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termination in Gaussian graphical models under G-Wishart prior distri-
butions. We first review recent development in sampling from G-Wishart
distributions for given graphs, with a particular interest in the efficiency
of the block Gibbs samplers and other competing methods. We generalize
the maximum clique block Gibbs samplers to a class of flexible block Gibbs
samplers and prove its convergence. This class of block Gibbs samplers sub-
stantially outperforms its competitors along a variety of dimensions. We
next develop the theory and computational details of a novel Markov chain
Monte Carlo sampling scheme for Gaussian graphical model determination.
Our method relies on the partial analytic structure of G-Wishart distribu-
tions integrated with the exchange algorithm. Unlike existing methods, the
new method requires neither proposal tuning nor evaluation of normalizing
constants of G-Wishart distributions.
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1. Introduction

The purpose of this paper is to introduce a new algorithm for improving the
efficiency of existing methods for Bayesian Gaussian graphical model determi-
nation under G-Wishart priors. Let y = (y™,y®,...,y®) be a p-dimensional
random vector having a multivariate normal distribution N(0, ¥) with mean zero
and covariance matrix 3. Let Q = (w;;)pxp = X! be the inverse of the covari-
ance matrix. Let G = (V, E) be an undirected graph, where V' is a non-empty set
of vertices and FE is a set of undirected edges. We apply G to (2 to represent strict
conditional independencies. Specifically, each vertex i € V corresponds to y®,
and each edge (i,j) € E corresponds to w;; # 0; y@ and yU) are conditionally
independent if and only if w;; = 0, or equivalently, (¢,7) ¢ E. The G-Wishart
distribution [23, 1] is the conjugate prior for  when  is constrained by the
graph G. A zero constrained random matrix €2 has the G-Wishart distribution
Wea(b, D) if its density is

_ _ 1
p(Q| G) =1Ig(b,D) 1|Q|(b 2)/2 exp{—gtr(DQ)}1{(2€M+(G)}, (1.1)

where b > 2 is the degree of freedom parameter, D is a symmetric positive
definite matrix, I (b, D) is the normalizing constant, namely,

_ 1
Ig(b,D) :/|Q|(b 2)/2eXp{—itI‘(DQ)}1{(2€M+(G)}dQ,

and M T (G) is the cone of symmetric positive definite matrices with off-diagonal
entries w;; = 0 whenever (i,7) ¢ E. For arbitrary graphs, the explicit formula
for computing I (b, D) is given in equation (3.1). The G-Wishart distribution
is used extensively for analyzing covariance structures in models of increasing
dimension and complexity in biology [11], finance [4, 29], economics [30], epi-
demiology [6] and other areas.
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Conditional on a specific graph G and an observed dataset Y = (y1,...,Yn)
of sample size n, the posterior distribution of §2 is then

_ e 1
p(Q|Y,G) = Ig(b+n, D+S) Q0T =2/ 2 exp —§tr{(D+S)Q} Ligem+ (@)}
(1.2)

where S = YY’. To estimate Q or any function of it, we need to sample from
the G-Wishart distribution for any given graphs. For decomposable graphs,
Carvalho, Massam and West [3] proposed a direct and efficient method based
on the perfect ordering of the cliques. For arbitrary graphs, Piccioni [19] devel-
oped distributional theory for the block Gibbs sampler using Bayesian iterative
proportional scaling. Implementation of this theory has been focused on a way
that requires maximum clique decomposition and large matrix inversion [13, 15],
leading to the conclusion that the Bayesian iterative proportional scaling is not
good for large problems because enumerating all cliques is NP-hard and invert-
ing large matrix is computationally expensive. Motivated by these limitations,
several other methods [28, 15, 6] took a different approach that used theoreti-
cal innovations for non-decomposable graphical models developed in Atay-Kayis
and Massam [1]. However, one key computational bottleneck of these methods
is the matrix completion step for every update of 2. The matrix completion is
conducted iteratively with time complexity O(p?) for completing one non-free
element. With increasingly large problems, each update becomes increasingly
burdensome. In Section 2.4, we revisit the block Gibbs sampler from a different
yet more straightforward perspective that relies on the theory of a non-ordinary
Gibbs sampler. We show that the class of block Gibbs samplers is indeed very
broad. It not only includes the previously proposed approach based on maxi-
mum cliques as a special case, but also motivates a simple implementation that
uses individual edges as components in the Gibbs sampler to avoid maximum
clique enumeration. Through simulation experiments, we illustrate the flexibil-
ity and efficiency of the class of block Gibbs samplers as compared with existing
methods.

When G is unknown, most of the methods for determining graphical struc-
tures operate directly on the graphical model space by treating 2 as a nuisance
parameter and computing the marginal likelihood function over graphs (e.g.
[11, 24, 13]). Specifically, the marginal likelihood function for any graph G is
computed by integrating out  with respect to its prior (1.1),

IG(va)

P 16) = [pY 12,62 | G) = (20) (13)
The ability to focus on the graph G alone allows for the development of vari-
ous search algorithms to visit high probability region of graph space. Markov
chain Monte Carlo (MCMC) methods are often outperformed by other stochas-
tic search approaches [11, 24, 13]. The primary challenge in these approaches
based on the marginal likelihood function is that computing I (b, D) and I (b+
n,D + S) for non-decomposable graphs requires approximation. Two popular
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approximations are the Monte Carlo integration of Atay-Kayis and Massam [1]
and the Laplace approximation of Lenkoski and Dobra [13]. Neither approx-
imation has theoretical results for the variance estimation, though they were
empirically proven to be successful in guiding the graphical model search when
carefully implemented (e.g. [11], [13]).

Alternatively, there are a number of carefully designed MCMC methods for
sampling over the joint space of graphs and precision matrices [9, 6]. A salient
feature of these joint space methods is that they do not need posterior normaliz-
ing constants whose approximation tends to be more numerically unstable than
prior normalizing constants. However, all existing joint space samplers require
the tuning of proposals for both across- and within-graph moves. Moreover, they
do not remove the need for evaluating prior normalizing constants.

We argue that there are important situations where avoiding the approxi-
mation of p(Y | G) is preferred. First, when the size of the prime component
is not restricted to be small or when the graphical decomposition is not con-
ducted, the accuracy of the approximation methods can be hard to access even
empirically; see one example in Section 6. Second, graphical models are often
embedded within a larger and more complicated class of models such as those
developments in the seemingly unrelated regression (SUR) models [27], the con-
ditionally autoregressive (CAR) models [6], the mixture models [22] and the
copula models [5]. In these models, p(Y | G) is typically unavailable in closed
form even given the normalizing constant /. MCMC is routinely used for pos-
terior computation, in which, the step of normalizing constant approximation
often takes a substantial part of the run-time. Hence, a sampling method with-
out evaluating I can facilitate efficient posterior computation. In Section 5, we
introduce one such method. Two key features make our algorithm efficient. The
first feature is that we use the partial analytic structure [10] of G-Wishart dis-
tributions to automatically choose proposals for the reversible jump algorithm,
yielding essentially Gibbs steps for both across- and within-graph moves. The
other feature is that we use an exchange algorithm [17, 14] to remove the need for
evaluating prior normalizing constants in a carefully designed MCMC sampling
scheme. Through simulation experiments, we illustrate the accuracy of the pro-
posed algorithm, as well as highlighting its scalability to large graphs. Through
a real-world example, we further illustrate that the algorithm can be embedded
in a larger MCMC sampler for fitting broader classes of multivariate models.

2. Sampling from the G-Wishart distribution on given graphs
2.1. Accept-reject algorithm

Wang and Carvalho [28] proposed an accept-reject algorithm for sampling from
the G-Wishart distribution (1.1). Write D™! = T'T and Q = ®'® as Cholesky
decompositions and define ¥ = ®T~!. Following the nomenclature of Atay-
Kayis and Massam [1], the free elements of ® are those ¢;; such that (i,j) € E
or i = j. Welet WY = [¢7,,...,92 {i;}ij)ep.icj]- From Theorem 1 and



172 H. Wang and S.Z. Li

equation (38) of Atay-Kayis and Massam [1], these free elements have density
defined by

p
vi)/2— 1
o) o Jleaeenf 1 5wk ey
i=1 1<i<j<p

where v; = |{j : j > 4,(i,j) € E}|, and the non-free elements {¢,s : (r,s) ¢
E,r < s} are uniquely defined functions of the free elements, namely:

a1 S+ X it S
wrs = Z(_wrjt<js]) - Z( ZZ/)TT — ]> (ww + Zwijt<j5]>7

j=r i=1 Jj=t

(2.2)

with t;;) = ti;/t;;. Following the notation in Dobra, Lenkoski and Rodriguez
[6], we rewrite (2.1) as

p(¥Y) o fOEY)R(EY) (2.3)

where .
logf(¥)=—5 > W}
(,5)¢B,i<j
is a function of the non-free elements of ¥ which is uniquely determined by ¥V
according to (2.2) and h(¥Y) is the density of the product of mutually inde-
pendent chi-square and standard normal distributions. Based on the expression

(2.3), Wang and Carvalho [28] suggested the following rejection sampling algo-
rithm [21]:

1. Sample ¥V following Step 1 and 2 in Section 4.3 of Atay-Kayis and Massam
[1], and u ~ UJ0, 1].

2. Check whether u < f(¥V). If this holds, accept ¥V as a sample from (2.1);
if not, reject the value of ¥V and repeat the sampling step.

3. Construct a sample of ) following Step 3 and 4 in Section 4.3 of Atay-Kayis
and Massam [1].

Clearly, the acceptance rate depends on the triple (b, D, G). Dobra, Lenkoski
and Rodriguez [6] showed that the acceptance rate can be as low as 1078 for
some (b, D, G).

2.2. Independent Metropolis-Hastings algorithm

Mitsakakis, Massam and Escobar [15] proposed an independent Metropolis-
Hastings algorithm for sampling from the G-Wishart distribution based on the
density (2.3). Their method generates a candidate (¥*)Y from h(¥V), then in-
stead of accepting it by probability f{(¥*)¥} as in Wang and Carvalho [28],
they correct the sample using a Metropolis-Hastings step. This results in the
following modification in Steps 2 above:
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2. Check whether u < min[f{(¥*)V}/f(¥Y),1]. If this holds, accept (¥*)V as
a sample from (2.1); if not, retain current ¥V.

Although, this method improves the acceptance rate over Wang and Carvalho
[28] considerably, it still suffers from the same problem of not accepting new
samples frequently when graphs are large [6].

2.3. Random walk Metropolis-Hastings algorithm

The methods of Wang and Carvalho [28] and Mitsakakis, Massam and Escobar
[15] both involve changes of all free elements ¥V in a single step. Furthermore,
this change of ¥V does not depend on its current value. As a result, this may
cause slow mixing and low acceptance rate. Dobra, Lenkoski and Rodriguez
[6] proposed a random walk Metropolis-Hastings algorithm (RW) that perturbs
only one element in ¥V in a single step by drawing a random value from a nor-
mal distribution with a mean equal to its current value and a pre-specified vari-
ance. The random walk algorithm improves the efficiency over the methods of
Wang and Carvalho [28] and Mitsakakis, Massam and Escobar [15] significantly.
Nevertheless, the three methods in Section (2.1)-(2.3) or any other methods
that use the matrix completion (2.2) can be inefficient for large problems. To
see this, note that the completion step (2.2) can only be conducted iteratively.
To complete 1, it involves calculating terms such as E::_ll Z;;Zl Yijt<jr) and
22;11 Zj;} Yijt< ;s at an estimated time complexity O(rs). Although the exact
computing time depends on (r,s), in general, it requires O(p?) calculations for
completing a typical non-free element ,.s with 1 < r < s < p. For a graph
with the number of missing edges in the order of p?, the matrix completion
requires a time complexity O(p*) for one update, which makes these methods
unacceptably slow in large graphs as shown in Section 2.5.

2.4. Block Gibbs sampler

Piccioni [19] presented a theoretical framework that allows the construction of
a block Gibbs sampler for sampling from the natural conjugate prior for reg-
ular exponential families. When applied to graphical models, the block Gibbs
sampler corresponds to the Bayesian iterative proportional scaling. Suppose
{C1,...,Ck} is the set of maximum cliques of an arbitrary graph G = (V| E).
The Bayesian iterative proportional scaling method can be summarized as fol-
lows:

Bayesian iterative proportional scaling [19]. Given the current value
0 € M*(G) and a set of maximum cliques {Cy,...,Ck}, foreach j =1,..., K:

1. Sample A ~ W(b, D¢, ).
2. Set Qc;.0; = A+ Q0 v\g, (QV\ijv\Cj)_lgV\Cj»Cj'
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Lenkoski and Dobra [13] and Mitsakakis, Massam and Escobar [15] implemented
this method using the output of maximum clique enumeration algorithms. They
pointed out the Bayesian iterative proportional scaling has two limitations: It
requires maximum clique enumeration which is NP-hard and lacks good algo-
rithms; and it involves a series of large matrix inversions in Step 2 for small
cliques which is computationally expensive. Although it is unclear whether the
maximum condition is necessary in applying the general results of Piccioni [19]
to G-Wishart distributions, we are able to provide and justify a class of block
Gibbs samplers directly from a Gibbs theory.

We first review a non-ordinary but theoretically valid Gibbs sampler. Suppose
6 is a random vector that can be partitioned into p subvectors, 8 = (61,...,6,),
and p(0) is the target distribution. Consider a collection of index sets Z =
{Z,,..., Ik}, where I, C {1,...,p} for kK = 1,...,K such that US|}, =
{1,...,p}. Let 6z, denote the subset of elements in 6 corresponding to the
index set 0z, . Step k of a Gibbs sampler then generates from

eIk Np(ezk | e\ezk)

Note that the elements of {fz, : 7, € Z} may not be disjoint; thus some com-
ponents of # may be updated in multiple steps. This is not an ordinary Gibbs
sampler which updates each component of # only once in one sweep. In our no-
tation, an ordinary Gibbs sampler means 7 is a partition of {1, ..., p}. However,
updating elements of # multiple times in one sweep does not cause any theo-
retical problem — moving components in a step of a Gibbs sampler from being
conditioned on to being sampled neither changes the invariant distribution of
the chain nor destroys the compatibility of the conditional distributions. In fact,
this technique can improve the convergence property of the Gibbs sampler [26].

The above discussion shows that a non-ordinary Gibbs sampler has its target
distribution as the stationary distribution. The following proposition is useful
in proving that a Gibbs sampler is irreducible and aperiodic and hence will
converge to its stationary distribution.

Proposition 2.1 (See, for example, Proposition 5 of [19]). Let p(0) be the target
distribution. Suppose 0 can be partitioned into p subvectors, 8 = (61,...,0,).
Consider the collection of index sets T = {Iy,..., Tk}, where T, C {1,...,p}
for k = 1,...,K such that UE_ T, = {1,...,p}. For the Gibbs sampler that
simulates each component from p(Oz, | O0\Oz,), if the marginal density

p(0\0z,) = / p(0\0z,.,07,)d0x,,

is bounded in 0\Oz, for each k =1... K, then it is irreducible and aperiodic.

Using the above general formulation of a Gibbs sampler, we can design a
class of Gibbs samplers for simulating from G-Wishart distributions and prove
its convergence. We start with the construction of the Gibbs samplers that have
the stationary distribution (1.1). Let Q¥ = [w,, ..., w2, {wij}(i.j)ep,i<;] e the
set of the free elements of ). Consider a sequence of index sets Z = {71, ..., Zk },
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where Z, CV ={1,...,p} for k =1,..., K such that: (i) the subset Zj is com-
plete, and (ii) Uz, ezQ7, 7, = QY where Q7, 7, is a submatrix of 2 corresponding
to Zi. The two conditions for the construction of Z are important. Condition (i)
ensures that updating €27, 7, can be carried out with the Wishart distribution,
and condition (ii) ensures that all free elements in Q2 can be updated. The Gibbs
sampler then cycles through the collection of submatrices {Qz, 7, : I € I},
drawing each submatrix 7, 7, from its conditional distribution given all the
other components in :

p(QIk;Ik | Q\sz,zk)7 (24)

where Q\Qz, 7, represents all the components of Q except for Qz, 7,.
For any complete subset Zj, of V', simulating 27, 7, from (2.4) can be carried
out as follows. Lemma 1 of Roverato [23] shows that

O, 1, — Q3 (Qnzenz) T Qgz, | O\ 7, ~ Wb, Dz, 7). (2.5)

Thus, we can first generate a Wishart random matrix A ~ W(b, Dz, 7,) and
then set QI)wIk = A + sz7v\zk (QV\Ik,V\Zk)ilgV\Ik,Ik' Note that we use a
different notation for a Wishart distribution with density (1.1) than Roverato
[23]. We write W(b, D) while Roverato [23] used W(b+p —1,D1).

We next examine the convergence property the above Gibbs samplers by
considering the bound of its marginal distributions in order to apply Proposi-
tion 2.1.

Proposition 2.2. Suppose Q ~ Wg(b,D) and I, C V is a complete subset.
Then the marginal density

p(N\Qz, 1,)
is bounded in Q\Qz, 7, .

Proof. From (2.5), we have

- 1
p(ONQz, 7,) = / Ig(b, D) QT exp{_gtr(m)}d@zm

I(b. D Vo 1
(IGTZ;’)I)’C)MV\LC,V\LJ 2 exp [— Etf{DV\Ik,V\IkQV\Ik,V\Ik

+207, \5. Dz, 7 + D1 20,05 (D2 z) T Dz z ) -
(2.6)
Let
X =0z, Y =011 Dék,zkv
A=Dyn1, 1., B= Dv\zk,ZkD;fIk’

and notice that I(b, Dz, 7, ) and I (b, D) are two constants not involving Q\€z, 7, .
Then, to show that (2.6) is bounded, it will suffice to show that

- 1
f(X,Y) = |X|¥ exp{—itr(AX +2Y'B + Y/X_lY)},
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is bounded in (X,Y). Taking the derivative of f(X,Y’) with respect to ¥ and
then solving the first order condition that df(X,Y)/9Y = 0, we obtain ¥ =
—X B and

FX,Y) < f(X,~XB) = |X|"T exp | — %tr{(A ~ BB)X}|.

Note that A— BB’ = Dz, v\z, — Dw\1,.7, D7 7, D1, ,v\1, i8 Dositive definite
since D is positive definite. Thus, f(X,—XB) is the density kernel of a G-
Wishart distribution:
X ~Wey g, (b, A— BB'),
whose density function is bounded by the property of G-Wishart distributions.
O

Coupled with Proposition 2.1, Proposition 2.2 shows that the class of block
Gibbs samplers is indeed irreducible and aperiodic. With this elaboration, we
may summarize the class of block Gibbs samplers as follows:

Block Gibbs sampler. Construct a sequence of index sets Z = {7y, ..., Zx },
where Z, CV = {1,...,p} for k = 1,..., K such that: (i) the subset Z is
complete, and (ii) Uz, ez, 7, = Y. Given the current value Q € M (G), for
i=1,...,K:

1. Sample A~ W(b, DIIwIk)'
2. Set Oz, 1, = A+ Qz, v\z, v\, 1\7.) T D7, 7,

For an arbitrary graph G, the choice of the collection of the index sets T
may not be unique. For example, consider a 3-node complete graph with V' =
{1,2,3} and E = {(1,2),(1,3),(2,3)}. Then two collections {(1,2,3)} and
{(1,2),(1,3),(2,3)} can both be used as Z. However, different choices of Z lead
to different configurations of the Gibbs sampler and hence different efficiency. In
the 3-node complete graph example, the choice Z = {(1,2,3)} leads to a 1-step
sampler that directly generates 2 from a Wishart distribution, while the choice
7 =1{(1,2),(1,3),(2,3)} implies a 3-step Gibbs sampler. Intuitively, to choose
Z, one would like K (the number of complete subsets) to be small and |Zj| (the
dimension of the complete subset) to be large in order to reduce the number
of steps of the Gibbs sampler as well as the correlation between €7, 7,’s. The
extreme case where Z is a collection of the maximum cliques of G offers one
such choice. This corresponds to the algorithm implemented by Lenkoski and
Dobra [13], which requires an algorithm for maximum clique decomposition.
In the other extreme, one can choose Z to be the edge set E and the isolated
node set I, that is, Z = E U I, and we might call it edgewise block Gibbs
sampler. This choice of Z = F U I does not require any clique decomposition
and can be directly read from the graph. Our simulation studies show that the
edgewise block Gibbs sampler is easy to implement and converges rapidly for
sparse graphs. In cases where p is large, we obtain a fast updating scheme that
avoids inverting a (p — 2) x (p — 2) matrix at Step 2 of the above algorithm
as follows. For any e = (i,7) € E, we aim to fast compute Q. Note that
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Q;iey\e = S e — S eSee Be e and e is only 2 x 2. To rapidly
compute Q\?{e,\/\e using ¥, we only have to show that we can fast update X
after 2 is updated at Step 2.

Suppose (€2, X)) is the present value and Qee pew is a new value drawn by Step
2 in the block Gibbs sampler for edge e given (2, X). To update €2, we do

Qpew = Q—UAU’,

where A = (Qee — Qeenew) and U is a p x 2 matrix with the identity matrix
in rows ¢ and j and zeros in the remaining entries. To update X, we apply the
identity

Q-vaAvHY = t+otuat —voty)ytuatt,
and update ¥ as follows
Yhew = (Q-UATIU) =2 4+2 (A7 = 8.) '8,

All matrix inversions in the edgewise block Gibbs sampler are inversions of 2 x 2
matrices only which can be done very efficiently.

The two extreme block Gibbs samplers of using maximum cliques or edges
illustrate a tradeoff between the efficiency and the ease of implementation. In
practice, a more useful choice of Z is, perhaps, a mix of large complete com-
ponents and edges. For example, starting from Z = E U I, one can merge any
number of 7Zj, such that the union of those Zj; forms a complete component
to improve the efficiency over the edgewise samplers. The two general condi-
tions for the construction of Z makes the implementation of our block Gibbs
sampler indeed flexible. Finally, we emphasize that the G-Wishart distribution
is unimodal for any G. This important property ensures that the block Gibbs
samplers typically converge rapidly and give reliable estimates.

2.5. Simulated experiments comparing samplers

To illustrate the computational aspects of the block Gibbs samplers, we com-
pare both the edgewise and the maximum clique block Gibbs samplers with the
random walk Metropolis-Hastings algorithm (RW) of Dobra, Lenkoski and Ro-
driguez [6], where RW is shown to be dominating other methods. We consider
three types of graphs:

1. A sparse circle graph. The edge set is E = {(,i+1):1 <i<p—-1}U(1,p).
The G-Wishart parameters are b = 103 and D = I, + 100A~! where 4;; =1
for i € V, Aij = 0.5 for |Z —]| =1, Alp = Apl = 04, and Aij = 0 for
(i,§) ¢ E.

2. A random graph. The edge set F is randomly generated from independent
Bernoulli distributions with probability 0.3. The G-Wishart parameters are
b=103 and D = I +100J~" where J = B + 61, and B;; = 0.5 if (i,j) € E.
B has zeros on the diagonal, and § is chosen so that the condition number
of J is p. Here the condition number is defined as max(\)/ min(\) where A
is the eigenvalues of the matrix J.
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3. A two-clique graph. The graph has two maximum cliques: C; = {1,...,p/2+
2} and Cy = {p/2 — 2,...,p}. The G-Wishart parameters are b = 103 and
D =1+ 100J" where J = B+ I, and B;; = 0.5 if (i,7) € E. B has zeros
on the diagonal, and ¢ is chosen so that the condition number of J is p.

The sparse circle graph was used in Dobra, Lenkoski and Rodriguez [6] un-
der a set of different values of p for p < 20. For the RW approach, let o, be
the standard deviation of the normal proposal. Several initial runs under dif-
ferent combinations of (o,,,p) € {0.1,0.5,1,2,3} x {10, 20,30} suggested that
om = 2 gives the best mixing results for all cases. Hence we used o,,, = 2 in this
simulation study. When updating one free element of ¥V, we completed only
the non-free elements coming after the free element which we perturbed using
(2.2). One iteration entails updating all free elements ¥ once. For the maxi-
mum clique Gibbs samplers, we used the algorithm of Bron and Kerbosch [2] to
produce all maximum cliques. For the two block Gibbs samplers, one iteration
entails updating all components in the set Z once.

We saved 5000 iterations after discarding 2000 burn-in iterations for all three
samplers. To measure efficiency, we recorded the total CPU run time and the
lag of iterations required to obtain samples that could be practically treated as
independent, measured as

Lij = argming {p;;(k) <2/VM,k > 1}, i=jor(i,j) € E,

where p;;(k) is the autocorrelation at lag k for w;; and M is the total number
of saved iterations. We also calculated the effective sample size:

ESSi; = M/{1+2) p;(k)}, i=jor(i,j)eE
k=1

where we cut off the sum at lag (L;; — 1) to reduce noise from higher order
lags [12].
Finally, we computed the percent error
655 — E(04)| N
PE;; = ———————= x 100%, 1= , E,
j Fow) x 100%, i=jor (i,j) €
where E(0;;) is the theoretical expectation available in closed form (Corollary
2 of [23])
E(0ij) = Dij/(b—=2) i=jor(i,j)€E,

and &;; is the posterior mean estimates of E(o;;). We used E(o;;) not E(w;;)
because only E(c;;) is analytically available for non-decomposable graphs. To
summarize these different L;;, £SS;; and PE;; for different entries, we used
their corresponding medians.

The results based on 10 repetitions are given in Table 1. We report the
mean among the 10 runs. The standard deviations around the mean are less
than 5% for CPU, L and ESS, and less than 40% for PE. The programs are
written in Matlab and run on a quad-cpu 3.33GHz desktop running CentOS 5.0
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TABLE 1
Summary of performance measures in Section 2.5 for different graph and size combinations,
comparing the random walk Metropolis-Hastings (RW) algorithm, the edgewise block Gibbs
algorithm (Edgewise), and the mazimum clique block Gibbs sampler (MazC) for sampling
from the G-Wishart distribution

Circle Random Two-clique
p=10 p=20 p=30 p=10 p=20 p=30 p=10 p=20 p=30

RW 82 1549 8496 92 2521 19080 183 650 5980
CPU Edgewise 16 35 56 18 93 210 62 215 467
MaxC 16 35 56 14 52 129 3 4 4

RW 854 964 1003 1098 1002 1026 1241 1109 1113
ESS Edgewise 5000 5000 5000 5000 2782 2618 1360 1083 890
MaxC 5000 5000 5000 5000 4529 4625 5000 5000 5000

RW 11 11 11 9 10 9 9 9 9
Lag Edgewise 1 1 1 1 4 4 11 15 19
MaxC 1 1 1 1 2 2 1 1 1

RW 0.27 0.29 0.29 0.31 0.53 0.68 0.6 0.8 1.5
PE Edgewise 0.17 0.17 0.17 0.17 0.26 0.34 0.6 0.8 1.5
MaxC 0.17 0.17 0.17 0.17 0.25 0.33 0.5 0.8 1.4

Relative RW 1 1 1 1 1 1 1 1 1
ESS Edgewise 28 228 720 23 75 233 0.35 3 10
MaxC 28 228 720 28 218 675 28 841 6317

unix. The last two rows in Table 1 record the relative ESS of the two Gibbs
samplers over RW after standardizing for the CPU run time. As expected, the
maximum clique block Gibbs sampler performs best in all scenarios in terms of
computing time and mixing. For the circle and the random graphs, the edgewise
sampler dominates RW in every dimension. Depending on p and G, the edgewise
sampler gives a 5- to 150-fold reduction in run-time and around a 2- to 5-fold
improvement in the effective sample size, and producing substantially smaller
percentage errors. For the two clique graph, the edgewise sampler mixes less
well than the RW sampler; however, it is significantly faster and overall more
efficient as measured by relative ESS for large problems. In summary, the RW
sampler does not scale well as the block Gibbs samplers as the dimension p
grows. The maximum clique sampler is the most efficient sampler for G-Wishart
distributions given the availability of maximum cliques. The edgewise sampler
has excellent performances for sparse graphs and is easy to use.

3. Existing methods for normalizing constant approximation
3.1. Monte Carlo integration
Atay-Kayis and Massam [1] developed a Monte Carlo method to approximate

the normalizing constant of the G-Wishart distribution based the decomposition
described in Section 2.1. For a G-Wishart distribution W¢ (b, D), its normalizing
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constant can be expressed as

bth;—1

Io(b,D) = {f[lzbé”(zw)%rc“;”i)@i : }E\p{f(qﬂ’)} (3.1)

where v; is the number of neighbors of node i subsequent to it in the ordering
of vertices, h; is the total number of neighbors of node i plus 1, and f(¥V) is
defined in (2.3). Because the distribution of ¥ can be easily sampled from, it
is straightforward to estimate the expectation part of (3.1) by Monte Carlo.

The Monte Carlo integration can be computationally expensive when the
non-complete prime component is large or when it is used without graph de-
composition. This is because it relies on the matrix completion (2.2) to evaluate
the function f(¥Y). Moreover, the variance of the Monte Carlo estimator de-
pends on the data, the graph and the order of nodes, making it difficult to
evaluate [11].

3.2. Laplace approximation

Lenkoski and Dobra [13] proposed a Laplace approximation to I (b, D), namely,

—

Ig(b,D) = exp{l(Q)}(2m)VV2H(Q)~/2, (3.2)

where
b—2

2

Q) is the mode of W¢(b, D), and H is the Hessian matrix associated with 1.

Theoretical evaluation of the Laplace approximation in Gaussian graphical
models has yet to be investigated, though Lenkoski and Dobra [13] empirically
demonstrated its potential to facilitate computation in problems where cliques
are restricted to be small, e.g. p < 5. Intuitively, the accuracy of the Laplace
approximation depends on the degree to which the density of €2y, resembles a
multivariate normal distribution. By comparing the margins of {2 to a normal
distribution, Lenkoski and Dobra [13] empirically showed that the closeness
increases as d increases. Hence, they suggested to use the computationally fast
but less accurate Laplace approximation for the posterior normalizing constant
and the computationally expensive but more accurate Monte Carlo integration
for the prior normalizing constant.

l:

log|Q?| — %tr(DQ),

4. Existing reversible jump samplers for graphical model
determination

The normalizing constant approximation methods in Section 3 allow us to
marginalize over () and work directly on the graphical model space. However,
these approximations may be numerically unstable especially for posterior nor-
malizing constants. Alternatively, there are several special samplers that can
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explore the joint space of graphs and precision matrices without integrating out
Q. Giudici and Green [9] proposed a reversible jump sampler for jointly simulat-
ing (G, Q) for decomposable graphs. For both across- and within-graph moves,
they update one entry in X at a time by proposing from an independent nor-
mal distribution with mean zero and the variance appropriately tuned. These
types of moves require the check of the positive definite constraint of €2 for each
update. Dobra, Lenkoski and Rodriguez [6] designed another reversible jump
sampler based on the re-parameterization (G, ¥) where ¥ = ®T~! with ® and
T the Cholesky decompositions of Q and (D + Y'Y )~! respectively. This sam-
pler ensures the positive definitiveness of {2 automatically; however, it requires
the computationally intensive matrix completion and the tuning of proposals
for both across- and within-graph moves. Furthermore, both Giudici and Green
[9] and Dobra, Lenkoski and Rodriguez [6] still require the evaluation of prior
normalizing constants.

In the following section, we improve the efficiency of the reversible jump
sampler by first eliminating the need of proposal tuning and pilot run, and then
eliminating the need for evaluating prior normalizing constants.

5. Proposed algorithms for graphical model determination
5.1. Eliminating proposal tuning

We first present a new algorithm that requires neither the matrix completion
nor the proposal tuning for both across- and within-graph moves. The central
idea of our sampler is to make use of the partial analytic structure (PAS) of
G-Wishart distributions for stochastic model selection. We briefly summarize
the main feature of a reversible jump algorithm that uses the partial analytic
structure [10]. Suppose there are K candidate models { M} |, each of which is
associated with a likelihood as p(y | 0k, M},) that depends upon a set of unknown
parameter 6. Consider a move from the current model My, to a new model My .
Suppose there exists a subvector (6y )y of the parameter 6; for a new model
My such that p{(0x ) | (Or)-u, My, y} is available in closed form, and in
the current model My, there exists an equivalent subset of parameters (0x)_z
with the same dimension as (0x)_y. The PAS reversible jump algorithm uses
a proposal distribution that sets (0x)—yy = (0k)—w, draws My ~ q(My | My,)
and (0x )u ~ p{(0k)u | (Orr) -1, My, y}. The reverse move then sets (0)_y =
Ok )—u, draws My ~ q(My | My) and (0x)u ~ p{(@x)u | (Ok)-u, Mk, y}. In
summary, the PAS algorithm proceeds as follows:

PAS algorithm [10]. Given the current state (My, 0y):

1. Update M}. Note that this move also involves making changes of (0y)y.

(a) Propose a new model My, from the proposal distribution ¢(My | My);
set (ek/)_u = (ek)_u.
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(b) Accept the proposed model My, with probability:

My | (O)—u, y}ra(My | My)
oMy | (O)-usy}a(My | My) |7
where p{My' | (0x)-u,y} = [ p{Mw, Ok )u | (), y}d(On us-
(C) If Mk/ is accepted, generate (ek/)u ~ p{(ek/)u | (ok/),z,{,Mk/,y}. Other-
wise, generate (0x)u ~ p{(Ok)u | (O) -, M, y}.
2. Update 0.

(a) Update the parameters 6y if My, is accepted using standard MCMC
steps. Otherwise, update the parameters 6, using standard MCMC steps.

(5.1)

a = min|l

We now detail the PAS algorithm for sampling (G, 2) from the full posterior
distribution

n+b—2

_ 1
p(Q,G|Y) oI5 (b, D)|Q 7 exp —5tr{(S + D)2} p(G)laem+ @) (5:2)

Consider two graphs G = (V, E) and G’ = (V, E’) that differ by one edge (4, j)
only. With no loss of generality, suppose edge (i,j) € E and E' = E\(i,7). In
the notation of PAS algorithm, we set My, = G, My = G', (0r)—rs = (Ok) - =
O\ (wij,wjj)s (Ok)u = {wjj,wij} and (Ox )y = w;; to make use of the analytical
structure of p(w;; | Q\(wij,wj;),G") and p(wij,w;j | Q\(wij,wj;), G). From
(5.1), the acceptance probability for a move G to G’ from a proposal ¢(G’ | G)
is then

P{G" | Q\(wij,wjj), Y}q(G | G')
PG | Q\(wij,wys), Ya(G' | G) |
where the conditional posterior odds against the edge (i, j) is given by:

PG | Q\(wij, wjy), Y} _ pY, Q\(wiy, wy5) | GC'}p(G)
P{G [ N\(wij,wss), Y p{Y, Q\(wij,wjj) | GIp(G)

For the first numerator term, since w;; = 0 under G, it is defined as

a(G—G') = min|l

(5.3)

PV i) |6 = [ 9V |06 Q| Gy (5)

77
Note that, from (2.5), the full conditional posterior for w;; is
wij = ¢ | (Nwj;,Y) ~ W(b+n, Dj; + Sj5), (5.5)
where ¢ = Q; 1\ (Qv ;) Q- Let Q0 = Q except for an entry 0 in the
positions (z,7) and (j,4), and an entry ¢ in the position (j, 7). Then (5.4) can
be analytically evaluated as

n+b—2

7@I(b+n D+S)
- .. N — 2 > I JJ 0. .
p{Y, Q\(wl_]?w]]) | G } (27T) IG’ (b,D) |QV\]7V\J|

X exp —%tr{(S + D)%} . (5.6)
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Where I(b, D) is the normalizing constant of a scalar G-Wishart distribution
W (b, D) with p = 1. For the first denominator term, since w;; # 0 under G, it
is defined as

p{Y, O\ (wijowiy) | G} = /( 10,61l gy (7)

To evaluate (5.7), we need the full conditional distribution of (w;j,w;;). Let
e = (i,7) and write Qeejy\e = Qee — Qe,V\e(QV\B,V\e)_lﬂV\e,e' From (2.5), the
conditional posterior of (w;;,w;j,w;;) is

Qee\V\e | (Q\Qeev Y) ~ W(b + 1, Dee + See)-

Further conditioned on wj;, the full conditional distribution of (w;j,w;;) can
then be obtained by applying the standard Wishart theory in the following
Proposition 3 to the Wishart matrix Qee|v\e-

Proposition 5.1. Suppose a 2 x 2 random matriz A follows a Wishart distri-
bution W (h, B) with density

p(A) = I(h, B)~1] A" exp{—%tr(BA)}.

B B
A= ailr a2 ., B= 11 12 .
(agl G99 Bs1 Bao

(i) a2 | a11 ~ N(=Byy' Bisai1, Byy'a11) and asa—aj'a?y | a1, a1z ~ W(h, Baz).
. 1| 4 h=2
(ii) p(ai2, a2 | a11) = {J(h, B,a11)} " 1|A| 2 exp{—%tr(BA)}, where

Write

Then,

h—2 1
J(h,B,an) = /|A|TeXP{—Etr(BA)}dalszzz

h—1

101 1 _
= (2nBy)*ay I(h,ng)exp{—§(Bll—B2213122)a11}.

Let Q' be equal to € except for entries of Qe 1\ e (Qy\e,v\e)  Qv\e e in the po-
sitions corresponding to e. Applying Proposition 5.1 by letting A = Qcejy\e, h =
b+n and B = D.e + Sece allows us to evaluate the density (5.7) analytically:

. —mp J(b—i—n,Dee—i—See,all) 1 ntb—2
p{K Q\(wzjijj) | G} - (27T) Ig(b,D) |QV\e,V\e|
1
X exp {—gtr{(S + D)Ql}] , (5.8)

where ay; is the first element of A = Q.cjy\e.
We plug-in (5.6) and (5.8) to (5.3) to provide the acceptance rate for a move
from G to G’:

N .| p(G)e(G | G)Ig(b,D)
oG- G) = mm{l,p(G)q(Gl|G)I§(b,D)H(e,Q)}, (5.9)
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where

QO ntb—2
H(e,Q) = I(b+n,Dj; +Si;) (vl 2
: J(0+ 1, Dec + See, ar1) \ |2} |

V\e,V\e

X exp —%tr{(S +D)(Q° - Ql)}}

can be analytically evaluated.
We can summarize the PAS sampler for graphical model determination as
follows:

Algorithm 1. Given the current state (G,):

1. Update G. Note that this move also involves making changes of (w;;, w;;).

a) Propose a new graph G/ = (V, E’) differing only one edge from G =
g g g
(V, E) from the proposal distribution ¢(G’ | G). Without loss of general-
ity, assume edge e = (i,j) € E and E' = E\e.

(b) Accept G’ with probability « in (5.9).

(c) If G’ is accepted, set w;; = 0, update the parameters w;; from (5.5). If G’
is rejected, update the parameters (w;;,wj;) from its full conditional dis-
tribution using Proposition 2.2 (i). Specifically, in the notation of Propo-
sition 2.2, let A = (ai;) = Qeejy\e; b = b+n and B = (Bj;) = Dee + See.
In addition, let F' = (flj) = Qe,V\e(QV\e,V\e)ilgl/\e,ea then (wij,wjj) is
generated as follows:

(i) Generateu | ajj ~ N(—B;;Blgall, B;21a11) and v | a11 ~ W(h, Bas).
(ii) Set wij = u + fi2 and wj; = v + ajfu? + foo.
2. Update 2 conditional on the most recent G using the block Gibbs sampler
in Section 2.4.

In Step 1(a) of Algorithm 1, instead of randomly picking up an edge and
then correcting it by a Metropolis-Hastings step, we can often scan through
all (i,7) for i < j according to various deterministic or random schedules and
update edge (i, j) as a Bernoulli random variable with the following conditional
posterior odds

P{G" Y, ON\(wij,wjj)} _ p(G")Ia (b, D)H(e, )

P{G Y, Q\(wij,wj;)} p(G)lg:(b,D) 7

which lead to a Gibbs sampler with the acceptance rate (5.9) uniformly equal
to 1.

The main benefit of the above PAS algorithm is that the acceptance rate
(5.9), with (w;;,w;;) integrated out, eliminates the need of across-graph proposal
tuning. The new algorithm also uses the block Gibbs sampler for simulating
from G-Wishart distributions at given graphs, eliminating the need of matrix
completion and within-graph proposal tuning. However, it still requires the prior
normalizing constant approximation.
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5.2. Eliminating evaluation of prior normalizing constants

This section aims to circumvent the remaining computational bottleneck aris-
ing from the intractable prior normalizing constants in Algorithm 1. Our main
tool is the double Metropolis-Hastings algorithm [14], which is an extension of
the exchange algorithm [17] for simulating from distributions with intractable
normalizing constants.

We start with a brief review of the exchange algorithm proposed by Murray,
Ghahramani and MacKay [17]. Suppose data y are generated from the density
ply | 0) = Z(0)"'f(y | 6) where 6 is the parameter and Z(0) = [ f(y | 6)dy
is the normalizing constant that depends on 6 and is not analytically available.
Suppose the prior for 6 is p(6). A standard Metropolis-Hastings (M-H) algorithm
simulates from the posterior of 6: p(0 | y) < p(0)f(y | 8)/Z(0) by proposing ¢’
from a proposal ¢(¢’ | 8) and then accepting it with probability

o' 0 Z(0)q(6 |0
o= a1, B OAD) 20001011,
p(0)f(y | 0)2(0")q(6" | 0)
which depends on the ratio of two intractable normalizing constants. The ex-

change algorithm removes the need to evaluate Z by considering an augmented
distribution

p(0,0,2 | ) = p(6) "

where ¢(6' | 0,y) is an arbitrary distribution and z is an auxiliary variable.
Marginally, the original distribution p(# | y) is maintained. The exchange al-
gorithm samples (0,6, x) from the augmented distribution using a standard
Metropolis-Hastings sampler. Operationally,

The exchange algorithm [17]. Given the current state (6,6, x):

1. Update (¢, x) using a block Gibbs step.

(a) Generate (0',2) ~ q(0' | 0,y)f(x | 0") by first drawing 6" ~ ¢(¢' | 0,y)
and then drawing an auxiliary variable x ~ f(xz | €') using an exact
sampler.

2. Update 0 using a Metropolis step.
(a) Propose 6 by exchanging 6 and ¢’. Note that this is a symmetric proposal.
(b) Accept 0" with probability

p(0)fy|0)f(x]0)qd | 9’,y)}
pO)f(y|0)f(z|0)q(0"|0,y)

a = min{l,

Comparing the acceptance rate of the exchange algorithm with that of the
traditional M-H algorithm, we see that the exchange algorithm replaces the
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intractable normalizing constant ratio with an estimate from a single sample at
each parameter setting:

Z(0)/2(0') ~ f(x 10)/f(x ]0), x~p(z]), (5.10)

which provides some insight about why the exchange algorithm works. The use
of the auxiliary variable 2 removes Z(6) from the joint distribution; however it
requires an exact sampler for p(x | 6'), which is not practical in many appli-
cations. Liang [14] proposed a double Metropolis-Hastings algorithms to avoid
the need of exact samplers. Their approach generates z from p(z | 6') using a
product of Metropolis-Hastings updates starting at y:

Py (@ | y) = Ko (y = 1) ... Kot (ym-1 — @),

where K(- — -) is the M-H transition kernel of p(z | 6"). They derived the
following extension of the exchange algorithm that does not require an exact
sampler for z ~ p(z | ¢'):

Double M-H algorithm [14]. Given the current state (0, 6’, x)
1. Update (¢, )

(a) Generate 0" ~ q(0' | 0,y) and then x ~ Pe(,m)(:zr | y) where Pe(,m) (z|y)is
a sequence of M-H kernels of the target distribution p(z | ") initialized
at y.
2. Same as Step 2 in the exchange algorithm.

Since two types of Metropolis-Hastings moves are performed for updating 6: One
for generating the auxiliary variable z in Step 1(a) and the other for accepting
0 in Step 2. The algorithm is called a double Metropolis-Hastings algorithm by
Liang [14]. When z is generated exactly from f(z | §') by an exact sampler,
the double Metropolis-Hastings reduces to the exchange algorithm. When z is
generated approximately by M-H methods, the double Metropolis-Hastings can
be viewed as an approximated exchange algorithm. In such cases, caution must
be made about the convergence of the double M-H algorithm. Since the relation-
ship of (5.10) suggests that we use one sample of x to provide the information
about the global normalizing constant Z(6), this sample must be generated in
a way that considers the entire space f(z | §). An auxiliary variable z gener-
ated by an exact sampler considers the entire space of f(z | 8); however, an
auxiliary variable x generated by a Markov chain will be biased towards a local
mode near the starting point with only a few M-H steps. Choosing the M-H
kernel K (- — -) for a MCMC to rapidly explore the global auxiliary variable
space without being trapped by local modes is the key. We refer to Chapter 5
of Murray [16] for a discussion about using MCMC to generate the auxiliary
variable z. Now, we extend the PAS algorithm in Section 5.1 by applying the
double M-H algorithm to remove the need of prior normalizing constants. In the
notation of the double M-H algorithm, let 8 = G and y =  and consider the
augmented joint distribution

{6 G [V} =p(Q,G|Y)(G' | Q,GY)p( | &),



Gaussian graphical models 187

where p(2,G | Y) is the original target distribution (5.2), ¢(G’ | Q,G,Y) is
any distribution that proposes a graph G’ that differs by one edge (i, j) from G
with (i,j) € E and (i,7) ¢ E', and p(Q' | G) is the density function of Q' ~
W (b, D). Marginally, the original posterior (5.2) is unaffected. We consider
the following move types.

(1) Update (G', ).
(2) Update G. Note that this also involves updating (wi;,w;j;).
(3) Update €.

Move (1) generates G’ directly from ¢(G’ | Q,G,Y) and Q' from p(Q' | G')
using a sequence of M-H steps starting from the current 2. Notice that w;; # 0
and wj; = 0. Thus, starting at Q\(wij,w;;), we first update (w;j,w;;) from
their conditional prior distributions under G’ and then use m steps of the block
Gibbs sampler to generate the auxiliary Q. Hence the product of M-H up-
dates Pg,n)(ﬂ' | Q) consists of m steps of the block Gibbs sampler applied
to Wer (b, D). Thanks to the unimodal property of the G-Wishart distribu-
tion, the Gibbs kernels will properly consider the entire auxiliary data space
Q' ~ Wer (b, D) without being biased towards a local mode near the starting
point. As for the choice of m, Liang [14] suggested only a small m (e.g. m = 1)
is needed for obtaining a good sample of = ~ p(z | §'). In the examples analyzed
in this paper, we found that one iteration of a block Gibbs sampler is sufficient
to provide good mixing results.

For Move (2), this is essentially a PAS step that proposes G by swapping
C;land G, with (wij,w;;) and (wj;,w’;) integrated out. The acceptance rate is
then

p{G' |V, O\(wij,wyy)}a(G | 2, G Y)  pI\(W ija wj;) | G}
PG Y, Q\(wij,wig)}a(G | Q,GY)  p{@\(wjj,wj;) | G’}

a=min|1,
where the first part is exactly equal to the original acceptance rate (5.3) which
is expressed in (5.9) as

PG Y, N\(wij, wj) }a(G 1R, G YY) p(G)e(G QG Y)Ia(b, D)
P{G Y, Q\(wij, wij)}a(G" | 2, G YY) p(G)a(G" [, G, Y ) (b, D)

H(e, Q),

and the second part p{Q"\(w};,w};) | G}/p{'\(w};,w);) | G’} can be evaluated
by making use of the full conditional distributions of (wj;,w’;) under G" and
G respectively. Let 20 = Q' except for an entry 0 in the positions (i, j) and
(J,7) and an entry Q7 v\ ()" QV\“. in the position (4, 5); let Q1 = ¢/
except for Q;V\G(Q’V\e V\e) 1Qv\e . in the positions corresponding to the edge

e = (i,7). It is apparent to show the following;:
S\ (wiy, wi;) [ G)
Ic/ (b, D) ’

FEO\ (W, i) | G)
I¢(b, D) ’

P{\(wiy, W) | G} =

p{\(wij,wj;) | G} =
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where f(Q'\(wj;,wj;) | G') and f(Q'\(wi;,w};) | G) are analytically evaluated
as

b—2 1
FO\yr3) | €)= 10, D)0, |5 exp{ ~ (D) .

and

. 1
FO\ @l 35) | 6) = b, Dars ) 98y, |7 exp{ - Jun(00 .

Collecting all terms together, we have the acceptance rate of a move from G
to G’ as

oG = @) = mm{l p(G)a(G [ Y, ) f(\ (W, wjy) | G)

PG Y. O FON WL, )| G/)H(e’m}’
(5.11)

z_]’

where all terms are analytically available. Comparing the acceptance rate (5.11)
of the double M-H algorithm to the acceptance rate (5.9) of the original PAS
sampler, we see that the double M-H algorithm replaces the intractable prior
normalizing constant with the unbiased estimate based on a single sample from

the prior:
Ig(b,D)  f(\(w] “ij: wi;) | G)
Ie:(6,D) " T\ wij,wi;) | G')
This gives an interpretation on why the double M-H algorithm works.

Finally, Move (3) generates € conditional on the graph from Move (2) using
the block Gibbs sampler. We may summarize the algorithm as follows:

Algorithm 2. Given the current state {G, €, G', '\ (w};,w’;)}:
1. Update {G’, ¥\ (w},,w’.)}

Wij» Wij
(a) Propose a new graph G’ differing only one edge from G from the proposal
distribution ¢(G’ | 2, G,Y). Without loss of generality, assume that edge
(i,§) € G and (i, ) ¢ G,

(b) Generate the auxiliary variable Q'\(wj;,w’;) ~ ngl { U\ (i, w5) |

O\ (wij,wjj) } using the block Gibbs sampler w1th initial value Q\ (w;j, wj;)-
2. Update G
(a) Exchange G and G'.
(b) Accept G’ with probability (5.11).

(¢) According to whether G’ is accepted or not, update (w;;,w;;) from their
conditional distributions as in Step 1(c) in Algorithm 1.

3. Update 2 conditional on the most recent G' using the block Gibbs sampler.

In step 1(a), we can also systematically scan through all (4, j) for ¢ < j and
update edge (i, j) using a Bernoulli proposal with the following odds
(G| QY)  p(G")H(e, Q)
(G Q,Y) p(G) 7
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which simplifies the acceptance rate (5.11) as

O\ (W, wjy) | G) }
FEO\(wi,wiy) 16 )

a= min{l,

6. Simulation experiment
6.1. A 6 node example

To investigate the accuracy of Algorithm 2, we consider a case with p = 6,
yielding a graphical model space of size 32768, which is small enough to be
enumerated, yet large enough to be interesting and to have a significant pro-
portion of non-decomposable graphs that are about 45% of all graphs. We let
S =YY’ =nA"! where n = 18 and

1 05 0 0 0 04

1 0.5 0 0 0

1 0.5 0 0

A= 1 05 0
1 05

1

This choice of (S,n) represents 18 samples of Y from N(0, A~!). We placed the
G-Wishart prior Wg(3, I) on © and the uniform prior p(G) < 1 on G.

We calculated the theoretical posterior edge inclusion probabilities, denoted
by (pij)i<i<j<p | Y, and the theoretical posterior expectations of ¥ and €,
denoted by E(X | Y) and E(Q2 | V) respectively as follows. For each G € G
where G is the space of all 32768 graphs, we calculated its posterior probability
as

p(G)Ig(b+n,D+ 8S)/I(b, D)
Yceatp(G)a(b+n, D+ 8)/1a(b, D)}
using the Monte Carlo integration of Section 3.1 for I when G is non-decomposable

and the closed-form of I when G is decomposable. We then calculated the the-
oretical posterior edge inclusion probabilities as

p(GY) (6.1)

pi Y= > liajpemy p(G|Y) 1<i<j<p,
G=(V,E)eg

and the theoretical posterior expectations of ¥ and €2 as

EE|Y) = Y B(S|Y.6)pG|Y),
Geg

EQ|Y) = Y EQ|Y.G)pG|Y), (6.2)
Geg

respectively. In (6.2), E(X | Y, G) and E(Q | Y, G) are analytically available only
for decomposable graphs [20]. For non-decomposable graphs, we estimated E(X |
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Y,G) and E(Q | Y,G) based on their corresponding posterior sample means
calculated from the output of the Gibbs sampler of Section 2.4. We shall report
the Monte Carlo sample sizes we used: In (6.1), sample sizes 1000 and 50000
were used for the prior and the posterior normalizing constants, respectively; in
(6.2), a MCMC sample of 10000 iterations after an initial 5000 runs as burn-in
was used. These sample sizes allow the Monte Carlo estimation to be performed
for each of the non-decomposable graphs and also yield an agreement of about
2 decimal places for almost all elements in (p;;) | Y,E(X | Y) and E(Q | Y)
when we repeated the entire process two more times. The final results of the
theoretical posterior edge inclusion probabilities and the theoretical posterior
expectations of ¥ and (2 are:

1 0.969 0.106 0.085 0.113 0.850
1 0.980 0.098 0.081 0.115
(i )1<ician | ¥ = 1 0.982 0.098 0.086
ij)1<i<j<p 1 0980 0.106 |°
1 0.970
1

5.211  —4.953 4.746 —4.544 4.338 —4.131
6.461 —5.897 5.378 —4.863 4.345
7.072 —6.204 5.372 —4.547

EX|Y)= 7.074 —5.800  4.748 |
6.452 —4.951
5.214
and
1.139 0569 —0.011  0.006 —0.013  0.403
1.175  0.574 —0.008  0.005 —0.014
1.176  0.574 —0.008  0.006
EQ|Y)= 1.175  0.573 —0.011
1.175  0.569
1.138

Now, we compare the results obtained from Algorithm 2 to the above theo-
retical values. We applied Algorithm 2 with a systematic scan for 60000 sweeps
and discarded the first 10000 as burn-in. Each sweep entails updating all possi-
ble edges and all elements in 2 once. Two chains were run: One starting at the
identity matrix for 2 and one at the sample precision matrix. The results were
essentially the same for both chains. The posterior mean estimates of (p;;), £
and () are

1 0969 0.106 0.087 0.116 0.854

1 0983 0.096 0.083 0.113

LN 1 0980 0.103 0.087
(Bij) = 1 0978 0.110 |-

1 0.963

1

5.217 —4.952 4.749  —4.545 4.339  —4.135
6.452 —5.896 5.373 —4.858 4.343

7.074 —6.198 5.367 —4.544

7.065 —5.880 4.739

6.443 —4.936

5.211

™M
I
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and
1.139 0.570 —0.010 0.006 —0.014 0.404
1.179 0.575 —0.008 0.006 —0.014
1.174 0.571 —0.009 0.006

Q= 1.174  0.572 —0.013
1173 0.564
1.135

Comparing these MCMC estimates with the theoretical values computed above,
we see that Algorithm 2 is able to produce accurate estimates. As for the com-
puting time, under Matlab implementation, Algorithms 2 took about 15 minutes
to complete 60000 sweeps, while the Monte Carlo integration method took about
16 hours to evaluate all 32768 graphs.

6.2. A 100 node circle graph example

The second example is more challenging as it has a large non-complete prime
components of size 100. We simulated a sample of size n = 150 from the model
N(0, A1) where A is defined in Section 2.5. The prior parameters were b = 3,
D = Iy and independent edge inclusion probabilities 2/(p — 1). We ran the
systematic scan version of Algorithm 2 for 30000 sweeps while discarding the
first 30000 warm-up iterations. Two chains were run: One starting at the iden-
tity matrix and one at the sample covariance matrix. The results from these two
runs were similar. The median effective sample size of the free elements of (2
corresponding to the posterior mean graph was 30000 for a sample of size 30000.
The posterior mean graph which includes only edges having posterior inclusion
probability exceeding 0.5 is the true underlying circle graph. The highest prob-
ability excluded edge has probability 0.08 while the lowest probability included
edge has probability 1.

As for comparison, we used the Monte Carlo integration of Section 3.1 to ap-
proximate the marginal likelihood of the true underlying graph. Under a C++
implementation, it took about 2 minutes to calculate the prior normalizing con-
stant using 1000 Monte Carlos iterations. For the posterior normalizing constant,
the computing time is about the same. However, the algorithm seems to under-
flow in a standard implementation. That is, the true value of the function f(¥")
tends to be smaller than the computer’s smallest positive floating point number.
Figure 1 displays the boxplot of values of the function logf(¥Y) evaluated at
M = 1000 samples of ¥V adjusted by an offset:

logf(¥Y) — offset,i = 1,..., M

where offset = max{logf(¥Y) :i=1,..., M}. The majority of these values are
less than -2000, while the smallest positive floating point number in double pre-
cision is about -709 in a natural logarithm scale. Recall that logls is estimated

by,

M
@ = offset + log (Z exp{logf(¥Y) — offset}) — logM,

i=1
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-1000¢

—-2000¢

—-3000¢

—-4000(

log f(W) - offset

-5000¢

-6000(

—-7000¢

FIG 1. Boz plot showing the distribution of (logf(¥Y) — offset) in the 100 node cycle graph
example.

QQ plot of sample data versue standard normal QQ plot of sample data versue standard normal

o o o
~N 0 ©
o o o
~N 0 ©

Quantile of input sample
o
(2]

Quantile of input sample
o
(2]

0.5 0.5

0.4 0.4

0.3 0.3

0'—24 -2 0 2 4 0'—24 -2 0 2 4
Standard normal quantile Standard normal quantile

Fia 2. Q-Q plots comparing the marginal distributions of two entries of Q@ ~ W (b+n, D+.5)
with the normal distribution in the 100 node cycle graph example.

so the summation is taken over zeros most of the time. This example illustrates
that the Monte Carlo integration may require a high precision arithmetic library
so that it can precisely give results of exponential functions of —10% ~ —103 or
so. To our knowledge, current software for Gaussian graphical models has yet
supported this level of precision. Even if the underflow problem is addressed, the
computation time can be unacceptable when we increase the number of Monte
Carlo sample size until the variance falls below a fixed level. For example, using
the default sample size 1.5p% suggested by Jones et al. [11] will cost 1.5 x 100 x
2/1000 = 3 x 10° minutes to evaluate this graph. Without a good estimate
of the normalizing constant, we were unable to evaluate the accuracy of the
Laplace approximation. However, note that the accuracy largely depends on
the similarity between Wq (b+n, D+ .S) and the normal distribution. Using the
edgewise sampler, we simulated 10000 samples from Wg (b + n, D + S) under
the true graph. Figure 2 illustrates the Q-Q plots for two univariate margins of
QY. These margins are clearly different from the normal distribution.
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7. Mutual fund performance evaluation

In this section, we illustrate the extension of Gaussian graphical models to a
class of sparse seemingly unrelated regression models. We show that how graphs
can be useful in modeling real problems and how Algorithm 2 can be used as a
key component of a larger sampling scheme.

The historical performance of a mutual fund can be summarized by estimat-
ing its alpha. This term is defined as the intercept in a regression of the excess
return of the fund on the excess return of one or more passive benchmarks. This
is usually estimated by applying an ordinary least square analysis (OLS) to the
regression

Yot = o+ xfo+eor, t=1:T

where yo + is the fund return at time ¢, z; is a k£ x 1 vector of benchmark returns
at time ¢, and «q is the fund alpha. The choice of benchmarks is often guided
by a pricing model, such as the capital asset pricing model (CAPM) [25] and
the Fama-French three factor model [7]. The work of Pédstor and Stambaugh
[18] has explored the role of nonbenchmark passive assets in estimating a fund’s
alpha using a seemingly unrelated regression (SUR) model. Suppose there are p
nonbenchmark passive returns yi., ; besides the k benchmark returns x;. Further
suppose returns on passive assets including benchmark or nonbenchmark assets
are constructed for the period from 1 to 7" and a mutual fund only has a history
from tg to T where tg > 1. Then the SUR model used to estimate the mutual
fund aq is written as

Yo = oo+ B0+ eoy, t=1:T,
Yir = ;i +38i + eiy, 1=1:p; t=1:T, (7.1)

where yo,; = Y, is missing for ¢ < ¢y and the error vector eq, ¢ is distributed
as N(0,X). The basic idea is that a more precise estimate of «q is provided
through a more precise estimate of ., when eg+ is correlated with the ej.p ;.
Note that many mutual funds have relatively short histories as compared with
passive assets. Given the more accurate estimate of a1., computed from a longer
sample period, the ag estimated from SUR is more precise than the o estimated
solely based on OLS.

Some interesting questions arise in evaluating mutual fund performance using
SUR of (7.1). First, as is observed by Pdstor and Stambaugh [18], the assumption
of pricing power of benchmark assets on nonbenchmark assets, i.e. o; = 0 or not
for i = 1 : p, is critical in estimating a fund’s alpha in a SUR model. The second
question concerns the strictness of the SUR model assumption, that is, returns
are assumed to be contemporaneously correlated with all nonbenchmark returns
given the benchmark returns. For some managed funds, perhaps only the errors
from a subset of nonbenchmark assets are relevant in explaining returns of the
fund. Including too many correlated nonbenchmark assets to estimate alpha will
mean a potentially high misspecification risk.

Motivated by these practically important considerations, we consider the fol-
lowing sparse seemingly unrelated regression (SSUR) models that extend SUR
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to address the two questions above. We use the hierarchical mixture prior for
each of ag:p:

a; ~ (1 —2z)N(0, Vf,o) + 2N (0, Vi2,1),

where z; = 0 or 1 according to whether the benchmark assets have the pric-
ing power or not respectively and v;y and v;; are set to be small and large
respectively [8]. We next apply the Gaussian graphical model to the residual co-
variance matrix 3 to naturally model the contemporaneous dependence among
mutual fund and nonbenchmark returns. Algorithm 2 developed in Section 5
will then extend to include components to sample (@q.p, 20:p, Bo:p) and yg 1.4, 1
at each iteration, using the efficient stochastic search variable selection (SSVS)
procedure and conventional imputation approach.

To evaluate the efficacy of the model, we applied it to a collection of 15
actively managed Vanguard mutual funds, using monthly returns through De-
cember 2008 available from the Center for Research in Security Prices (CRSP)
mutual fund database. The set of benchmark and nonbenchmark assets consists
of eleven portfolios constructed passively. Monthly returns on these passive as-
sets are available from January 1927 through December 2008. The sample period
for any given mutual fund is a much shorter subset of this overall period. We
specify the benchmark series as the excess market returns (MKT), and so the
alpha is exclusively defined with respect to just MKT. The first two of nonbench-
mark passive portfolios are the Fama-French factors, which are the payoffs on
long-short spreads constructed by sorting stocks according to the market capital-
ization and the book-to-market ratio. The third, fourth and fifth nonbenchmark
series are the momentum, short term and long term reversal factors respectively.
The remaining five nonbenchmark assets are the value-weighted returns for five
industrial portfolios.

We choose v;0 = 0.025 and v; 1 = 0.5 for monthly «;. This choice of hyper-
parameters is in line with the view that a yearly return of 0.025 x 2 x 12 = 0.6%
in excess of the compensation for the risk borne may possibly be ignored and
the maximum plausible yearly return for «; is about 0.5 x 2 x 12 = 12%. We
assume a uniform prior for z;. We compare three methods for estimating «y:
OLS, SUR and SSUR. Table 2 reports the estimated g, the standard error
and the posterior probability of the event {2y = 1} within each fund based
on the three methods for the period since a fund’s inception. The SSUR es-
timates are nontrivially different from their OLS and SUR counterparts. In
particular, the ag’s tend towards zeros under SSUR. This is not surprising since
SSUR. assumes a positive probability for small values of . One important is-
sue in fund performance evaluation is whether the managed fund adds value
beyond the standard passive benchmarks. We address this issue by computing
the estimated probability of the event {zy = 1} in the last column. Only a few
funds have the estimated probability exceeding 0.5. This suggests that most of
the 15 mutual funds do not generate excess returns beyond the passive bench-
mark assets. Furthermore, the SUR standard errors are generally smaller than
their OLS counterparts. This observation is compatible with that in Pastor and
Stambaugh [18]. With few exceptions, SSUR seems to reduce the standard er-
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TABLE 2
Summary of the estimated monthly o for three different models: OLS, SUR and SSUR. For
OLS and SUR, point estimates and standard errors are reported. For SSUR, posterior
mean, standard deviation and probability of o # 0 are reported.

OLS SUR SSUR
Fund name a  s.e.(q) & s.e.(q) a  se(d) Pla#0)
Cap Opp 0.34 0.26 0.43 0.13 0.45 0.15 0.98
Dividend Growth 0.05 0.18 0.05 0.08 0.01 0.04 0.11
Equity-Income 0.14 0.12 0.16 0.08 0.04 0.07 0.25
Explorer -0.05 0.14 0.07 0.15 0.02 0.06 0.17
Growth& Income 0.02 0.06 0.08 0.10 0.01 0.05 0.13
Growth Equity -0.20 0.16 -0.14 0.12 -0.03 0.08 0.23
Mid Cap Growth 0.55 0.38 0.47 0.16 0.51 0.16 0.99
Morgan Growth 0.04 0.07 0.14 0.12 0.05 0.09 0.28
PRIMECAP 0.23 0.12 0.33 0.11 0.30 0.14 0.90
Selected Value 0.09 0.28 0.10 0.11 0.03 0.07 0.19
Strategic Equity 0.14 0.17 0.19 0.11 0.09 0.12 0.42
US Growth 0.31 0.26 0.39 0.20 0.24 0.19 0.62
US Value 0.31 0.17 0.33 0.09 0.31 0.13 0.92
Windsor 0.14 0.09 0.19 0.12 0.10 0.12 0.47
Windsor 1T 0.13 0.12 0.14 0.10 0.03 0.07 0.22

ror even more than SUR. Recall that the standard error of the SSUR estimates
takes into account of structure uncertainty. The reduced standard errors seem
to suggest that there is a great deal of sparsity within SUR and that identi-
fying this sparsity can help provide more precise estimates of «aq’s. Finally, we
note that the estimated graphs representing a fund’s contemporaneously depen-
dencies on nonbenchmark assets seem to reflect a fund’s portfolio composition.
For example, the fund Explorer seeks small US companies with growth poten-
tial and has top two holdings on the information technology and health care
sectors as of May, 2008. The error of this fund is related to the error of non-
benchmark assets representing market capitalization, and high technology, and
health care.

8. Discussion

We have described a sampling algorithm for Bayesian model determination in
Gaussian graphical models. Our method has three ingredients: A block Gibbs
sampler for within-graph moves, a reversible jump sampler using partial analytic
structure for across-graph moves, and an exchange algorithm for avoiding the
evaluation of prior normalizing constants.

For the covariance selection problem, a possible disadvantage of not approx-
imating the marginal likelihood is that this does not allow for more flexible
search algorithms for rapid traversal of the graph space. However, the subse-
quence of graphs from the auxiliary chain we developed will in many cases have
the property that high probability graphs will appear more quickly than low
ones, providing useful guidelines for setting Monte Carlo sample size or starting
graphs using the more computationally intensive methods based on the normal-
izing constant approximation.
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For problems where graphical models are only components of larger models,
search algorithm does not apply and MCMC is routinely used for posterior
computation with graphs either restricted to be decomposable or determined
by approximating normalizing constants conditional on other parameters. The
approximation step often costs substantial computational burden. Our method
then has an advantage of being able to be easily embedded within a large MCMC
algorithm to accelerate posterior computation.

Finally, we note that software implementing all analyses discussed in the
paper is freely available from the first author’s the web site of the paper.
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