=

q̄.j1Σ
q
αj1

+ q̄.j2Σ
q
αj2

q̄.j1 + q̄.j2
,

with q̄.j =
1
n

∑n
i=1 qij and qij′ = qij1 +qij2 . The initial values for the parameters

in the other components are fixed at the current estimate. Now the iterative
scheme in Algorithm 1 can be readily performed to estimate the parameters of
the new model. Note that the number of components now is reduced by 1.

Split criterion A component is considered unreliable and a plausible split
candidate if it has a small likelihood, i.e. it is poorly fitted and should be split.
The reliability of component j is defined as

R(j) =
1

n

n
∑

i=1

log p̂j(xi) =
1

n

n
∑

i=1

(

−
1

2
log(2π)−

1

2
w′

iµ
q
αj

−
(yi − v′

iµ
q
βj
)2

2 exp(w′
iµ

q
αj )

)

,

where p̂j(x) is the density function of the jth component. The smaller the R(j),
the less reliable is component j and the more plausible it is as a candidate for a
split. Let η1 = argmin{R(j), j = 1, . . . , k}, ηi = argmin{R(j), j = 1, . . . , k; j 6=
η1, . . . , ηi−1}, i ≥ 2. Write Csplit = Csplit(θ

∗) = {η1, η2, . . .}. As in the merge
step, we split the most plausible components until the lower bound is improved
or the number of split operations exceeds a pre-specified number Cmax

split.

Split operation Denote the component to be split by j′ and the new com-
ponents by j1 and j2. We set qij1 = qij2 = qij′/2, µq

αj1
= µq

αj2
= µq

αj′
,

Σq
αj1

= Σq
αj2

= Σq
αj′

, and keep the other qij , µq
αj

and Σq
αj

unchanged. Then we

are able to perform the updates in Algorithm 1 for all parameters. The number
of components is now increased by 1.

We now summarize our final algorithm for estimating the RDE-MHN model,
which is able to deal with the local maxima problem, while automatically de-
termining the number of components.

Algorithm 2: Split-and-merge variational approximation

1. Perform Algorithm 1. After convergence, denote the estimated parameters
by θ∗ and the maximized lower bound by L∗.

2. Compute the sets Cmerge(θ
∗) and Csplit(θ

∗).



Flexible regression density estimation 1179

3. For imerge = 1 : Cmax
merge do

• Merge two components with the index pair ξimerge
. Let L∗

merge, θ
∗
merge

be the new lower bound and parameter estimate.

• If L∗
merge > L∗ halt the for loop.

4. For isplit = 1 : Cmax
split do

• Split the components ηisplit . Let L
∗
split, θ

∗
split be the new lower bound

and parameter estimate.

• If L∗
split > L∗ halt the for loop.

5. If L∗
merge > max{L∗

split, L
∗} then L∗ := L∗

merge, θ
∗ := θ∗

merge and go back
to Step 2.
If L∗

split > max{L∗
merge, L

∗} then L∗ := L∗
split, θ

∗ := θ∗
split and go back to

Step 2.

4. Model selection

This section considers the problem of selecting significant covariates out of s
given potential covariates x1, . . . , xs for inclusion in the mean, variance and
gating models. Write C = {1, . . . , s} for the index set of the potential covariates.
Before presenting our strategy for ranking variables for inclusion, we discuss
the model prior. Let πm

i , πv
i , πg

i be the prior probabilities for inclusion of
covariate xi in the mean, variance and gating models, respectively, and write
πm = (πm

1 , . . . , πm
s )′, πv = (πv

1 , . . . , π
v
s )

′, πg = (πg
1 , . . . , π

g
s )

′. Suppose that we
have a current model M with Cm, Cv, Cg the index sets of covariates in its
mean, variance and gating models, respectively. We assume

p(Cm|πm) =
∏

i∈Cm

πm
i

∏

i6∈Cm

(1− πm
i ),

p(Cv|π
v) =

∏

i∈Cv

πv
i

∏

i6∈Cv

(1 − πv
i ),

p(Cg|π
g) =

∏

i∈Cg

πg
i

∏

i6∈Cg

(1− πg
i ),

and that

p(M) = p(Cm, Cv, Cg|π
m,πv,πg) = p(Cm|πm)p(Cv|π

v)p(Cg|π
g). (4.1)

If no such detailed prior information is available on the inclusion probability for
each predictor (which is the case we consider in this paper), one may assume
that πm

1 = · · · = πm
s = πm, πv

1 = · · · = πv
s = πv and πg

1 = · · · = πg
s = πg (we

note a slight abuse of notation here), then

p(Cm|πm) = π|Cm|
m (1− πm)s−|Cm|,

p(Cv|πv) = π|Cv|
v (1− πv)

s−|Cv|, (4.2)

p(Cg|πg) = π|Cg|
g (1− πg)

s−|Cg |,
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where for a set A, |A| denotes its cardinality. The hyperparameters πm, πv, πg ∈
[0, 1] are user-specified, and small values encourage parsimonious models. By
setting πm = πv = πg = 1/2, one can set the uniform prior on the inclusions of
covariates. Another option is to put uniform distributions on the π’s. Then

p(Cm) =

∫ 1

0

p(Cm|πm)dπm ∝

(

s

|Cm|

)−1

, (4.3)

and similarly p(Cv) ∝
(

s
|Cv|

)−1
, p(Cg) ∝

(

s
|Cg|

)−1
. This prior agrees with the

one used in the extended BIC proposed by [6]. It has the advantage of requiring
no hyperparameter while still encouraging parsimony. We recommend using this
as the default prior.

We now consider adding a single variable in either the mean, variance or
gating model, and then a one step update to the current variational lower bound
in the proposed model as a computationally thrifty way of ranking the predictors
for their possible inclusion. Write XCm

, XCv
, XCg

for the corresponding design

matrices and in particular x′
iCm

for the ith row of XCm
; βCm

j ,αCv

j ,γ
Cg

j for the
current coefficient vectors in the mean, variance and gating models of the jth
component; βl

j , α
l
j , γ

l
j for the new coefficients with respect to a new covariate xl

in the jth component.
Our method for ranking covariates for inclusion in the mean and variance

models is an extension of the ranking algorithm proposed in [20] who considered
the RDE-MHN(1) model only. The idea of ranking covariates for inclusion in
the gating model is a non-trivial contribution of the present paper.

4.1. Ranking covariates in the mean model

We first consider the effect of adding a new covariate xl with l 6∈ Cm to the
mean model of the k components. It is also possible to consider adding different
covariates to different components, but this complicates the model somewhat.
We consider a variational approximation to the posterior of the form

q(θ) = q(δ)q(α)q(γ)

k
∏

j=1

q(βCm

j )q(βl
j),

with q(βCm

j ) ∼ N(µq

β
Cm
j

,Σq

β
Cm
j

) and q(βl
j) ∼ N(µq

βl
j

, (σq

βl
j

)2). From (A.1) in

Appendix A, it is easy to see that the lower bound of the new model with xl in
the mean model (of all components) can be written as

Lnew = Lold +
1

2

k
∑

j=1

{

1 + log
(σq

βl
j

)2

(σ0
βj
)2

−
(σq

βl
j

)2

(σ0
βj
)2

−
(µq

βl
j

)2

(σ0
βj
)2

−

−

n
∑

i=1

qij

x2
il(σ

q

βl
j

)2 + x2
il(µ

q

βl
j

)2 − 2xilµ
q

βl
j

(yi − x′
iCm

µ
q

β
Cm
j

)

exp(x′
iCv

µ
q

α
Cv
j

− 1
2x

′
iCv

Σq

α
Cv
j

xiCv
)

}

, (4.4)
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where Lold is the lower bound of the current model (i.e., the model without
covariate xl in its mean model) and µ

q

α
Cv
j

, Σq

α
Cv
j

are parameters in the varia-

tional posterior of the variance model. We maximize the lower bound (4.4) with
respect to new parameters µq

βl
j

, (σq

βl
j

)2 when the others are fixed at the current

fit. Writing µ̂q

βl
j

, (σ̂q

βl
j

)2 for the optimizers, we have that

(σ̂q

βl
j

)2 =





1

(σ0
βj
)2

+

n
∑

i=1

qij
x2
il

exp(x′
iCv

µ
q

α
Cv
j

− 1
2x

′
iCv

Σq

α
Cv
j

xiCv
)





−1

and

µ̂q

βl
j

= (σ̂q

βl
j

)2
n
∑

i=1

qij

xil(yi − x′
iCm

µ
q

β
Cm
j

)

exp(x′
iCv

µ
q

α
Cv
j

− 1
2x

′
iCv

Σq

α
Cv
j

xiCv
)
, j = 1, . . . , k.

Substituting these back to the lower bound (4.4) and writing LM
l (Cm, Cv, Cg)

for the optimized lower bound gives

LM
l (Cm, Cv, Cg) = Lold +

1

2

k
∑

j=1



log
(σ̂q

βl
j

)2

(σ0
βj
)2

+
(µ̂q

βl
j

)2

(σ̂q

βl
j

)2



 . (4.5)

The superscript M means the lower bound is associated with the mean model.
The most plausible variable for inclusion in the mean model is the one that max-
imizes the above lower bound (over l ∈ C \Cm). Note that we only use (4.5) for
ranking covariates for inclusion, the actual inclusion is based on the improve-
ment of the lower bound fitted using the full variational algorithm described in
the previous section.

In the full variational approximation fit, the “naive” estimates µ̂q

βl
j

, (σ̂q

βl
j

)2

can be used to initialize the new parameters with respect to new covariate xl in
the mean model, while all the other parameters can be initialized by the current
estimates. This so-called warm start (i.e., the output of a previous fit is used for
initial values in a subsequent fit) is very important in variational approximation,
especially in the complex context of mixture models, and makes the variational
approximation procedure more stable and faster [20]. We observe that, with the
warm start, Algorithm 1 converges very quickly, often after just a few iterations.

4.2. Ranking covariates in the variance model

We now consider adding a new covariate xl with l 6∈ Cv to the variance model.
As in the mean model, we consider a variational approximation to the posterior
of the form

q(θ) = q(δ)q(β)q(γ)

k
∏

j=1

q(αCv

j )q(αl
j),
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where q(αCv

j ) ∼ N(µq

α
Cv
j

,Σq

α
Cv
j

) and q(αl
j) ∼ N(µq

αl
j

, (σq

αl
j

)2). If we do not

assume a particular parametric form for q(αl
j), the optimal choice is [see, for

example, 21]

qopt(α
l
j) ∝ exp

(

E[log p(αl
j) + log p(y|θ)]

)

∝ exp

(

−
1

2
log(σ0

αj
)2 −

(αl
j)

2

(σ0
αj
)2

−
1

2

n
∑

i=1

qijx
′
iCv

µ
q

α
Cv
j

−
1

2

n
∑

i=1

qijxilα
l
j

−
1

2

n
∑

i=1

qij

(yi − x′
iCm

µ
q

β
Cm
j

)2 + x′
iCm

Σq

β
Cm
j

xiCm

exp(x′
iCv

µ
q

α
Cv
j

+ xilαl
j −

1
2x

′
iCv

Σq

α
Cv
j

xiCv
)

)

,

where the expectation is with respect to all parameters except αl
j , j = 1, . . . , k.

Therefore, to obtain good estimates for µq

αl
j

and (σq

αl
j

)2, we make a normal

approximation to qopt(α
l
j). Then the mean and variance of the normal approx-

imation are the mode of qopt(α
l
j) and the negative inverse Hessian at the mode

of log qopt(α
l
j), respectively. We have

µ̂q

αl
j

=
1

2

n
∑

i=1

qijxil(vi − 1)
/

(

1

(σ0
αj
)2

+
1

2

n
∑

i=1

qijx
2
ilvij

)

,

(σ̂q

αl
j

)2 =





1

(σ0
αj
)2

+
1

2

n
∑

i=1

qijx
2
ilvi

exp(xilµ̂
q

αl
j

)





−1

,

where

vij =
(yi − x′

iCm
µ
q

β
Cm
j

)2 + x′
iCm

Σq

β
Cm
j

xiCm

exp(x′
iCv

µ
q

α
Cv
j

− 1
2x

′
iCv

Σq

α
Cv
j

xiCv
)

, j = 1, . . . , k, i = 1, . . . , n.

To obtain a more accurate estimate of the mode, in our implementation, we
use Newton’s method initialized with µ̂q

αl
j

. Note that Newton’s method is very

convenient here because the second derivative is available in closed form. We
found that µ̂q

αl
j

is a very good approximation and the Newton iteration often

stops after a few iterations.
From (A.1), the new lower bound can be written as

LV
l (Cm, Cv, Cg)

= const +
1

2

k
∑

j=1

{

log
(σ̂q

αl
j

)2

(σ0
αj
)2

−
(σ̂q

αl
j

)2

(σ0
αj
)2

−
(µ̂q

αl
j

)2

(σ0
αj
)2

−
n
∑

i=1

qijxilµ̂
q

αl
j

−

n
∑

i=1

qij

(yi − x′
iCm

µ
q

β
Cm
j

)2 + x′
iCm

Σq

β
Cm
j

xiCm

exp(x′
iCv

µ
q

α
Cv
j

− 1
2x

′
iCv

Σq

α
Cv
j

xiCv
+ xilµ̂

q

αl
j

− 1
2x

2
il(σ̂

q

αl
j

)2)

}

,

(4.6)



Flexible regression density estimation 1183

where the constant term does not depend on the new parameters with respect to
xl, i.e., µ̂

q

αl
j

and (σ̂q

αl
j

)2. The superscript V means the lower bound is associated

with the variance model. As in the mean model, we only use (4.6) for ranking
covariates for inclusion and the actual inclusion is based on the full variational
approximation fit. Also, the estimates µ̂q

αl
j

and (σ̂q

αl
j

)2 can be used to create a

warm start in the full variational approximation fit.

4.3. Ranking covariates in the gating model

Using lower bounds for ranking covariates for inclusion in the gating model
is more complex. We proceed by using a measure of association between the
response and the covariates for ranking for inclusion. The measure we use is the
distance correlation introduced recently by [26]. The distance correlation is a
measure of general, not just linear, dependence between two random vectors of
arbitrary dimensions and has the property that it is zero if and only if the two
random vectors are independent. This new definition of correlation measure is
very interesting, useful and widely applicable. The reader is referred to [26] for
the definition and properties of this association measure.

Let x
l̂
be the covariate that has highest (sample) distance correlation with

y among xl with l ∈ C \ Cg. If the covariate space of the gating model is
completely separate from that of the mean and variance models, then this high
correlation of x

l̂
suggests that x

l̂
is the most plausible covariate to be added

to the gating model, and it will be selected if its inclusion to the gating model
improves the lower bound. The situation is more complex if the covariate spaces
of the three models overlap or are the same, which is the case we consider in this
paper. In this situation care must be taken in considering the inclusion of x

l̂
. We

proceed as follows. If x
l̂
has not been included in the mean or variance model, i.e.

l̂ 6∈ Cm ∪Cv, then x
l̂
will be added to the gating model if its inclusion improves

the lower bound. Suppose that x
l̂
has already been included in the mean or

variance model. It will be added to the gating model as well if its inclusion
improves the lower bound. Otherwise, the high correlation of x

l̂
is likely to be

caused via other models rather than the gating model, therefore we consider for
inclusion the covariate xl′ which has second highest distance correlation with
y among the covariates in C \ Cg. This consideration for inclusion is repeated
until a covariate is selected or no xl′ exists.

We give below pseudo-code for the variable selection strategy. Let τl =
dCor(y, xl) be the sample distance correlation, i.e. the distance correlation cal-
culated from the data, between the response y and covariate xl [see 26]. Write
τ = (τ1, . . . , τp)

′.

Set τl = −∞ if l ∈ Cg, l = 1, . . . , s

stop=FALSE

While not stop do

l̂ = argmax{τl, l = 1, . . . , s}
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If τ
l̂
= −∞ then stop=TRUE

else

• If l̂ 6∈ Cm ∪ Cv: set stop=TRUE, add x
l̂
to the gating model if its

inclusion improves the lower bound.

• If l̂ ∈ Cm ∪Cv: if inclusion of x
l̂
improves the lower bound then add x

l̂

to the gating model and set stop = TRUE, otherwise set τ
l̂
= −∞.

end else

end while

Note that it is still possible to obtain a warm start in the variational approx-
imation fit. To initialize the variational approximation fit in Algorithm 1, we
start with Step 6 to update µq

γ , while all other parameters are initialized by the
current estimates.

4.4. The full algorithm for variable and component selection

We now summarize our ranking algorithm for variable selection combined with
the split-and-merge variational approximation for component selection. We de-
note the algorithm by RSMVA. Recall that we denote by Cm, Cv, Cg the index
sets of current covariates in the mean, variance and gating models, respectively.
We write L(Cm, Cv, Cg) for the lower bound optimized by the full variational ap-
proximation fit procedure described in Section 3. Write C+l

m for the set Cm∪{l}
and similarly for Cv and Cg. Denote by p(Cm, Cv, Cg) the prior of the model
with index sets Cm, Cv, Cg. Note that for simplicity of discussion in Sections
4.1-4.3, we did not mention the model prior.

Algorithm 3: RSMVA algorithm for variable selection and component

selection

1. Initialize Cm, Cv, Cg and set Lopt := L(Cm, Cv, Cg).
2. Repeat the following steps until stop

(a) Store Cold
m := Cm, Cold

v := Cv and Cold
g := Cg

(b) Let l̂ = argmaxl∈C\Cm
{LM

l (Cm, Cv, Cg)}. If

L(C+l̂
m , Cv, Cg) + p(C+l̂

m , Cv, Cg) > Lopt + p(Cm, Cv, Cg)

then set Cm := C+l̂
m , Lopt = L(C+l̂

m , Cv, Cg).

(c) Let l̂ = argmaxl∈C\Cv
{LV

l (Cm, Cv, Cg)}. If

L(Cm, C+l̂
v , Cg) + p(Cm, C+l̂

v , Cg) > Lopt + p(Cm, Cv, Cg)

then set Cv := C+l̂
v , Lopt = L(Cm, V+l̂

, Cg).

(d) Set τl = dCor(y, xl) if l 6∈ Cg else τl = −∞, l = 1, . . . , s, and set
stop=FALSE.
While not stop do
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l̂ = argmax{τl, l = 1, . . . , s}

If τ
l̂
= −∞ then stop=TRUE

else

• If l̂ 6∈ Cm ∪ Cv: stop=TRUE. If

L(Cm, Cv, C
+l̂
g ) + p(Cm, Cv, C

+l̂
g ) > Lopt + p(Cm, Cv, Cg)

then set Cg := C+l̂
g , Lopt := L(Cm, Cv, C

+l̂
g ).

• If l̂ ∈ Cm ∪ Cv: If

L(Cm, Cv, C
+l̂
g ) + p(Cm, Cv, C

+l̂
g ) > Lopt + p(Cm, Cv, Cg)

then set Cg := C+l̂
g , Lopt := L(Cm, Cv, C

+l̂
g ) and stop=TRUE,

otherwise set τ
l̂
= −∞.

end else

end while

(e) If (Cm = Cold
m and Cv = Cold

v and Cg = Cold
g ) then stop, else return

to (a).

This RSMVA algorithm was implemented in R and the code is available upon
contacting the authors.

Remarks The RSMVA algorithm does not consider models of all sizes; it
stops when important covariates have been included, so that the computations
just involve low-dimensional matrices. This makes our method work in high-
dimensional problems in which, amongst a large number of potential covariates,
only a few are significant. Note that in such situations, the full model fitting of
[19] and the MCMC approach of [28] are very time demanding if not impossible.
In the simulation studies below, we consider an example with 1000 potential
predictors.

When k = 1, the RSMVA reduces to the ranking algorithm for variable
selection in heteroscedastic linear regression proposed in [20]. Then, as noted by
[20], the ranking algorithm is similar to frequentist matching pursuit and greedy
algorithms [16, 33, 8], while having many good properties such as not requiring
any extra tuning parameter and not penalizing non-zero coefficients for doing
variable selection. The reader is referred to [20], Section 3.5, for more details.

5. Simulation study

This section considers a simulation study of our method. The data is simulated
from the following regression density model

yi =

3
∑

j=1

πj(xi)N(x′
iβj , exp(x

′
iαj)), πj(xi) =

exp(x′
iγj)

∑3
l=1 exp(x

′
iγl)

, i = 1, . . . , n,
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Table 1

True parameter vectors βj , αj , γj

β1 β2 β3 α1 α2 α3 γ1 γ2 γ3

5 2 -5 -2 -1 -1 0 1.5 1
-2 -4 3 2 -3 2 0 1 -3.5
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
4 2 -4 -1 3 -3 0 -4 1.5

Table 2

Easy example: Correctly fitted rates (%) for variable selection in the mean, variance and
gating models, for component selection and for the overall model

s n Mean Variance Gating Component Overall
5 500 100 90 80 96 76

1000 100 100 92 100 90
100 500 100 60 76 90 60

1000 100 90 86 100 84

where βj , αj , γj are in Table 1. The predictors xi = (1, x̃i)
′ are generated by

first generating x̃i from the normal distributionN(0,Σ) (with Σ specified below)
and then transforming each component into the unit interval by the cumulative
distribution function Φ(·) of the standard normal. The reason for making the
transformation is to control the magnitude of the noise levels exp(x′

iαj) and
mixing coefficients πj(xi). It is natural to always include intercepts in the three
models. The performance is measured by correctly-fitted rates for variable selec-
tion in the three models, for the selection of the number of components and for
overall model selection, over 50 replications. That is, the correctly-fitted rate
for a model is the proportion of replications that the true model is correctly
identified.

An easy example We first consider an easy problem in which the covariates
have small correlations by setting Σij = 0.5|i−j|. A low-dimensional case with
s = 5 and a higher-dimensional case with s = 100 are investigated. For the
latter, the first five entries of βj , αj , γj are the same as in Table 1, while
the rest are all zeros. Note that the full model fitting of [19] and the MCMC
approach of [28] are almost impossible with s = 100 and a full model fitting
would give a very poor fit because all of the irrelevant covariates are included.

Table 2 summarizes the simulation results for two cases, n = 500 and n =
1000. The results suggest that the RSMVA algorithm is able to correctly identify
the zero-coefficients in the mean, variance and gating models, the true number
of components as well as the true overall model. On average, the CPU time
taken for each replication is 4.5 minutes for n = 500 and 10.1 minutes for
n = 1000 in the low-dimensional case, and 5.9 and 18.7 minutes for n = 500
and n = 1000 respectively in the higher-dimensional case. The code is written
in the R language and run on an Intel Core i7-2600 3.40GHz desktop.

We also consider an example in which the data is generated from a simple
homoscedastic linear regression model, i.e. from a RDE-MHN(1) model with
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Table 3

Classical regression: Correctly fitted rates (%) for variable selection in the mean and
variance models, for component selection and for the overall model.

n σ Mean Variance Component Overall
500 1 86 80 94 80

2 70 66 90 64
1000 1 100 96 100 96

2 100 90 100 90

Table 4

Harder example: Correctly fitted rates (%) for variable selection in the mean, variance and
gating models, for component selection and for the overall model.

s n Mean Variance Gating Component Overall
5 500 92 50 42 96 42

1000 100 80 72 100 68
100 500 100 42 56 86 40

1000 100 82 82 100 80

Table 5

Small-n large-s example: Correctly fitted rates (%) for variable selection in the mean,
variance and gating models, for component selection and for the overall model

Mean Variance Gating Component Overall
Easy case 96 66 76 90 64
Harder case 96 42 68 88 42

only an intercept in the variance model. The data is simulated from

yi ∼ N(x′
iβ, σ

2), i = 1, . . . , n,

with β as β1 above. The correctly-fitted rates are summarized in Table 3 for
four cases, n = 500, 1000 and σ = 1, 2. The CPU time is approximately 3.1
and 6.9 minutes for n = 500 and n = 1000 respectively for each replication.
These results suggest that the RSMVA algorithm is able to reach a simple
homoscedastic linear regression model if such a model is appropriate.

A harder example We now consider a harder example in which the covari-
ates have high correlations by setting Σij = 0.9|i−j|. The simulation results are
summarized in Table 4. The correctly-fitted rates for the variance and gating
models are now smaller than those in Table 2. This is because fitting the vari-
ance and gating models is much harder than fitting the mean. However, as we
observed, the algorithm misidentifies only one or two covariates with small mean
squared errors in the coefficient estimation (results not shown).

A small-n large-s example We finally consider an example in which the
number of potential covariates s is much larger than the number of observa-
tions n. We set s = 1000 and n = 500 and consider two cases as before: the
easy case with Σij = 0.5|i−j| and the harder case with Σij = 0.9|i−j|. The data
generating process is similar to those in the previous examples. Table 5 summa-
rizes the correctly-fitted rates and shows that the performance is very similar
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to the case with s = 100 and n = 500. This suggests that the large number of
irrelevant covariates does not have much influence, they are easily dropped out
by the ranking algorithm. The CPU time taken is about 51.7 minutes for each
replication.

6. Applications

We first describe the log predictive density score considered by [28] and [19] to
measure the performance of a model. Suppose we split the data y into two parts:
future or validation set yF and training set y\F . The log predictive density score
is defined by

LPDS = log p(yF |y\F ), (6.1)

where p(yF |y\F ) =
∫

p(yF |θ)p(θ|y\F )dθ can be approximated by Monte Carlo
samples from the posterior p(θ|y\F ) which in turn can be replaced with the
variational posterior q(θ). A simpler method to estimate p(yF |y\F ) is the plug-

in method in which p(yF |y\F ) is estimated by p(yF |θ̂(y\F )) with θ̂(y\F ) a
point estimate, based on data y\F , of the model parameters. We use the plug-in
method in the following examples.

If the observations in y are exchangeable and if we can randomly split y into
roughly B equal parts F1, . . . , FB , then the B-fold cross-validation log predictive
density score is defined as

LPDS =
1

B

B
∑

i=1

log p(yFi
|y\Fi

). (6.2)

Note that for time series data y1:T , the cross-validation idea in definition (6.2)
is not natural; however the log predictive density score in (6.1) can be still well-
defined as follows. If y1:t is the training set and yt+1:T is the validation set,
predictive performance is measured by

LPDS = log p(yt+1:T |y1:t) =

T−t
∑

i=1

log p(yt+i|y1:t+i−1), (6.3)

with p(yt+i|y1:t+i−1) =
∫

p(yt+i|θ,y1:t+i−1)p(θ|y1:t+i−1)dθ.
A disadvantage of using (6.3) is that we lose some information contained in

the validation sets in the learning processes. Furthermore, using (6.2) or (6.3)
as a model selection criterion may be time consuming in some cases.

6.1. Diabetes data

We apply our method to analyze a benchmark data set on the progression
of diabetes [8, 20]. Ten baseline variables, age, sex, body mass index, average
blood pressure and six blood serum measurements, were obtained for each of
n = 442 diabetes patients, as well as the response of interest y, a quantitative
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measure of disease progression one year after baseline. Previous analysis in the
literature assumed a RDE-MHN(1) model [8, 20]. Our goal is to see if relaxing
the assumption of k = 1 components gives us more flexibility in exploring the
structure in the conditional distribution of y, and leads to a model with better
predictive performance.

The RSMVA algorithm selects a RDE-MHN(3) model with homoscedastic
components, only intercepts in the mean and variance models, and covariates 3
and 9 in the gating model. We call this model A. If we fix k = 1, the RSMVA
algorithm (this is the VAR algorithm of Nott et al. 2011b) selects an intercept
and covariates 2, 3, 7 and 9 to the mean model, and only an intercept to the
variance model. We call this model B. The 10-fold cross-validation log predictive
density score of model A is −236.7 and of model B is −241.3. This suggests that
model A has better predictive performance than model B.

Figure 1 shows the fitted RDE-MHN model with 3 homoscedastic compo-
nents. We have separated the observed responses into clusters according to
which component each response is most likely to lie in. The planes show the
fitted means which are 149.7, 72.4 and 259.7. The right column shows the fitted
mixing probabilities. Figure 2 shows the plots of standardized residuals versus
fitted values for the two models RDE-MHN(3) and RDE-MHN(1). The RDE-
MHN(3) seems to give a more satisfying residual plot, because the absolute
residuals of the RDE-MHN(1) model increase when the fitted values increase.
These pictures tell us visually that the distribution of y is better modeled by a
mixture of 3 components. The CPU time taken to run the RSMVA algorithm
to get the final model in this example is 3.9 minutes.

6.2. Rainfall runoff emulation model

This application is concerned with model emulation of a deterministic rain-
fall runoff model. The goal of model emulation is to replace a computation-
ally expensive deterministic model with a computationally cheap statistical
model/emulator which may allow similar results to be achieved in a manageable
computational time. The emulation model we consider is the Australian Water
Balance Model (AWBM) of [3]. The reader is referred to [19] for a more detailed
description. We are concerned with estimating the distribution of the AWBM
streamflow at a time of peak rainfall (response y) as a function of three AWBM
parameters/covariates: the maximum storage capacity S (x1), the baseflow re-
cession factor K (x2) and the base flow index BFI (x3). We have an available
dataset obtained for 500 different values of parameters S,K and BFI. Following
[19], we also add independent normal random noise with a standard deviation
0.01 to the response y to avoid degeneracies in the variance model in regions of
the space where the response tends to be identically zero.

[19] emulated the AWBM streamflow response as a function of S and K (BFI
was found insensitive to the response). They fitted five RDE-MHN models to
the data. The first four models (named A, B, C and D) have k = 2, 3, 4 and
5 components respectively with both covariates (apart from an intercept) in
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Fig 1. Diabetes data: The left column shows the fitted component means as well as the clusters
for 442 patients. The right shows the fitted mixing probabilities.

the mean, variance and gating models. The fifth, model E, has k = 4 compo-
nents with only an intercept in the variance model. Based on the 10-fold cross-
validation log predictive density scores, [19] choose model C (among the five
considered). The 10-fold cross-validation log predictive density score of model
C is −57.4. This value is slightly different from the value reported in [19], due
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Fig 2. Diabetes data: Plots of standardized residuals vs fitted responses. For the RDE-MHN(3)
model, we first separate responses into clusters and use the fitted means for prediction.

to the randomness in adding random noise to the responses, the difference in
the use of priors and the randomness of the partition in the cross-validation.

If we fix the covariates for inclusion in the mean, variance and gating mod-
els as considered in the four models A-D above and let the split-and-merge
variational approximation algorithm (Algorithm 2) determine the number of
components, then k = 4 is selected, which is consistent with the finding of [19].
The CPU time taken is 1.6 minutes. In order to find the best model C, [19]
compute the cross-validation log predictive density scores for the four models.
As reported in their Table 2, the CPU times taken is 16.3 minutes for variational
approximation and 5.8 hours for MCMC. Our method is roughly 10 and 216
times faster than the variational approximation and MCMC methods based on
log predictive density scores. It should however be noted that these differences
may be partly due to the different CPU’s used to carry out the computations
in the two papers.

We now consider the problem of variable selection and component selection
simultaneously. The RSMVA algorithm then selects a RDE-MHN(4) model with
both covariates in the mean and variance models and only covariate S in the
gating model. The CPU time taken is 4.38 minutes. We call this model F, whose
10-fold cross-validation log predictive density score is −52.9. This suggests that
model F has better predictive performance than model C. This also illustrates
that variable selection helps improve on log predictive density scores. Figure 3
summarizes the fitted RDE-MHN(4) model. These figures tell us visually the
structure of the data.
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Fig 3. Rainfall runoff model: The fitted component means (first column), standard deviations
(second column) and mixing probabilities (last column).

6.3. Standard & Poor’s 500 index

We reanalyze the data set of returns to the Standard & Poor’s 500 stock market
index considered in [10], [28] and [19] who must rely on future observations to
do model selection. This data consists of 4646 daily returns from January 1,
1990 to May 29, 2008. The response yt is log (pt/pt−1), with pt the closing index
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on day t. The goal is to flexibly estimate the distribution of yt given the data
y1:t−1 up to time t − 1. Modeling p(yt|y1:t−1) is challenging because it is well
known in the economics literature that the distribution of yt is non-standard
and has heavy tails. The distribution of yt would therefore not be appropriately
modeled by a simple parametric density such as a normal.

We can set up the density estimation problem of p(yt|y1:t−1) in terms of
a regression density estimation problem where the covariates are functions of
lagged response values. We refer the reader to [28] for a list and definition of
potential covariates. [19] estimate the density function of yt by four RDE-MHN
models in which the mean model contains only an intercept, the variance and
gating models contain an intercept and covariates RLastWeek, RLastMonth and
MaxMin95 and k = 1, 2, 3 and 4 experts. Using a validation data set consisting of
199 future observations, they report that the RDE-MHN(2) model is adequate.
The CPU time taken by their approach (including times for initial fit and for
computing the log predictive density scores) is 5.4 hours. Our split-and-merge
variational approximation algorithm (Algorithm 2) gives the same result, with
a CPU time of 9.5 minutes. Note that our method for selecting the number of
experts k does not rely on future observations.

We now let the RSMVA algorithm itself select important variables as well as
the number of components. As usual in the literature on stock market return
data where a mean relation is not expected, we restrict the mean model to
include only an intercept. Our algorithm then selects a RDE-MHN model similar
to the model found adequate above, except that covariate RLastWeek drops
out in the variance model. The CPU time is 2.1 hours. This model has a log
predictive density score of −472.2, which has slightly less predictive performance
than the model suggested by [19] with a log predictive density score of −471.1.

7. Conclusions

Our paper describes a split-and-merge variational approximation strategy for
fitting the RDE-MHN model. The approach automatically determines the num-
ber of components and is able to overcome the local maxima problem in fitting
mixture models. We also present a fast greedy algorithm for variable selection.
The full algorithm, RSMVA, provides a computationally thrifty path following
strategy for doing simultaneous variable selection, parameter estimation and
component selection. The RSMVA is able to reach a simple model if such a
model is warranted, and in the special case of k = 1 components, reduces to
well-studied algorithms in the literature. The proposed methodology applies to
high-dimensional problems.

The RSMVA algorithm can be regarded as a forward greedy algorithm be-
cause it considers adding at each step another covariate to the current model.
A drawback, as in many other greedy forward algorithms, is that if a predictor
has been wrongly selected then it cannot be removed anymore. Adding a back-
ward elimination process would help correct mistakes made in earlier forward
selection steps. This research direction is currently in progress.
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Appendix section

Appendix A

It can be shown [19] that the lower bound L on log p(y) is

L = log p(µq
γ)−

n

2
log(2π) +
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∑
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∑
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∑
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. (A.1)

This needs to be optimized with respect to µ
q
βj
, Σq

βj
, µq

αj
, Σq

αj
for j = 1, . . . , k,

µq
γ and qij for i = 1, . . . , n, j = 1, . . . , k.
Maximization with respect to µ

q
βj
, with other terms held fixed, leads to

µ
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=
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, (A.2)

where V = (v′
1, . . . ,v

′
n)

′ is the design matrix for the mean model, and Dj is
the diagonal matrix with ith entry qij/ exp(w
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wi), j = 1, . . . , k.
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. (A.3)

If no parametric form for the variational posterior q(αj) is assumed then the
optimal choice for q(αj) is [see, for example, 21]

q(αj) ∝ exp
(

E(log[p(θ)p(y|θ)])
)

,

where the expectation is with respect to all parameters except αj . It can be
shown that

q(αj) ∝ exp
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, (A.4)
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which takes the form of the posterior (apart from a normalization constant)
in a Bayesian generalized linear model (GLM) with gamma response and log
link, coefficient of variation

√

2/qij , responses λij = (yi − v′
iµ

q
βj
)2 + v′

iΣ
q
βj
vi,

i = 1, . . . , n, and the log of the mean response being w′
iαj . The prior in this

Bayesian GLM isN(µ0
αj
,Σ0

αj
). If we use a quadratic approximation to log q(αj),

then this results in a normal approximation to q(αj) with the mean and variance
the posterior mode and the negative inverse Hessian of the log posterior at
the mode. The computations required are standard ones in fitting a Bayesian
GLM. Write Λ(αj) (as a function of αj) for the diagonal matrix with entries
1
2λij exp(−w′

iαj), i = 1, . . . , n. With µq
αj

the posterior mode, we obtain for Σq
αj

the expression

Σq
αj

=
(

W ′Λ(µq
αj
)W +Σ0

αj

−1
)−1

, (A.5)

withW = (w′
1, . . . ,w

′
n)

′ the design matrix for the variance model. Maximization
with respect to qij is easy. Letting

Tij = exp

(

−
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,

we have that

qij =
pijTij

∑k
l=1 pilTil

. (A.6)

Finally, maximization of the lower bound L with respect to µq
γ is equivalent to

maximization of log p(µq
γ) +

∑

i,j qij log pij(µ
q
γ). This is the log posterior in a

Bayesianmultinomial regression with a normal prior on the regression parameter
µq
γ and with ith response (qi1, . . . , qik)

′. Although the response vectors are not in
the typical multinomial form, the usual iterative optimization algorithms can be
used to find the mode. The Newton method for fitting this Bayesian multinomial
regression model is presented in Appendix B.

We now summarize the above optimization process. After initializing the
parameters, the following iterative scheme is performed.

Algorithm 1: Maximization of the variational lower bound

1. Update µ
q
βj
, j = 1, . . . , k as in (A.2).

2. Update Σq
βj
, j = 1, . . . , k as in (A.3).

3. Update µq
αj

as the posterior mode in the Bayesian gamma GLM (A.4).
4. Update Σq

αj
, j = 1, . . . , k as in (A.5).

5. Update qij as in (A.6), i = 1, . . . , n, j = 1, . . . , k.
6. Update µq

γ as the posterior mode in a Bayesian multinomial regression
with normal prior N(µ0

γ ,Σ
0
γ) and ith response (qi1, . . . , qik)

′.
7. Repeat steps 1-6 until the increase in the variational lower bound (A.1) is

less than some user-specified tolerance.

To initialize the algorithm, [19] first perform a k-means clustering algorithm to
cluster n vectors (yi,vi)i=1,...,n into k clusters, then assign 1 to qij if the ith
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observation lies in cluster j and 0 otherwise. For each cluster j, an ordinary least
squares fit of yi to predictors vi is performed to get an estimate β̂j of βj and

residuals ri = (yj −v′
iβ̂j)

2, then an initial estimate for µq
αj

and Σq
αj

is obtained
by fitting log ri to the predictors wi. The iterative scheme in Algorithm 1 is now
ready to be performed for all parameters. In our experience, the final estimate
of the parameters at convergence is typically insensitive to the initial value of
qij . However, a good initial value makes the algorithm converge quickly.

We now discuss our choice of the hyperparameters. For simplicity, we set
µ0

βj
= 0, µ0

αj
= 0, µ0

γ = 0 and Σ0
βj

= (σ0
βj
)2I, Σ0

αj
= (σ0

αj
)2I, Σ0

γ = (σ0
γ)

2I

with I the identity matrix. The hyperparameters (σ0
βj
)2, (σ0

αj
)2 and (σ0

γ)
2 can

be estimated by empirical Bayes. The log posterior for these hyperparameters
is (apart from an independent constant)

log p((σ0
βj
)2, (σ0

αj
)2, (σ0

γ)
2) + log p(y|(σ0

βj
)2, (σ0

αj
)2, (σ0

γ)
2) (A.7)

where the second term can be approximated by the lower bound (A.1). If we
assume independent inverse gamma priors, IG(a, b), for these parameters, then
maximizing (A.7) leads to

(σ0
βj
)2 =

b+ 1
2µ

q
βj

′
µ

q
βj

+ 1
2 tr(Σ

q
βj
)

a+ 1 + p
2

, j = 1, . . . , k,

(σ0
αj
)2 =

b+ 1
2µ

q
αj

′µq
αj

+ 1
2 tr(Σ

q
αj
)

a+ 1 + q
2

, j = 1, . . . , k,

(σ0
γ)

2 =
b+ 1

2µ
q
γ
′µq

γ

a+ 1 + (k−1)r
2

.

These updates can be added to Algorithm 1 given above.

Appendix B

We now present the Newton method for fitting a Bayesian multinomial re-
gression model with a normal prior. Let y1, . . . ,yn ∈ IRk be n multinomial-
type responses with k categories and z1, . . . , zn ∈ IRp be vectors of covari-
ates. Note that in the application to find the mode µq

γ in step 6 of Algorithm
1, the ith pseudo-response vector is (qi1, . . . , qik)

′. Write Y = (y′
1, . . . ,y

′
n)

′,
Z = (z′

1, . . . , z
′
n)

′ and Y ∗ as the matrix Y without the first column. The goal
is to minimize the negative of the log of the posterior

− log p(γ|Y ) ∝ −

n
∑

i=1

k
∑

j=1

yij log pij(γ) +
1

2
(γ − µ0

γ)
′Σ−1

0 (γ − µ0
γ)

where

pij(γ) =
exp(z′

iγj)

1 +
∑k

s=2 exp(z
′
iγs)

, γ = (γ ′
2, . . . ,γ

′
k)

′.
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Write P = P (γ) = (pij(γ)) for the n × (k − 1) matrix with entries pij(γ),
i = 1, . . . , n, j = 2, . . . , k. The gradient can then be written as

u(γ) := −
∂ log p(γ|Y )

∂γ
= vec(Z ′(P − Y ∗)) + Σ−1

0 (γ − µ0
γ)

with vec(·) the vectorization operator. The Hessian is of the form

H(γ) := −
∂2 log p(γ|Y )

∂γ∂γ′
= Γ+ Σ−1

0

where Γ = Γ(γ) is a (k − 1) × (k − 1) block matrix with the (i, j) block of the
form

γij =

{

Z ′diag(pi ⊗ (pi − 1))Z, if i = j

−Z ′diag(pi ⊗ pj)Z, if i 6= j

where pj is the jth column of P , 1 is the vector of 1’s and ⊗ is the direct
product. The Newton method for estimating the mode of p(γ|Y ) is as follows.

• Initialization: Set starting value γ(0).
• Iteration: For k = 1, 2, . . . , update γ(k) = γ(k−1) −H−1(γ(k−1))u(γ(k−1))
until some stopping rule is satisfied.
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