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Abstract: This paper studies the problem of local bandwidth selection
for local linear regression. It is known that the optimal local bandwidth for
estimating the unknown curve f at design point x depends on the curve’s
second derivative f ′′(x) at x. Therefore one could select the local bandwidth
h(x) at x via estimating f ′′(x). However, as typically estimating f ′′(x) is
a much harder task than estimating f(x) itself, this approach for choosing
h(x) tends to produce less accurate results. This paper proposes a method
for choosing h(x) that bypasses the estimation of f ′′(x), yet at the same
time utilizes the useful fact that the optimal local bandwidth depends on
f ′′(x). The main idea is to first partition the domain of f(x) into different
segments for which the second derivative of each segment is approximately
constant. The number and the length of the segments are assumed unknown
and will be estimated. Then, after such a partition is obtained, any reliable,
well-studied global bandwidth selection method can be applied to choose
the bandwidth for each segment. The empirical performance of the proposed
local bandwidth selection method is evaluated by numerical experiments.
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1. Introduction

Local linear regression is a popular method for nonparametric curve estima-
tion. An important aspect in its implementation is the choice for the amount of
smoothing; i.e., the selection of the so-called bandwidth. If the target curve does
not possess too much spatial variation in its structure, then it is well known that
it could be well estimated by using one single (global) bandwidth throughout
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its whole domain. However, if the curve demonstrates a large amount of spa-
tial inhomogeneities, then local bandwidth smoothing, sometimes also known
as variable bandwidth smoothing, should be used. That is, different bandwidths
are allowed to be used at different locations. This constitutes the so-called band-
width function h(x): the optimal local bandwidth h(x) for estimating the re-
gression function at location x is a function of x. The goal of this paper is to
propose a method for choosing this bandwidth function h(x).

In the literature different approaches have been proposed for choosing h(x).
The so-called plug-in approach relies on the asymptotic expression for the op-
timal bandwidth function. In this approach h(x) is obtained by replacing the
unknowns in this asymptotic expression with their estimates; e.g., see Fan and
Gijbels (1992) and Gijbels and Mammen (1998). Another popular approach,
sometimes known as the risk estimation approach, is to first construct an es-
timator of the mean squared error between the true and estimated function,
and then choose h(x) to minimize such an estimator. Examples include Fan and
Gijbels (1995), Ruppert (1997) and Doksum, Peterson and Samarov (2000).
Most recently Gluhovsky and Gluhovsky (2007) proposed a different approach,
in which h(x) is modeled as a smoothing spline and is defined as the minimizer
of a novel penalty criterion.

The proposed method of this paper is motivated by the fact that the asymp-
totic expression for the optimal bandwidth at x depends on the second derivative
of the unknown curve at x. We shall use Figure 1 to aid describing the main
ideas of its major steps. A set of noisy observations together with the true but
unknown curve are given in Figure 1(a). The noisy observations are then par-
titioned into different segments with the goal that the second derivative within
each segment is approximately constant. The number of segments and the loca-
tions of the break points (i.e., the points at which adjacent segments meet) are
automatically estimated by the minimum description length (MDL) principle
(e.g., see Rissanen, 1989, 2007). Some asymptotic properties of this segmen-
tation procedure will be provided below. See Figure 1(b) for the true second
derivative and the corresponding segmentation. The next step is to calculate a
single (global) bandwidth for each segment. These bandwidths are then joined
together to form a piecewise constant function h(x); see Figure 1(c). Notice that
this bandwidth function is smaller near the middle of the curve, indicating that
comparatively smaller bandwidths are required to recover the peak structure
around x = 0.5. In order to preserve continuity, the partial local smoothing rule
of Hall, Marron and Titterington (1995) is applied to this piecewise constant
bandwidth function to obtain a final continuous bandwidth function, which is
shown in Figure 1(d). Lastly this final bandwidth function is used to estimate
the unknown curve. The resulting curve estimate is displayed in Figure 1(e).
For comparative purposes, an estimate obtained by using a global bandwidth is
shown in Figure 1(f). This global bandwidth was chosen by the AICc method
of Hurvich, Simonoff and Tsai (1998). Observe that this “single bandwidth es-
timate”, although recovering the peak structure at x = 0.5 reasonably well,
undersmoothes the linear structures at both ends.



480 A. Aue et al.

(a) (b)

0.0 0.2 0.4 0.6 0.8 1.0

−
2

−
1

0
1

2

true function with noisy observations

x

f(
x)

0.0 0.2 0.4 0.6 0.8 1.0

−
20

−
10

0
10

20
30

segmentation based on second derivative estimation

x

f’’
(x

)

(c) (d)

0.0 0.2 0.4 0.6 0.8 1.0

0.
02

0.
04

0.
06

0.
08

0.
10

piecewise constant bandwidth function

x

h(
x)

0.0 0.2 0.4 0.6 0.8 1.0

0.
02

0.
04

0.
06

0.
08

0.
10

bandwidth function using partial local smoothing

x

h(
x)

(e) (f)

0.0 0.2 0.4 0.6 0.8 1.0

−
2

−
1

0
1

2

local bandwidth estimate

x

f(
x)

0.0 0.2 0.4 0.6 0.8 1.0

−
2

−
1

0
1

2

global bandwidth estimate

x

f(
x)

Fig 1. An illustration of the steps involved in the proposed method. Panel (a): Noisy ob-
servations (circles) and true function (solid line). Panel (b): True second derivative (solid
line) and seven segments obtained by partitioning the second derivative (vertical dotted lines
indicate break point locations). Panel (c): Piecewise constant bandwidth function (solid line).
Panel (d): Continuous bandwidth function obtained by partial local smoothing (solid line).
Panel (e): Local linear smoothing estimate (dotted line) obtained from the bandwidth func-
tion in (d). Panel (f): Local linear smoothing estimate (dotted line) with a global bandwidth.
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The rest of this article is organized as follows. The proposed method is de-
scribed in detail in Section 2. Some of its theoretical properties are provided
in Section 3. Section 4 reports numerical simulation results while concluding
remarks are offered in Section 6. Lastly technical details are delayed to the
Appendix.

2. The proposed method

2.1. Background

Suppose observed are n pairs of observations {(xi, yi)}
n
i=1 satisfying

yi = f(xi) + ǫi, x1 < · · · < xn, ǫi ∼ iid (0, σ2),

where f(x) is the unknown regression function of interest. For the moment
we assume that the design points xi’s are uniformly distributed in [a, b]; non-
uniform design densities will be discussed later. At any point x the local linear
regression estimate of f(x) is given by f̂h(x)(x) = α̂x, where α̂x, together with

β̂x, are defined as the joint minimizer of

n
∑

i=1

[yi − {αx + βx(xi − x)}]
2
Kh(x)(x− xi)

(e.g., see Fan and Gijbels, 1996, Ch. 2). In the above h(x) is the local band-
width that controls the amount of smoothing at x, K(·) is the kernel function,
and Kh(x)(x) = K{x/h(x)}/h(x). Note that we view a kernel as a symmetric
probability density function, not necessarily of bounded support.

If the goal is to minimize the expected local squared errorE{f(x)−f̂h(x)(x)}
2,

then it is well-known that the optimal choice of h(x) admits the following asymp-
totic expression (e.g., see Fan and Gijbels, 1996, Ch. 3):

hopt(x) =

[

σ2(b− a)
∫

K2(u)du

n{f ′′(x)
∫

u2K(u)du}2

]

1
5

. (1)

Observe that in this expression for hopt(x), the only quantity that depends
on x is the second derivative f ′′(x). Therefore one way to select h(x) is to
first estimate f ′′(x) and then plug-in this estimate into (1). However, as the
estimation of f ′′(x) is a much harder task than the estimation of f(x), this
approach for choosing local bandwidth tends to produce less satisfactory results.

Our proposed method for choosing h(x) will bypass the estimation of f ′′(x),
but at the same time utilize the fact that hopt(x) depends on x only through
f ′′(x). The main idea is to first partition the domain of f(x) into different
segments for which the second derivative of each segment is approximately con-
stant. Then one could use any reliable, well-studied global bandwidth selection
method to choose the bandwidth for each segment. In other words, the key is
to estimate f ′′(x) with a best fitting piecewise constant function.
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Now we return to the case when the density function for the design points
xi’s are not uniform. In this case the term (b − a) in the optimal bandwidth
expression (1) will need to be replaced by the reciprocal of the density function
at x, and an ideal segmentation of the regression function domain should take
that into account. However, our numerical experience suggests that, unless the
density function is highly skewed, the resulting segmentation using the uniform
density assumption often leads to satisfactory empirical results. Results from
simulation experiments to be reported below support this claim.

2.2. Second differencing

Fitting a piecewise constant function to f ′′(x) would have been a standard
problem if we had direct noisy observations of f ′′(x). That is, if we could observe
measurements like

y∗i = f ′′(xi) + ei, (2)

where the ei’s are iid zero mean errors. However, we do not observe such y∗i and
we suggest applying second differencing to yi to obtain “pseudo data” that play
a similar role as y∗i . In the sequel we write fi = f(xi) for all i.

We first apply a differencing operator to yi and calculate (x′
i, y

′
i) for i =

1, . . . , n− 1 as:

x′
i =

xi+1 + xi

2
, y′i =

yi+1 − yi
xi+1 − xi

=
fi+1 − fi
xi+1 − xi

+
ǫi+1 − ǫi
xi+1 − xi

.

Now apply another differencing operation to y′i and obtain (x′′
i , y

′′
i ) for i =

1, . . . , n− 2 as:

x′′
i =

x′
i+1 + x′

i

2
=

1

4
(xi+2 + 2xi+1 + xi),

y′′i =
y′i+1 − y′i
x′
i+1 − x′

i

=
2

xi+2 − xi

{

fi+2 − fi+1

xi+2 − xi+1
−

fi+1 − fi
xi+1 − xi

+
ǫi+2 − ǫi+1

xi+2 − xi+1
−

ǫi+1 − ǫi
xi+1 − xi

}

. (3)

Notice that y′′i may be viewed as a discrete but noisy approximation of f ′′(x′′
i ).

To simplify notation, write

zi = y′′i

gi =
2

xi+2 − xi

{

fi+2 − fi+1

xi+2 − xi+1
−

fi+1 − fi
xi+1 − xi

}

ηi =
2

xi+2 − xi

{

ǫi+2 − ǫi+1

xi+2 − xi+1
−

ǫi+1 − ǫi
xi+1 − xi

}

.

By noting that gi is in fact a discrete version of f ′′(x′′
i ), one could write (3) in

the form of (2) as

zi = gi + ηi, i = 1, . . . ,m ≡ n− 2.
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We shall treat (x′′
i , zi) as our “pseudo data” and fit a piecewise constant function

to them. However, the noise term ηi, although mean-zeroed, is now no longer
independent. To derive the correlation structure of ηi, first write di = xi+1−xi.
Then straightforward algebra shows that

var(ηi) =
2σ2

d2i+1d
2
i

(

2

xi+2 − xi

)2

(d2i+1 + d2i + di+1di) for i = 1, . . . ,m,

cov(ηi, ηi−1) = −
4σ2

di+1d2i di−1

(2di+1di−1 + didi−1 + di+1di)

(xi+2 − xi)(xi+1 − xi−1)
for i = 2, . . . ,m,

cov(ηi, ηi−2) =
σ2

didi−1

4

(xi+2 − xi)(xi − xi−2)
for i = 3, . . . ,m,

cov(ηi, ηj) = 0 if |i− j| > 2.

We will denote the covariance matrix, of size m×m, specified by these equations
as σ2V . We note that the above expressions were derived by conditioning on
the xi’s; i.e., they are conditional variances and covariances.

2.3. Second derivative segmentation using minimum description

length

The next task is to fit a piecewise constant function to {(x′′
i , zi)}

m
i=1. To do so,

we need to decide on how many pieces are required, and on the locations of the
break points at which these pieces join. This is a model selection problem, in the
sense that different candidate models (i.e., piecewise constant functions) may
have a different number of parameters. We will use the minimum description
length (MDL) principle (e.g., see Rissanen, 1989, 2007) to solve this problem.

The basic idea of the MDL principle can be explained as follows. Suppose a
set of observed data w and a set of candidate models Θ = {θ1, . . . , θN} for w
are given. The goal is to select a “best” model for w from Θ. It is allowed that
different θi’s may have a different number of parameters. One typical example
is subset selection in the multiple linear regression context. The MDL principle
defines the “best” model as the one that permits the most economical represen-
tation (or compression) of the data w. That is, the best fitted model is the one
that produces the shortest codelength for storing w.

One general method for calculating the codelength for w is to decompose w

into two components: a fitted model θ̂ plus the corresponding residuals r̂. We
shall use the notation CL(a) to denote the codelength for an arbitrary object
a. With this we have

CL(w) = CL(θ̂) + CL(r̂|θ̂).

The MDL principle defines the best θ̂ as the one that gives the smallest CL(w).

In the above expression we have stressed that r̂ is “conditional” on θ̂.



484 A. Aue et al.

For the piecewise constant function fitting problem that we consider here,
w corresponds to z = (z1, . . . , zm)T , θ̂ corresponds to any fitted candidate
piecewise constant function ĝ, and r̂ = z− ĝ. In other words, the MDL principle
suggests that θ̂ should be chosen as the one that minimizes

CL(z) = CL(ĝ) + CL(r̂|ĝ). (4)

Thus to apply MDL to solve the current segmentation problem, we need to
derive computable expressions for CL(ĝ) and CL(r̂|ĝ), which in turn requires
the calculation of ĝ.

Suppose that there are B + 1 segments in the candidate piecewise constant
function (i.e., there are B break points), and that the number of x′′

i ’s in the j-th
segment is mj (such that m1 + · · · + mB+1 = m). Let λ1 < · · · < λB be the
locations of the B break points relative to the sample size (basically λj = nj/m,
where nj = m1 + · · · + mj ; see Section 3 for the formal definition), and write
λ = (λ1, . . . , λB). Also, define the ij-th element Xij of the “model matrix” X

as

Xij =

{

1 if x′′
i is in the j-th segment,

0 otherwise,

where i = 1, . . . ,m and j = 1, . . . , B + 1. Deleting repeated values, we next
convert ĝ into ĥ = (ĝn1

, . . . , ĝnB+1
)T . To determine the candidate piecewise

constant function maximum likelihood or generalized least squares can be ap-
plied to obtain

ĥ = (XTV −1X)−1XTV −1z, (5)

from which ĝ can be easily computed by reintroducing the corresponding number
of repetitions mj for each coordinate ĥj . Using this, it is shown in Appendix A
that CL(z) can be approximated by

MDL(B,λ) = log(B + 1) +B log(m− 1) +
1

2

B+1
∑

j=1

logmj

+
m

2
log

1

m
(z − ĝ)TV −1(z − ĝ). (6)

Notice that, for any given z, any candidate piecewise constant function can be
completely specified by (B,λ) if ĝ is computed with (5). This fact is reflected in
the notation of MDL(B,λ). We propose selecting the best fitting piecewise con-
stant function as the minimizer of (6). Some theoretical properties of MDL(B,λ)
is established in Section 3 below.

We also note that the criterion MDL(B,λ) can be straightforwardly modified
to handle the situation when the noise variance varies with the segments. In this
case the second last term will be replaced by 0.5

∑

log(mj+1) while the last term
will be replaced with a sum of such terms. The theoretical results in Section 3
can be slightly modified to accommodate this new criterion.
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2.4. Practical minimization of MDL(B,λ)

This subsection describes a practical algorithm for minimizing (6). The idea is
similar to performing forward selection followed by backward elimination in the
multiple linear regression setting.

At the beginning of the algorithm, we fit only one segment to (x′′
i , zi); i.e.,

no break points. Then we add one break point to this initial fit. The location
of this break point is chosen in a way that it provides the largest reduction
of MDL(B,λ) amongst all possible break point locations. Then a second break
point is added to this two-piece constant function. As before, the location of this
break point is chosen to maximize the reduction of MDL(B,λ). This forward
selection process continues until the adding of any new break points actually
increases the value of MDL(B,λ).

The second and last stage of this algorithm is backward elimination. The
idea is to successively remove one break point at a time from those that were
introduced in the previous forward selection process. At each time step the
break point to be removed is chosen such that it permits the largest reduction
of MDL(B,λ) after its removal. This elimination process continues until no more
removal of break points will cause a reduction in MDL(B,λ).

The algorithm is akin to the knot addition and deletion idea of the highly
successful smoothing method MARS (Friedman, 1991). In the context of regres-
sion spline fitting, MARS is known to perform empirically better than other
knot addition/deletion strategies (Lee, 2002). It also worked exceptionally well
in all our numerical work.

If the number of observations in any segment is too small, it may lead to un-
reliable estimates. Therefore we have imposed the constraint that each segment
contains at least 5 observations.

We close this section with the following remark which outlines how the can-
didate segmentation given by 0 = λ0 < λ1 < · · · < λB < λB+1 = 1 can greatly
facilitate numerical computations. To do so, utilize first the candidate segmen-
tation to decompose the m×m matrix V into B block square submatrices V j

with dimension mj ×mj, where mj = ⌊λjm⌋ and m1 + · · ·+mB = m. This has
the effect that the dependence between the different pieces in the segmentation
is suppressed and we can work with independent blocks for the asymptotics.
Since the MA(2) errors in the pseudo-data model yi = gi + ηi are indepen-
dent if they are more than two lags apart, the block creation does not affect
the large sample properties. On the other hand, as a consequence of the above,
one can simplify calculations involving the limit of the generalized least squares
estimator ĥ = (ĥ1, . . . , ĥB)

T . Each of its components is now of the form

ĥj = (eTj V
−1
j ej)

−1eTj V
−1
j z(λj−1, λj), j = 1, . . . , B + 1,

where ej = (1, . . . , 1)T is the mj-dimensional vector whose entries are all equal
to one and z(λj−1, λj) = (z⌊λj−1m⌋+1, . . . , z⌊λjm⌋)

T . In Lemmas B.1 and B.2

below we show that both eTj V
−1
j ej and eTj V

−1
j z(λj−1, λj) can be represented
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as certain fifth-order polynomials and the (ill-conditioned) inverse matrix V −1

does not need to be calculated explicitly.

2.5. Partial local smoothing

After a segmentation is obtained, the next task is to choose a (global) band-
width for each segment. This can be achieved by applying any reliable global
bandwidth selection method. In our numerical work to be reported in Section 4
below, we use the AICc method of Hurvich, Simonoff and Tsai (1998). Once a
(global) bandwidth is obtained for each segment, all these bandwidths are then
joined together to form a piecewise constant bandwidth function h0(x).

When the bandwidth function h0(x) is piecewise constant, it is customary to
smooth those “corners” at which adjacent pieces are merged (e.g., see Fan and
Gijbels, 1995), so that the resulting h(x) is continuous. We also follow this cus-
tom and apply the partial local smoothing rule of Hall, Marron and Titterington
(1995) to make h0(x) continuous. This partial local smoothing rule employs the
following interpolation formula. Let τj and τj+1 be the midpoints of the j-th and
(j+1)-th pieces of the piecewise constant function h0(x) respectively. Therefore
h0(τj) is the (global) bandwidth obtained for the j-th segment; similarily for
h0(τj+1). For any x ∈ [τj , τj+1), the partial local interpolation rule defines the
final bandwidth function h1(x) as

h1(x) =



















h0(τ1) a ≤ x < τ1,
1

τj+1−τj

{

h0(τj)(τj+1 − x)

+ h0(τj+1)(x− τj)
}

τj ≤ x < τj+1, j = 1, . . . , B,

h0(τB+1) τB+1 ≤ x ≤ b.

(7)

Supportive theoretical and empirical results of this partial local smoothing rule
can be found in Hall, Marron and Titterington (1995).

2.6. Summary

The main steps of the proposed method can be summarized as follows.

1. Apply the second differencing operation (3) and obtain (x′′
i , zi).

2. Find the “best” fitting piecewise constant function for (x′′
i , zi). This “best”

fitting function is defined as the minimizer of (6), and it can be practically
minimized using the algorithm described in Section 2.4.

3. From the “best” fitting piecewise constant function obtained in the pre-
vious step, a segmentation for (xi, yi) can be obtained. For each seg-
ment in this segmentation, apply a global bandwidth selector to choose
a bandwidth. Merge the resulting global bandwidths together to form a
piecewise constant bandwidth function h0(x). In our implementation the
AICc method of Hurvich, Simonoff and Tsai (1998) is adopted as the
global bandwidth selector.
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4. Apply the partial local smoothing rule (7) to h0(x) to form a continuous
bandwidth function h1(x).

5. Compute the estimate f̂h(x) for f(x) with local linear regression with
bandwidth h = h1(x).

3. Theoretical properties

In this section, we study the asymptotic behavior of the proposed second differ-
encing segmentation procedure. To do so, we have to further specify the form of
the regression function f . For our purposes, we henceforth restrict the discussion
on theoretical properties to regression functions f0 that are once continuously
differentiable with a piecewise constant second derivative f ′′

0 . This is enabled in
the following way. Without loss of generality, let [a, b] = [0, 1]. Set λ0

0 = 0 and
λ0
B0+1 = 1. Then, we assume that f ′′

0 (x) = f ′′
0,j is constant for x ∈ (λ0

j−1, λ
0
j),

j = 1, . . . , B0 + 1, where 0 < λ0
1 < · · · < λ0

B0 < 1 denote the B0 break points.
The second differencing procedure aims to partition f ′′

0 via noisy versions of the
discrete approximations g0i for which we then obtain

g0i = h0
j , n0

j−1 < i < n0
j − 1, j = 1, . . . , B0 + 1. (8)

The connection between λ0
j and n0

j is given by

n0
j = ⌊λ0

jm⌋, ℓ = 1, . . . , B0 + 1,

with ⌊·⌋ denoting integer part and m = n − 2 as before. The number of g0i in
segment j is therefore equal to m0

j = n0
j −n0

j−1. Certain edge effects in (8) have
been left out. These occur when one transitions with the second differencing
procedure from one segment into the next. As the number of these occurrences
is clearly not larger than B0, they do not affect the asymptotic.

Since the true partition is unknown, the MDL procedure is utilized as de-
scribed in Section 2 and we select the best piecewise constant approximation
of f ′′

0 , which is determined by the parameters (B,λ) according to the MDL
criterion (6), adjusted for known B0,

λ̂ = argmin
λ

2

m
MDL(B0,λ).

The following consistency result can be proved.

Theorem 3.1. Assume the true second derivative f ′′
0 is piecewise constant. If

B0, the true number of breaks in the partition, is known, then the estimated

break points λ̂ = (λ1, . . . , λB0) converge with probability one to the true break

points λ0 = (λ0
1, . . . , λ

0
B0). That is,

λ̂
a.s.
−→ λ0 (n → ∞),

provided that σ ∼ d2, where d = max di.
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The proof of Theorem 3.1 is provided in Section B of the Appendix.
Note that the application of the differencing operator introduces dependence.

For equally spaced design points with d = di, {ηi} is a second order moving
average process given by the difference equations

d2ηi = ǫi − 2ǫi+1 + ǫi+2, i = 1, . . . ,m.

The moving average polynomial θ(z) = 1−2z+z2 = (1−z)2 has two unit roots
and imposes a special structure on the matrix V defined in Section 2.2 (see
Appendix B below). Matrices of similar kind have been used in the detection of
trend in time series and are discussed in depth in Anderson (1971). It should
also be noted that it is critical here that the unit roots are known in advance
and do not have to be estimated from the data. In the latter case, which has
been dealt with for example in Anderson and Takemura (1986), certain pile-
up effects cause the maximum likelihood estimator of the moving average unit
roots to select an invertible set of parameters with positive probability, even
asymptotically.

While the unit roots complicate matters for theoretical derivations, they also
induce a superconsistent procedure under the piecewise constant second deriva-
tive assumption. That is, the rate of convergence is faster than the typical
parametric rate of “root n”; see Lemma B.4 for the exact rate. The reason for
this lies roughly in the fact that partial sums of the {ηi} are telescoping, namely

d2
m
∑

i=1

ηi =
m
∑

i=1

(ǫi+2 − ǫi+1)−
m
∑

i=1

(ǫi+1 − ǫi) = (ǫn − ǫn−1)− (ǫ2 − ǫ1)

consists of exactly four terms for any m. Since the second differencing procedure
utilizes the generalized least squares estimator ĥ in (5), the exact proof will deal
with weighted versions of the above partial sums. We discuss details in Appendix
B. These findings imply, and add theoretical justification for, the excellent finite
sample performance of our procedure to be reported in Section 4 below.

In proving Theorem 3.1, we have assumed the number of break points, B0,
to be known. There are, as of now, only a few estimation procedures known in
the literature whose theoretical foundation covers the case of unknown B0. Two
deal with independent random variables with common variance confounded by
changes in the mean. Yao (1988) addresses the normal case and Horváth and
Serbinowska (1995) the multinomial case. Recently Aue and Lee (2011) gener-
alized the results of Yao (1988) to more complex image segmentation problems.
While the theory behind the MDL-based second differencing procedure is dif-
ficult to establish, we conjecture that under a Gaussianity assumption one can
retain Theorem 3.1 also for B0 unknown. Since a formal proof of this conjecture
would add unnecessary length to the paper with only marginal gains from a
more practical point of view, we do not pursue this further. The simulations
in this paper, however, indicate that the performance is very satisfactory also
when B0 is unknown and even when the true model is different from the one
assumed in this section.
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4. Simulation results

Two sets of numerical experiments were conducted. The first set of experiments
was to evaluate the performance of the proposed method when the design points
are regularly spaced, and to compare its estimation results with those obtained
by the recent method proposed by Gluhovsky and Gluhovsky (2007). In the
second set of experiments the proposed method is compared with other common
bandwidth selection methods when the design density is non-uniform. For easy
referencing, we shall call the proposed local bandwidth selection method SDS,
short for Second Derivative Segmentation.

4.1. Regularly spaced data

Since we were unable to obtain the codes for the method proposed in Gluhovsky
and Gluhovsky (2007), we repeated their simulation experiments with identical
settings, and compare our numerical findings with those reported in their paper.

First, 100 sets of noisy observations were generated from the regression func-
tion

f(x) = x+ 2 exp(−16x2), (9)

with n = 81 design points equally spaced in [−2, 2] and σ2 = 0.52. This test
function is the same as the one in Figure 1, except the domain now is linearly
“stretched” to [−2, 2] from [0, 1]. For each of these noisy data sets, we applied the
proposed method and the EBBS local bandwidth method of Ruppert (1997) to
obtain estimates of f(x). Denote, for the I-th noisy data set, the corresponding

estimates obtained by the proposed method and the EBBS method as f̂I(x) and

f̃I(x) respectively. We calculated mean squared errors (MSEs) for f̂I(x) as

MSE(f̂I) =
1

n

n
∑

i=1

{f̂I(xi)− f(xi)}
2,

and similarly for f̃I(x). Following Gluhovsky and Gluhovsky (2007), we then
calculated the MSE ratio

∑100
I=1MSE(f̂I)

∑100
I=1MSE(f̃I)

and the standard deviation of the MSE values for f̂I(x) divided by the average
of the MSE values for f̃I(x). These two values are (0.73, 0.37), while the corre-
sponding “best possible” pair from Table 1 of Gluhovsky and Gluhovsky (2007)
is (0.74, 0.26). The reason for using the words “best possible” in the previous
sentence is as follows. The practical calculation of the proposed local bandwidth
estimate of Gluhovsky and Gluhovsky (2007) involves the choices of (i) a tuning

parameter λ and (ii) a fitting method β̂(i). However, no automatic selection pro-

cedures were provided by these authors for choosing λ and β̂(i). Instead, they
reported results obtained from using different combinations of λ’s and β̂(i). The
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Table 1

MSE ratios for the 15 normal mixture functions, denoted by F1 to F15. Numbers in
parentheses are standard deviations adjusted by the averaged MSE of EBBS

EBBS β̂(4) β̂(5) SDS
F1 1.00 (0.32) 0.42 (0.18) 0.52 (0.20) 0.23 (0.15)
F2 1.00 (0.32) 0.45 (0.20) 0.55 (0.22) 0.30 (0.18)
F3 1.00 (0.28) 0.82 (0.24) 0.71 (0.22) 0.52 (0.22)
F4 1.00 (0.28) 0.88 (0.27) 0.80 (0.23) 0.73 (0.29)
F5 1.00 (0.26) 0.92 (0.28) 0.80 (0.24) 0.55 (0.30)
F6 1.00 (0.33) 0.42 (0.18) 0.53 (0.20) 0.22 (0.16)
F7 1.00 (0.33) 0.47 (0.18) 0.55 (0.21) 0.34 (0.19)
F8 1.00 (0.33) 0.45 (0.20) 0.53 (0.21) 0.26 (0.16)
F9 1.00 (0.33) 0.43 (0.18) 0.53 (0.20) 0.23 (0.13)
F10 1.00 (0.24) 0.63 (0.14) 0.69 (0.16) 0.45 (0.14)
F11 1.00 (0.32) 0.44 (0.19) 0.53 (0.20) 0.22 (0.14)
F12 1.00 (0.28) 0.52 (0.16) 0.59 (0.18) 0.30 (0.12)
F13 1.00 (0.31) 0.46 (0.18) 0.55 (0.20) 0.25 (0.11)
F14 1.00 (0.26) 0.64 (0.16) 0.68 (0.17) 0.49 (0.18)
F15 1.00 (0.27) 0.67 (0.19) 0.68 (0.20) 0.50 (0.17)

above pair (0.74, 0.26) is the one that corresponds to the smallest MSE ratio.
For reference, the worst pair is (1.22, 0.61).

As in Gluhovsky and Gluhovsky (2007), we repeated the above experiment
with 15 other regression functions. They are the 15 normal mixture functions
listed in Marron and Wand (1992). The number of design points is n = 181,
while σ2 remains the same. The resulting MSE ratios and their scaled standard
errors are calculated as before, and are listed in Table 1. Also listed in Table 1 are
the corresponding values of the proposal of Gluhovsky and Gluhovsky (2007),

using fitting methods β̂(4) and β̂(5) with their best possible λ’s. Judging from
these numerical values, one could conclude that, for regularly spaced data, the
proposed method SDS is to be preferred over the method of Gluhovsky and
Gluhovsky (2007) or the EBBS method of Ruppert (1997).

4.2. Non-uniform design densities

Recall that the proposed second derivative segmentation procedure assumes
that the design density is uniform. In this second set of experiments we tested
its performance when the design density was actually non-uniform. Altogether
six beta densities with different parameters were used as the design density:
Beta[ s+4

5 , 11−s
5 ] with s = 1, . . . , 6. They are plotted in Figure 2. Two testing

regression functions were used. The first regression function is essentially the
same as (9), but with its domain mapped from [−2, 2] to [0, 1]. The second
regression function is

f(x) = sin[2(4x− 2)] + 2 exp[−16(4x− 2)2], x ∈ [0, 1],

which is displayed in Figure 3.
For each combination of design density and test function, 200 data sets were

generated with n = 200 and a signal-to-noise ratio (snr) of 3, where snr is defined
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Table 2

Averaged MSE values for different regression estimates for the non-uniform design density
experiments. The first 6 rows are for the first test function (displayed in Figure 1), while

the last 6 rows are for the second test function (displayed in Figure 3). Numbers in
parentheses are standard errors

design density global plug-in EBBS proposed
Beta[ s+4

5
, 11−s

5
]

s = 1 0.0309 (0.0011) 0.0263 (0.00104) 0.0329 (0.000927) 0.0225 (0.00101)
s = 2 0.0202 (0.000539) 0.0200 (0.000628) 0.0263 (0.000617) 0.0191 (0.00152)
s = 3 0.0193 (0.000467) 0.0193 (0.00055) 0.0256 (0.000503) 0.0134 (0.000503)
s = 4 0.0195 (0.000593) 0.0201 (0.00067) 0.0262 (0.000577) 0.0135 (0.000502)
s = 5 0.0229 (0.000677) 0.0206 (0.000693) 0.0275 (0.000671) 0.0155 (0.000616)
s = 6 0.0261 (0.000781) 0.0243 (0.000817) 0.0314 (0.000782) 0.0193 (0.000733)
s = 1 0.0155 (0.000472) 0.0135 (0.000433) 0.0143 (0.000381) 0.0121 (0.000433)
s = 2 0.0117 (0.00028) 0.0125 (0.000321) 0.0150 (0.000307) 0.0105 (0.000319)
s = 3 0.0106 (0.00025) 0.0109 (0.000284) 0.0137 (0.000272) 0.00926 (0.000239)
s = 4 0.0141 (0.000362) 0.0146 (0.000406) 0.0171 (0.000369) 0.0124 (0.00037)
s = 5 0.0122 (0.000300) 0.0123 (0.000325) 0.0149 (0.000314) 0.0102 (0.000328)
s = 6 0.0171 (0.000396) 0.0158 (0.000462) 0.0167 (0.000441) 0.0151 (0.000506)

as snr = ‖f‖/σ with ‖ · ‖ as the Euclidean norm. Then, for each generated data
set, four regression estimates were obtained:

1. global : local linear regression using global bandwidth selected by the AICc
method of Hurvich, Simonoff and Tsai (1998),

2. plug-in: kernel regression with the local plug-in bandwidth strategy of
Herrmann (1997),

3. EBBS : the local bandwidth EBBS method of Ruppert (1997), and
4. SDS : the proposed method.

Finally, MSE values for all regression estimates are calculated. The averages of
these MSE values, together with their standard errors, are reported in Table 2.
From Table 2, one could see that, even for non-uniform design densities, SDS
still performed favorably when comparing to other commmon methods.

We have also repeated the above experiments with n = 400 and snr = 5.
Since these additional experiments provide similar empirical conclusions, their
numerical results are omitted.

5. Real data

In this section the proposed procedure is applied to two real data sets. The
first one is the motorcycle data set that has been analyzed by various previous
authors (e.g., Fan and Gijbels, 1996). Here the design points xi are the time at
which the responses yi were recorded after a simulated motorcycle impact ex-
periment. These responses are the head acceleration of the test object. The data
are displayed in the left panel of Figure 4. Since there are sharp changes near
x = 15 and x = 30, a global constant bandwidth will not work well here. The
proposed procedure correctly identified such changes and used smaller band-
widths to estimate their values. The estimated regression function, together
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Fig 4. Left panel: the motorcycle data set; right panel: the LIDAR data set. In each panel
circles represent the data points, the solid line is the estimated regression curve obtained by
the proposed method, and the vertical lines denote the locations of the break points.

with the locations of the break points, are also displayed in the left panel of
Figure 4.

Displayed in the right panel of Figure 4 is the so-called LIDAR data set
(e.g., Ruppert, Wand and Carroll, 2003). LIDAR is a laser based technique for
detecting chemical compounds in the atmosphere. The x-variable is the distance
traveled by the laser light before it is bounced back to its origin. The y-variable
is the log of the ratio of laser light received from two different frequency sources.
As similar to the above motorcycle data set, a global constant bandwidth will
not work well for this LIDAR data set. The proposed method was capable
of first dividing it into three regions of approximately constant curvature and
then selecting a tailored local bandwidth for each region; see the right panel of
Figure 4.

Lastly we point out that for both data sets the noise levels are heteroscedastic.
This violates the constant noise variance assumption made by the proposed
procedure, but still the proposed procedure performed well.

6. Concluding remarks

In this article a method is proposed for choosing the bandwidth function for lo-
cal linear smoothing. A major component of the method is the second derivative
segmentation procedure. This procedure aims to partition the curve domain into
homogeneous regions, so that a tailored bandwidth can be obtained for each re-
gion. Although this segmentation procedure is computationally expensive, it has
been shown to be superconsistent if the underlying second derivative is piece-
wise constant. In addition, via theoretical results and numerical experiments, we
have also demonstrated the superior empirical properties of the resulting local
bandwidth selection method. We have further outlined how the procedure can
handle hetereoscedastic data. Lastly, the second derivative segmentation idea
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can be combined with other smoothing methods. For example, the local linear
regression used in this article can be straightforwardly replaced by smoothing
splines.
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Appendix A: Derivation of MDL(B, λ)

This part of the appendix derives the criterion MDL(B,λ) given in (6), which
approximates the codelength CL(z). First we recall that B is the number of
break points (i.e., there are B + 1 segments) and that mj is the number of x′′

i

in the j-th segment.
The codelength CL(z) is decomposed into two parts, CL(z) = CL(ĝ) +

CL(r̂|ĝ), and we begin with the first part. To completely specify a fitted piece-
wise constant function ĝ, we need to specify (i) the number of segments, (ii)
the locations of the break points, and (iii) the function values of each segments.
Since there are (B + 1) segments, the codelength for (i) is log(B + 1). For (ii),
we restrict the location of any break point to be one of those midpoints that are
equi-distanced to any two adjacent x′′

i ’s. As there are m x′′
i ’s and hence (m− 1)

such midpoints, each of the B break point locations can be specified by an in-
teger from [1, . . . ,m − 1]. So the total codelength for (ii) is B log(m − 1). We
apply the following result from Rissanen (1989) to derive codelength for (iii): a
parameter estimated from N data points can be effectively encoded with code-
length 0.5 logN . Since the function value of the j-th segment is (approximately)
estimated using mj data points, so the total codelength for (iii) is 0.5

∑

j logmj .
Combining these results we have

CL(ĝ) = log(B + 1) +B log(m− 1) +
1

2

B+1
∑

j=1

logmj.

The next part is to calculate the codelength CL(r̂|ĝ) for the residuals given ĝ.
Rissanen (1989) demonstrates that this is given by the negative of the condi-
tional likelihood of r̂ given ĝ, which for the current problem is

CL(r̂|ĝ) =
m

2
log

1

m
(z − ĝ)TV −1(z − ĝ).

Combining the above two codelength expressions we arrive (6).

Appendix B: Proof of Theorem 3.1

The proof of Theorem 3.1 is given in several steps. In Section B.1, we discuss
properties of the variance-covariance matrix V and establish certain key auxil-
iary results. These will then be invoked to derive the statement of Theorem 3.1 in
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Section B.2. We assume throughout the proof that the regression yi = f(xi)+ ǫi
is canonical in order to contain the complexity of the proofs. It is expected that
similar arguments apply also to the case non-canonical regression case.

B.1. The banded Toeplitz matrix V

Let T be the complex unit circle and let b : T → C be the Laurent polynomial
b(t) = 6 − 4(t + t−1 + (t2 + t−2). The symbol b induces the banded Toeplitz
operator T (b) that takes the values 6, −4 and 1 on the main diagonal, the
first off-diagonals and the second-off diagonals, respectively. The symbol is un-
bounded as b has a zero of order four at t = 1, so that the smallest eigenvalues
of the corresponding finite (m×m) Toeplitz matrices Tm(b) are of exact order
m−4. This, in turn, implies that the largest elements of T−1

m (b) grow with rate
m4; e.g., see Böttcher and Grudsky (2005) for details on Toeplitz matrices. It
is now easy to see that the m × m variance-covariance matrix V of Section
2.2 can be rewritten in terms of Tm(b) simply as V = d4Tm(b). Most of the
theory of banded Toeplitz matrices is based on boundedness of the symbol and
is therefore not applicable in the current setting.

We need the following two important auxiliary results. Note that we do not
need to compute the ill-conditioned inverse matrix V −1 = T−1

m (b) directly.

Lemma B.1. Let e = (1, . . . , 1)T be the m-dimensional vector whose elements

are all equal to 1. Then,

d−4eTV −1e =
1

24

(

1

30
m5 +

1

3
m4 +

7

6
m3 +

5

3
m2 +

4

5
m

)

.

In particular, d−4eTV −1e ∼ 1
720m

5.

Proof. Let a = d−4V −1e. Direct computations yield that the components ai of
a are given by

ai =
1

24

[

(

m+ 1

2

)2(
m+ 3

2

)2

−

{

(

m+ 1

2

)2

+

(

m+ 3

2

)2
}

(

i−
m+ 1

2

)2

+

(

i−
m+ 1

2

)4
]

.

To see that this is correct, it is most convenient to verify that d4V a = e. Now,
d−4eTV −1e = aTe =

∑m

j=1 aj and the statement of the lemma can be verified
directly by elementary but lengthy calculations.

Lemma B.2. Choose κ ∈ [0, 1], and let a(⌊κm⌋) be defined as the vector in the

proof of Lemma B.1 with dimension ⌊κm⌋. Let 0 ≤ κ1 < κ2 ≤ 1. Then,

Sm(κ1, κ2, κ) =

⌊κ2m⌋
∑

i=⌊κ1m⌋+1

ai(⌊κm⌋) =
1

24

5
∑

ℓ=1

[pℓ(κ2, κ)− pℓ(κ1, κ)]m
ℓ,
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where

p1(x, y) =
4

5
x,

p2(x, y) =
5

3
xy,

p3(x, y) =− x3 +
3

2
x2y +

2

3
xy2,

p4(x, y) =−
2

3
x3y + x2y2,

p5(x, y) =
1

5
x5 −

1

2
x4y +

1

3
x3y2.

Proof. Similar to the proof of Lemma B.1.

B.2. Establishing Theorem 3.1

Recall that, since the value of B0 is assumed known, the candidate segmentation
is specified by the values 0 = λ0 < λ1 < · · · < λB0 < λB0+1 = 1. Given
such a candidate segmentation, we need to derive its large-sample behavior, in
particular the bias that is induced when compared to the true segmentation
0 = λ0

0 < λ0
1 < · · · < λ0

B0 < λ0
B0+1 = 1.

To do so, we utilize the candidate segmentation and decompose the m ×m
matrix V into B0 block square submatrices V j with dimension mj ×mj, where
mj = ⌊λjm⌋ and m1 + · · ·+mB0 = m. This has the effect that the dependence
between the different pieces in the segmentation is suppressed and we can work
with independent blocks for the asymptotics. Since the MA(2) errors in the
pseudo-data model yi = gi + ηi are independent if they are more than two lags
apart, the block creation does not affect the large sample properties.

As a consequence of the above, we can simplify calculations involving the
limit of the generalized least squares estimator ĥ = (ĥ1, . . . , ĥB0)T . Each of its
components is now of the form

ĥj = (eTj V
−1
j ej)

−1eTj V
−1
j z(λj−1, λj), j = 1, . . . , B0 + 1, (10)

where ej = (1, . . . , 1)T is the mj-dimensional vector whose entries are all equal
to one and z(λj−1, λj) = (z⌊λj−1m⌋+1, . . . , z⌊λjm⌋)

T . To these, Lemmas B.1 and
B.2 can be applied.

Lemma B.3. If λj−1 < λ0
k < · · · < λ0

k+L−1 < λj < λ0
k+L, then

ĥj
a.s.
−→

L+1
∑

ℓ=0

wj,k+ℓh
0
k+ℓ,

where wj,k = w(0, λ0
k − λj−1, νj), wj,k+ℓ = w(λ0

k+ℓ, λ
0
k+ℓ+1, νj) for ℓ = 1, . . . , L,

and wj,k+L = w(λ0
k+L, λj , νj) with

w(κ1, κ2, κ3) =
6(κ5

2 − κ5
1)

κ5
3

−
15(κ4

2 − κ4
1)

κ4
3

+
10(κ3

2 − κ3
1)

κ3
3

and νj = λj − λj−1.



Local bandwidth selection 497

Proof. Observe first that the factors d4 involving the design spacing d can-
cel out, since they appear both in the numerator and the denominator of the
right-hand side in (10). For the remaining denominator Lemma B.1 implies a
leading term of exact order 1

720⌊ν
5
jm

5⌋. For the numerator we first decompose

z(λj−1, λj) = g0(λj−1, λj)+η(λj−1, λj), where the quantities of the right-hand
side are the accordingly defined deterministic and random components. Adopt-
ing the notations nj = ⌊λjm⌋, n0

j = ⌊λjm⌋,mj = nj−nj−1 and m0
j = n0

j−n0
j−1,

we obtain

d−4eTj V
−1
j g0(λj−1, λj)

=

mj
∑

i=1

ai(mj)g
0
λj−1+i

= h0
k

n0
k−nj−1
∑

i=1

ai(mj) +

L−1
∑

ℓ=1

h0
k+ℓ

n0
k+ℓ
∑

i=n0
k+ℓ−1

+1

ai(mj) + h0
k+L

nj
∑

i=nk+L−1+1

ai(mj)

= h0
kSm(0, λ0

k − λj−1, νj) +
L−1
∑

ℓ=1

h0
k+ℓSm(λ0

k+ℓ−1, λ
0
k+ℓ, νj)

+ h0
k+LSm(λ0

k+L−1, λj , νj),

where each Sm term refers to the fifth order polynomial defined in Lemma B.2.
Now, applying Lemma B.2, one obtains for ℓ = 1, . . . , L− 1 that

h0
k+ℓSm(λ0

k+ℓ−1, λ
0
k+ℓ, νj)

=
h0
k+ℓ

24

5
∑

u=1

[

pu(λ
0
k+ℓ, νj)− pu(λ

0
k+ℓ−1, νj)

]

mj

∼
h0
k+ℓ

24

[

1

5

(

{λ0
k+ℓ}

5 − {λ0
k+ℓ−1}

5
)

−
1

2

(

{λ0
k+ℓ}

4 − {λ0
k+ℓ−1}

4
)

νj

+
1

3

(

{λ0
k+ℓ}

3 − {λ0
k+ℓ−1}

3
)

ν2j

]

m5

= vj,k+ℓm
5.

Similar expressions can be computed for the first term h0
kSm(0, λ0

k − λj−1, νj)
and the last term h0

k+LSm(λ0
k+L−1, λj , νj). From the preceding it follows that

ĥj is of the form specified in the lemma. It remains to determine the form of
the asymptotic weights wj,k+ℓ. These are given as the limit as m → ∞ of the
ratios

(

ν5jm
5

720

)−1

vj,k+ℓm
5

and are easily shown to coincide with the expressions given in the statement
of the lemma. Since the random components (eT

j V
−1
j ej)

−1eTj V
−1
j η(λj−1, λj)

satisfy a strong law of large numbers the assertion of the lemma follows.
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Under the piecewise second derivative assumption, the next lemma establishes
that the term (eTj V

−1
j ej)

−1eTj V
−1
j η does not only satisfy a strong law of large

numbers but that typically the rate of convergence to the zero limit is fast. The
speed is controlled by the existence of higher order moments of the innovations
ǫi and even the assumption of a finite variance only yields superconsistency.

Lemma B.4. Let e be as in Lemma B.1. The weighted random sums

(eTV −1e)−1eTV −1η converges almost surely to zero and satisfies

(σeTV −1e)−1eTV −1η = O

(

1

m2−δ

)

for δ > 0. The rate is better than O(m−2) if in addition E[|ǫ1|
2+∆|] < ∞ for

some ∆ > 0.

Proof. Fix ǫ > 0 and note that Var((σeTV −1e)−1eTV −1η) = (eTV −1e)−1 ∼
720m−5. An application of Tchebyshev’s inequality yields

P

(

m2−δ

σ

∣

∣(eTV −1e)−1eTV −1η
∣

∣ ≥ ǫ

)

≤
C

ǫ2m1+2δ

for some constant C > 0. The latter implies

∞
∑

m=1

P

(

m2−δ

σ

∣

∣(eTV −1e)−1eTV −1η
∣

∣ ≥ ǫ

)

≤
1

ǫ2

∞
∑

m=1

1

n1+2δ
< ∞

and, on account of the Borel-Cantelli lemma, (σeTV −1e)−1eTV −1η = O(mδ−2)
with probability one. This proves the first part of the lemma. The second follows
by similar arguments from a higher-order Markov inequality.

Proof of Theorem 3.1. Recall the MDL criterion in (6) and observe that

2

m
MDL(B0,λ) ∼ log

1

m
(z − ĝ)TV −1(z − ĝ)

as m → ∞. Using η̂ = z − ĝ = η + g − ĝ, it follows first that

η̂
T
V −1η̂ = ηTV −1η + (g − ĝ)TV −1(g − ĝ) + 2ηTV −1(g − ĝ).

It is clear from Lemmas B.3 and B.4 that 1
m
η̂
T
V −1η̂ ∼ σ2 + Rm, where the

remainder term Rm is positive almost surely if λ 6= λ0. The assertion of Theo-
rem 3.1 is therefore implied by the strict concavity of the logarithm.
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