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Abstract: Consider the standard Gaussian linear regression model Y =
Xθ0 + ǫ, where Y ∈ Rn is a response vector and X ∈ Rn×p is a design
matrix. Numerous work have been devoted to building efficient estimators
of θ0 when p is much larger than n. In such a situation, a classical approach
amounts to assume that θ0 is approximately sparse. This paper studies the
minimax risks of estimation and testing over classes of k-sparse vectors
θ0. These bounds shed light on the limitations due to high-dimensionality.
The results encompass the problem of prediction (estimation of Xθ0), the
inverse problem (estimation of θ0) and linear testing (testing Xθ0 = 0). In-
terestingly, an elbow effect occurs when the number of variables k log(p/k)
becomes large compared to n. Indeed, the minimax risks and hypothesis
separation distances blow up in this ultra-high dimensional setting. We also
prove that even dimension reduction techniques cannot provide satisfying
results in an ultra-high dimensional setting. Moreover, we compute the min-
imax risks when the variance of the noise is unknown. The knowledge of
this variance is shown to play a significant role in the optimal rates of es-
timation and testing. All these minimax bounds provide a characterization
of statistical problems that are so difficult so that no procedure can provide
satisfying results.
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1. Introduction

In many important statistical applications, including remote sensing, functional
MRI and gene expressions studies the number p of parameters is much larger
than the number n of observations. An active line of research aims at developing
computationally fast procedures that also achieve the best possible statistical
performances in this “p larger than n” setting. A typical example is the study
of l1-based penalization methods for the estimation of linear regression models.
However, if p is really too large compared to n, all these new procedures fail to
achieve a good estimation.

Thus, there is a need to understand the intrinsic limitations of a statistical
problem: what is the best rate of estimation or testing achievable by a procedure?
Is it possible to design good procedures for arbitrarily large p or are there
theoretical limitations when p becomes “too large”? These limitations tell us
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what kind of data analysis problems are too complex so that no statistical
procedure is able to provide reasonable results. Furthermore, the knowledge of
such limitations may drive the research towards areas where computationally
efficient procedures are shown to be suboptimal.

1.1. Linear regression and statistical problems

We observe a response vector Y ∈ Rn and a real design matrix X of size n× p.
Consider the linear regression model

Y = Xθ0 + ǫ , (1.1)

where the vector θ0 of size p is unknown and the random vector ǫ follows a
centered normal distribution N (0n, σ

2In). Here, 0n stands for the null vector of
size n and In for the identity matrix of size n.

In some cases, the design X is considered as fixed either because it has been
previously chosen or because we work conditionally to the design. In other cases,
the rows of the design matrix X correspond to a n-sample of a random vector
X of size p. The design X is then said to be random. A specific class of random
design is made of Gaussian designs where X follows a centered normal distribu-
tion N (0p,Σ). The analysis of fixed and Gaussian designs share many common
points. In this work, we shall enhance the similarities and the differences between
both settings.

There are various statistical problems arising in the linear regressionmodel (1.1).
Let us list the most classical issues:
(P1): Linear hypothesis testing. In general, the aim is to test whether θ0
belongs to a linear subspace of Rp. Here, we focus on testing the null hypothesis
H0: {θ0 = 0p}. In Gaussian design, this is equivalent to testing whether Y is
independent from X.
(P2): Prediction. We focus on predicting the expectation E[Y] in fixed design
and the conditional expectation E[Y|X] in Gaussian design.
(P3): Inverse problem. The primary interest lies in estimating θ0 itself and

the corresponding loss function is ‖θ̂ − θ0‖2p, where ‖.‖p is the l2 norm in Rp.
(P4): Support estimation aims at recovering the support of θ0, that is the
set of indices corresponding to non-zero coefficients. The easier problem of di-
mension reduction amounts to estimate a set M̂ ⊂ {1, . . . p} of “reasonable”
size that contains the support of θ0 with high probability.

Much work have been devoted to these statistical questions in the so-called
high-dimensional setting, where the number of covariates p is possibly much
larger than n. A classical approach to perform a statistical analysis in this set-
ting is to assume that θ0 is sparse, in the sense that most of the components
of θ0 are equal to 0. For the problem of prediction (P2), procedures based
on complexity penalization are proved to provide good risk bounds for known
variance [11] and unknown variance [6] but are computationally inefficient. In



40 N. Verzelen

contrast, convex penalization methods such as the Lasso or the Dantzig selec-
tor are fast to compute, but only provide good performances under restrictive
assumptions on the design X (e.g. [8, 13, 50]). Exponential weighted aggrega-
tion methods [18, 40] are another example of fast and efficient methods. The l1
penalization methods have also been analyzed for the inverse problem (P3) [8]
and for support estimation (P4) [36, 49]. Dimension reduction methods are of-
ten studied in more general settings than linear regression [17, 26]. In the linear
regression model, the SIS method [25] based on the correlation between the re-
sponse and the covariates allows to perform dimension reduction. The problem
of high-dimensional hypothesis testing (P1) has so far attracted less attention.
Some testing procedures are discussed in [7, 3] for fixed design and in [44, 34]
for Gaussian design.

1.2. Sparsity and ultra-high dimensionality

Given a positive integer k, we say that the vector θ0 is k-sparse if θ0 contains at
most k non-zero components. We call k the sparsity parameter. In this paper,
we are interested in the setting k < n < p. We note Θ[k, p] the set of k-sparse
vectors in Rp.

In linear regression, most of the results about classical procedures require
that the triplet (k, n, p) satisfies k[1 + log(p/k)] < n. When k is “small”, this
corresponds to assuming that p is subexponential with respect to n. The analy-
sis of the Lasso in prediction, inverse problems [8], and support estimation [38]
entail such assumptions. In dimension reduction, the SIS method [25] also re-
quires this assumption. If the multiple testing procedure of [7] can be analyzed
for k[1+ log(p/k)] larger than n, it exhibits a much slower rate of testing in this
case. In noiseless problems (σ = 0), compressed sensing methods [23] fail when
k[1+log(p/k)] is large compared to n (see [22] for numerical illustrations). In the
sequel, we say that the problem is ultra-high dimensional1 when k[1+ log(p/k)]
is large compared to n. Observe that ultra-high dimensionality does not nec-
essarily imply that p is exponential with respect to n. As an example, taking
p = n3 and k = n/ log log(n) asymptotically yields an ultra-high dimensional
problem.

Why should we care about ultra-high dimensional problem? In this setting,
there are so many variables that statistical questions such as the estimation of
θ0 (P3) or its support (P4) are likely to be difficult. Nevertheless, if the signal
over noise ratio is large, do there exist estimators that perform relatively well?
The answer is no. We prove in this paper that a phase transition phenomenon
occurs in an ultra-high dimensional setting and that most of the estimation and
testing problems become hopeless. This phase transition phenomenon implies
that some statistical problems that are tackled in postgenomic of functional
MRI cannot actually be addressed properly.

1In some papers, the expression ultra-high dimensional has been used to characterize prob-
lems such that log(p) = O(nβ) with β < 1. We argue in this paper that that as soon as
k log(p)/n goes to 0, the case log(p) = O(nβ) is not intrinsically more difficult than conditions
such as p = O(nδ) with δ > 0.
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Example 1.1 (Motivating example). In some gene network inference problems
(e.g. [16]), the number p of genes can be as large as 5000 while the number n
of microarray experiments is only of order 50. Let us consider a gene A. We
note GA the set of genes that interact with the gene A and k stands for the
cardinality of GA. How large can be k so that it is still “reasonable” to estimate
GA from the microarray experiments? In statistical terms, inferring the set of
genes interacting with A amounts to estimate the support of a vector θ0 in a
linear regression model (see e.g. [38]). Our answer is that if k is larger than 4,
then the problem of network estimation becomes extremely difficult. We will
come back to this example and explain this answer in Section 7.

1.3. Minimax risks

A classical way to assess the performance of an estimator θ̂ is to consider its
maximal risk over a class Θ ⊂ Rp. This is the minimax point of view. For the
time being, we only define the notions of minimaxity for estimation problems
(P2 and P3). Their counterpart in the case of testing (P1) and dimension re-
duction (P4) will be introduced in subsequent sections. Given a loss function

l(., .) and estimator θ̂, the maximal risk of θ̂ over Θ[k, p] for a design X (or
a covariance Σ in the Gaussian design case) and a variance σ2 is defined by

supθ0∈Θ[k,p] Eθ0,σ[l(θ̂, θ0)]. Taking the infimum of the maximal risk over all pos-

sible estimators θ̂, we obtain the minimax risk

inf
θ̂

sup
θ0∈Θ[k,p]

Eθ0,σ[l(θ̂, θ0)] .

We say that an estimator θ̂ is minimax if its maximal risk over Θ[k, p] is close
to the minimax risk.

In practice, we do not know the number k of non-zero components of θ0 and
we seldom know the variance σ2 of the error. If an estimator θ̂ does not require
the knowledge of k and nearly achieves the minimax risk over Θ[k, p] for a range

of k, we say that θ̂ is adaptive to the sparsity. Similarly, an estimator θ̂ is adap-
tive to the variance σ2, if it does not require the knowledge of σ2 and nearly
achieves the minimax risk for all σ2 > 0. When possible, the main challenge
is to build adaptive procedures. In some statistical problems considered here,
adaptation is in fact impossible and there is an unavoidable loss when the vari-
ance or the sparsity parameter is unknown. In such situations, it is interesting
to quantify this unavoidable loss.

1.4. Our contribution and related work

In the specific case of the Gaussian sequence model, where n = p and X = In,
the minimax risks over k-sparse vectors have been studied for a long time.
Donoho and Johnstone [21, 35] have provided the asymptotic minimax risks of
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prediction (P2). Baraud [5] has studied the optimal rate of testing from a non-
asymptotic point of view while Ingster [31, 32, 33] has provided the asymptotic
optimal rate of testing with exact constants.

Recently, some high-dimensional problems have been studied from a mini-
max point of view. Wainwright [45, 46] provides minimax lower bounds for the
problem of support estimation (P4). Raskutti et al. [39] and Rigollet and Tsy-
bakov [40] have provided minimax upper bounds and lower bounds for (P2) and
(P3) over lq balls for general fixed designs X when the variance σ2 is known
(see also Ye and Zhang [47] and Abramovich and Grinshtein [1]). Arias-Castro
et al. [3] and Ingster et al. [34] have computed the asymptotic minimax detec-
tion boundaries for the testing problem (P1) for some specific designs. However,
their study only encompasses reasonable dimensional problems (p grows poly-
nomially with n). Some minimax lower bounds have also been stated for testing
(P1) and prediction (P2) problems with Gaussian design [42, 44]. All the afore-
mentioned results do not cover the ultra-high dimensional case and do not tackle
the problem of adaptation to both k and σ.

This paper provides minimax lower bounds and upper bounds for the prob-
lems (P1), (P2), (P3) when the regression vector θ0 is k-sparse for fixed and
random designs, known and unknown variance, known and unknown sparsities.
The lower and upper bounds match up to possible differences in the logarithmic
terms. The main discoveries are the following:

1. Phase transition in an ultra-high dimensional setting. Contrary to
previous work, our results cover both the high-dimensional and ultra-high
dimensional setting. We establish that for each of the problems (P1), (P2)
and (P3), an elbow effect occurs when k log(p/k) becomes large compared
to n. Let us emphasize the difference between the high-dimensional and
the ultra-high dimensional regimes for two problems: prediction (P2) and
support estimation (P4).

Prediction with random design. In the (non-ultra) high-dimensional set-
ting, the minimax risk of prediction for a random design regression is of
order σ2k log(p/k)/n (see Section 3). Thus, the effect of the sparsity k is
linear and the effect of the number of variables p is logarithmic. In an
ultra-high dimensional setting, that is when k log(p/k)/n is large, we es-
tablish that an elbow effect occurs in the minimax risk. In this setting,
the minimax risk becomes of order σ2 exp[Ck{1 + log(p/k)}/n], where C
is a positive constant: it grows exponentially fast with k and polynomially
with p (see the red curve in Figure 1). If it was expected that the minimax
risk cannot be small for such problems, we prove here that the minimax
risk is in fact exponentially larger than the usual k log(p/k)/n term.

Support estimation. In a non-ultra high dimensional setting it is known [46]
that under some assumptions on the design X (e.g. each component of X
is drawn from iid. standard normal distribution) the support of a k-sparse
vector θ0 is recoverable with high probability if

∀i ∈ supp(θ0) , |(θ0)i| ≥ C
√
log(p)/nσ , (1.2)



Ultra-high dimensional regression 43

where C is a numerical constant. In an ultra-high dimensional setting,
even if

∀i ∈ supp(θ0) , |(θ0)i| = exp[Ck{1 + log(p/k)}/n]/
√
kσ , (1.3)

it is not possible to estimate the support of θ0 with high probability. Ob-
serve that the condition (1.3) is much stronger than (1.2). In fact, it is
not even possible to reduce drastically the dimension of the problem with-
out forgetting relevant variables with positive probability. More precisely,
for any dimension reduction procedure that selects a subset of variables
M̂ ⊂ {1, . . . p} of size pδ with some 0 < δ < 1 (described in Proposition

6.7), we have supp(θ0) * M̂ with probability away from zero (see Propo-
sition 6.7). Thus, it is almost hopeless to have a reliable estimation of the
support of θ0 even if ‖θ0‖2p/σ2 is large. This impossibility of dimension
reduction for ultra-high dimensional problems is numerically illustrated
in Section 7.

2. Adaptation to the sparsity k and to the variance σ2. Most theoret-
ical results for the problems (P1) and (P2) require that the variance σ

2 is
known. Here, we establish these minimax bounds for both known and un-
known variance and known and unknown sparsity. The knowledge of the
variance is proved to play a fundamental role for the testing problem (P1)
when k[1+log(p/k)] is large compared to

√
n. The knowledge of σ2 is also

proved to be crucial for (P2) in an ultra-high dimensional setting. Thus,
specific work is needed to develop fast and efficient procedures that do not
require the knowledge of the variance. Furthermore, variance estimation
is extremely difficult in an ultra-high dimensional setting.

3. Effect of the design. Lastly, the minimax bounds of (P1), (P2) and (P3)
are established for fixed and Gaussian designs. Except for the problem of
prediction (P2), the minimax risks are shown to be of the same nature for
both forms of the design. Furthermore, we investigate the dependency of
the minimax risks on the design X (resp. Σ) in Sections 4-6.

The minimax bounds stated in this paper are non asymptotic. While some
upper bounds are consequences of recent results in the literature, most of the
effort is spent here to derive the lower bound. These bounds rely on Fano’s
and Le Cam’s methods [48] and on geometric considerations. In each case, near
optimal procedures are exhibited.

1.5. Organization of the paper

In Section 3, we summarize the minimax bounds for specific designs called
“worst-case” and “best-case” designs in order to emphasize the effects of dimen-
sionality. The general results are stated in Section 4 for the tests and Section
5 for the problem of prediction. The problems of inverse estimation, support
estimation, and dimension reduction are studied in Section 6. In Section 7,
we address the following practical question: For exactly what range of (k, p, n)
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should we consider a statistical problem as ultra-high dimensional? A small sim-
ulation study illustrates this answer. Section 8 contains the final discussion and
side results about variance estimation. Section 9 is devoted to the proof of the
mains minimax lower bounds. Specific statistical procedures allow to establish
the minimax upper bounds. Most of these procedures are used as theoretical
tools but should not be applied in a high dimensional setting because they are
computationally inefficient. In order to clarify the statements of the results in
Sections 4–6, we postpone the definition of these procedures to Section 10. The
remaining proofs are described in a technical appendix [43].

2. Notations and preliminaries

We respectively note ‖.‖n and ‖.‖p the l2 norms in Rn and Rp, while 〈.〉n refers
to the inner product in Rn. For any θ0 ∈ Rp and σ > 0, Pθ0,σ and Eθ0,σ refer to
the joint distribution of (Y,X). When there is no risk of confusion, we simply
write P and E. All references with a capital letter such as Section A or Eq. (B.2)
refer to the technical Appendix [43].

In the sequel, we note supp(θ0) the support of θ0. For any 1 ≤ k ≤ p, M(k, p)
stands for the collections of all subsets of {1, . . . , p} with cardinality k. Given
i ∈ {1, . . . , p}, we note Xi the vector of size n corresponding to i-th column of
X. For m ⊂ {1, . . . , p}, Xm stands for the n×|m| submatrix of X that contains
the columns Xi, i ∈ m. In what follows, we note XT the transposed matrix
of X.

Gaussian design and conditional distribution. When the design is said
to be “Gaussian”, the n rows of X are n independent samples of a random row
vector X such that XT ∼ N (0p,Σ). Thus, (Y,X) if a n-sample of the random
vector (Y,XT ) ∈ Rp+1, where Y is defined by

Y = Xθ0 + ǫ , (2.1)

where ǫ ∼ N (0, σ2). The linear regressionmodel with Gaussian design is relevant
to understand the conditional distribution of a Gaussian variable Y condition-
ally to a Gaussian vector since E[Y |X ] = Xθ0 and Var(Y |X) = σ2. This is
why we shall often refer to σ2 as the conditional variance of Y when consider-
ing Gaussian design. This model is also closely connected to the estimation of
Gaussian graphical models [38, 44].

As explained later, the minimax risk over Θ[k, p] strongly depends on the
design X. This is why we introduce some relevant quantities on X.

Definition 2.1. Consider some integer k > 0 and some design X.

Φk,+(X) := sup
θ∈Θ[k,p]\{0p}

‖Xθ‖2n
‖θ‖2p

and Φk,−(X) := inf
θ∈Θ[k,p]\{0p}

‖Xθ‖2n
‖θ‖2p

. (2.2)

In fact, Φk,+(X) and Φk,−(X) respectively correspond to the largest and the
smallest restricted eigenvalue of order k of XTX.
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Given a symmetric real square matrix A, ϕmax(A) stands for the largest
eigenvalue of A. Finally, C, C1, . . . denote positive universal constants that may
vary from line to line. The notation C(.) specifies the dependency on some
quantities.

In the propositions, the constants involved in the assumptions are not always
expressly specified. For instance, sentences of the form “Assume that n ≥ C.
Then, . . .” mean that “There exists an universal C > 0 such that if n ≥ C,
then . . .”.

3. Main results

The exact bounds are stated in Section 4–6. In order to explain these results,
we now summarize the main minimax bounds by focusing on the role of (k, n, p)
rather than on the dependency on the design X. In order to keep the notations
short, we do not provide in this section the minimal assumptions of the results.
Let us simply mention that all of them are valid if the sparsity k satisfies k ≤
(p1/3) ∧ (n/5) and that p ≥ n ≥ C where C a positive numerical constant.

3.1. Prediction

3.1.1. Definitions

First, the results are described for the problem of prediction (P2) since the
problem of minimax estimation is more classical in this setting. Different pre-
diction loss functions are used for fixed and Gaussian designs. When the design
is considered as fixed, we study the loss ‖X(θ1 − θ2)‖2n/(nσ2). For Gaussian
design, we consider the integrated prediction loss function:

‖
√
Σ(θ1 − θ2)‖2p/σ2 = E

[
{X(θ1 − θ2)}2

]
/σ2 . (3.1)

Given a design X, the minimax risk of prediction over Θ[k, p] with respect to
X is

RF [k,X] = inf
θ̂

sup
θ0∈Θ[k,p]

Eθ0,σ[‖X(θ̂ − θ0)‖2n/(nσ2)] . (3.2)

For a Gaussian design with covariance Σ, we study the quantity

RR[k,Σ] := inf
θ̂

sup
θ0∈Θ[k,p]

Eθ0,σ[‖
√
Σ(θ̂ − θ0)‖2p/σ2] . (3.3)

These minimax risks of prediction do not only depend on (k, n, p) but also on
the design X (or on the covariance Σ). The computation of the exact depen-
dency of the minimax risks on X or Σ is a challenging question. To simplify the
presentation in this section, we only describe the minimax prediction risks for
worst-case designs defined by

RF [k] := sup
X

RF [k,X], RR[k] := sup
Σ

RR[k,Σ] , (3.4)
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the supremum being taken over all designs X of size n× p (resp. all covariance
matrices Σ). The quantity RF [k] corresponds to the smallest risk achievable
uniformly over Θ[k, p] and all designs X. It is shown in Section 5 that the
quantity RR[k] is achieved (up to constants) for a covariance Σ = Ip while
the quantity RF [k] is achieved with high probability for designs X that are
realizations of the standard Gaussian design (all the components ofX are drawn
independently from a standard normal distribution). This corresponds to designs
used in compressed sensing [23]. In fact, the maximal risks RF [k] and RR[k]
for the prediction problem correspond to typical situations where the designs is
well-balanced, that is as close as possible to orthogonality.

3.1.2. Results

In the sequel, we say that RF [k] is of order f(k, p, n, C), where C is positive
constant when there exist two positive universal constants C1 and C2 such that

f(k, p, n, C1) ≤ RF [k] ≤ f(k, p, n, C2) .

These minimax risks are computed in Section 5 and are gathered in Table 1.
They are also depicted on Figure 1.

When k log(p/k) remains small compared to n, the minimax risk of predic-
tion is of the same order for fixed and Gaussian design. The k log(p/k)/n risk
is classical and has been known for a long time in the specific case of the Gaus-
sian sequence model [35]. Some procedures based on complexity penalization
or aggregation (e.g. [11]) are proved to achieve these risks uniformly over all
designs X. Computationally efficient procedures like the Lasso or the Dantzig
selector are only proved to achieve a k log(p)/n risk under assumption on the

Fixed design

1

k

Ultra-high dimension

Random design

σ unknown and k unknown

σ known or k known

M
in
im

ax
p
re
d
ic
ti
on

ri
sk

Fig 1. Minimax prediction risk (P2) over Θ[k, p] as a function of k for fixed and random
design and known and unknown variance. The corresponding bounds are stated in Section 5.
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Table 1

Orders of magnitude of the minimax risks of prediction RF [k] and RR[k] over Θ[k, p]

Fixed Design: RF [k] Gaussian Design: RR[k]

C
[

k
n log

(

p
k

)]

∧ 1 C1
k
n log

(

p
k

)

exp
[

C2
k
n log

(

p
k

)]

design X [8]. If the support of θ0 is known in advance, the parametric risk is
of order k/n. Thus, the price to pay for not knowing the support of θ0 is only
logarithmic in p.

In an ultra-high dimensional setting, the minimax prediction risk in fixed
designs remains smaller than one. It is the minimax risk of estimation of the
vector E(Y) of size n. This means that the sparsity index k does not play
anymore a role in ultra-high dimension. For a Gaussian design, the minimax
prediction risk becomes of order C1(p/k)

C2k/n: it increases exponentially fast
with respect to k and polynomially fast with respect to p. Comparing this risk
with the parametric rate k/n, we observe that the price to pay for not knowing
the support of θ0 is now far higher than log(p).

In Section 5, we also study the adaptation to the sparsity index k and to the
variance σ2. We prove that adaptation to k and σ2 is possible for a Gaussian
design. In fixed design, no procedure can be simultaneously adaptive to the
sparsity k and the variance σ2 (see the red curve in Figure 1 that corresponds
to fixed design, σ and k unknown).

3.2. Testing

3.2.1. Definitions

Let us turn to the problem (P1) of testing H0: {θ0 = 0p} against H1: {θ0 ∈
Θ[k, p] \ {0p}}. We fix a level α > 0 and a type II error probability δ > 0.
Minimax lower and upper bounds for this problem are discussed in Section 4.

Suppose we are given a test procedure Φα of level α for fixed design X

and known variance σ2. The δ-separation distance of Φα over Θ[k, p], noted
ρF [Φα, k,X] is the minimal number ρ, such that Φα rejects H0 with probabil-
ity larger than 1 − δ if ‖Xθ0‖n/

√
n ≥ ρσ. Hence, ρF [Φα, k,X] corresponds to

the minimal distance such that the hypotheses {θ0 = 0p} and {θ0 ∈ Θ[k, p],
‖Xθ0‖2n ≥ nρ2F [Φα, k,X]σ2} are well separated by the test Φα.

ρF [Φα, k,X] := inf

{
ρ > 0, inf

θ0∈Θ[k,p], ‖Xθ0‖n≥
√
nρσ

Pθ0,σ[Φα = 1] ≥ 1− δ

}
.

Although the separation distance also depends on δ, n, and p, we only write
ρF [Φα, k,X] for the sake of conciseness. By definition, the test Φα has a power
larger than 1 − δ for θ0 ∈ Θ[k, p] such that ‖Xθ0‖2n ≥ ρ2F [Φα, k,X]. Then, we
consider

ρ∗F [k,X] := inf
Φα

ρ[Φα, k,X] . (3.5)
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The infimum runs over all level-α tests. We call this quantity the (α, δ)-minimax
separation distance over Θ[k, p] with design X and variance σ2. The minimax
separation distance is a non-asymptotic counterpart of the detection boundaries
studied in the Gaussian sequence model [20].

Similarly, we define the (α, δ)-minimax separation distance over Θ[k, p] with
Gaussian design by replacing the distance ‖Xθ0‖n/

√
n by the distance ‖

√
Σθ0‖p:

ρR[Φα, k,Σ] := inf
{
ρ > 0, inf

θ0∈Θ[k,p], ‖
√
Σθ0‖p≥ρσ

Pθ0,σ[Φα = 1] ≥ 1− δ
}
,

ρ∗R[k,Σ] := inf
Φα

ρR[Φα, k,Σ] . (3.6)

Various bounds on ρ∗F [k,X], ρ∗R[k,Σ] are stated in Section 4. In this section, we
only provide the orders of magnitude of the minimax separation distances in
the “worst case” designs in order to emphasize the effect of dimensionality:

ρ∗F [k] := sup
X

ρ∗F [k,X] , ρ∗R[k] := sup
Σ

ρ∗R[k,Σ] . (3.7)

This is the smallest separation distance that can be achieved by a procedure
Φα uniformly over all designs X (resp. Σ). As for the prediction problem, it
will be proved in Section 4, that the quantity ρ∗F [k] and ρ∗R[k] are achieved for
well-balanced designs.

It is not always possible to achieve the minimax separation distances with a
procedure Φα that does not require the knowledge of the variance σ2. This is
why we also consider ρ∗F,U [k] and ρ∗R,U [k] the minimax separation distance for
fixed and Gaussian design when the variance is unknown. Roughly, ρ∗F,U [k] cor-

responds to the minimal distances ρ2 that allows to separate well the hypotheses
{θ0 = 0p and σ > 0} and {θ0 ∈ Θ[k, p] and σ > 0, ‖Xθ0‖2n/σ2 ≥ nρ2} when σ
is unknown. We shall provide a formal definition at the beginning of Section 4.

3.2.2. Results

In Table 2, we provide the orders of the minimax separation distances over
Θ[k, p] for fixed and Gaussian designs, known and unknown variance (see also
Figure 2).

In contrast to (P2), the minimax separation distances are of the same order
for fixed and Gaussian design.

Table 2

Order of the minimax separation distances over Θ[k, p] for fixed and Gaussian design,
known and unknown variance: (ρ∗F [k])2, (ρ∗R[k])2, (ρ∗F,U [k])2, and (ρ∗R,U [k])2

Fixed and Gaussian Design

Known σ2: (ρ∗
F
[k])2 and (ρ∗

R
[k])2 C(α, δ)

k log(p)
n ∧ 1√

n

Unknown σ2: (ρ∗
F,U

[k])2 and (ρ∗
R,U

[k])2 C(α, δ)
k log(p)

n exp

[

C2(α, δ)
k log(p)

n

]
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Fig 2. Orders of magnitude of the minimax separation distances (ρ∗
F
[k])2, (ρ∗

R
[k])2, (ρ∗

F,U
[k])2

and (ρ∗
R,U

[k])2 over Θ[k, p] (P1) for fixed and random designs and known and unknown

variances. Here, ρ∗F [k] and ρ∗R[k] behave similarly while ρ∗F,U [k] and ρ∗R,U [k] behave similarly.
The corresponding bounds are stated in Section 4.

1. When k log(p) ≤ √
n, all the minimax separation distances are of order

k log(p)/n. This quantity also corresponds to the minimax risk of pre-
diction (P2) stated in the previous subsection. This separation distance
has already been proved in the specific case of the Gaussian sequence
model [5, 20].

2. When k log(p) ≥ √
n, the minimax separation distances are different un-

der known and unknown variance. If the variance is known, the minimax
separation distance over Θ[k, p] stays of order 1/

√
n. Here, 1/

√
n corre-

sponds in fixed design to the minimax separation distance of the hypothe-
ses {E[Y] = 0n} against the general hypothesis {E[Y] 6= 0n} for known
variance (see Baraud [5]).

3. If the variance is unknown, the minimax separation distance over Θ[k, p]
is still of order k log(p)/n if k log(p) is small compared to n. In contrast,
the minimax separation distance blows up to the order C1p

C2k/n in a
ultra-high dimensional setting. This blow up phenomenon has also been
observed in the previous section for the problem of prediction (P2) in
Gaussian design. In conclusion, the knowledge of the variance is of great
importance for k log(p) larger than

√
n.

3.3. Inverse problem and support estimation

3.3.1. Definitions

In the inverse problem (P3), we are primarily interested in the estimation of
θ0 rather than Xθ0. This is why the loss function under study is ‖θ1 − θ2‖2p.



50 N. Verzelen

Minimax lower and upper bounds for this loss function are discussed in Section
6. For a fixed design X, the minimax risk of estimation is

RIF [k,X] := inf
θ̂

sup
θ0∈Θ[k,p]

Eθ0,σ[‖θ0 − θ̂‖2p/σ2] . (3.8)

If one transforms the design X by an homothety of factor λ > 0, then this
multiplies the minimax risk for the inverse problem by a factor 1/λ2. For the sake
of simplicity, we restrict ourselves to designs X such that each column has been
normed to

√
n. The collection of such designs is noted Dn,p. The supremum of

the minimax risks over the designs Dn,p is +∞. Take for instance a design where
the two first columns are equal. In this section, we only present the infimum of
the minimax risks over Θ[k, p] as X varies across Dn,p:

RIF [k] := inf
X∈Dn,p

RIF [k,X] .

The quantity RIF [k] is interpreted the following way: given (k, n, p) what is the
smallest risk we can hope if we use the best possible design? Alternatively, given
n observations, what is the intrinsic difficulty of estimating a k-sparse vector
of size p? We call this quantity the minimax risks for the inverse problem over
Θ[k, p].

In Section 6, we also study the corresponding the minimax risks of the in-
verse problem in the random design case. Let Sp stand for the set of covariance
matrices that contain only ones on the diagonal. We respectively define the min-
imax risk of estimation over Θ[k, p] for a covariance Σ and the minimax risk of
estimation over Θ[k, p] as

RIR[k,Σ] := inf
θ̂

sup
θ0∈Θ[k,p]

Eθ0,σ[‖θ0−θ̂‖2p/σ2] and RIR[k] := inf
Σ∈Sp

RIR[k,Σ] .

(3.9)

3.3.2. Results

In Table 3, we provide the minimax risks in fixed design for different values of
(k, n, p) (see also Figure 3).

If k log(p/k) remains smaller than n, it is possible to recover the risk Ck log(p/k)
for “good” designs. This risk is for instance achieved by the Dantzig selector
of Candès and Tao [15] for nearly-orthogonal designs, that roughly means that
the restricted eigenvalues Φ3k,+(X) and Φ3k,−(X) of XTX are close to one. In

Table 3

Order of the minimax risks RIF [k] for the inverse problem over Θ[k, p]

(k,n,p) k log(p) ≤ Cn k log(p) ≫ n log(n)

Minimax risk RIF [k] C k
n
log

(

p
k

)

exp
[

C′ k
n log

(

p
k

)]

.
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Fig 3. Order of magnitude of the minimax risk RIF [k] for the inverse problem (P3) over
Θ[k, p] as a function of k. The corresponding bounds are stated in Section 6.

an ultra high-dimensional setting, it is not anymore possible to build nearly-
orthogonal designs X and the minimax risk of the inverse problem blows up
as for testing problems (P1) or prediction problems in Gaussian design (P2).
Moreover, adaptation to the sparsity k and to the variance σ2 is possible for
the inverse problem. As explained in Section 6, the quantities RIR[k,Σ] and
RIR[k] behave somewhat similarly to their fixed design counterpart.

In Section 6, we also discuss the consequences of the minimax bounds on the
problem of support estimation (P4). We prove that, in an ultra-high dimensional
setting, it is not possible to estimate with high probability the support of θ0
unless the ratio ‖θ0‖2p/σ2 is larger than C1(p/k)

C2k/n. In fact, even the problems
of support estimation is almost hopeless in an ultra-high dimensional setting.

4. Hypothesis testing

We start by the testing problem (P1) because some minimax lower bounds in
prediction and inverse estimation derive from testing considerations.

4.1. Known variance

4.1.1. Gaussian design

As mentioned in the introduction, the knowledge of σ2 = Var(Y |X) is really
unlikely in many practical applications. Nevertheless, we study this case to en-
hance the differences between known and unknown conditional variances. Fur-
thermore, these results turn out to be useful for analyzing the minimax separa-
tion distances in fixed design problems. We recall that the notions of minimax
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separation distances ρ∗F [k,X], ρ∗F [k], ρ
∗
R[k,Σ], and ρ∗R[k] have been defined in

Section 3.2.

Theorem 4.1. Assume that α+ δ ≤ 53%, p ≥ n2, and that n ≥ 8 log(2/δ). For
any 1 ≤ k ≤ n, the (α, δ)-minimax separation distance (3.6) with covariance Ip
is lower bounded by

(ρ∗R[k, Ip])
2 ≥ C

[
k

n
log (p) ∧ 1√

n

]
. (4.1)

For any 1 ≤ k ≤ p and any covariance Σ, we have

(ρ∗R[k,Σ])
2 ≤ C(α, δ)

[
k

n
log (p) ∧ 1√

n

]
. (4.2)

Furthermore, this upper bound is simultaneously achieved for all k and Σ by a
procedure T ∗

α (defined in Section 10.1.1).

Remark 4.1 (Adaptation to sparsity). It follows from Theorem 4.1 that adap-
tation to the sparsity is possible and that the optimal optimal separation dis-
tance is of order

k

n
log (p) ∧ 1√

n
, (4.3)

for all sparsities k between 1 and n.

Remark 4.2 (Correlated design). The upper bound (4.2) is valid for any co-
variance matrix Σ. In contrast, the minimax lower bound (4.1) is restricted to
the case Σ = Ip. This implies that there exists some constant C(α, δ) such that,

ρ∗R[k, Ip] ≥ C(α, δ) sup
Σ

ρ∗R[k,Σ] = C(α, δ)ρ∗R[k] .

In other words, the testing problem is more complex (up to constants) for an
independent design than for a correlated design.

Remark 4.3 (Which logarithmic term in the bound: log(p) or log(p/k)?). In
the proof of Theorem 4.1, we derive the following bounds

(ρ∗R[k, Ip])
2 ≥ C

[
k

n
log

(
1 +

p

k2

)
∧ 1√

n

]
,

(ρ∗R[k,Σ])
2 ≤ C(α, δ)

[
k

n
log

(ep
k

)
∧ 1√

n

]
.

These two bounds are of order of (4.3) as it is assumed that p ≥ n2. However,
the dependency of the logarithmic terms on k in the last bounds do not allow
to provide the minimax separation distance when p = n and k is close to

√
n.

For instance, if p = n and k =
√
n/ log(n), the two bounds only match up to a

factor log(n)/ log log(n). The non-asymptotic minimax bounds of Baraud [5] in
the Gaussian sequence model suffer the same weakness. Up to our knowledge
the dependency on log(k) of the minimax separation distances has only been
captured in an asymptotic setting [3, 34] ((k, p, n) → ∞).
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4.1.2. Fixed design

The separation distances are similar to the Gaussian design case.

Theorem 4.2. Assume that α + δ ≤ 33%, p ≥ n2 ≥ C(α, δ), and that n ≥
8 log(2/δ). For any 1 ≤ k ≤ n, there exist some n× p designs X such that

(ρ∗F [k,X])2 ≥ C

[
k

n
log (p) ∧ 1√

n

]
. (4.4)

For any 1 ≤ k ≤ p and any design X, we have

(ρ∗F [k,X])2 ≤ C(α, δ)

[
k

n
log (p) ∧ 1√

n

]
. (4.5)

Furthermore, this upper bound is simultaneously achieved for all k and X by a
procedure T ∗

α (defined in Section 10.1.1).

As for the random design case, we conclude that adaptation to the sparsity
is possible and that (ρ∗F [k])

2 is of order k
n log (p) ∧ 1√

n
. In fact, the proof shows

that, with large probability, designs X whose components are independently
sampled from a standard normal variable satisfy (4.4).

Arias-Castro et al. [3] and Ingster et al. [34] have recently provided the
asymptotic minimax separation distance with exact constant for known vari-
ance when the design satisfies very specific conditions. Theorem 4.2 provides
the non-asymptotic counterpart of their result, but the constants in (4.4) and
(4.5) are not optimal.

4.2. Unknown variance

4.2.1. Preliminaries

We now turn to the study of the minimax separation distances when the variance
σ2 is unknown. In Section 3.2, we have introduced the notions of δ-separation
distances and (α, δ)-minimax separation distances when the variance σ2. We
now define their counterpart for an unknown variance σ2.

Let us consider a test Φα of the hypothesis H0 for the linear regression model
with fixed design X. We say that Φα has a level α under unknown variance if

sup
σ>0

P0p,σ[Φα(Y,X) > 0] ≤ α .

This means that the type I error probability is controlled uniformly over all vari-
ance σ2. Similarly, we want to control the type II error probabilities uniformly
over all variances. The δ-separation distance ρF,U [Φα, k,X] of Φα over Θ[k, p]
for unknown variance is defined by

ρF,U [Φα, k,X] := inf

{
ρ > 0, inf

σ>0, θ0∈Θ[k,p],

‖Xθ0‖n≥
√
nρσ

Pθ0,σ[Φα = 1] ≥ 1− δ

}
. (4.6)
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Hence, ρF,U [Φα, k,X] corresponds to the minimal distance such that the hy-
potheses {θ0 = 0p and σ > 0} and {θ0 ∈ Θ[k, p] and σ > 0 , ‖Xθ0‖2n ≥
nρ2F,U [Φα, k,X]σ2} are well separated by the test Φα. Taking the infimum over
all level α tests, we get the (α, δ) minimax separation distance over Θ[k, p] with
design X and unknown variance is

ρ∗F,U [k,X] := inf
Φα

ρF,U [Φα, k,X] . (4.7)

Finally, ρ∗F,U [k] := sup
X
ρ∗F,U [k,X] corresponds to the (α, δ)-minimax separation

distance over Θ[k, p] with the “worst-case designs”.
In the Gaussian design, we define ρR,U [Φα, k,Σ], ρ

∗
R,U [k,Σ], and ρ∗R,U [k] anal-

ogously to (4.6) and (4.7) by replacing the norm ‖Xθ0‖n/
√
n by ‖

√
Σθ0‖p.

4.2.2. Gaussian design

Minimax bounds have been proved in [44] in the non ultra-high dimensional
setting. The next theorem encompasses high dimensional and ultra-high dimen-
sional settings.

Theorem 4.3. Suppose that α + δ ≤ 53% and that p ≥ n ≥ 8 log(2/δ). For
any 1 ≤ k ≤ ⌊p1/3⌋, the (α, δ)-minimax separation distance over Θ[k, p] with
covariance Ip and unknown variance satisfies

(ρ∗R,U [k, Ip])
2 ≥ C1

k

n
log (p) exp

[
C2

k

n
log (p)

]
. (4.8)

For any 1 ≤ k ≤ n/2 and any covariance Σ, we have

(ρ∗R,U )
2[k,Σ] ≤ C1(α, δ)

k

n
log

(ep
k

)
exp

[
C2(α, δ)

k

n
log

(ep
k

)]
. (4.9)

Furthermore, this upper bound is simultaneously achieved for all k and Σ by a
procedure Tα (defined in Section 10.1.2).

Remark 4.4 (Minimax adaptation). It follows from Theorem 4.3 that, under
unknown variance, adaptation to the sparsity is possible and that the minimax
separation distance (ρ∗RU [k])

2 over Θ[k, p] is of order

C1(α, δ)
k

n
log (p) exp

[
C2(α, δ)

k

n
log (p)

]
. (4.10)

Remark 4.5. The condition k ≤ p1/3 can be replaced by k ≤ p1/2−γ with γ > 0,
the only difference being that the constants involved in (4.8) would depend
on γ. These conditions are not really restrictive for a sparse high-dimensional
regression since the usual setting is k ≤ n ≪ p.

Note k ≤ p3 implies that log(p) ≤ 3/2 log(p/k) ≤ 3 log(p/k2) so that we
cannot distinguish terms C1 log(p) from C2 log(p/k

2) or C3 log(p/k). As a con-
sequence (4.10) does not necessarily capture the right dependency on k in the
logarithmic terms. This observation also holds for all the next results that re-
quire k ≤ p1/3.
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Remark 4.6 (Dependent design). As for the known variance case, we have
ρ∗R,U [k, Ip] ≥ C(α, δ)ρ∗R,U [k], that is the testing problem is more complex for an
independent design than for a correlated design. For some covariance matrices
Σ, the minimax separation distance with covariance Σ is much smaller than
ρ∗R,U [k, Ip]. Verzelen and Villers [44] provide such an example of a matrix Σ in
(see Propositions 8 and 9). However, the arguments used in the proof of their
example are not generalizable to other covariances. In fact, the computation of
sharp minimax bounds that capture the dependency of ρ∗R,U [k,Σ] on Σ remains
an open problem.

4.2.3. Fixed design

Ingster et al. [34] derive the asymptotic minimax separation distance for some
specific design when k log(p)/n goes to 0. Here, we provide the non asymptotic
counterpart that encompass all the regimes.

Proposition 4.4. Assume that α + δ ≤ 26% and that p ≥ n ≥ C(α, δ). For
any 1 ≤ k ≤ ⌊p1/3⌋, there exist some n× p designs X such that

(ρ∗F,U [k,X])2 ≥ C1
k

n
log (p) exp

[
C2

k

n
log (p)

]
. (4.11)

For any 1 ≤ k ≤ n/2 and any n× p design X, we have

(ρ∗F,U [k,X])2 ≤ C1(α, δ)
k

n
log

(ep
k

)
exp

[
C2(α, δ)

k

n
log

(ep
k

)]
. (4.12)

Furthermore, this upper bound is simultaneously achieved for all k and X by a
procedure Tα (defined in Section 10.1.2).

Again, we observe a phenomenon analogous to the random design case.

4.3. Comparison between known and unknown variance

There are three regimes depending on (k, p, n). They are depicted on Figure 2:

1. klog(p) ≤ √
n. The minimax separation distances are of the same order

for known and unknown σ2. The minimax distance k log(p)/n is also of
the same order as the minimax risk of prediction.

2.
√

n ≤ klog(p) ≤ n. If σ2 is known, the minimax separation distance is
always of order 1/

√
n. In such a case, an optimal procedure amounts to

test the hypothesis {E[‖Y‖2n] = nσ2} against {E[‖Y‖2n] > nσ2} using the
statistic ‖Y‖2n/σ2. If σ2 is unknown, the statistic ‖Y‖2n/σ2 is not available
and the minimax separation distance behaves like k log(p)/n.

3. klog(p) ≥ n. If σ2 is unknown, the minimax separation distance blows up.
It is of order (p/k)Ck/n. Consequently, the problem of testing {θ0 = 0p}
becomes extremely difficult in this setting.
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5. Prediction

In contrast to the testing problem, the minimax risks of prediction (P2) exhibit
really different behaviors in fixed and in random design. The big picture is
summarized in Figure 1. We recall that the minimax risks RF [k,X], RF [k],
RR[k,Σ], and RR[k] are defined in Section 3.1.

5.1. Gaussian design

Proposition 5.1 (Minimax lower bound for prediction). Assume that p ≥ C.
For any 1 ≤ k ≤ ⌊p1/3⌋, we have

RR[k, Ip] ≥ C
k

n
log

(ep
k

)
exp

{
C2

k

n
log

(ep
k

)}
. (5.1)

Remark 5.1 (General covariances Σ). The lower bound (5.1) is only stated for
the identity covariance Σ = Ip. For general covariance matrices Σ, we have

RR[k,Σ] ≥ C
Φ2k,−(

√
Σ)

Φ2k,+(
√
Σ)

× k

n
log

(ep
k

)
, (5.2)

for any k ≤ n ≤ p/2. This statement has been proved in [42] (Proposition
4.5) in the special case of restricted isometry, but the proof straightforwardly
extends to restricted eigenvalue conditions. For Σ = Ip, the lower bound (5.2)
does not capture the elbow effect in an ultra-high dimensional setting (compare
with (5.1)).

Theorem 5.2 (Minimax upper bound). Assume that n ≥ C. There exists an

estimator θ̃V (defined in Section 10.2.1) such that the following holds:

1. The computation of θ̃V does not require the knowledge of σ2 or k.
2. For any covariance Σ, any σ > 0, any 1 ≤ k ≤ ⌊(n − 1)/4⌋, and any

θ0 ∈ Θ[k, p] we have

Eθ0,σ

[
‖
√
Σ(θ̃V − θ0)‖2p

]
≤ C1

k

n
log

(ep
k

)
exp

{
C2

k

n
log

(ep
k

)}
σ2 . (5.3)

In contrast to similar results such as Theorem 1 in Giraud [27] or Theorem
3.4 in Verzelen [42], we do not restrict k to be smaller than n/(2 log p), that is
we encompass both high-dimensional and ultra-high dimensional setting. The
proof of the theorem is based on a new deviation inequality for the spectrum of
Wishart matrices stated in Lemma 11.2.

Remark 5.2 (Minimax risk). We derive from Theorem 5.2 and Proposition 5.1
that the minimax risk RR[k] is of order

C1
k

n
log

(ep
k

)
exp

{
C2

k

n
log

(ep
k

)}
.



Ultra-high dimensional regression 57

If k log(p/k) is small compared to n, the minimax risk of estimation is of order
Ck log(p/k)/n. In an ultra-high dimensional setting, we again observe a blow
up.

Remark 5.3 (Adaptation to sparsity and the variance). The estimator θ̃V does
not requires the knowledge of k and of the variance σ2 = Var(Y |X). It follows

that θ̃V is minimax adaptive to all 1 ≤ k ≤ p1/3 ∧ [(n− 1)/4] and to all σ2 > 0.
As a consequence, adaptation to the sparsity and to the variance is possible for
this problem.

Remark 5.4 (Dependent design). The risk upper bound of θ̃V stated in The-
orem 5.2 is valid for any covariance matrix Σ of the covariance X . In contrast,
the minimax lower bound of Theorem 4.3 is restricted to the identity covariance.
This implies that the minimax prediction risk for a general matrix Σ is at worst
of the same order as in the independent case: there exists a universal constant
C > 0 such that for all covariance Σ,

RR[k, Ip] ≥ CRR[k] .

In Remark 5.1, we have stated a minimax lower bound for prediction that
depends on the restricted eigenvalues of Σ. Fix some 0 < γ < 1. If we consider
some covariance matrices Σ such that Φ2k,−(

√
Σ)/Φ2k,+(

√
Σ) ≥ 1−γ, the mini-

max lower bound (5.2) and the upper bound (5.3) match up to a constant C(γ).
In general, the lower bound (5.2) and the upper bound (5.3) do not exhibit the
same dependency with respect to Σ, especially when Φ2k,−(

√
Σ)/Φ2k,+(

√
Σ) is

close to zero.

5.2. Fixed design

5.2.1. Known variance

The minimax prediction risk with known variance has been studied in Raskutti
et al. [39] and Rigollet and Tsybakov [40] (see also [1, 47]). For any design X

and any 1 ≤ k ≤ n, these authors have proved that the minimax risk RF [k,X]
satisfies

C1 inf
s≤k

Φ2s,−(X)

Φ2s,+(X)

s

n
log

(ep
s

)
≤ RF [k,X] ≤ C2

k

n
log

(ep
k

)
. (5.4)

Next, we bound the supremum supX RF [k,X] and we study the possibility of
adaptation to the sparsity.

Proposition 5.3. For any 1 ≤ k ≤ n, the supremum supX RF [k,X] is lower
bounded as follows

RF [k] ≥ C

[
k

n
log

(ep
k

)
∧ 1

]
. (5.5)
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Assume that p ≥ n. There exists an estimator θ̃BM (defined in Section 10.2.2)
which satisfies

sup
X

sup
θ0∈Θ[k,p]

Eθ0,σ

[
‖X(θ̂BM − θ0)‖2n

]
/(nσ2) ≤ C

[
k

n
log

(ep
k

)
∧ 1

]
, (5.6)

for any 1 ≤ k ≤ n.

This upper bound (5.6) is a consequence of Birgé and Massart [11].

Remark 5.5. If k log(p/k) is small compared to n, the minimax risk is of order
Ck log(p/k)/n. In an ultra-high dimensional setting, this minimax risk remains
close to one. This corresponds (up to renormalization) to the minimax risk of
estimation of the vector E[Y] of size n . As a consequence, the sparsity assump-
tion does not play anymore a role in a ultra-high dimensional setting. From
(5.6), we derive that adaptation to the sparsity is possible when the variance σ2

is known.

Remark 5.6 (Dependency of RF [k,X] on X). For designs X, such that the
ratio Φ2k,−(X)/Φ2k,+(X) is close to one, the lower bounds and upper bounds of
(5.4) agree with each other. This is for instance the case of the realizations (with
high probability) of a Gaussian standard independent design (see the proof of
Proposition 5.3 for more details).

However, the dependency of the minimax lower bound in (5.4) on X is not
sharp when the ratio Φ2k,−(X)/Φ2k,+(X) is away from one. Take for instance
an orthogonal design with p = n and duplicate the last column. Then, the
lower bound (5.4) for this new design X is 0 while the minimax risk is of order
k log(p/k)/n.

Similarly, the dependency of the minimax upper bound in (5.4) on X is not
sharp. For very specific design, it is possible to obtain a minimax risk RF [k,X]
that is much smaller than k/n log(p/k)∧1 (see Abramovich and Grinshtein [1]).

Remark 5.7 (Comparison with l1 procedures). The designs X for which l1
procedures such as the Lasso or the Dantzig selector are proved to perform well
require that Φ2k,−(X)/Φ2k,+(X) is close to one. It is interesting to notice that
these designs X precisely correspond to situations where the minimax risk is
close to its maximum k log(p/k)/n (see Equation (5.4)). We refer to [39] for a
more complete discussion.

Remark 5.8. We easily retrieve from (5.4) a result of asymptotic geometry first
observed by Baraniuk et al. [4] in the special of restricted isometry property [14].
For any 0 < δ ≤ 1, there exists a constant C(δ) > 0 such that no n× p matrix
X can fulfill Φk,−(X)/Φk,+(X) ≥ δ if k(1 + log(p/k)) ≥ C(δ)n.

Proof. If Φ2k,−(X)/Φ2k,+(X) ≥ δ, then RF [k,X] ≥ Cδk log (ep/k) /n.

We also have RF [k,X] ≤ RF [p,X] ≤ 1. The last inequality follows from the

risk of an estimator θ̂n ∈ argminθ∈Rp ‖Y −Xθ‖2n. Gathering these two bounds
allows to conclude.
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5.2.2. Unknown variance

We now consider the problem of prediction when the variance σ2 is unknown.

Proposition 5.4. For any 1 ≤ k ≤ n, there exists an estimator θ̂(k) that does
not require the knowledge of σ2 such that

sup
X

sup
σ>0

sup
θ0∈Θ[k,p]

Eθ0,σ

[
‖X(θ̂(k) − θ0)‖2n

nσ2

]
≤ C

[
k

n
log

(ep
k

)
∧ 1

]
. (5.7)

Thus, the optimal risk of prediction over Θ[k, p] remains of the same order
for known and unknown σ2.

Let us now study to what extent adaptation to the sparsity is possible when
the variance σ2 is unknown. In order to get some ideas let us provide risk bounds
for two procedures that do not require the knowledge of σ: the estimator θ̃V

already studied for Gaussian design (defined in Section 10.2.1) and the estimator

θ̂n defined by θ̂n ∈ argminθ∈Rp ‖Y −Xθ‖2n.

Proposition 5.5 (Risk bound for θ̃V and θ̂n). Assume that n ≥ 14. For any

1 ≤ k ≤ ⌊(n − 1)/4⌋, the maximal risk of θ̂V over Θ[k, p] is upper bounded as
follows

sup
X

sup
σ>0,θ0∈Θ[k,p]

Eθ0,σ

[‖X(θ̃V − θ0)‖2n
nσ2

]
≤ C1

k

n
log

(ep
k

)
exp

[
C2

k

n
log

(ep
k

)]
σ2.

(5.8)

For any 1 ≤ k ≤ n, the maximal risk of θ̂n over Θ[k, p] is upper bounded as
follows

sup
X

sup
σ>0

sup
θ0∈Θ[k,p]

Eθ0,σ

[
‖X(θ̂n − θ0)‖2n

]
/(nσ2) ≤ 1 . (5.9)

The risk bound (5.8) is also satisfied by the procedure of Baraud et al. [6].
The proof of (5.8) is a consequence of one of their results.

Remark 5.9. As a consequence, θ̃V simultaneously achieves the minimax risk
over all Θ[k, p] for all k ≤ ⌊(n− 1)/4⌋ such that k(1+log(p)/k) ≤ n. In an ultra-
high dimensional setting, the maximum risk of θ̃V over Θ[k, p] is controlled by
(ep/k)Ck/n while the minimax risk is smaller than 1. If the upper bound (5.8)
is sharp then this would imply that θ̃V is not adaptive to the sparsity in an
ultra-high dimensional setting.

In contrast, θ̂n is minimax adaptive over all Θ[k, p] such that k(1+log(p)/k) ≥
n, but its behavior is suboptimal in a non-ultra-high dimensional setting.

In order to get an estimator that is adaptive to all indexes k, we would need
to merge the properties of θ̃V (for non-ultra-high dimensional cases) and of θ̂n
(for ultra-high dimensional cases). The following proposition tells us that it is
in fact impossible.
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Proposition 5.6 (Adaptation to the sparsity is impossible under unknown
variance). Consider any p ≥ n ≥ C1 and 1 ≤ k ≤ ⌊p1/3⌋ such that k log(ep/k) ≥
C2n. There exists a design X of size n × p such that for any estimator θ̂, we
have either

sup
σ>0

E0p,σ

[
‖X(θ̂ − 0p)‖2n/(nσ2)

]
> C ,

or sup
σ>0

sup
θ0∈Θ[k,p]

Eθ0,σ

[
‖X(θ̂ − θ0)‖2n/(nσ2)

]
> exp

[
C
k

n
log

(ep
k

)]
.

As a benchmark, we recall the minimax upper bounds:

RF [1] ≤ C1
log(p)

n
and RF [k] ≤ C2

[
k

n
log

(ep
k

)
∧ 1

]
.

The proof of proposition 5.6 is based on the minimax lower bounds (4.11)
for the testing problem (P1) under unknown variance. The proof uses designs
X that are realizations of standard Gaussian designs.

Remark 5.10. In the setup of Proposition 5.6, any estimator θ̂ that does not
require the knowledge of k and σ2 has to pay at least one of these two prices:

1. The estimator θ̂ does not use the sparsity of the true parameter θ0. Its
risk for estimating 0p is of the same order as the minimax risk over Rp.

The estimator θ̂n has this drawback.
2. For any 1 ≤ k ≤ p1/3, we have

sup
X

sup
σ>0,θ0∈Θ[k,p]

Eθ0,σ

[‖X(θ̂− θ0)‖2n
nσ2

]
≥ C1

k

n
log

(ep
k

)
exp

[
C2

k

n
log

(ep
k

)]
.

This is the price for adaptation when σ2 is unknown. The estimator θ̃V

exhibits this behavior.

As a conclusion, it is impossible to merge the qualities of θ̃V and of θ̂n.
The best prediction risk that can be achieved by a procedure that aim to

adaptation to the sparsity is of order

k

n
log

(p
k

)
exp

[
C
k

n
log (p/k)

]
.

In other words, the unavoidable loss for adaptation for unknown variance is a
factor exp[Ck/n log(p/k)] In this sense, the estimator θ̃V (and as a byproduct
the procedure of Baraud et al. [6]) achieves the optimal prediction risk under
unknown variance and unknown sparsity.

In conclusion, the minimax risks of prediction are of the same order for fixed
and Gaussian design and for known and unknown variance when k log(p/k) is
small compared to n. In an ultra-high dimensional setting, the minimax risks be-
have differently. For Gaussian design, the minimax risk is of the order (p/k)Ck/n.
In contrast, the minimax risk of prediction remains smaller than one for fixed
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design regression with known variance. When the sparsity and the variance are
unknown, there is a price to pay for adaptation under fixed design. All these
behaviors are depicted on Figure 1.

6. Inverse problem and support estimation

6.1. Minimax risk of estimation

We recall that the minimax risks of estimation for the inverse problemRIF [k,X],
RIF [k], RIR[k,Σ], and RIR[k] have been defined in Section 3.3.

6.1.1. Fixed design

First, we consider the problem (P3) for a fixed design regression model. The
minimax risk of estimation over Θ[k, p] with a design X is noted RIF [k,X]
and is defined in (3.8). Raskutti et al. [39] have recently provided the following
bounds

C1

[
k log(ep/k)

Φ2k∧p,+ (X)

]
≤ RIF [k,X] ≤ C2

k log (ep/k)

Φ2k∧p,−(X)
, (6.1)

that holds for any fixed design X and any 1 ≤ k ≤ n. The lower and upper
bounds match up to the factor Φ2k∧p,+(X)/Φ2k∧p,−(X). The upper bound is
achieved by least-squares estimator over Θ[k, p] [39]. If the restricted eigenvalues
of X are close to one, then the minimax risk is of order k log(ep/k). Next, we
improve the lower bound in (6.1) in order to grasp the behavior of the minimax
risk for non orthogonal design.

Proposition 6.1. For any design X and any 1 ≤ k ≤ n, we have

RIF [k,X] ≥ C

[
1

Φ2k∧p,− (X)
∨ k log(ep/k)

Φ1,+ (X)

]
. (6.2)

In order to interpret these bounds let us restrict ourselves to design X such
that each column has

√
n norm, as justified in Section 3.3. The collection of

such designs is noted Dn,p. Observe that X ∈ Dn,p enforces Φ1,+ (X) = n.
In the sequel, we are interested in the smallest minimax risk RIF [k,X] that

is achievable if we can choose the n × p design X ∈ Dn,p, that is we want to
bound RIF [k] = infX∈Dn,p

RIF [k,X]. The minimax risk RIF [k] tells us the
intrinsic difficulty of estimating a k sparse vector of size p with n observations.

Proposition 6.2.

1. Assume that k[1 + log(p/k)] ≤ Cn. Then, we have

C1
k

n
log

(ep
k

)
≤ RIF [k] ≤ C2

k

n
log

(ep
k

)
. (6.3)

This bound is for instance achieved for designs X that are realizations
(with a high probability) of normalized standard Gaussian design.
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2. For any design X ∈ Dn,p and any k ≤ n ∧ p/2, we have

Φ2k,−(X) ≤ C1n

(
k

ep

)C2k/n

. (6.4)

3. For any k ≤ n/4 ∧ p/2, we have

C1

[
k

n
log

(ep
k

)
∨ 1

n
exp

{
C4

k

n
log

(p
k

)}]
≤ RIF [k] (6.5)

RIF [k] ≤ C2
k

n
log

(p
k

)
exp

[
C3

k

n
log

(p
k

)]
.

Remark 6.1. The bound (6.3) tells us that the best minimax risk that is achiev-
able in a non-ultra-high dimensional setting is of order k log(ep/k)/n. The Lasso
achieves the (almost optimal) risk bound k log(p)/n under some assumptions on
the design matrix.

Remark 6.2. The lower bound (6.4) is of geometric nature. Combined with
(6.2), it implies the lower bound of (6.5). In an ultra-high dimensional setting, it
is not possible to build a design X such that Φ2k,+ (X) /Φ2k,− (X) is close to one
(see Remark 5.8). In fact, the quantity Φ−1

2k,−(X) blows up because of geometric
constrains. When k[1+ log(p/k)] is larger compared to n log(n), both bounds in
(6.5) are comparable and the minimax risk is of order exp[Ck/n log(p/k)]. As a
consequence, the inverse problem becomes extremely difficult in an ultra-high
dimensional setting.

Remark 6.3. While the quantity k log(p/k) in (6.3) is due to the “size” of the
parameter space Θ[k, p], the exponential term of the minimax risk in ultra-high
dimension is essentially driven by geometrical constrains on the design X.

Proposition 6.3 (Adaptation to the sparsity and the variance). As in the pre-

diction case, we consider the estimator θ̃V (defined in Section 10.2.1). Assume
that p ≥ 2n. For any design X, any σ > 0, any 1 ≤ k ≤ ⌊(n − 1)/4⌋, and any
θ0 ∈ Θ[k, p], we have

‖θ̃V − θ0‖2p
σ2

≤ C1
k

Φ3k,−(X)
log

(ep
k

)
exp

[
C2

k

n
log

(ep
k

)]
, (6.6)

with probability larger than 1− e−n − C/p.

Remark 6.4. Although the bound (6.6) is in probability and not in expectation,
it suggests that adaptation to the sparsity and to the variance are possible.

6.1.2. Random design

Let us turn to the Gaussian design case.We are interested in boundingRIR[k,Σ]
and RIR[k] as defined in (3.9).
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Proposition 6.4. For any 1 ≤ k ≤ (n− 1)/4 and any covariance Σ, we have

C1

[
1

nΦ2k∧p,−(
√
Σ)

∨ k log(ep/k)

nΦ1,+(
√
Σ)

]
≤ RIR[k,Σ] (6.7)

RIR[k,Σ] ≤ C2
k log (ep/k)

nΦ2k∧p,−(
√
Σ)

exp

[
C3

k

n
log

(ep
k

)]
.

As long as k[1 log(p/k)] ≤ n, we derive that RIR[k] := infΣ∈Sp
RIR[k,Σ] sat-

isfies

C1
k

n
log

(ep
k

)
≤ RIR[k] ≤ C2

k

n
log

(ep
k

)
. (6.8)

We observe that RIR[k] and RIF [k] behave similarly in a non-ultra-high
dimensional setting.

Remark 6.5 (Ultra-high dimensional case). Proposition 6.4 does not allow to
derive the order of magnitude of RIR[k] in an ultra-high dimensional setting.
While the upper bound in (6.7) is blowing up, the lower bound remains as small
as k log(p/k)/n. Nevertheless, we know from Proposition 5.1 that

RIR[k, Ip] = RR[k, Ip] ≥ C1
k log (ep/k)

n
exp

[
C2

k

n
log

(ep
k

)]
.

This suggests that RIR[k] is blowing up in an ultra-high dimensional setting
but the problem remains open.

In the next proposition, we state the counterpart of Proposition 6.3 in the
random design case.

Proposition 6.5 (Adaptation to the sparsity and the variance). As in the pre-

diction case, we consider the estimator θ̃V (defined in Section 10.2.1). Assume
that p ≥ 2n. For any covariance Σ, any σ > 0, any 1 ≤ k ≤ ⌊(n− 1)/12⌋, and
any θ0 ∈ Θ[k, p], we have

‖θ̃V − θ0‖2p
σ2

≤ C1
k

nΦ3k,−(
√
Σ)

log
(ep
k

)
exp

[
C2

k

n
log

(ep
k

)]
, (6.9)

with probability larger than 1− e−n − C/p.

6.2. Consequences on support estimation

We deduce from the minimax lower bounds for the inverse problem (P3) some
consequences for the support estimation problem (P4) in a ultra-high dimen-
sional setting. The case k[1 + log(p/k)] small compared to n has been studied
in Wainwright [45].

Definition 6.1. For any ρ > 0 and any k ≤ p, the set Cp
k(ρ) is made of all

vectors θ in Θ[k, p] such that θ contains exactly k non-zero coefficients that are
all equal to ρ/

√
k.
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In a non-ultra high dimensional setting, Wainwright [46] has proved, that
under suitable conditions on a design X ∈ Dn,p, it is possible to recover the

support of any vector θ0 that belong to Cp
k(ρ) with ρ of order of

√
k log(p)/nσ.

Here, we prove that ρ has to be much larger in an ultra-high dimensional setting.

Proposition 6.6 (Support recovery is almost impossible). For any ρ2 ≤ C1/

n
(
ep
k

)C2k/n
and any k ≤ n ∧ p/2, we have

inf
X∈Dn,p

inf
m̂

sup
θ0∈Cp

k
(ρ)

Pθ0,1 [m̂ 6= supp(θ0)] ≥ 1/(2e+ 1) .

For any design X ∈ Dn,p it is not possible to recover the support of θ0 with
high probability, unless θ0 satisfies:

‖θ0‖2p
σ2

≥ C1/n
(p
k

)C2k/n

.

This quantity is blowing up in an ultra-high dimensional setting and it can be
much larger than the usual k log(p)/n that can be achieved in a non-ultra high
dimensional setting.

As it is almost impossible to estimate the support of θ0 in an ultra-high di-
mensional setting, we may aim to an easier objective. Can we choose a subset M̂
of {1, . . . , p} of size p0 ≤ p that contains the support of θ0 with high probability?
This would allow to reduce the dimension of the problem from p to p0. Dimen-
sion reductions techniques are popular for analyzing high dimensional problems.
We study here to what extent dimension reduction is a realistic objective: how
large should be the non-zero components of θ0? How small can we choose p0?

Proposition 6.7. Consider a Gaussian design regression with Σ = Ip and
σ2 = 1. We assume that p ≥ k3 ∨ C and n ≥ C. Set

ρ2 = C
k

n
log

(ep
k

)
exp

[
C2

k

n
log

(ep
k

)]
.

There exists a universal constant 0 < δ < 1 such that for any measurable subset
M̂ of {1, . . . , p} of size p0 ≤ pδ, we have

sup
θ0∈Cp

k
(ρ)

Pθ0,1

[
supp(θ0) * M̂

]
≥ 1/8 . (6.10)

In an ultra-high dimensional setting, it is therefore not possible to reduce
the dimension of the problem to pδ unless the square norm of θ0 is of order
exp[Ck/n log(p)]σ2. In (6.10), the number 1/8 is of no particular significance.
It can be replaced by any constant c ∈ (0, 1) if we take an asymptotic point of
view ((k, p, n) → ∞).

Remark 6.6. In Proposition 6.7, we have taken the maximal risk points of
view. If we put an uniform prior π on Cp

k(ρ), it is possible to replace (6.10) by

π
[
Pθ0,1

{
supp(θ0) * M̂

}]
≥ C ,

where C is a positive constant.
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Remark 6.7. In order to shed light on the problem of dimension reduction, let
us consider a simple asymptotic example: pn = exp(nγ1) and kn = n1−(γ1∧1)+γ2

with γ1 > 0 and γ2 > 0. If we assume that θn ∈ Θ[kn, pn] is such that ‖θn‖2p ≤
exp(Cnγ2+(γ1−1)+), then it is not possible to find a subset M̂n of size exp(δnγ1)
that contains the support of θn with probability going to one, where δ is defined
as in Proposition 6.7. Consequently, we still have to keep at least exp(δnγ1)
variables after the process of dimension reduction if we do not want to forget
relevant variables!

7. What is an ultra-high dimensional problem?

Until now, we have stated that a problem is ultra-high dimensional when k log(p/k)
is large compared to n. It has been proved that in such a setting, estimation of
θ0, support estimation and even dimension reduction become almost impossible.
In this section, we numerically illustrate this phase transition phenomenon. This
allows us to quantify on specific examples how large should be k log(p/k)/n for
the phase transition to occur.

First simulation setting. Following the example described in the introduc-
tion, we consider a Gaussian design linear regression model with p = 5000 and
p = 200, n = 50, Σ = Ip, and σ = 1. We set the number of non zero com-
ponents k ranging from 1 to 15. k being fixed, we take θ0 such that (θ0)1 =
· · · = (θ0)k = 4

√
log(p)/n ≈ 1.30 (resp. 1.65) for p = 200 (resp. p = 5000) and

(θ0)k+1 = · · · = (θ0)p = 0. As a consequence, we have ‖θ0‖2 = 16k log(p)/n.
The non-zero coefficients of θ0 are chosen large enough so that the support of θ0
is recoverable when the problem is not ultra-high dimensional. Each experiment
is repeated N = 100 times.

Dimension reduction procedures. We apply the SIS method [25] to reduce

the dimension to a set M̂S of size p0 = 50. We then compute the Power of the
procedure,

Power :=
Card[M̂S ∩ {1, . . . , k}]

k
.

The power measures whether the dimension reduction has been performed effi-
ciently.

We also compute the regularization path of the Lasso using the LARS [24]
algorithm. Before applying the Lasso, each column of X is normalized. We con-
sider the set M̂L made of the p0 covariates occurring first in the regularization
path. We do not argue that SIS and the Lasso are the best methods here. We
have chosen them because they are classical and easy to implement.

Results. The results are presented on Figure 4. When k is small, the dimen-
sion reduction problem is not ultra-high dimensional and the Lasso and the SIS
methods keep all the relevant covariates. For large k, the both methods miss
some of the relevant covariates. For p = 5000, there is a clear decrease in the
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Fig 4. Power of the dimension reduction procedures (SIS and Lasso) as a function of k.

power beyond k = 4. For p = 5000 and k = 8, both methods only have a power
close to 0.5. In expectation, only four covariates belong to the sets M̂S and M̂L

of size 50. For p = 200, there is not a so clear transition, but the power decreases
slowly for k > 8. If there was no elbow effect in the minimax risk of estimation,
then it would still be possible to recover the support of θ0 with high probabil-
ity. Indeed, each non-zero component of θ0 is larger than 4

√
log(p)/n which is

detectable in a reasonable setting (see e.g. [46]). For instance, for k = 6 and
p = 5000, ‖θ0‖2p/σ2 = 16k log(p)/n ≈ 16.4. Here, the elbow effect implies that
even for a huge signal over noise ratio, it is impossible to reduce the dimension
of the problem without forgetting relevant variables.

Second simulation setting. We still take p = 5000, n = 50, Σ = Ip, σ = 1,
and k ranging from 1 to 5. k being fixed, we take θ0 such that (θ0)1 = · · · =
(θ0)k = u

√
log(p)/n and (θ0)k+1 = · · · = (θ0)p = 0. Relying on N = 100

experiments, we estimate u∗
k the smallest u such that M̂L has a power larger

than 0.9. u∗
k corresponds (up to the renormalization

√
log(p)/n) to the minimal

intensity of the signal so that the dimension reduction method does not forget
relevant covariates.

Results. The results are presented on Figure 5. For small k, u∗
k remains close

to
√
2. In contrast, we observe that u∗

k blows up at k = 5. We have not depicted
u∗
6, but we have u∗

6 ≥ 100. These two simulation studies confirm that when k
becomes large (in comparison to p and n), the dimension reduction problem
becomes extremely difficult.

Remark 7.1 (Rule of thumb). From these simulations and from other theoret-
ical arguments (e.g. [27, 22, 45]), we derive a simple rule of thumb. We say that
a problem is ultra-high dimensional if

k log(p/k)

n
≥ 1/2. (7.1)



Ultra-high dimensional regression 67

1 2 3 4 5

2
3

4
5

6
7

Sparsity

M
in

im
al

 s
ig

na
l

Fig 5. Minimal signal u∗

k
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For p = 5000 and n = 50, this corresponds to k ≥ 4. Setting p = 200 and
n = 50 yields k ≥ 8. In practice, we do not know k in advance. Nevertheless,
this criterion (7.1) helps us to know what is the largest sparsity index such that
the statistical problem remains reasonably difficult in the minimax sense.

8. Discussion

As stated in Sections 4–6, the behaviors of the minimax separation distances
and of the minimax risks become really different in an ultra-high dimensional
setting. Apart from the test problem (P1) with known variance and the problem
of prediction (P2) with fixed design, all the other separations distances and
minimax risks blow up when k log(p/k) becomes larger than n.

This elbow effect has important practical implications: there is no hope of
selecting the relevant covariates in an ultra-high dimensional setting, except if
signal over noise ratio is exponentially large. Moreover, even dimension reduction
techniques cannot work well in such a setting.

In linear testing (P1), we have proved that the optimal separation distances
highly depend on the knowledge of the variance. Most of the testing procedures
in the literature rely on the knowledge of σ2. Some specific work is therefore
needed to derive fast and efficient procedures under unknown variance (but
see [34] for a procedure in a specific situation).

We have not discussed so far the problem of variance estimation. From the
minimax lower bounds of testing, we deduce the following lower bound.

Proposition 8.1. Assume that p ≥ n ≥ C. For any 1 ≤ k ≤ p1/3, there exist
designs X such that

inf
σ̂

sup
σ>0, θ0∈Θ[k,p]

Eθ0,σ

[∣∣∣∣
σ̂2

σ2
− σ2

σ̂2

∣∣∣∣
]
≥ C1

k

n
log

(p
k

)
exp

[
C2

k

n
log

(p
k

)]
.

As a consequence, the problem of variance estimation becomes extremely
difficult in an ultra-high dimensional setting.



68 N. Verzelen

In Propositions 5.3 and 6.1, we have provided minimax lower bounds for (P2)
and (P3) over Θ[k, p] for arbitrary designs X. Our corresponding upper bounds
match these lower bounds when the restricted eigenvalues of XTX are close to
each other. However, these bounds do not agree anymore when these restricted
eigenvalues are away from each other. Deriving the exact dependency of the
minimax risks on X would require sharper lower bounds and the analysis of
new estimation procedures.

Our minimax results use the Gaussianity of the noise ǫ and the Gaussianity
of the design X in the random design setting. In an ultra-high dimensional
setting, the minimax upper bounds do not seem to be robust with respect to
the Gaussianity. In smaller dimensions (k[1 + log(p/k)] < n), the Gaussian
distribution of the design is less critical. For instance, consider a design X where
all the components are independent and follow a subgaussian distribution. By a
result of Rudelson and Vershynin [41], the restricted eigenvalues of XTX remain
away from 0 with high probability. Consequently, some of the minimax bounds
should still hold for subgaussian designs. Nevertheless, the derivation of sharp
minimax bounds for non-Gaussian designs and noises remains an open problem

9. Proofs of the minimax lower bounds

Some propositions contain both minimax lower bounds and upper bounds. This
section is devoted to the proof of all the lower bounds, while the upper bounds
are proved in Appendix B in [43]. In order to keep our notations as short as
possible, we set

η = 2(1− α− δ) .

We also note ‖.‖TV for the total variation norm. For any subset T ⊂ Rp,
α ∈ (0, 1), covariance matrix Σ, and any variance σ2, we denote βR

Σ,σ,α(T )
the quantity

βR
Σ,σ,α(T ) := inf

Φα

sup
θ0∈T

Pσθ0,σ[Φα = 0] ,

the infimum being taken over all tests Φα satisfying P0p,σ[Φα = 0] ≤ α. Its
counterpart for unknown variance is defined by

βR
Σ,α(T ) := inf

Φα

sup
σ>0, θ0∈T

Pσθ0,σ[Φα = 0] ,

the infimum being taken over all tests Φα satisfying supσ>0 P0p,σ[Φα = 0] ≤ α.
Similarly, we define βF

X,σ,α(T ) for fixed design and βF
X,α(T ) for fixed design and

unknown variance.
Most of the minimax lower bounds in this paper are based on an approach

which goes back to Ingster [28, 29, 30]. The following lemma encompasses fixed
and random design and known and unknown variance.

Lemma 9.1. Let T be a subset of Rp \ {0p} and let σ and σ0 be two positive
integers. Consider µ a probability measure on σT := {σθ, θ ∈ T }. We note
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Pµ,σ =
∫
σT Pθ,σdµ and Lµ = dPµ,σ/dP0p,σ0 . Then,

βα(T ) ≥ 1− α− 1

2
‖Pµ,σ − P0p,σ0‖TV .

≥ 1− α− 1

2

(
E0p,σ0

[
L2
µ(Y,X)

]
− 1

)1/2
. (9.1)

Here, βα(T ) can be replaced by βF
X,α(T ) or βR

Σ,α(T ). If we also have σ = σ0,

then βα(T ) can be replaced by βR
Σ,σ0,α

(T ) or βF
X,σ0,α

(T ).

We refer to Baraud [5] Section 7.1 for a proof and further explanations in
a close framework. The main idea is to find a prior probability on T so that
the total variation distance between Pµ,σ and P0p,σ0 is as large as possible. We
derive from Lemma 9.1 that βα(T ) ≥ δ if E0p,σ0 [L

2
µ(Y,X)] ≤ 1 + η2.

9.1. Proof of the lower bound (4.1) in Theorem 4.1

Proof of Theorem 4.1. By homogeneity, we can assume that σ2 = Var(Y |X) =
1. We first build a suitable prior probability µρ in order to apply Lemma 9.1.

Let us take a set m̂ of size k uniformly in M(k, p) (defined in Section 2).
Let ξ = (ξj)1≤j≤p be a sequence of independent Rademacher random variables.

Consider some ρ > 0. Define λ = ρ/
√
k and consider µρ the distribution of the

random variable θm̂,ξ =
∑

j∈m̂ λξjej . Pµρ,1 stands for the distribution of (Y,X)
with θ0 ∼ µρ and σ = 1. Here, (ej)1≤j≤p is the orthonormal family of vectors
of Rp defined by

(ej)i = 1 if i = j and (ei)j = 0 otherwise.

The likelihood ratio Lµρ
(X,Y) = Pµρ,1/P0p,1 writes

Lµρ
(X,Y) = Eξ,m̂

[
exp

(
−‖Y −Xθm̂,ξ‖2n − ‖Y‖2n

2

)]
,

where Eξ,m̂ stands for the expectation with respect to the distribution of ξ and
m̂.

In order to apply Lemma 9.1, we need to upper bound the expectation of
L2
µρ
(X,Y). Let us first take the expectation of L2

µρ
(X,Y) with respect to Y.

E0p,1

[
L2
µρ
(X,Y)

]

= 2−2k

(
p

k

)−2

×
∑

m1,m2,ξ(1),ξ(2)

E0p,1

[
e
−(‖Xθ

m1,ξ
(1)‖2

n+‖Xθ
m2,ξ(2)

‖2
n)/2+〈Y,X(θ

m1,ξ(1)
+θ

m2,ξ(2)
)〉n

]

= EX

[
Em̂1,m̂2,ξ(1),ξ(2)

{
exp

(
〈Xθm̂1,ξ(1) ,Xθm̂2,ξ(2)〉n

)}]
, (9.2)

where EX stands for the expectation with respect to X while Em̂1,m̂2,ξ(1),ξ(2)

refers to the expectation with respect to the independent variables ξ(1), ξ(2), m1

and m2.
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Lemma 9.2. If we assume that ρ2 ≤ C
[
k
n log

(
1 + p

k2

)
∧ 1√

n

]
, then we have

EX

[
E0p,1

{
L2
µρ

(Y,X)
∣∣∣X

}]
≤ 1 + η2 .

In this lemma, we have specifically distinguished the integration with respect
to X from the integration with respect to Y. This will be useful for deriving
minimax lower bound in fixed design (Proposition 4.2). Gathering Lemmas 9.1
and 9.2 allows to derive that

(ρ∗R[k, Ip])
2 ≥ C

[
k

n
log

(
1 +

p

k2

)
∧ 1√

n

]
.

This last bound allows to conclude since p ≥ n2.

Proof of Lemma 9.2. Let us fix m1, m2, ξ
(1) and ξ(2). First, we shall compute

the expectation EX[exp(〈Xθm1,ξ(1) ,Xθm2,ξ(2)〉n)].
Let us decompose the set m1 ∪m2 into four sets (which possibly are empty):

m1 \m2, m2 \ m1, m3, and m4, where m3 and m4 are defined by m3 := {j ∈
m1 ∩m2|ξ(1)j = ξ

(2)
j } and m4 := {j ∈ m1 ∩m2|ξ(1)j = −ξ

(2)
j } . For the sake of

simplicity, we reorder the elements of m1 ∪m2 from 1 to |m1 ∪m2| such that
the first elements belong to m1 \m2, then to m2 \m1 and so on.

EX

[
exp

(
〈Xθm1,ξ(1) ,Xθm2,ξ(2)〉n

)]

=



∫

Rp

(2π)−p/2 exp


−

p∑

i=1

t2i /2 +
∑

1≤i,j≤p

[θm1,ξ(1) ]i[θm2,ξ(2) ]jtitj




p∏

i=1

dti



n

=
∣∣I|m1∪m2| − λ2C

∣∣−n/2
,

where I|m1∪m2| is the identity matrix of size |m1∪m2| and C is block symmetric
matrix of size |m1 ∪m2| defined by

C :=




1 0 1 1
0 1 1 1
1 1 2 0
1 1 0 −2


 .

Each block corresponds to one of the four previously defined subsets of m1∪m2

(i.e. m1 \ m2, m2 \ m1, m3, and m4). The matrix C is of rank at most four.
Hence, I|m1∪m2| − λ2C has the same determinant as the matrix D of size 4
defined by:

D :=




1− λ2

n |m1 \m2| 0 −λ2

n |m3| −λ2

n |m4|
0 1− λ2

n |m2 \m1| −λ2

n |m3| −λ2

n |m4|
−λ2

n |m1 \m2| −λ2

n |m2 \m1| 1− 2λ2

n |m3| 0

−λ2

n |m1 \m2| −λ2

n |m2 \m1| 0 1 + 2λ2

n |m4|


 .
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After some computations, we lower bound the determinant of D

|D| ≥ 1− 2(2|m3| − |m1 ∩m2|)λ2 − 8ρ4 .

From now on, we assume that ρ2 ≤ 1/20 so that |D| ≥ 1/2. Hence, we get

EX[exp(〈Xθm1,ξ(1) ,Xθm2,ξ(2)〉n)]
≤

[
1− 2(2|m3| − |m1 ∩m2|)λ2 − 8ρ4

]−n/2

≤ exp
(
8nρ4

)
exp

[
2nλ2(2|m3| − |m1 ∩m2|)

]
. (9.3)

Then, we take the expectation with respect to ξ(1), ξ(2), m1 and m2. When m1

and m2 are fixed the expression (9.3) depends on ξ(1) and ξ(2) only through the
cardinality ofm3. As ξ

(1) and ξ(2) follow independent Rademacher distributions,
the random variable 2|m3| − |m1 ∩m2| follows the distribution of Z, a sum of
|m1 ∩m2| independent Rademacher variables and

EX

[
E0p,1

{
L2
µρ

(Y,X)
∣∣∣X

}]
≤ exp

(
8nρ4

)
EZ

[
exp

(
2nλ2Z

)]
, (9.4)

where EZ stands for the expectation with respect to Z. We now proceed as in
the proof of Theorem 1 in Baraud [5] in order to upper bound the term

EZ

[
exp

(
2nλ2Z

)]
=

(
p

k

)−2 ∑

m1,m2∈M(k,p)

cosh
(
2nλ2

)|m1∩m2|
.

Following Baraud’s arguments, we get that EZ

[
exp

(
2nλ2Z

)]
≤

√
1 + η2 when

ρ2 ≤ C
k

n
log

(
1 +

p

k2
∨
√

p

k2

)
.

Moreover, we have exp(8ρ4n) ≤
√

1 + η2 as soon as ρ2 ≤ C/
√
n since η ≥ 0.94.

Gathering these observations with (9.4), we conclude that

EX

[
E0p,1{L2

µρ
(Y,X)

∣∣∣X}
]
≤ 1 + η2

as soon as

ρ2 ≤ C

[
k

n
log

(
1 +

p

k2
∨
√

p

k2

)
∧ 1√

n

]
.

9.2. Proof of the lower bound (4.8) in Theorem 4.3

Proof of (4.8) in Theorem 4.3. Consider the Condition

(A.1)
k

n
log

( p

e3k2

)
≥ 2 .

We deduce Theorem 4.3 from the following result.
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Lemma 9.3. Suppose that α+ δ ≤ 53%. We have

βR
Ip,α

({
θ0 ∈ Θ[k, p], ‖θ0‖2p = ρ2

})
≥ δ , (9.5)

for any ρ2 > 0 such that

ρ2 ≤ k

2n
log

(
1 +

p

k2

)
. (9.6)

If we assume that Condition (A.1) holds, (9.5) holds for any ρ > 0 such that

ρ2 ≤ −1 +
( p

2ek

) k
n

(4k)−2/n . (9.7)

If p ≥ k3 ∨ C and k log(p)/n ≥ C1 with C and C1 large enough, then As-
sumption (A.1) is satisfied. For C large enough, the quantity k log(p)/ log(k) is
large enough so that the lower bound (9.7) satisfies

−1 +
( p

2ek

) k
n

(4k)−2/n ≥ −1 + exp

[
C
k

n
log (p)

]

≥ C1
k

n
log (p) exp

[
C2

k

n
log (p)

]
.

Let us now assume that p ≥ k3 ∨ C and k log(p)/n ≤ C1 where C1 has been
previously fixed. Then, the first lower bound (9.6) satisfies:

k

2n
log

(
1 +

p

k2

)
≥ C1

k

n
log (p) exp

[
C2

k

n
log (p)

]
.

Gathering the two previous lower bounds with Lemma 9.3 allows to conclude.

Proof of Lemma 9.3. Consider some ρ > 0. To apply Lemma 9.1, we first have
to define a suitable prior µρ on θ0 and a suitable σ2. More specifically, we set
σ2 = (1 + ρ2)−1 and the distribution µρ is supported by Θ[k, p, ρ] defined by

Θ[k, p, ρ] :=

{
θ0 ∈ Θ[k, p] , ‖θ0‖2p =

ρ2

1 + ρ2

}
.

Let m̂ be a random variable uniformly distributed over M(k, p). Let µρ be

the distribution of the random variable θ̂ =
∑

j∈m̂ λej where

λ2 :=
ρ2

k(1 + ρ2)
,

and where (ej)1≤j≤p is the orthonormal family of vectors of Rp defined by
(ej)i = 1 if i = j and (ei)j = 0 otherwise. By Lemma 9.1, we only have to prove
under conditions (9.6) or (9.7) with (A.1), we have

E0p,1(L
2
µρ
(Y,X)) ≤ 1 + η2 . (9.8)
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Observe here that we use a variance 1 for H0 and a variance 1− ‖θ0‖2p for the
hypothesis H1. Using these two different variances allows us to take advantage
of the fact that we work under unknown variance.

As a specific case of [44] Eq.(8.5), we have

E0p,1(L
2
µρ
(Y,X)) =

(
p

k

)−2 ∑

m1,m2∈M(k,p)

(
1− ρ2|m1 ∩m2|

(1 + ρ2)k

)−n

= EZ

[(
1− ρ2Z

(1 + ρ2)k

)−n
]

,

where Z follows an hypergeometric distribution with parameters p, k, and k/p.
We know from Aldous (p.173) [2] that Z follows the same distribution as the
random variable E(W |Bp) where W is a binomial random variable of parameters
k, k/p and Bp some suitable σ-algebra. By a convexity argument, we get

EZ

[(
1− ρ2Z

(1 + ρ2)k

)−n
]
≤ EW

[(
1− ρ2W

(1 + ρ2)k

)−n
]

. (9.9)

Hence, we only need to upper bound the expectation of the second random
variable.

CASE 1: Proof of Equation (9.6) Since log(1 + x) ≤ x and since W ≤ k, we
have

EW

[(
1− ρ2W

(1 + ρ2)k

)−n
]

≤ EW

[
exp

(
nρ2W/k

1 + ρ2 − ρ2W/k

)]

≤ EW

[
exp

(
nρ2W/k

)]

≤
[
1 +

k

p

(
enρ

2/k − 1
)]k

≤ exp

[
k2

p
(enρ

2/k − 1)

]
.

As a consequence, the condition (9.8) holds if ρ2 ≤ k
n log

[
1 + p

k2 log(1 + η2)
]
.

Observe that log(1+η2) ≥ 0.6. Since log(1+ux) ≥ u log(1+x) for any 0 < u < 1
and any x > 0, the last condition is enforced by ρ2 ≤ k

2n log
[
1 + p

k2

]
.

CASE 2: Proof of Equation (9.7). Here, we bound (9.9) under condition
(A.1). We have

EW

[(
1− ρ2W

(1 + ρ2)k

)−n

− 1

]
≤

k∑

i=1

P [W ≥ i]

(
1− ρ2i

(1 + ρ2)k

)−n

.
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Since we need to ensure that EW [{1 − ρ2W/((1 + ρ2)k)}−n − 1] ≤ η2, it is
sufficient to prove that

P [W ≥ i]

(
1− i

k

)−n

≤ η2i−i

4
for any 1 ≤ i ≤ ⌊k/2⌋ , (9.10)

P [W ≥ i]

(
1− ρ2i

(1 + ρ2)k

)−n

≤ η2

2k
for any ⌊k/2⌋+ 1 ≤ i ≤ k . (9.11)

In order to prove these bounds, we shall use a deviation inequality of the
random variable W/k.

Lemma 9.4. For any k ≥ 1, 0 < x ≤ 1, it holds that

P

[
W

k
≥ x

]
≤

[(
k

px

)x
1

(1 − x)1−x

]k
. (9.12)

FACT 1. For any 1 ≤ i ≤ ⌊k/2⌋, the upper bounds (9.10) hold under Condi-
tion (A.1).

FACT 2. The upper bound (9.11) holds for any ⌊k/2⌋+1 ≤ i ≤ k as soon as

ρ2 ≤ −1 +
( p

2ek

)k/n
(
η2

2k

)2/n

. (9.13)

We derive that under (9.13), we have E0p,1[L
2
µρ
(Y,X)] ≤ 1+ η2 . The fact that

η2 ≥ 1/2 allows to conclude.

Proof of FACT 1. Since log(1 − x) ≥ −x/(1 − x) for any 0 ≤ x < 1, we derive
that (1 − x)1−x ≥ e−x. Gathering this bound with Lemma 9.4, we get a new
deviation inequality for W .

P

[
W

k
≥ x

]
≤

(
ke

px

)xk

, (9.14)

for any x < 1. We apply this bound with x = i/k. Then, Inequality (9.10) holds
if

(
k2e

p

)i/n (
4

η2

)1/n

≤ 1− i

k
.

Taking the logarithm of this expression leads to

− i

n
log

( p

ek2

)
+

1

n
log

(
4/η2

)
+

i/k

1− i/k
≤ 0 ,

Since i is constrained to be smaller than k/2, we get

− ik

n
log

( p

ek2

)
+

k

n
log

(
4/η2

)
+ 2i ≤ 0 .
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By Assumption (A.1), k/n log[p/(ek2)] is larger than 2. Consequently, the worst
case among all i between 1 and k/2 is i = 1. Hence, we only need to prove that

k

n

[
log

( p

k2

)
− log

(
4e

η2

)]
≥ 2 .

Since η is larger than 0.94, log(4e/η2) is smaller than 3 and this last inequality
is ensured by Assumption (A.1).

Proof of FACT 2. We consider here the case 1/2 < i/k ≤ 1. We derive from
(9.14) that

P [W ≥ i] ≤
(
2ek

p

)i

.

Consequently, we want to ensure that

(
2ek

p

)i/n (
2k

η2

)1/n

≤
(
1− ρ2i

(1 + ρ2)k

)
,

for any i between ⌊k/2⌋ and k. For any x and u between 0 and 1, (1 − x)u ≤
(1−xu). Setting u = i/k and x = ρ2/(1+ρ2), we obtain that the last inequality
holds if

1− ρ2

1 + ρ2
≥ sup

⌊k/2⌋≤i≤k

(
2ek

p

)k/n (
2k

η2

)k/(in)

Since 2k/η2 is positive, the largest term in the bound corresponds to i = k/2.
Hence, it remains to prove that

1

1 + ρ2
≥

(
2ek

p

)k/n (
2k

η2

)2/n

We conclude that the upper bounds hold if

ρ2 ≤ −1 +
( p

2ek

)k/n
(
η2

2k

)2/n

.

Proof of Lemma 9.4. We prove this deviation inequality using the Laplace trans-
form of W/k. Consider some x ∈ (0, 1) and λ > 0.

log

[
P

{
W

k
≥ x

}]
≤ −λx+ log [EW {exp(λW/k)}]

≤ −λx+ k log

[
1 +

k

p

(
exp

(
λ

k

)
− 1

)]
.
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Deriving with respect to λ an upper bound of the last expression leads to the
following choice

eλ
∗/k =

x

1− x

(p
k
− 1

)
.

Hence, we get

log

[
P

{
W

k
≥ x

}]
≤ −kx log

[
x

1− x

(p
k
− 1

)]
+ k log

[
1− k/p

1− x

]
.

Since we assume x < 1, we conclude that

P

{
W

k
≥ x

}
≤

[(
k

px

)x
1

(1− x)1−x

]k
.

Since P(W = k) = [k/p]k, this upper bound is also valid when x = 1.

9.3. Proof of Proposition 5.1

We derive this minimax lower bound from the hypothesis testing problem {θ0 =
0p} studied in Section 4. Since the covariance Σ = Ip, the loss E

[
{X(θ1 − θ2)}2/σ2

]

is simply ‖θ1 − θ2‖2p/σ2. For the sake of simplicity, we assume that p is even.
We split the p covariates into two groups M1 and M2 of size p/2. Given some
ρ > 0, we fix σ2 = (1 + ρ2)−1 and we consider the two sets

Θ1[ρ] = Θ[k, p] ∩
{
θ : supp(θ) ⊂ M1 and ‖θ‖2p =

ρ2

1 + ρ2

}

Θ2[ρ] = Θ[k, p] ∩
{
θ : supp(θ) ⊂ M2 and ‖θ‖2p =

ρ2

1 + ρ2

}
.

Take any estimator θ̂. We consider an estimator θ̃ ∈ Θ1[ρ] ∪Θ2[ρ] such that

‖θ̃ − θ̂‖p = min
θ∈Θ1[ρ]∪Θ2[ρ]

‖θ − θ̂‖p .

By the triangle inequality, we have ‖θ̃− θ0‖p ≤ 2‖θ̂− θ0‖p, for any θ0 ∈ Θ1[ρ]∪
Θ2[ρ].

sup
i=1,2

sup
θ0∈Θi[ρ]

Eθ0,σ

[
‖θ̂ − θ0‖2p

σ2

]
≥ ρ2

4
sup
i=1,2

sup
θ0∈Θi[ρ]

Pθ0,σ[supp(θ̃) * Mi] . (9.15)

It is enough to prove that for ρ2 = C1
k
n log (p) exp{C2

k
n log (p)}, the supremum

of the probabilities Pθ0,σ[supp(θ̃) * Mi] is lower bounded by a positive constant.
This is equivalent to lower bounding the minimax separation distance for H0 :
{θ0 ∈ Θ1[ρ] and σ2 = (1+ρ2)−1} againstH1: {θ0 ∈ Θ2[ρ] and σ2 = (1+ρ2)−1}.

As in the proof of Theorem 4.3, we build a prior distribution µ1,ρ on θ0.
Consider the collection M1(k) of subsets of M1 of size k. Let m̂ be be some
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random variable uniformly distributed overM1(k). Then, µ1,ρ is the distribution

of θ̂ =
∑

j∈m̂ ρ/
√
k(1 + ρ2)ej . Similarly, we define the prior distribution µ2,ρ on

Θ2[ρ]. We note Pµi,ρ,σ =
∫
Pθ0,σdµi,ρ. We have

sup
i=1,2

sup
θ0∈Θi[r]

Pθ0 [supp(θ̃) * Mi] ≥ 1− 1

2
‖Pµ1,ρ,σ − Pµ2,ρ,σ‖TV .

≥ 1− ‖Pµ1,ρ,σ − P0p,1‖TV , (9.16)

by the triangle inequality. Lemma 9.1 states that

‖Pµ1,ρ − P0p,1‖TV ≤ E0p,1

[
L2
µ1,ρ

− 1
]
,

where Lµ1,ρ = dPµ1,ρ,σ/dP0p,1. In fact, the second moment of Lµ1,ρ has been
studied in the proof of Theorem 4.3. If we take α + δ = 53% in this proof, we
derive E0[L

2
µ1,ρ

] ≤ 1.9 if

ρ2

1− ρ2
≤ C1

k log(p)

n
exp

(
C2

k log(p)

n

)
and if p ≥ k3 ∨C3 .

Gathering this result with Equations (9.15) and (9.16) allows to conclude.

9.4. Proof of Proposition 5.6

Let us set α = δ = 0.01. Consider a design X that achieves the bound (4.11)
and take ρ = ρ∗F,U [k,X]/2. If k log(p)/n is large enough, then ρ ≥

√
2. Take

any estimator θ̂ that does not rely on the variance σ2. Let us build a test T of
the hypotheses H0: {θ0 = 0 and σ > 0} against H1: {θ0 ∈ Θ[k, p] and σ > 0,
‖Xθ0‖2n/(nσ2) ≥ ρ2}:

T =

{
0 if 2‖Xθ̂‖2n < ‖Y‖2n
1 if 2‖Xθ̂‖2n ≥ ‖Y‖2n

By Proposition 4.4, we have at least one of the two following properties:

sup
σ>0

P0p,σ(T = 1) ≥ α (9.17)

sup
σ>0, θ0∈Θ[k,p], ‖Xθ0‖2

n/(nσ
2)≥ρ2

Pθ0,σ(T = 0) ≥ δ (9.18)

CASE 1: (9.17) holds. We have P0p,σ[‖Y‖2n ≥ nσ2/2] ≥ 1 − e−n/16 for any

σ > 0. Thus, there exists σ > 0 such that ‖Xθ̂‖2n ≥ nσ2/4 with probability
larger than α/2− e−n/16. As a consequence, we have

sup
σ>0

E0p,σ

[
‖X(θ̂ − θ0)‖2n/[nσ2]

]
≥ C .
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CASE 2: (9.18) holds. The random variable ‖Y‖2n/σ2 follows a noncentral χ2

distribution with n degrees of freedom and a non centrality parameter ‖Xθ0‖2n/σ2.
By Lemma 1 in Birgé [9], we have ‖Y‖2n ≤ 3/2

[
nσ2 + ‖Xθ0‖2n

]
, with proba-

bility larger than 1 − e−Cn. Consequently, there exist σ > 0 and θ0 ∈ Θ[k, p]
such that ‖Xθ0‖2n/(nσ2) ≥ ρ2 and

‖Xθ̂‖2n/(nσ2) ≤ 3

4

[
1 + ‖Xθ0‖2n/(nσ2)

]
≤ 7

8
‖Xθ0‖2n/(nσ2),

with probability δ/2− e−Cn, since ρ2 ≥ 2. Thus, we get

Eθ0,σ

[
‖X(θ̂ − θ0)‖2n/n

]
≥ Eθ0,σ

[(
‖Xθ̂‖n − ‖Xθ0‖n

)2

/n

]

≥ C‖Xθ0‖2n/n ≥ Cρ2σ2 .

9.5. Proof of Proposition 8.1

For the sake of conciseness, we note l(σ̂, σ) = |σ̂2/σ2 − σ2/σ̂2|. Given a positive
number ρ, we note σ0 = (1 + ρ2)−1/2. As in the proof of Theorem 4.3, we
consider the prior probability µρ on Θ[k, p]. For any estimator σ̂ > 0, we define
σ̃ by σ̃ ∈ argminσ∈{1,σ0} l(σ̂, σ). For any σ ∈ {1, σ0}, the loss l(σ̂, σ) is controlled
as follows:

l(σ̂, σ) ≥ 1σ̃ 6=σl(1,
√
σ0) .

Thus, we get the minimax lower bound

inf
σ̂

sup
σ>0, θ0∈Θ[k,p]

Eθ0,σ [l(σ̂, σ)]

≥ inf
σ̂>0

max
[
E0p,1 {l(σ̂, 1)} ;Eµρ,σ0 {l(σ̂, σ0)}

]

≥ l(1,
√
σ0) inf

σ̃∈{1,σ0}
max

[
P0p,1[σ̃ 6= 1];Pµρ,σ0 [σ̃ 6= σ0]

]

≥ l(1,
√
σ0)

2

[
1− ‖P0p,1 − Pµρ,1‖TV

2

]

≥ ρ2

2
√
1 + ρ2

[
1− 1

2

(
E0p,1[L

2
µρ
(Y,X)]− 1

)1/2
]

. (9.19)

Let us note two numbers η1 = 1.5 and η2 = 1.8. If X is a standard Gaussian
design and if k ≤ p1/3, then the proof of Theorem 4.3 states for

ρ2 ≤ C1
k

n
log

(p
k

)
exp

[
C2

k

n
log

(p
k

)]
,

we have E0p,1[L
2
µρ
(Y,X)] ≤ 1 + η21 where the expectation is taken both with

respect to Y and X. Applying Markov’s inequality, we derive that with positive
probability,

E0p,1[L
2
µρ
(Y,X)|X] ≤ 1 + η22 .
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For such designs X and such ρ we have

inf
σ̂

sup
σ>0, θ0∈Θ[k,p]

Eθ0,σ [l(σ̂, σ)] ≥ C
ρ2√
1 + ρ2

≥ C′ (ρ ∧ ρ2
)
,

since ρ2/
√
1 + ρ2 ≥ (ρ ∧ ρ2)/

√
2. We conclude that

inf
σ̂

sup
σ>0, θ0∈Θ[k,p]

Eθ0,σ [l(σ̂, σ)] ≥ C′
1

k

n
log

(p
k

)
exp

[
C′

2

k

n
log

(p
k

)]
.

9.6. Fano’s Lemma

The next lower bounds are established applying Birgé’s version of Fano’s Lem-
ma [10]. More precisely, we shall use the following lemma, which is taken from
Corollary 2.19 in [37],

Lemma 9.5. Let (S, d) be some pseudo metric space, {Ps, s ∈ S} be some
statistical model. Let us note κ = 2e/(2e + 1). Then, for any estimator ŝ
and any finite subset C of S, setting δ = mins,t∈C, s6=t d(s, t), provided that
maxs,t K(Ps,Pt) ≤ κ log |C| the following lower bound holds for any p ≥ 1:

sup
s∈C

Es [d
p(s, ŝ)] ≥ 2−pδp(1 − κ) .

9.7. Proof of the lower bounds of Propositions 6.1 and 6.4

This lower bound is based on Fano’s lemma. For the sake of simplicity, we assume
that 2k ≤ p and that σ2 = 1. First, we consider a unit vector θ ∈ Θ[2k, p]
such that ‖Xθ‖2n = Φ2k,−(X). Let us define κ = 2e/(2e + 1). It is possible to

find two vectors (θ1, θ2) ∈ Θ[k, p] such that θ1 − θ2 = θ
√
2κ log(2)/Φ2k,−(X)

and supp(θ1) ∩ supp(θ2) = ∅. Consequently, the Kullback distance K(θ1, θ2)
between the two distributions Pθ1 and Pθ2 is exactly κ log(2) and ‖θ1 − θ2‖2p =
2κ log(2)/Φ2k,−(X). Applying Lemma 9.5, we derive the first part of the lower
bound:

RIF [k,X] ≥ C
1

Φ2k∧p,− (X)
.

Let us turn to the second part of the lower bound. We consider M(k, p)
the collections of subsets of {1, . . . , p} of size k. Applying combinatorial results
such as Varshamov’s lemma and Lemma 4.10 in [37], we derive that there exists
M′(k, p) ⊂ M(k, p) of size larger than exp[Ck log(ep/k)] such that any pairs of
distinct sets m1, m2 in M′(k, p), we have |m1 ∩m3| ≤ 3k/4.

For any m ∈ M′(k, p), we define a vector θm that satisfies:

• |(θm)i| = 1/
√
k if i ∈ m and 0 else.

• ‖Xθm‖2n ≤ Φ1,+(X).
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Let us prove that this construction is possible by induction on k. The con-
struction is straightforward for k = 1. Assume that this construction is possi-
ble for k − 1. Let us take some subset m ∈ M(k, p) and m′ ⊂ m such that
|m′| = k − 1. There exists a vector θ such that supp(θ) = m′, |(θ)i| = 1/

√
k

for any i ∈ m′ and ‖Xθ‖2n ≤ Φ1,+(X)(k − 1)/k. Now consider the two vectors

θ1 and θ2 such that (θ1)i = (θ2)i = θi if i ∈ m′, (θ1)i = −(θ2)i = 1/
√
k if

i ∈ m \ m′ and (θ1)i = −(θ2)i = 0 else. It follows that ‖Xθ1‖2n ≤ Φ1,+(X) or
‖Xθ2‖2n ≤ Φ1,+(X), which allows to conclude.

For any r > 0, we consider the set C′
k[r] := {rθm , m ∈ M′(k, p)}. The

Kullback distance between any two element θ1 6= θ2 in C′
k[r] is upper bounded

as follows:

K(θ1, θ2) =
‖X(θ1 − θ2)‖2n

2σ2
≤ 2Φ1k,+(X)

r2

σ2
,

while we have ‖θ1 − θ2‖2p ≥ r2/2. Applying Birgé’s version of Fano’s lemma [10]
we conclude that:

inf
θ̂

sup
θ0∈Conv[Cp

k
(
√
kr)]

Eθ0,σ

[
‖X(θ̂ − θ0)‖2n/n

]
≥ C

[
r2 ∧ k(1 + log(p/k))

Φ1k,+(X)
σ2

]
,

where Conv[A] stands for the convex hull of A. Taking r2 = k[1 + log(p/k)]σ2/
Φ2k,+(X) allows to conclude.

The proof of the minimax lower bound (6.7) in Proposition 6.4 follows exactly
the same steps. The minimax lower bound (6.8) is a consequence of (6.7) and
the fact that Φ1,+(

√
Σ) = 1 for any Σ ∈ Sp.

9.8. Proof of Proposition 6.2

Proof of the first result. First, the minimax lower bound is a straightforward
consequence of (6.2), since Φ1,+(X) = n if X ∈ Dn,p. Let us turn to the up-
per bound. Thanks to the minimax upper bound (6.1), we only have to prove
that there exists a design X such that its 2k-restricted eigenvalues remain close
from n.

Consider a standard Gaussian design W of size n × p. Rescaling to a norm
of

√
n each column of W, we get a design X ∈ Dn,p. Let us assume that k[1 +

log(p/k)] ≤ {4(1 +
√
2)}−2n. Applying Lemma 11.2, we control the restricted

eigenvalues of W:

Φ2k,+(W/
√
n) ≤ (7/4)2 and Φ2k,−(W/

√
n) ≥ (1/4)2 ,

with probability larger than 1 − exp(−n/32). Consider any θ ∈ Θ[2k, p] such
that ‖θ‖p = 1. By definition of X, there exists some θ′ ∈ Θ[2k, p] such that
Xθ = Wθ′. Moreover we have

‖θ′‖2p ≥ Φ−1
1,+(W/

√
n) .
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Hence, we derive that

Φ2k,−(X) ≥ Φ2k,−(W)Φ−1
1,+(W/

√
n) .

Thus, we have Φ2k,−(X) ≥ n/49 with positive probability.

Proof of the second result. Let X be a design in Dn,p. Take δ ∈ (0, 1]. Let us
consider the collection M(k, p) (defined in Section 2). As explained in the
proof of Proposition 6.1, there exists M′(k, p) ⊂ M(k, p) of size larger than
exp[Ck log(ep/k)] such that any pairs of distinct sets m1, m2 in M′(k, p), we
have |m1 ∩m3| ≤ 3k/4.

For any m ∈ M′(k, p), we define a vector θm such that |(θm)i| = 1/
√
k if

i ∈ m and 0 else and that ‖Xθm‖2n ≤ n. Such a construction is justified in the
proof of Proposition 6.1.

For any m1 6= m2 in M′(k, p), we have ‖θm1 − θm2‖2p ≥ 1/2. If there exist
two distinct sets (m1,m2) ∈ M′(k, p) such that ‖X(θm1 − θm2)‖2n ≤ nδ2, then
the design X satisfies Φ2k,−(X) ≤ 2nδ2. A necessary condition for X to satisfy
Φ2k,−(X) ≥ 2nδ2 is therefore that the vectors Xθm are

√
nδ-separated.

If X satisfies Φ2k,−(X) ≥ 2nδ2, then the balls in Rn with radius
√
nδ centered

at Xθm are all disjoint. Thus, the sum of their volumes, is smaller than the
volume of a ball a radius

√
n(1 + δ) in Rn. This implies that δ ≤ 2(k/ep)Ck/n.

Hence, for any design X with unit columns, we have

Φ2k,−(X) ≤ C1

(
k

ep

)C2k/n

,

which allows to prove the second result.

Proof of the third result. The minimax lower bound is direct consequence of
(6.2) and (6.4). In order to finish the proof, we shall combine the minimax upper
bound (6.1) with an upper bound of infX∈Dn,p

Φ−1
2k,−(X). Consider a standard

Gaussian design X with size n× p. Applying the deviation inequality (11.3) of
Lemma 11.2, we derive that with probability larger than 1− 1/p, we have

Φ−1
2k,−(X) ≤ nC1

(p
k

)C2k/n
[
k

n
log

(p
k

)
∨ 1

]
.

However, the design X does not belong to Dn,p. This is why we consider X′ =
XD−1, where D is a diagonal matrix of size p, whose l-th diagonal element
corresponds to the norm of the l-th column of X/

√
n. Obviously, X′ belongs to

Dn,p.

Φ2k,−(X
′) = inf

θ∈Θ[k,p]

‖X′θ‖2n
‖θ‖2p

= inf
θ∈Θ[k,p]

‖Xθ‖2n
‖Dθ‖2p

≥ Φ2k,−(X)

ϕmax(D2)
,

Each diagonal element of nD2 follows of χ2 distribution with n degrees of free-
dom. Applying Lemma 11.1, we derive that ϕmax(D) ≤ C

√
1 ∨ log(p)/n with
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probability larger than 1− 1/p. We conclude that

Φ−1
2k,−(X

′) ≤ C1n
(p
k

)C2k/n)
[
k

n
log

(p
k

)
∨ 1

] [
1 ∨ log(p)

n

]

≤ C′
1n

(p
k

)C′

2k/n)

.

with probability larger than 1− 2/p. This allows to conclude.

9.9. Proof of Proposition 6.6

For the sake of simplicity, we assume that σ2 = 1. Consider a design X ∈ Dn,p.
By the proof of Proposition 6.2, there exist two vectors θ1 and θ2 such that:

1. θ1 and θ2 contain exactly k non-zero components which are all equal to
1/

√
k in absolute value.

2. The Hamming distance between θ1 and θ2 is larger than k/2.
3. ‖X(θ1 − θ2)‖2n ≤ C1n exp [−C2k/n log(ep/k)] := ρ∗−2.

Let us set θ∗1 = Cρ∗θ1 and θ∗2 = Cρ∗θ2 with C = 4 log(2)e/(2e + 1).
Consequently, the Kullback discrepancy between Pθ∗

1
and Pθ∗

2
is smaller than

log(2)2e/(2e+ 1). Consider an estimator θ̂ taking its values in {θ∗1 , θ∗2}. Apply-
ing Corollary 2.18 in [37] (which is another version of Fano’s Lemma), we derive

that infθ0∈{θ∗

1 ,θ
∗

2} Pθ0,1(θ̂ = θ0) ≤ 2e/(2e+ 1). This allows to conclude.

9.10. Proof of Proposition 6.7

For the sake of simplicity, we assume that σ2 = 1 and that p is even. Consider
any estimator M̂ of size p0. We set

ρ2 =
C1

2

k

n
log(p) exp

[
C2

2

k

n
log(p)

]
(9.20)

where the constants C1, C2 correspond to the ones used at the end of the proof
of Proposition 5.1. We also consider the set Cp

k(ρ). Suppose that we have

sup
θ0∈Cp

k
(ρ)

Pθ0,1[supp(θ0) ⊂ M̂ ] ≥ 7/8 . (9.21)

Assume we are given a second n-sample of (Y,X) independent of the first

one. We note (Y′,X′) this new sample. We consider the estimator θ̃k defined
by

θ̃k := arg min
θ∈Θ[k,p] and supp(θ)⊂M̂

‖Y′ −X′θ‖2n .

Since Σ = Ip, all the covariates that do not lie in the support of θ0 play a

symmetric role in the distribution of (Y,X). This estimator θ̃k has the same
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form as the estimator θ̂k introduced in (10.5). Arguing as in the proof of Theorem
5.2, we derive that

‖θ̃k − θ0‖2p1supp(θ0)⊂M̂
≤ C′

1k log
(ep0

k

)
exp

[
C′

2

k

n
log

(ep0
k

)]
,

with probability larger than 7/8. Gathering this bound with (9.21), we derive
that for any θ0 ∈ Cp

k(ρ), we have

‖θ̂k − θ0‖2p ≤ C′
1

k

n
log

(ep0
k

)
exp

[
C′

2

k

n
log

(ep0
k

)]
, (9.22)

with probability larger than 3/4.
We shall prove that (9.22) is impossible if p0 is too large. Let us split the p

covariates into two groups M1 and M2. We consider the subsets Cp
k,1(ρ) (resp.

Cp
k,2(ρ)) of C

p
k(ρ) whose elements have their support in M1 (resp. M2). Arguing

as in (9.15) and (9.16), we derive that for any estimator θ̂, there exists θ0 ∈
Cp
k,1(ρ) ∪ Cp

k,2(ρ) such that

‖θ̂ − θ0‖2p ≥ ρ2

4
=

C1

8

k

n
log(p) exp

[
C2

2

k

n
log(p)

]
,

with probability larger than 1/4. Here, the constants C1 and C2 are the same
as in (9.20).

The last lower bound contradicts (9.22) is log(p0)/ log(p) ≤ δ, where δ > 0
depends on the relative values of C1, C2, C

′
1, and C′

2 in (9.20) and (9.22).

10. Procedures involved in the proofs of the minimax upper bounds

10.1. Testing procedures

10.1.1. Known variance: Test T ∗
α

In order to establish the minimax upper bounds for known variance, we consider
the following testing procedure. It is taken from Baraud [5] who applies it in the
Gaussian sequence model. In the sequel, χ̄k(u) denotes the probability for a χ2

distribution with k degrees of freedom to be larger than u. Given a subset m of
{1, . . . , p}, Πm refers to the orthogonal projection onto the space generated by
the vectors (Xi)i∈m.

Definition 10.1 (Procedure T ∗
α). Define k∗ as the smallest integer such that

k∗[1 + log(p/k∗)] ≥ √
n. For any 1 ≤ k < k∗, we define the statistics T ∗

α,k by

T ∗
α,k := sup

m∈M(k,p)

‖ΠmY‖2n − σ2χ̄−1
k

[
α/(pk)

]
,

where M(k, p) is defined in Section 2. We also consider

T ∗
α,n := ‖Y‖2n − σ2χ̄−1

n (α) .
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The procedure T ∗
α is defined by

T ∗
α =

[
∨1≤k<k∗T ∗

α/(2k∗),k

]
∨ T ∗

α/2,n . (10.1)

The hypothesis H0 is rejected if T ∗
α is positive.

T ∗
α,k corresponds to a Bonferroni multiple testing procedure based on a large

number of parametric tests of the hypothesis H0: {θ0 = 0p} against H1,m:
{θ0 6= 0 and supp(θ0) ⊂ m} for any m ∈ M(k, p). As a consequence, T ∗

α,k allows
to test the hypothesis H0:{θ0 = 0} against H1,k: {θ0 ∈ Θ[k, p]\{0p}}. Then, T ∗

α

corresponds to a Bonferroni multiple testing procedures based on the statistics
T ∗
α,k, k ∈ {1, . . . k∗} ∪ {n}. Obviously, the procedure T ∗

α is computationally
intensive. It is used here as a theoretical tool to derive minimax upper bounds.

10.1.2. Unknown variance: test Tα

We introduce a second testing procedure to handle the case of unknown vari-
ance σ2.

Definition 10.2 (Procedure Tα). Fixing some subset m of {1, . . . , p} such that
n− |m| > 0, we note dm(X) the rank of the subdesign Xm of X of size n× |m|.
We define the Fisher statistic φm by

φm(Y,X) :=
[n− dm(X)]‖ΠmY‖2n
dm(X)‖Y −ΠmY‖2n

. (10.2)

We build the statistic Tα,k(Y,X) as

Tα,k := sup
m∈M(k,p)

φm(Y,X)− F̄−1
dm(X),n−dm(X)

[
α/(pk)

]
, (10.3)

where F̄k,n−k(u) denotes the probability for a Fisher variable with k and n− k
degrees of freedom to be larger than u. Finally, the statistic Tα is defined by

Tα := sup
k=1,...,⌊n/2⌋

Tα/⌊n/2⌋,k . (10.4)

The hypothesis H0 is rejected when Tα is positive.

In fact, Tα is a Bonferroni multiple testing procedure. Contrary to T ∗
α, it is

based on Fisher statistics to handle the unknown variance. The ideas underlying
this statistic have been introduced in Baraud et al. [7] in the context of fixed
design regression.

10.2. Estimation procedures

10.2.1. Definition of the estimator θ̃V

Definition 10.3 (Estimator θ̃V ). For any integer k ∈ {1, . . . , p}, we consider a
least-squares estimator θ̂k defined by

θ̂k ∈ arg min
θ∈Θ[k,p]

‖Y −Xθ‖2n . (10.5)
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Let us define the penalty function pen : {1, . . . , ⌊(n− 1)/4⌋} 7→ R+ by

pen(k) = K
k

n
log

(ep
k

)
, (10.6)

where K > 0 is a tuning parameter. The dimension k̂V is selected as follows

k̂V ∈ arg min
1≤k≤⌊(n−1)/4⌋

log
[
‖Y −Xθ̂k‖2n

]
+ pen(k) .

For short, we note θ̃V = θ̂k̂V .

This variable selection procedure relies on complexity penalization. The penalty
pen(k) depends on the size of k and on the number

(
p
k

)
of subsets of {1, . . . , p}

of size k. Observe that the estimator θ̃V does not require the knowledge of σ2.
The choice of the tuning parameter K is universal: it neither depends on n, p,

k, nor on Σ, θ0, σ
2. It is only constrained to be larger than a positive numerical

constant so that the equations (B.8), (B.24), (B.26), (B.31), and (B.34) in the
proofs of Theorem 5.2, Propositions 5.5 and 6.3 in [43] hold.

10.2.2. Definition of the estimator θ̃BM and proof of (5.6) in Proposition 5.3

Definition 10.4 (Procedure for fixed design regression). Define k∗ as the small-
est integer k such that k[1 + log(p/k)] ≥ n. Let us consider the collection of
dimensions K := {1, . . . , k∗} ∪ {n}. Then, the penalty function pen : K 7→ R+

is defined by

pen(k) :=

{
4k

[
4 + log

(
p
k

)]
if k ≤ k∗

2n if k = n ,

We recall that for k ≤ k∗, the estimators θ̂k are defined in (10.5) and that θ̂n ∈
argminθ∈Rp ‖Y −Xθ‖2n. The size k̂BM is selected by minimizing the following
penalized criterion

k̂BM := arg inf
k∈{1,...k∗}∪{n}

‖Y −Xθ̂k‖2n + σ2pen(k) , (10.7)

For short, we write θ̃BM = θ̂k̂BM .

Observe that the estimator θ̃BM requires the knowledge of the variance σ2.
Then, Eq. (5.6) is a special case of Theorem 1 in Birgé and Massart [12].

11. Deviation inequalities

The proofs of the deviation inequalities stated in this section are postponed to
Appendix C in [43].
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Lemma 11.1 (χ2 distributions). For any integer d > 0 and any number 0 <
x < 1,

P
(
χ2(d) ≥ d+ 2

√
d log(1/x) + 2 log(1/x)

)
≤ x ,

P
(
χ2(d) ≤ d− 2

√
d log(1/x)

)
≤ x .

For any positive number 0 < x < 1

P
[
χ2(d) ≤ dCx2/d

]
≤ x , (11.1)

where the constant C = exp(−1).

Lemma 11.2 (Wishart distributions). Let ZTZ be a standard Wishart matrix
of parameters (n, d) with n > d. For any number 0 < x < 1,

P

[
ϕmax

(
ZTZ

)
≥ n

(
1 +

√
d/n+

√
2 log(1/x)/n

)2
]

≤ x ,

P

[
ϕmin

(
ZTZ

)
≤ n

(
1−

√
d/n−

√
2 log(1/x)/n

)2

+

]
≤ x . (11.2)

For any (n, d) with n ≥ 4d+ 1 and any number 0 < x < 1,

P

[
ϕmin

(
ZTZ

)
≤ nCx

2
n−2d

[
1 ∨ log(2/x)

n

]−1
]

≤ x , (11.3)

where C is a numerical constant.

The two first deviation inequalities are taken from Theorem 2.13 in [19]. The
bound (11.3) allows to control the tail distribution of the smallest eigenvalue
of a Wishart distribution. Rudelson and Vershynin [41] have provided a control
similar to (11.3) under subgaussian assumptions. However, their results only
holds for events of probability smaller than 1− e−n.
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[38] Meinshausen, N. and Bühlmann, P. (2006). High-dimensional graphs
and variable selection with the lasso. Ann. Statist. 34, 3, 1436–1462.
MR2278363 (2008b:62044)

[39] Raskutti, G., Wainwright, M., and Yu, B. (2009). Minimax rates of
estimations for high-dimensional regression over lq balls. Tech. rep., UC
Berkeley.

[40] Rigollet, P. and Tsybakov, A. (2011). Exponential screening and
optimal rates of sparse estimation. Ann. Statist. 39, 2, 731–771.

[41] Rudelson, M. and Vershynin, R. (2009). Smallest singular value of a
random rectangular matrix. Comm. Pure Appl. Math. 62, 12, 1707–1739.
http://dx.doi.org/10.1002/cpa.20294. MR2569075

[42] Verzelen, N. (2010a). High-dimensional gaussian model selection on a
gaussian design. Ann. Inst. H. Poincaré Probab. Statist. 46, 2, 480–524.
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